GNU Linux-libre 5.19.9-gnu
[releases.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62         if (len != -ENODEV)
63                 return len;
64
65         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70                                      struct device_attribute *a,
71                                      const char *buf, size_t count)
72 {
73         struct spi_device *spi = to_spi_device(dev);
74         int ret;
75
76         ret = driver_set_override(dev, &spi->driver_override, buf, count);
77         if (ret)
78                 return ret;
79
80         return count;
81 }
82
83 static ssize_t driver_override_show(struct device *dev,
84                                     struct device_attribute *a, char *buf)
85 {
86         const struct spi_device *spi = to_spi_device(dev);
87         ssize_t len;
88
89         device_lock(dev);
90         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
91         device_unlock(dev);
92         return len;
93 }
94 static DEVICE_ATTR_RW(driver_override);
95
96 #define SPI_STATISTICS_ATTRS(field, file)                               \
97 static ssize_t spi_controller_##field##_show(struct device *dev,        \
98                                              struct device_attribute *attr, \
99                                              char *buf)                 \
100 {                                                                       \
101         struct spi_controller *ctlr = container_of(dev,                 \
102                                          struct spi_controller, dev);   \
103         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
104 }                                                                       \
105 static struct device_attribute dev_attr_spi_controller_##field = {      \
106         .attr = { .name = file, .mode = 0444 },                         \
107         .show = spi_controller_##field##_show,                          \
108 };                                                                      \
109 static ssize_t spi_device_##field##_show(struct device *dev,            \
110                                          struct device_attribute *attr, \
111                                         char *buf)                      \
112 {                                                                       \
113         struct spi_device *spi = to_spi_device(dev);                    \
114         return spi_statistics_##field##_show(&spi->statistics, buf);    \
115 }                                                                       \
116 static struct device_attribute dev_attr_spi_device_##field = {          \
117         .attr = { .name = file, .mode = 0444 },                         \
118         .show = spi_device_##field##_show,                              \
119 }
120
121 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
122 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
123                                             char *buf)                  \
124 {                                                                       \
125         unsigned long flags;                                            \
126         ssize_t len;                                                    \
127         spin_lock_irqsave(&stat->lock, flags);                          \
128         len = sysfs_emit(buf, format_string "\n", stat->field);         \
129         spin_unlock_irqrestore(&stat->lock, flags);                     \
130         return len;                                                     \
131 }                                                                       \
132 SPI_STATISTICS_ATTRS(name, file)
133
134 #define SPI_STATISTICS_SHOW(field, format_string)                       \
135         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
136                                  field, format_string)
137
138 SPI_STATISTICS_SHOW(messages, "%lu");
139 SPI_STATISTICS_SHOW(transfers, "%lu");
140 SPI_STATISTICS_SHOW(errors, "%lu");
141 SPI_STATISTICS_SHOW(timedout, "%lu");
142
143 SPI_STATISTICS_SHOW(spi_sync, "%lu");
144 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
145 SPI_STATISTICS_SHOW(spi_async, "%lu");
146
147 SPI_STATISTICS_SHOW(bytes, "%llu");
148 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
149 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
150
151 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
152         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
153                                  "transfer_bytes_histo_" number,        \
154                                  transfer_bytes_histo[index],  "%lu")
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
156 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
157 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
158 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
159 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
160 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
161 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
162 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
163 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
164 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
165 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
166 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
167 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
168 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
169 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
170 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
171 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
172
173 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
174
175 static struct attribute *spi_dev_attrs[] = {
176         &dev_attr_modalias.attr,
177         &dev_attr_driver_override.attr,
178         NULL,
179 };
180
181 static const struct attribute_group spi_dev_group = {
182         .attrs  = spi_dev_attrs,
183 };
184
185 static struct attribute *spi_device_statistics_attrs[] = {
186         &dev_attr_spi_device_messages.attr,
187         &dev_attr_spi_device_transfers.attr,
188         &dev_attr_spi_device_errors.attr,
189         &dev_attr_spi_device_timedout.attr,
190         &dev_attr_spi_device_spi_sync.attr,
191         &dev_attr_spi_device_spi_sync_immediate.attr,
192         &dev_attr_spi_device_spi_async.attr,
193         &dev_attr_spi_device_bytes.attr,
194         &dev_attr_spi_device_bytes_rx.attr,
195         &dev_attr_spi_device_bytes_tx.attr,
196         &dev_attr_spi_device_transfer_bytes_histo0.attr,
197         &dev_attr_spi_device_transfer_bytes_histo1.attr,
198         &dev_attr_spi_device_transfer_bytes_histo2.attr,
199         &dev_attr_spi_device_transfer_bytes_histo3.attr,
200         &dev_attr_spi_device_transfer_bytes_histo4.attr,
201         &dev_attr_spi_device_transfer_bytes_histo5.attr,
202         &dev_attr_spi_device_transfer_bytes_histo6.attr,
203         &dev_attr_spi_device_transfer_bytes_histo7.attr,
204         &dev_attr_spi_device_transfer_bytes_histo8.attr,
205         &dev_attr_spi_device_transfer_bytes_histo9.attr,
206         &dev_attr_spi_device_transfer_bytes_histo10.attr,
207         &dev_attr_spi_device_transfer_bytes_histo11.attr,
208         &dev_attr_spi_device_transfer_bytes_histo12.attr,
209         &dev_attr_spi_device_transfer_bytes_histo13.attr,
210         &dev_attr_spi_device_transfer_bytes_histo14.attr,
211         &dev_attr_spi_device_transfer_bytes_histo15.attr,
212         &dev_attr_spi_device_transfer_bytes_histo16.attr,
213         &dev_attr_spi_device_transfers_split_maxsize.attr,
214         NULL,
215 };
216
217 static const struct attribute_group spi_device_statistics_group = {
218         .name  = "statistics",
219         .attrs  = spi_device_statistics_attrs,
220 };
221
222 static const struct attribute_group *spi_dev_groups[] = {
223         &spi_dev_group,
224         &spi_device_statistics_group,
225         NULL,
226 };
227
228 static struct attribute *spi_controller_statistics_attrs[] = {
229         &dev_attr_spi_controller_messages.attr,
230         &dev_attr_spi_controller_transfers.attr,
231         &dev_attr_spi_controller_errors.attr,
232         &dev_attr_spi_controller_timedout.attr,
233         &dev_attr_spi_controller_spi_sync.attr,
234         &dev_attr_spi_controller_spi_sync_immediate.attr,
235         &dev_attr_spi_controller_spi_async.attr,
236         &dev_attr_spi_controller_bytes.attr,
237         &dev_attr_spi_controller_bytes_rx.attr,
238         &dev_attr_spi_controller_bytes_tx.attr,
239         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
240         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
241         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
242         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
243         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
244         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
245         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
246         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
247         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
248         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
249         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
250         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
251         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
252         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
253         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
254         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
255         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
256         &dev_attr_spi_controller_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_controller_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_controller_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_master_groups[] = {
266         &spi_controller_statistics_group,
267         NULL,
268 };
269
270 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
271                                               struct spi_transfer *xfer,
272                                               struct spi_controller *ctlr)
273 {
274         unsigned long flags;
275         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
276
277         if (l2len < 0)
278                 l2len = 0;
279
280         spin_lock_irqsave(&stats->lock, flags);
281
282         stats->transfers++;
283         stats->transfer_bytes_histo[l2len]++;
284
285         stats->bytes += xfer->len;
286         if ((xfer->tx_buf) &&
287             (xfer->tx_buf != ctlr->dummy_tx))
288                 stats->bytes_tx += xfer->len;
289         if ((xfer->rx_buf) &&
290             (xfer->rx_buf != ctlr->dummy_rx))
291                 stats->bytes_rx += xfer->len;
292
293         spin_unlock_irqrestore(&stats->lock, flags);
294 }
295
296 /*
297  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
298  * and the sysfs version makes coldplug work too.
299  */
300 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
301 {
302         while (id->name[0]) {
303                 if (!strcmp(name, id->name))
304                         return id;
305                 id++;
306         }
307         return NULL;
308 }
309
310 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
311 {
312         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
313
314         return spi_match_id(sdrv->id_table, sdev->modalias);
315 }
316 EXPORT_SYMBOL_GPL(spi_get_device_id);
317
318 static int spi_match_device(struct device *dev, struct device_driver *drv)
319 {
320         const struct spi_device *spi = to_spi_device(dev);
321         const struct spi_driver *sdrv = to_spi_driver(drv);
322
323         /* Check override first, and if set, only use the named driver */
324         if (spi->driver_override)
325                 return strcmp(spi->driver_override, drv->name) == 0;
326
327         /* Attempt an OF style match */
328         if (of_driver_match_device(dev, drv))
329                 return 1;
330
331         /* Then try ACPI */
332         if (acpi_driver_match_device(dev, drv))
333                 return 1;
334
335         if (sdrv->id_table)
336                 return !!spi_match_id(sdrv->id_table, spi->modalias);
337
338         return strcmp(spi->modalias, drv->name) == 0;
339 }
340
341 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
342 {
343         const struct spi_device         *spi = to_spi_device(dev);
344         int rc;
345
346         rc = acpi_device_uevent_modalias(dev, env);
347         if (rc != -ENODEV)
348                 return rc;
349
350         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
351 }
352
353 static int spi_probe(struct device *dev)
354 {
355         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
356         struct spi_device               *spi = to_spi_device(dev);
357         int ret;
358
359         ret = of_clk_set_defaults(dev->of_node, false);
360         if (ret)
361                 return ret;
362
363         if (dev->of_node) {
364                 spi->irq = of_irq_get(dev->of_node, 0);
365                 if (spi->irq == -EPROBE_DEFER)
366                         return -EPROBE_DEFER;
367                 if (spi->irq < 0)
368                         spi->irq = 0;
369         }
370
371         ret = dev_pm_domain_attach(dev, true);
372         if (ret)
373                 return ret;
374
375         if (sdrv->probe) {
376                 ret = sdrv->probe(spi);
377                 if (ret)
378                         dev_pm_domain_detach(dev, true);
379         }
380
381         return ret;
382 }
383
384 static void spi_remove(struct device *dev)
385 {
386         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
387
388         if (sdrv->remove)
389                 sdrv->remove(to_spi_device(dev));
390
391         dev_pm_domain_detach(dev, true);
392 }
393
394 static void spi_shutdown(struct device *dev)
395 {
396         if (dev->driver) {
397                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
398
399                 if (sdrv->shutdown)
400                         sdrv->shutdown(to_spi_device(dev));
401         }
402 }
403
404 struct bus_type spi_bus_type = {
405         .name           = "spi",
406         .dev_groups     = spi_dev_groups,
407         .match          = spi_match_device,
408         .uevent         = spi_uevent,
409         .probe          = spi_probe,
410         .remove         = spi_remove,
411         .shutdown       = spi_shutdown,
412 };
413 EXPORT_SYMBOL_GPL(spi_bus_type);
414
415 /**
416  * __spi_register_driver - register a SPI driver
417  * @owner: owner module of the driver to register
418  * @sdrv: the driver to register
419  * Context: can sleep
420  *
421  * Return: zero on success, else a negative error code.
422  */
423 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
424 {
425         sdrv->driver.owner = owner;
426         sdrv->driver.bus = &spi_bus_type;
427
428         /*
429          * For Really Good Reasons we use spi: modaliases not of:
430          * modaliases for DT so module autoloading won't work if we
431          * don't have a spi_device_id as well as a compatible string.
432          */
433         if (sdrv->driver.of_match_table) {
434                 const struct of_device_id *of_id;
435
436                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
437                      of_id++) {
438                         const char *of_name;
439
440                         /* Strip off any vendor prefix */
441                         of_name = strnchr(of_id->compatible,
442                                           sizeof(of_id->compatible), ',');
443                         if (of_name)
444                                 of_name++;
445                         else
446                                 of_name = of_id->compatible;
447
448                         if (sdrv->id_table) {
449                                 const struct spi_device_id *spi_id;
450
451                                 spi_id = spi_match_id(sdrv->id_table, of_name);
452                                 if (spi_id)
453                                         continue;
454                         } else {
455                                 if (strcmp(sdrv->driver.name, of_name) == 0)
456                                         continue;
457                         }
458
459                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
460                                 sdrv->driver.name, of_id->compatible);
461                 }
462         }
463
464         return driver_register(&sdrv->driver);
465 }
466 EXPORT_SYMBOL_GPL(__spi_register_driver);
467
468 /*-------------------------------------------------------------------------*/
469
470 /*
471  * SPI devices should normally not be created by SPI device drivers; that
472  * would make them board-specific.  Similarly with SPI controller drivers.
473  * Device registration normally goes into like arch/.../mach.../board-YYY.c
474  * with other readonly (flashable) information about mainboard devices.
475  */
476
477 struct boardinfo {
478         struct list_head        list;
479         struct spi_board_info   board_info;
480 };
481
482 static LIST_HEAD(board_list);
483 static LIST_HEAD(spi_controller_list);
484
485 /*
486  * Used to protect add/del operation for board_info list and
487  * spi_controller list, and their matching process also used
488  * to protect object of type struct idr.
489  */
490 static DEFINE_MUTEX(board_lock);
491
492 /**
493  * spi_alloc_device - Allocate a new SPI device
494  * @ctlr: Controller to which device is connected
495  * Context: can sleep
496  *
497  * Allows a driver to allocate and initialize a spi_device without
498  * registering it immediately.  This allows a driver to directly
499  * fill the spi_device with device parameters before calling
500  * spi_add_device() on it.
501  *
502  * Caller is responsible to call spi_add_device() on the returned
503  * spi_device structure to add it to the SPI controller.  If the caller
504  * needs to discard the spi_device without adding it, then it should
505  * call spi_dev_put() on it.
506  *
507  * Return: a pointer to the new device, or NULL.
508  */
509 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
510 {
511         struct spi_device       *spi;
512
513         if (!spi_controller_get(ctlr))
514                 return NULL;
515
516         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
517         if (!spi) {
518                 spi_controller_put(ctlr);
519                 return NULL;
520         }
521
522         spi->master = spi->controller = ctlr;
523         spi->dev.parent = &ctlr->dev;
524         spi->dev.bus = &spi_bus_type;
525         spi->dev.release = spidev_release;
526         spi->mode = ctlr->buswidth_override_bits;
527
528         spin_lock_init(&spi->statistics.lock);
529
530         device_initialize(&spi->dev);
531         return spi;
532 }
533 EXPORT_SYMBOL_GPL(spi_alloc_device);
534
535 static void spi_dev_set_name(struct spi_device *spi)
536 {
537         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
538
539         if (adev) {
540                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
541                 return;
542         }
543
544         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
545                      spi->chip_select);
546 }
547
548 static int spi_dev_check(struct device *dev, void *data)
549 {
550         struct spi_device *spi = to_spi_device(dev);
551         struct spi_device *new_spi = data;
552
553         if (spi->controller == new_spi->controller &&
554             spi->chip_select == new_spi->chip_select)
555                 return -EBUSY;
556         return 0;
557 }
558
559 static void spi_cleanup(struct spi_device *spi)
560 {
561         if (spi->controller->cleanup)
562                 spi->controller->cleanup(spi);
563 }
564
565 static int __spi_add_device(struct spi_device *spi)
566 {
567         struct spi_controller *ctlr = spi->controller;
568         struct device *dev = ctlr->dev.parent;
569         int status;
570
571         /*
572          * We need to make sure there's no other device with this
573          * chipselect **BEFORE** we call setup(), else we'll trash
574          * its configuration.
575          */
576         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
577         if (status) {
578                 dev_err(dev, "chipselect %d already in use\n",
579                                 spi->chip_select);
580                 return status;
581         }
582
583         /* Controller may unregister concurrently */
584         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
585             !device_is_registered(&ctlr->dev)) {
586                 return -ENODEV;
587         }
588
589         if (ctlr->cs_gpiods)
590                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
591
592         /*
593          * Drivers may modify this initial i/o setup, but will
594          * normally rely on the device being setup.  Devices
595          * using SPI_CS_HIGH can't coexist well otherwise...
596          */
597         status = spi_setup(spi);
598         if (status < 0) {
599                 dev_err(dev, "can't setup %s, status %d\n",
600                                 dev_name(&spi->dev), status);
601                 return status;
602         }
603
604         /* Device may be bound to an active driver when this returns */
605         status = device_add(&spi->dev);
606         if (status < 0) {
607                 dev_err(dev, "can't add %s, status %d\n",
608                                 dev_name(&spi->dev), status);
609                 spi_cleanup(spi);
610         } else {
611                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
612         }
613
614         return status;
615 }
616
617 /**
618  * spi_add_device - Add spi_device allocated with spi_alloc_device
619  * @spi: spi_device to register
620  *
621  * Companion function to spi_alloc_device.  Devices allocated with
622  * spi_alloc_device can be added onto the spi bus with this function.
623  *
624  * Return: 0 on success; negative errno on failure
625  */
626 int spi_add_device(struct spi_device *spi)
627 {
628         struct spi_controller *ctlr = spi->controller;
629         struct device *dev = ctlr->dev.parent;
630         int status;
631
632         /* Chipselects are numbered 0..max; validate. */
633         if (spi->chip_select >= ctlr->num_chipselect) {
634                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
635                         ctlr->num_chipselect);
636                 return -EINVAL;
637         }
638
639         /* Set the bus ID string */
640         spi_dev_set_name(spi);
641
642         mutex_lock(&ctlr->add_lock);
643         status = __spi_add_device(spi);
644         mutex_unlock(&ctlr->add_lock);
645         return status;
646 }
647 EXPORT_SYMBOL_GPL(spi_add_device);
648
649 static int spi_add_device_locked(struct spi_device *spi)
650 {
651         struct spi_controller *ctlr = spi->controller;
652         struct device *dev = ctlr->dev.parent;
653
654         /* Chipselects are numbered 0..max; validate. */
655         if (spi->chip_select >= ctlr->num_chipselect) {
656                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
657                         ctlr->num_chipselect);
658                 return -EINVAL;
659         }
660
661         /* Set the bus ID string */
662         spi_dev_set_name(spi);
663
664         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
665         return __spi_add_device(spi);
666 }
667
668 /**
669  * spi_new_device - instantiate one new SPI device
670  * @ctlr: Controller to which device is connected
671  * @chip: Describes the SPI device
672  * Context: can sleep
673  *
674  * On typical mainboards, this is purely internal; and it's not needed
675  * after board init creates the hard-wired devices.  Some development
676  * platforms may not be able to use spi_register_board_info though, and
677  * this is exported so that for example a USB or parport based adapter
678  * driver could add devices (which it would learn about out-of-band).
679  *
680  * Return: the new device, or NULL.
681  */
682 struct spi_device *spi_new_device(struct spi_controller *ctlr,
683                                   struct spi_board_info *chip)
684 {
685         struct spi_device       *proxy;
686         int                     status;
687
688         /*
689          * NOTE:  caller did any chip->bus_num checks necessary.
690          *
691          * Also, unless we change the return value convention to use
692          * error-or-pointer (not NULL-or-pointer), troubleshootability
693          * suggests syslogged diagnostics are best here (ugh).
694          */
695
696         proxy = spi_alloc_device(ctlr);
697         if (!proxy)
698                 return NULL;
699
700         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
701
702         proxy->chip_select = chip->chip_select;
703         proxy->max_speed_hz = chip->max_speed_hz;
704         proxy->mode = chip->mode;
705         proxy->irq = chip->irq;
706         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
707         proxy->dev.platform_data = (void *) chip->platform_data;
708         proxy->controller_data = chip->controller_data;
709         proxy->controller_state = NULL;
710
711         if (chip->swnode) {
712                 status = device_add_software_node(&proxy->dev, chip->swnode);
713                 if (status) {
714                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
715                                 chip->modalias, status);
716                         goto err_dev_put;
717                 }
718         }
719
720         status = spi_add_device(proxy);
721         if (status < 0)
722                 goto err_dev_put;
723
724         return proxy;
725
726 err_dev_put:
727         device_remove_software_node(&proxy->dev);
728         spi_dev_put(proxy);
729         return NULL;
730 }
731 EXPORT_SYMBOL_GPL(spi_new_device);
732
733 /**
734  * spi_unregister_device - unregister a single SPI device
735  * @spi: spi_device to unregister
736  *
737  * Start making the passed SPI device vanish. Normally this would be handled
738  * by spi_unregister_controller().
739  */
740 void spi_unregister_device(struct spi_device *spi)
741 {
742         if (!spi)
743                 return;
744
745         if (spi->dev.of_node) {
746                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
747                 of_node_put(spi->dev.of_node);
748         }
749         if (ACPI_COMPANION(&spi->dev))
750                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
751         device_remove_software_node(&spi->dev);
752         device_del(&spi->dev);
753         spi_cleanup(spi);
754         put_device(&spi->dev);
755 }
756 EXPORT_SYMBOL_GPL(spi_unregister_device);
757
758 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
759                                               struct spi_board_info *bi)
760 {
761         struct spi_device *dev;
762
763         if (ctlr->bus_num != bi->bus_num)
764                 return;
765
766         dev = spi_new_device(ctlr, bi);
767         if (!dev)
768                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
769                         bi->modalias);
770 }
771
772 /**
773  * spi_register_board_info - register SPI devices for a given board
774  * @info: array of chip descriptors
775  * @n: how many descriptors are provided
776  * Context: can sleep
777  *
778  * Board-specific early init code calls this (probably during arch_initcall)
779  * with segments of the SPI device table.  Any device nodes are created later,
780  * after the relevant parent SPI controller (bus_num) is defined.  We keep
781  * this table of devices forever, so that reloading a controller driver will
782  * not make Linux forget about these hard-wired devices.
783  *
784  * Other code can also call this, e.g. a particular add-on board might provide
785  * SPI devices through its expansion connector, so code initializing that board
786  * would naturally declare its SPI devices.
787  *
788  * The board info passed can safely be __initdata ... but be careful of
789  * any embedded pointers (platform_data, etc), they're copied as-is.
790  *
791  * Return: zero on success, else a negative error code.
792  */
793 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
794 {
795         struct boardinfo *bi;
796         int i;
797
798         if (!n)
799                 return 0;
800
801         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
802         if (!bi)
803                 return -ENOMEM;
804
805         for (i = 0; i < n; i++, bi++, info++) {
806                 struct spi_controller *ctlr;
807
808                 memcpy(&bi->board_info, info, sizeof(*info));
809
810                 mutex_lock(&board_lock);
811                 list_add_tail(&bi->list, &board_list);
812                 list_for_each_entry(ctlr, &spi_controller_list, list)
813                         spi_match_controller_to_boardinfo(ctlr,
814                                                           &bi->board_info);
815                 mutex_unlock(&board_lock);
816         }
817
818         return 0;
819 }
820
821 /*-------------------------------------------------------------------------*/
822
823 /* Core methods for SPI resource management */
824
825 /**
826  * spi_res_alloc - allocate a spi resource that is life-cycle managed
827  *                 during the processing of a spi_message while using
828  *                 spi_transfer_one
829  * @spi:     the spi device for which we allocate memory
830  * @release: the release code to execute for this resource
831  * @size:    size to alloc and return
832  * @gfp:     GFP allocation flags
833  *
834  * Return: the pointer to the allocated data
835  *
836  * This may get enhanced in the future to allocate from a memory pool
837  * of the @spi_device or @spi_controller to avoid repeated allocations.
838  */
839 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
840                            size_t size, gfp_t gfp)
841 {
842         struct spi_res *sres;
843
844         sres = kzalloc(sizeof(*sres) + size, gfp);
845         if (!sres)
846                 return NULL;
847
848         INIT_LIST_HEAD(&sres->entry);
849         sres->release = release;
850
851         return sres->data;
852 }
853
854 /**
855  * spi_res_free - free an spi resource
856  * @res: pointer to the custom data of a resource
857  */
858 static void spi_res_free(void *res)
859 {
860         struct spi_res *sres = container_of(res, struct spi_res, data);
861
862         if (!res)
863                 return;
864
865         WARN_ON(!list_empty(&sres->entry));
866         kfree(sres);
867 }
868
869 /**
870  * spi_res_add - add a spi_res to the spi_message
871  * @message: the spi message
872  * @res:     the spi_resource
873  */
874 static void spi_res_add(struct spi_message *message, void *res)
875 {
876         struct spi_res *sres = container_of(res, struct spi_res, data);
877
878         WARN_ON(!list_empty(&sres->entry));
879         list_add_tail(&sres->entry, &message->resources);
880 }
881
882 /**
883  * spi_res_release - release all spi resources for this message
884  * @ctlr:  the @spi_controller
885  * @message: the @spi_message
886  */
887 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
888 {
889         struct spi_res *res, *tmp;
890
891         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
892                 if (res->release)
893                         res->release(ctlr, message, res->data);
894
895                 list_del(&res->entry);
896
897                 kfree(res);
898         }
899 }
900
901 /*-------------------------------------------------------------------------*/
902
903 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
904 {
905         bool activate = enable;
906
907         /*
908          * Avoid calling into the driver (or doing delays) if the chip select
909          * isn't actually changing from the last time this was called.
910          */
911         if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
912                                 (!enable && spi->controller->last_cs != spi->chip_select)) &&
913             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
914                 return;
915
916         trace_spi_set_cs(spi, activate);
917
918         spi->controller->last_cs = enable ? spi->chip_select : -1;
919         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
920
921         if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
922                 spi_delay_exec(&spi->cs_hold, NULL);
923         }
924
925         if (spi->mode & SPI_CS_HIGH)
926                 enable = !enable;
927
928         if (spi->cs_gpiod) {
929                 if (!(spi->mode & SPI_NO_CS)) {
930                         /*
931                          * Historically ACPI has no means of the GPIO polarity and
932                          * thus the SPISerialBus() resource defines it on the per-chip
933                          * basis. In order to avoid a chain of negations, the GPIO
934                          * polarity is considered being Active High. Even for the cases
935                          * when _DSD() is involved (in the updated versions of ACPI)
936                          * the GPIO CS polarity must be defined Active High to avoid
937                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
938                          * into account.
939                          */
940                         if (has_acpi_companion(&spi->dev))
941                                 gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
942                         else
943                                 /* Polarity handled by GPIO library */
944                                 gpiod_set_value_cansleep(spi->cs_gpiod, activate);
945                 }
946                 /* Some SPI masters need both GPIO CS & slave_select */
947                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
948                     spi->controller->set_cs)
949                         spi->controller->set_cs(spi, !enable);
950         } else if (spi->controller->set_cs) {
951                 spi->controller->set_cs(spi, !enable);
952         }
953
954         if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
955                 if (activate)
956                         spi_delay_exec(&spi->cs_setup, NULL);
957                 else
958                         spi_delay_exec(&spi->cs_inactive, NULL);
959         }
960 }
961
962 #ifdef CONFIG_HAS_DMA
963 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
964                 struct sg_table *sgt, void *buf, size_t len,
965                 enum dma_data_direction dir)
966 {
967         const bool vmalloced_buf = is_vmalloc_addr(buf);
968         unsigned int max_seg_size = dma_get_max_seg_size(dev);
969 #ifdef CONFIG_HIGHMEM
970         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
971                                 (unsigned long)buf < (PKMAP_BASE +
972                                         (LAST_PKMAP * PAGE_SIZE)));
973 #else
974         const bool kmap_buf = false;
975 #endif
976         int desc_len;
977         int sgs;
978         struct page *vm_page;
979         struct scatterlist *sg;
980         void *sg_buf;
981         size_t min;
982         int i, ret;
983
984         if (vmalloced_buf || kmap_buf) {
985                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
986                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
987         } else if (virt_addr_valid(buf)) {
988                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
989                 sgs = DIV_ROUND_UP(len, desc_len);
990         } else {
991                 return -EINVAL;
992         }
993
994         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
995         if (ret != 0)
996                 return ret;
997
998         sg = &sgt->sgl[0];
999         for (i = 0; i < sgs; i++) {
1000
1001                 if (vmalloced_buf || kmap_buf) {
1002                         /*
1003                          * Next scatterlist entry size is the minimum between
1004                          * the desc_len and the remaining buffer length that
1005                          * fits in a page.
1006                          */
1007                         min = min_t(size_t, desc_len,
1008                                     min_t(size_t, len,
1009                                           PAGE_SIZE - offset_in_page(buf)));
1010                         if (vmalloced_buf)
1011                                 vm_page = vmalloc_to_page(buf);
1012                         else
1013                                 vm_page = kmap_to_page(buf);
1014                         if (!vm_page) {
1015                                 sg_free_table(sgt);
1016                                 return -ENOMEM;
1017                         }
1018                         sg_set_page(sg, vm_page,
1019                                     min, offset_in_page(buf));
1020                 } else {
1021                         min = min_t(size_t, len, desc_len);
1022                         sg_buf = buf;
1023                         sg_set_buf(sg, sg_buf, min);
1024                 }
1025
1026                 buf += min;
1027                 len -= min;
1028                 sg = sg_next(sg);
1029         }
1030
1031         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1032         if (!ret)
1033                 ret = -ENOMEM;
1034         if (ret < 0) {
1035                 sg_free_table(sgt);
1036                 return ret;
1037         }
1038
1039         sgt->nents = ret;
1040
1041         return 0;
1042 }
1043
1044 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1045                    struct sg_table *sgt, enum dma_data_direction dir)
1046 {
1047         if (sgt->orig_nents) {
1048                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1049                 sg_free_table(sgt);
1050         }
1051 }
1052
1053 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1054 {
1055         struct device *tx_dev, *rx_dev;
1056         struct spi_transfer *xfer;
1057         int ret;
1058
1059         if (!ctlr->can_dma)
1060                 return 0;
1061
1062         if (ctlr->dma_tx)
1063                 tx_dev = ctlr->dma_tx->device->dev;
1064         else if (ctlr->dma_map_dev)
1065                 tx_dev = ctlr->dma_map_dev;
1066         else
1067                 tx_dev = ctlr->dev.parent;
1068
1069         if (ctlr->dma_rx)
1070                 rx_dev = ctlr->dma_rx->device->dev;
1071         else if (ctlr->dma_map_dev)
1072                 rx_dev = ctlr->dma_map_dev;
1073         else
1074                 rx_dev = ctlr->dev.parent;
1075
1076         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1077                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1078                         continue;
1079
1080                 if (xfer->tx_buf != NULL) {
1081                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1082                                           (void *)xfer->tx_buf, xfer->len,
1083                                           DMA_TO_DEVICE);
1084                         if (ret != 0)
1085                                 return ret;
1086                 }
1087
1088                 if (xfer->rx_buf != NULL) {
1089                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1090                                           xfer->rx_buf, xfer->len,
1091                                           DMA_FROM_DEVICE);
1092                         if (ret != 0) {
1093                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1094                                               DMA_TO_DEVICE);
1095                                 return ret;
1096                         }
1097                 }
1098         }
1099
1100         ctlr->cur_msg_mapped = true;
1101
1102         return 0;
1103 }
1104
1105 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1106 {
1107         struct spi_transfer *xfer;
1108         struct device *tx_dev, *rx_dev;
1109
1110         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1111                 return 0;
1112
1113         if (ctlr->dma_tx)
1114                 tx_dev = ctlr->dma_tx->device->dev;
1115         else if (ctlr->dma_map_dev)
1116                 tx_dev = ctlr->dma_map_dev;
1117         else
1118                 tx_dev = ctlr->dev.parent;
1119
1120         if (ctlr->dma_rx)
1121                 rx_dev = ctlr->dma_rx->device->dev;
1122         else if (ctlr->dma_map_dev)
1123                 rx_dev = ctlr->dma_map_dev;
1124         else
1125                 rx_dev = ctlr->dev.parent;
1126
1127         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1128                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1129                         continue;
1130
1131                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1132                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1133         }
1134
1135         ctlr->cur_msg_mapped = false;
1136
1137         return 0;
1138 }
1139 #else /* !CONFIG_HAS_DMA */
1140 static inline int __spi_map_msg(struct spi_controller *ctlr,
1141                                 struct spi_message *msg)
1142 {
1143         return 0;
1144 }
1145
1146 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1147                                   struct spi_message *msg)
1148 {
1149         return 0;
1150 }
1151 #endif /* !CONFIG_HAS_DMA */
1152
1153 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1154                                 struct spi_message *msg)
1155 {
1156         struct spi_transfer *xfer;
1157
1158         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1159                 /*
1160                  * Restore the original value of tx_buf or rx_buf if they are
1161                  * NULL.
1162                  */
1163                 if (xfer->tx_buf == ctlr->dummy_tx)
1164                         xfer->tx_buf = NULL;
1165                 if (xfer->rx_buf == ctlr->dummy_rx)
1166                         xfer->rx_buf = NULL;
1167         }
1168
1169         return __spi_unmap_msg(ctlr, msg);
1170 }
1171
1172 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1173 {
1174         struct spi_transfer *xfer;
1175         void *tmp;
1176         unsigned int max_tx, max_rx;
1177
1178         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1179                 && !(msg->spi->mode & SPI_3WIRE)) {
1180                 max_tx = 0;
1181                 max_rx = 0;
1182
1183                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1184                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1185                             !xfer->tx_buf)
1186                                 max_tx = max(xfer->len, max_tx);
1187                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1188                             !xfer->rx_buf)
1189                                 max_rx = max(xfer->len, max_rx);
1190                 }
1191
1192                 if (max_tx) {
1193                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1194                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1195                         if (!tmp)
1196                                 return -ENOMEM;
1197                         ctlr->dummy_tx = tmp;
1198                 }
1199
1200                 if (max_rx) {
1201                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1202                                        GFP_KERNEL | GFP_DMA);
1203                         if (!tmp)
1204                                 return -ENOMEM;
1205                         ctlr->dummy_rx = tmp;
1206                 }
1207
1208                 if (max_tx || max_rx) {
1209                         list_for_each_entry(xfer, &msg->transfers,
1210                                             transfer_list) {
1211                                 if (!xfer->len)
1212                                         continue;
1213                                 if (!xfer->tx_buf)
1214                                         xfer->tx_buf = ctlr->dummy_tx;
1215                                 if (!xfer->rx_buf)
1216                                         xfer->rx_buf = ctlr->dummy_rx;
1217                         }
1218                 }
1219         }
1220
1221         return __spi_map_msg(ctlr, msg);
1222 }
1223
1224 static int spi_transfer_wait(struct spi_controller *ctlr,
1225                              struct spi_message *msg,
1226                              struct spi_transfer *xfer)
1227 {
1228         struct spi_statistics *statm = &ctlr->statistics;
1229         struct spi_statistics *stats = &msg->spi->statistics;
1230         u32 speed_hz = xfer->speed_hz;
1231         unsigned long long ms;
1232
1233         if (spi_controller_is_slave(ctlr)) {
1234                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1235                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1236                         return -EINTR;
1237                 }
1238         } else {
1239                 if (!speed_hz)
1240                         speed_hz = 100000;
1241
1242                 /*
1243                  * For each byte we wait for 8 cycles of the SPI clock.
1244                  * Since speed is defined in Hz and we want milliseconds,
1245                  * use respective multiplier, but before the division,
1246                  * otherwise we may get 0 for short transfers.
1247                  */
1248                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1249                 do_div(ms, speed_hz);
1250
1251                 /*
1252                  * Increase it twice and add 200 ms tolerance, use
1253                  * predefined maximum in case of overflow.
1254                  */
1255                 ms += ms + 200;
1256                 if (ms > UINT_MAX)
1257                         ms = UINT_MAX;
1258
1259                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1260                                                  msecs_to_jiffies(ms));
1261
1262                 if (ms == 0) {
1263                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1264                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1265                         dev_err(&msg->spi->dev,
1266                                 "SPI transfer timed out\n");
1267                         return -ETIMEDOUT;
1268                 }
1269         }
1270
1271         return 0;
1272 }
1273
1274 static void _spi_transfer_delay_ns(u32 ns)
1275 {
1276         if (!ns)
1277                 return;
1278         if (ns <= NSEC_PER_USEC) {
1279                 ndelay(ns);
1280         } else {
1281                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1282
1283                 if (us <= 10)
1284                         udelay(us);
1285                 else
1286                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1287         }
1288 }
1289
1290 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1291 {
1292         u32 delay = _delay->value;
1293         u32 unit = _delay->unit;
1294         u32 hz;
1295
1296         if (!delay)
1297                 return 0;
1298
1299         switch (unit) {
1300         case SPI_DELAY_UNIT_USECS:
1301                 delay *= NSEC_PER_USEC;
1302                 break;
1303         case SPI_DELAY_UNIT_NSECS:
1304                 /* Nothing to do here */
1305                 break;
1306         case SPI_DELAY_UNIT_SCK:
1307                 /* clock cycles need to be obtained from spi_transfer */
1308                 if (!xfer)
1309                         return -EINVAL;
1310                 /*
1311                  * If there is unknown effective speed, approximate it
1312                  * by underestimating with half of the requested hz.
1313                  */
1314                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1315                 if (!hz)
1316                         return -EINVAL;
1317
1318                 /* Convert delay to nanoseconds */
1319                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1320                 break;
1321         default:
1322                 return -EINVAL;
1323         }
1324
1325         return delay;
1326 }
1327 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1328
1329 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1330 {
1331         int delay;
1332
1333         might_sleep();
1334
1335         if (!_delay)
1336                 return -EINVAL;
1337
1338         delay = spi_delay_to_ns(_delay, xfer);
1339         if (delay < 0)
1340                 return delay;
1341
1342         _spi_transfer_delay_ns(delay);
1343
1344         return 0;
1345 }
1346 EXPORT_SYMBOL_GPL(spi_delay_exec);
1347
1348 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1349                                           struct spi_transfer *xfer)
1350 {
1351         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1352         u32 delay = xfer->cs_change_delay.value;
1353         u32 unit = xfer->cs_change_delay.unit;
1354         int ret;
1355
1356         /* return early on "fast" mode - for everything but USECS */
1357         if (!delay) {
1358                 if (unit == SPI_DELAY_UNIT_USECS)
1359                         _spi_transfer_delay_ns(default_delay_ns);
1360                 return;
1361         }
1362
1363         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1364         if (ret) {
1365                 dev_err_once(&msg->spi->dev,
1366                              "Use of unsupported delay unit %i, using default of %luus\n",
1367                              unit, default_delay_ns / NSEC_PER_USEC);
1368                 _spi_transfer_delay_ns(default_delay_ns);
1369         }
1370 }
1371
1372 /*
1373  * spi_transfer_one_message - Default implementation of transfer_one_message()
1374  *
1375  * This is a standard implementation of transfer_one_message() for
1376  * drivers which implement a transfer_one() operation.  It provides
1377  * standard handling of delays and chip select management.
1378  */
1379 static int spi_transfer_one_message(struct spi_controller *ctlr,
1380                                     struct spi_message *msg)
1381 {
1382         struct spi_transfer *xfer;
1383         bool keep_cs = false;
1384         int ret = 0;
1385         struct spi_statistics *statm = &ctlr->statistics;
1386         struct spi_statistics *stats = &msg->spi->statistics;
1387
1388         spi_set_cs(msg->spi, true, false);
1389
1390         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1391         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1392
1393         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1394                 trace_spi_transfer_start(msg, xfer);
1395
1396                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1397                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1398
1399                 if (!ctlr->ptp_sts_supported) {
1400                         xfer->ptp_sts_word_pre = 0;
1401                         ptp_read_system_prets(xfer->ptp_sts);
1402                 }
1403
1404                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1405                         reinit_completion(&ctlr->xfer_completion);
1406
1407 fallback_pio:
1408                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1409                         if (ret < 0) {
1410                                 if (ctlr->cur_msg_mapped &&
1411                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1412                                         __spi_unmap_msg(ctlr, msg);
1413                                         ctlr->fallback = true;
1414                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1415                                         goto fallback_pio;
1416                                 }
1417
1418                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1419                                                                errors);
1420                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1421                                                                errors);
1422                                 dev_err(&msg->spi->dev,
1423                                         "SPI transfer failed: %d\n", ret);
1424                                 goto out;
1425                         }
1426
1427                         if (ret > 0) {
1428                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1429                                 if (ret < 0)
1430                                         msg->status = ret;
1431                         }
1432                 } else {
1433                         if (xfer->len)
1434                                 dev_err(&msg->spi->dev,
1435                                         "Bufferless transfer has length %u\n",
1436                                         xfer->len);
1437                 }
1438
1439                 if (!ctlr->ptp_sts_supported) {
1440                         ptp_read_system_postts(xfer->ptp_sts);
1441                         xfer->ptp_sts_word_post = xfer->len;
1442                 }
1443
1444                 trace_spi_transfer_stop(msg, xfer);
1445
1446                 if (msg->status != -EINPROGRESS)
1447                         goto out;
1448
1449                 spi_transfer_delay_exec(xfer);
1450
1451                 if (xfer->cs_change) {
1452                         if (list_is_last(&xfer->transfer_list,
1453                                          &msg->transfers)) {
1454                                 keep_cs = true;
1455                         } else {
1456                                 spi_set_cs(msg->spi, false, false);
1457                                 _spi_transfer_cs_change_delay(msg, xfer);
1458                                 spi_set_cs(msg->spi, true, false);
1459                         }
1460                 }
1461
1462                 msg->actual_length += xfer->len;
1463         }
1464
1465 out:
1466         if (ret != 0 || !keep_cs)
1467                 spi_set_cs(msg->spi, false, false);
1468
1469         if (msg->status == -EINPROGRESS)
1470                 msg->status = ret;
1471
1472         if (msg->status && ctlr->handle_err)
1473                 ctlr->handle_err(ctlr, msg);
1474
1475         spi_finalize_current_message(ctlr);
1476
1477         return ret;
1478 }
1479
1480 /**
1481  * spi_finalize_current_transfer - report completion of a transfer
1482  * @ctlr: the controller reporting completion
1483  *
1484  * Called by SPI drivers using the core transfer_one_message()
1485  * implementation to notify it that the current interrupt driven
1486  * transfer has finished and the next one may be scheduled.
1487  */
1488 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1489 {
1490         complete(&ctlr->xfer_completion);
1491 }
1492 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1493
1494 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1495 {
1496         if (ctlr->auto_runtime_pm) {
1497                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1498                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1499         }
1500 }
1501
1502 /**
1503  * __spi_pump_messages - function which processes spi message queue
1504  * @ctlr: controller to process queue for
1505  * @in_kthread: true if we are in the context of the message pump thread
1506  *
1507  * This function checks if there is any spi message in the queue that
1508  * needs processing and if so call out to the driver to initialize hardware
1509  * and transfer each message.
1510  *
1511  * Note that it is called both from the kthread itself and also from
1512  * inside spi_sync(); the queue extraction handling at the top of the
1513  * function should deal with this safely.
1514  */
1515 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1516 {
1517         struct spi_transfer *xfer;
1518         struct spi_message *msg;
1519         bool was_busy = false;
1520         unsigned long flags;
1521         int ret;
1522
1523         /* Lock queue */
1524         spin_lock_irqsave(&ctlr->queue_lock, flags);
1525
1526         /* Make sure we are not already running a message */
1527         if (ctlr->cur_msg) {
1528                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529                 return;
1530         }
1531
1532         /* If another context is idling the device then defer */
1533         if (ctlr->idling) {
1534                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1535                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1536                 return;
1537         }
1538
1539         /* Check if the queue is idle */
1540         if (list_empty(&ctlr->queue) || !ctlr->running) {
1541                 if (!ctlr->busy) {
1542                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1543                         return;
1544                 }
1545
1546                 /* Defer any non-atomic teardown to the thread */
1547                 if (!in_kthread) {
1548                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1549                             !ctlr->unprepare_transfer_hardware) {
1550                                 spi_idle_runtime_pm(ctlr);
1551                                 ctlr->busy = false;
1552                                 trace_spi_controller_idle(ctlr);
1553                         } else {
1554                                 kthread_queue_work(ctlr->kworker,
1555                                                    &ctlr->pump_messages);
1556                         }
1557                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1558                         return;
1559                 }
1560
1561                 ctlr->busy = false;
1562                 ctlr->idling = true;
1563                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1564
1565                 kfree(ctlr->dummy_rx);
1566                 ctlr->dummy_rx = NULL;
1567                 kfree(ctlr->dummy_tx);
1568                 ctlr->dummy_tx = NULL;
1569                 if (ctlr->unprepare_transfer_hardware &&
1570                     ctlr->unprepare_transfer_hardware(ctlr))
1571                         dev_err(&ctlr->dev,
1572                                 "failed to unprepare transfer hardware\n");
1573                 spi_idle_runtime_pm(ctlr);
1574                 trace_spi_controller_idle(ctlr);
1575
1576                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1577                 ctlr->idling = false;
1578                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1579                 return;
1580         }
1581
1582         /* Extract head of queue */
1583         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1584         ctlr->cur_msg = msg;
1585
1586         list_del_init(&msg->queue);
1587         if (ctlr->busy)
1588                 was_busy = true;
1589         else
1590                 ctlr->busy = true;
1591         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1592
1593         mutex_lock(&ctlr->io_mutex);
1594
1595         if (!was_busy && ctlr->auto_runtime_pm) {
1596                 ret = pm_runtime_resume_and_get(ctlr->dev.parent);
1597                 if (ret < 0) {
1598                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1599                                 ret);
1600                         mutex_unlock(&ctlr->io_mutex);
1601                         return;
1602                 }
1603         }
1604
1605         if (!was_busy)
1606                 trace_spi_controller_busy(ctlr);
1607
1608         if (!was_busy && ctlr->prepare_transfer_hardware) {
1609                 ret = ctlr->prepare_transfer_hardware(ctlr);
1610                 if (ret) {
1611                         dev_err(&ctlr->dev,
1612                                 "failed to prepare transfer hardware: %d\n",
1613                                 ret);
1614
1615                         if (ctlr->auto_runtime_pm)
1616                                 pm_runtime_put(ctlr->dev.parent);
1617
1618                         msg->status = ret;
1619                         spi_finalize_current_message(ctlr);
1620
1621                         mutex_unlock(&ctlr->io_mutex);
1622                         return;
1623                 }
1624         }
1625
1626         trace_spi_message_start(msg);
1627
1628         if (ctlr->prepare_message) {
1629                 ret = ctlr->prepare_message(ctlr, msg);
1630                 if (ret) {
1631                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1632                                 ret);
1633                         msg->status = ret;
1634                         spi_finalize_current_message(ctlr);
1635                         goto out;
1636                 }
1637                 ctlr->cur_msg_prepared = true;
1638         }
1639
1640         ret = spi_map_msg(ctlr, msg);
1641         if (ret) {
1642                 msg->status = ret;
1643                 spi_finalize_current_message(ctlr);
1644                 goto out;
1645         }
1646
1647         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1648                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1649                         xfer->ptp_sts_word_pre = 0;
1650                         ptp_read_system_prets(xfer->ptp_sts);
1651                 }
1652         }
1653
1654         ret = ctlr->transfer_one_message(ctlr, msg);
1655         if (ret) {
1656                 dev_err(&ctlr->dev,
1657                         "failed to transfer one message from queue: %d\n",
1658                         ret);
1659                 goto out;
1660         }
1661
1662 out:
1663         mutex_unlock(&ctlr->io_mutex);
1664
1665         /* Prod the scheduler in case transfer_one() was busy waiting */
1666         if (!ret)
1667                 cond_resched();
1668 }
1669
1670 /**
1671  * spi_pump_messages - kthread work function which processes spi message queue
1672  * @work: pointer to kthread work struct contained in the controller struct
1673  */
1674 static void spi_pump_messages(struct kthread_work *work)
1675 {
1676         struct spi_controller *ctlr =
1677                 container_of(work, struct spi_controller, pump_messages);
1678
1679         __spi_pump_messages(ctlr, true);
1680 }
1681
1682 /**
1683  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1684  * @ctlr: Pointer to the spi_controller structure of the driver
1685  * @xfer: Pointer to the transfer being timestamped
1686  * @progress: How many words (not bytes) have been transferred so far
1687  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1688  *            transfer, for less jitter in time measurement. Only compatible
1689  *            with PIO drivers. If true, must follow up with
1690  *            spi_take_timestamp_post or otherwise system will crash.
1691  *            WARNING: for fully predictable results, the CPU frequency must
1692  *            also be under control (governor).
1693  *
1694  * This is a helper for drivers to collect the beginning of the TX timestamp
1695  * for the requested byte from the SPI transfer. The frequency with which this
1696  * function must be called (once per word, once for the whole transfer, once
1697  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1698  * greater than or equal to the requested byte at the time of the call. The
1699  * timestamp is only taken once, at the first such call. It is assumed that
1700  * the driver advances its @tx buffer pointer monotonically.
1701  */
1702 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1703                             struct spi_transfer *xfer,
1704                             size_t progress, bool irqs_off)
1705 {
1706         if (!xfer->ptp_sts)
1707                 return;
1708
1709         if (xfer->timestamped)
1710                 return;
1711
1712         if (progress > xfer->ptp_sts_word_pre)
1713                 return;
1714
1715         /* Capture the resolution of the timestamp */
1716         xfer->ptp_sts_word_pre = progress;
1717
1718         if (irqs_off) {
1719                 local_irq_save(ctlr->irq_flags);
1720                 preempt_disable();
1721         }
1722
1723         ptp_read_system_prets(xfer->ptp_sts);
1724 }
1725 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1726
1727 /**
1728  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1729  * @ctlr: Pointer to the spi_controller structure of the driver
1730  * @xfer: Pointer to the transfer being timestamped
1731  * @progress: How many words (not bytes) have been transferred so far
1732  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1733  *
1734  * This is a helper for drivers to collect the end of the TX timestamp for
1735  * the requested byte from the SPI transfer. Can be called with an arbitrary
1736  * frequency: only the first call where @tx exceeds or is equal to the
1737  * requested word will be timestamped.
1738  */
1739 void spi_take_timestamp_post(struct spi_controller *ctlr,
1740                              struct spi_transfer *xfer,
1741                              size_t progress, bool irqs_off)
1742 {
1743         if (!xfer->ptp_sts)
1744                 return;
1745
1746         if (xfer->timestamped)
1747                 return;
1748
1749         if (progress < xfer->ptp_sts_word_post)
1750                 return;
1751
1752         ptp_read_system_postts(xfer->ptp_sts);
1753
1754         if (irqs_off) {
1755                 local_irq_restore(ctlr->irq_flags);
1756                 preempt_enable();
1757         }
1758
1759         /* Capture the resolution of the timestamp */
1760         xfer->ptp_sts_word_post = progress;
1761
1762         xfer->timestamped = true;
1763 }
1764 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1765
1766 /**
1767  * spi_set_thread_rt - set the controller to pump at realtime priority
1768  * @ctlr: controller to boost priority of
1769  *
1770  * This can be called because the controller requested realtime priority
1771  * (by setting the ->rt value before calling spi_register_controller()) or
1772  * because a device on the bus said that its transfers needed realtime
1773  * priority.
1774  *
1775  * NOTE: at the moment if any device on a bus says it needs realtime then
1776  * the thread will be at realtime priority for all transfers on that
1777  * controller.  If this eventually becomes a problem we may see if we can
1778  * find a way to boost the priority only temporarily during relevant
1779  * transfers.
1780  */
1781 static void spi_set_thread_rt(struct spi_controller *ctlr)
1782 {
1783         dev_info(&ctlr->dev,
1784                 "will run message pump with realtime priority\n");
1785         sched_set_fifo(ctlr->kworker->task);
1786 }
1787
1788 static int spi_init_queue(struct spi_controller *ctlr)
1789 {
1790         ctlr->running = false;
1791         ctlr->busy = false;
1792
1793         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1794         if (IS_ERR(ctlr->kworker)) {
1795                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1796                 return PTR_ERR(ctlr->kworker);
1797         }
1798
1799         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1800
1801         /*
1802          * Controller config will indicate if this controller should run the
1803          * message pump with high (realtime) priority to reduce the transfer
1804          * latency on the bus by minimising the delay between a transfer
1805          * request and the scheduling of the message pump thread. Without this
1806          * setting the message pump thread will remain at default priority.
1807          */
1808         if (ctlr->rt)
1809                 spi_set_thread_rt(ctlr);
1810
1811         return 0;
1812 }
1813
1814 /**
1815  * spi_get_next_queued_message() - called by driver to check for queued
1816  * messages
1817  * @ctlr: the controller to check for queued messages
1818  *
1819  * If there are more messages in the queue, the next message is returned from
1820  * this call.
1821  *
1822  * Return: the next message in the queue, else NULL if the queue is empty.
1823  */
1824 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1825 {
1826         struct spi_message *next;
1827         unsigned long flags;
1828
1829         /* get a pointer to the next message, if any */
1830         spin_lock_irqsave(&ctlr->queue_lock, flags);
1831         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1832                                         queue);
1833         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834
1835         return next;
1836 }
1837 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1838
1839 /**
1840  * spi_finalize_current_message() - the current message is complete
1841  * @ctlr: the controller to return the message to
1842  *
1843  * Called by the driver to notify the core that the message in the front of the
1844  * queue is complete and can be removed from the queue.
1845  */
1846 void spi_finalize_current_message(struct spi_controller *ctlr)
1847 {
1848         struct spi_transfer *xfer;
1849         struct spi_message *mesg;
1850         unsigned long flags;
1851         int ret;
1852
1853         spin_lock_irqsave(&ctlr->queue_lock, flags);
1854         mesg = ctlr->cur_msg;
1855         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1856
1857         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1858                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1859                         ptp_read_system_postts(xfer->ptp_sts);
1860                         xfer->ptp_sts_word_post = xfer->len;
1861                 }
1862         }
1863
1864         if (unlikely(ctlr->ptp_sts_supported))
1865                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1866                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1867
1868         spi_unmap_msg(ctlr, mesg);
1869
1870         /*
1871          * In the prepare_messages callback the SPI bus has the opportunity
1872          * to split a transfer to smaller chunks.
1873          *
1874          * Release the split transfers here since spi_map_msg() is done on
1875          * the split transfers.
1876          */
1877         spi_res_release(ctlr, mesg);
1878
1879         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1880                 ret = ctlr->unprepare_message(ctlr, mesg);
1881                 if (ret) {
1882                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1883                                 ret);
1884                 }
1885         }
1886
1887         spin_lock_irqsave(&ctlr->queue_lock, flags);
1888         ctlr->cur_msg = NULL;
1889         ctlr->cur_msg_prepared = false;
1890         ctlr->fallback = false;
1891         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1892         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894         trace_spi_message_done(mesg);
1895
1896         mesg->state = NULL;
1897         if (mesg->complete)
1898                 mesg->complete(mesg->context);
1899 }
1900 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1901
1902 static int spi_start_queue(struct spi_controller *ctlr)
1903 {
1904         unsigned long flags;
1905
1906         spin_lock_irqsave(&ctlr->queue_lock, flags);
1907
1908         if (ctlr->running || ctlr->busy) {
1909                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1910                 return -EBUSY;
1911         }
1912
1913         ctlr->running = true;
1914         ctlr->cur_msg = NULL;
1915         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1916
1917         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1918
1919         return 0;
1920 }
1921
1922 static int spi_stop_queue(struct spi_controller *ctlr)
1923 {
1924         unsigned long flags;
1925         unsigned limit = 500;
1926         int ret = 0;
1927
1928         spin_lock_irqsave(&ctlr->queue_lock, flags);
1929
1930         /*
1931          * This is a bit lame, but is optimized for the common execution path.
1932          * A wait_queue on the ctlr->busy could be used, but then the common
1933          * execution path (pump_messages) would be required to call wake_up or
1934          * friends on every SPI message. Do this instead.
1935          */
1936         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1937                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1938                 usleep_range(10000, 11000);
1939                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1940         }
1941
1942         if (!list_empty(&ctlr->queue) || ctlr->busy)
1943                 ret = -EBUSY;
1944         else
1945                 ctlr->running = false;
1946
1947         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1948
1949         if (ret) {
1950                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1951                 return ret;
1952         }
1953         return ret;
1954 }
1955
1956 static int spi_destroy_queue(struct spi_controller *ctlr)
1957 {
1958         int ret;
1959
1960         ret = spi_stop_queue(ctlr);
1961
1962         /*
1963          * kthread_flush_worker will block until all work is done.
1964          * If the reason that stop_queue timed out is that the work will never
1965          * finish, then it does no good to call flush/stop thread, so
1966          * return anyway.
1967          */
1968         if (ret) {
1969                 dev_err(&ctlr->dev, "problem destroying queue\n");
1970                 return ret;
1971         }
1972
1973         kthread_destroy_worker(ctlr->kworker);
1974
1975         return 0;
1976 }
1977
1978 static int __spi_queued_transfer(struct spi_device *spi,
1979                                  struct spi_message *msg,
1980                                  bool need_pump)
1981 {
1982         struct spi_controller *ctlr = spi->controller;
1983         unsigned long flags;
1984
1985         spin_lock_irqsave(&ctlr->queue_lock, flags);
1986
1987         if (!ctlr->running) {
1988                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1989                 return -ESHUTDOWN;
1990         }
1991         msg->actual_length = 0;
1992         msg->status = -EINPROGRESS;
1993
1994         list_add_tail(&msg->queue, &ctlr->queue);
1995         if (!ctlr->busy && need_pump)
1996                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1997
1998         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1999         return 0;
2000 }
2001
2002 /**
2003  * spi_queued_transfer - transfer function for queued transfers
2004  * @spi: spi device which is requesting transfer
2005  * @msg: spi message which is to handled is queued to driver queue
2006  *
2007  * Return: zero on success, else a negative error code.
2008  */
2009 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2010 {
2011         return __spi_queued_transfer(spi, msg, true);
2012 }
2013
2014 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2015 {
2016         int ret;
2017
2018         ctlr->transfer = spi_queued_transfer;
2019         if (!ctlr->transfer_one_message)
2020                 ctlr->transfer_one_message = spi_transfer_one_message;
2021
2022         /* Initialize and start queue */
2023         ret = spi_init_queue(ctlr);
2024         if (ret) {
2025                 dev_err(&ctlr->dev, "problem initializing queue\n");
2026                 goto err_init_queue;
2027         }
2028         ctlr->queued = true;
2029         ret = spi_start_queue(ctlr);
2030         if (ret) {
2031                 dev_err(&ctlr->dev, "problem starting queue\n");
2032                 goto err_start_queue;
2033         }
2034
2035         return 0;
2036
2037 err_start_queue:
2038         spi_destroy_queue(ctlr);
2039 err_init_queue:
2040         return ret;
2041 }
2042
2043 /**
2044  * spi_flush_queue - Send all pending messages in the queue from the callers'
2045  *                   context
2046  * @ctlr: controller to process queue for
2047  *
2048  * This should be used when one wants to ensure all pending messages have been
2049  * sent before doing something. Is used by the spi-mem code to make sure SPI
2050  * memory operations do not preempt regular SPI transfers that have been queued
2051  * before the spi-mem operation.
2052  */
2053 void spi_flush_queue(struct spi_controller *ctlr)
2054 {
2055         if (ctlr->transfer == spi_queued_transfer)
2056                 __spi_pump_messages(ctlr, false);
2057 }
2058
2059 /*-------------------------------------------------------------------------*/
2060
2061 #if defined(CONFIG_OF)
2062 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2063                            struct device_node *nc)
2064 {
2065         u32 value;
2066         int rc;
2067
2068         /* Mode (clock phase/polarity/etc.) */
2069         if (of_property_read_bool(nc, "spi-cpha"))
2070                 spi->mode |= SPI_CPHA;
2071         if (of_property_read_bool(nc, "spi-cpol"))
2072                 spi->mode |= SPI_CPOL;
2073         if (of_property_read_bool(nc, "spi-3wire"))
2074                 spi->mode |= SPI_3WIRE;
2075         if (of_property_read_bool(nc, "spi-lsb-first"))
2076                 spi->mode |= SPI_LSB_FIRST;
2077         if (of_property_read_bool(nc, "spi-cs-high"))
2078                 spi->mode |= SPI_CS_HIGH;
2079
2080         /* Device DUAL/QUAD mode */
2081         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2082                 switch (value) {
2083                 case 0:
2084                         spi->mode |= SPI_NO_TX;
2085                         break;
2086                 case 1:
2087                         break;
2088                 case 2:
2089                         spi->mode |= SPI_TX_DUAL;
2090                         break;
2091                 case 4:
2092                         spi->mode |= SPI_TX_QUAD;
2093                         break;
2094                 case 8:
2095                         spi->mode |= SPI_TX_OCTAL;
2096                         break;
2097                 default:
2098                         dev_warn(&ctlr->dev,
2099                                 "spi-tx-bus-width %d not supported\n",
2100                                 value);
2101                         break;
2102                 }
2103         }
2104
2105         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2106                 switch (value) {
2107                 case 0:
2108                         spi->mode |= SPI_NO_RX;
2109                         break;
2110                 case 1:
2111                         break;
2112                 case 2:
2113                         spi->mode |= SPI_RX_DUAL;
2114                         break;
2115                 case 4:
2116                         spi->mode |= SPI_RX_QUAD;
2117                         break;
2118                 case 8:
2119                         spi->mode |= SPI_RX_OCTAL;
2120                         break;
2121                 default:
2122                         dev_warn(&ctlr->dev,
2123                                 "spi-rx-bus-width %d not supported\n",
2124                                 value);
2125                         break;
2126                 }
2127         }
2128
2129         if (spi_controller_is_slave(ctlr)) {
2130                 if (!of_node_name_eq(nc, "slave")) {
2131                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2132                                 nc);
2133                         return -EINVAL;
2134                 }
2135                 return 0;
2136         }
2137
2138         /* Device address */
2139         rc = of_property_read_u32(nc, "reg", &value);
2140         if (rc) {
2141                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2142                         nc, rc);
2143                 return rc;
2144         }
2145         spi->chip_select = value;
2146
2147         /* Device speed */
2148         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2149                 spi->max_speed_hz = value;
2150
2151         return 0;
2152 }
2153
2154 static struct spi_device *
2155 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2156 {
2157         struct spi_device *spi;
2158         int rc;
2159
2160         /* Alloc an spi_device */
2161         spi = spi_alloc_device(ctlr);
2162         if (!spi) {
2163                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2164                 rc = -ENOMEM;
2165                 goto err_out;
2166         }
2167
2168         /* Select device driver */
2169         rc = of_modalias_node(nc, spi->modalias,
2170                                 sizeof(spi->modalias));
2171         if (rc < 0) {
2172                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2173                 goto err_out;
2174         }
2175
2176         rc = of_spi_parse_dt(ctlr, spi, nc);
2177         if (rc)
2178                 goto err_out;
2179
2180         /* Store a pointer to the node in the device structure */
2181         of_node_get(nc);
2182         spi->dev.of_node = nc;
2183         spi->dev.fwnode = of_fwnode_handle(nc);
2184
2185         /* Register the new device */
2186         rc = spi_add_device(spi);
2187         if (rc) {
2188                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2189                 goto err_of_node_put;
2190         }
2191
2192         return spi;
2193
2194 err_of_node_put:
2195         of_node_put(nc);
2196 err_out:
2197         spi_dev_put(spi);
2198         return ERR_PTR(rc);
2199 }
2200
2201 /**
2202  * of_register_spi_devices() - Register child devices onto the SPI bus
2203  * @ctlr:       Pointer to spi_controller device
2204  *
2205  * Registers an spi_device for each child node of controller node which
2206  * represents a valid SPI slave.
2207  */
2208 static void of_register_spi_devices(struct spi_controller *ctlr)
2209 {
2210         struct spi_device *spi;
2211         struct device_node *nc;
2212
2213         if (!ctlr->dev.of_node)
2214                 return;
2215
2216         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2217                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2218                         continue;
2219                 spi = of_register_spi_device(ctlr, nc);
2220                 if (IS_ERR(spi)) {
2221                         dev_warn(&ctlr->dev,
2222                                  "Failed to create SPI device for %pOF\n", nc);
2223                         of_node_clear_flag(nc, OF_POPULATED);
2224                 }
2225         }
2226 }
2227 #else
2228 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2229 #endif
2230
2231 /**
2232  * spi_new_ancillary_device() - Register ancillary SPI device
2233  * @spi:         Pointer to the main SPI device registering the ancillary device
2234  * @chip_select: Chip Select of the ancillary device
2235  *
2236  * Register an ancillary SPI device; for example some chips have a chip-select
2237  * for normal device usage and another one for setup/firmware upload.
2238  *
2239  * This may only be called from main SPI device's probe routine.
2240  *
2241  * Return: 0 on success; negative errno on failure
2242  */
2243 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2244                                              u8 chip_select)
2245 {
2246         struct spi_device *ancillary;
2247         int rc = 0;
2248
2249         /* Alloc an spi_device */
2250         ancillary = spi_alloc_device(spi->controller);
2251         if (!ancillary) {
2252                 rc = -ENOMEM;
2253                 goto err_out;
2254         }
2255
2256         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2257
2258         /* Use provided chip-select for ancillary device */
2259         ancillary->chip_select = chip_select;
2260
2261         /* Take over SPI mode/speed from SPI main device */
2262         ancillary->max_speed_hz = spi->max_speed_hz;
2263         ancillary->mode = spi->mode;
2264
2265         /* Register the new device */
2266         rc = spi_add_device_locked(ancillary);
2267         if (rc) {
2268                 dev_err(&spi->dev, "failed to register ancillary device\n");
2269                 goto err_out;
2270         }
2271
2272         return ancillary;
2273
2274 err_out:
2275         spi_dev_put(ancillary);
2276         return ERR_PTR(rc);
2277 }
2278 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2279
2280 #ifdef CONFIG_ACPI
2281 struct acpi_spi_lookup {
2282         struct spi_controller   *ctlr;
2283         u32                     max_speed_hz;
2284         u32                     mode;
2285         int                     irq;
2286         u8                      bits_per_word;
2287         u8                      chip_select;
2288         int                     n;
2289         int                     index;
2290 };
2291
2292 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2293 {
2294         struct acpi_resource_spi_serialbus *sb;
2295         int *count = data;
2296
2297         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2298                 return 1;
2299
2300         sb = &ares->data.spi_serial_bus;
2301         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2302                 return 1;
2303
2304         *count = *count + 1;
2305
2306         return 1;
2307 }
2308
2309 /**
2310  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2311  * @adev:       ACPI device
2312  *
2313  * Returns the number of SpiSerialBus resources in the ACPI-device's
2314  * resource-list; or a negative error code.
2315  */
2316 int acpi_spi_count_resources(struct acpi_device *adev)
2317 {
2318         LIST_HEAD(r);
2319         int count = 0;
2320         int ret;
2321
2322         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2323         if (ret < 0)
2324                 return ret;
2325
2326         acpi_dev_free_resource_list(&r);
2327
2328         return count;
2329 }
2330 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2331
2332 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2333                                             struct acpi_spi_lookup *lookup)
2334 {
2335         const union acpi_object *obj;
2336
2337         if (!x86_apple_machine)
2338                 return;
2339
2340         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2341             && obj->buffer.length >= 4)
2342                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2343
2344         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2345             && obj->buffer.length == 8)
2346                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2347
2348         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2349             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2350                 lookup->mode |= SPI_LSB_FIRST;
2351
2352         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2353             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2354                 lookup->mode |= SPI_CPOL;
2355
2356         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2357             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2358                 lookup->mode |= SPI_CPHA;
2359 }
2360
2361 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2362
2363 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2364 {
2365         struct acpi_spi_lookup *lookup = data;
2366         struct spi_controller *ctlr = lookup->ctlr;
2367
2368         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2369                 struct acpi_resource_spi_serialbus *sb;
2370                 acpi_handle parent_handle;
2371                 acpi_status status;
2372
2373                 sb = &ares->data.spi_serial_bus;
2374                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2375
2376                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2377                                 return 1;
2378
2379                         if (lookup->index == -1 && !ctlr)
2380                                 return -ENODEV;
2381
2382                         status = acpi_get_handle(NULL,
2383                                                  sb->resource_source.string_ptr,
2384                                                  &parent_handle);
2385
2386                         if (ACPI_FAILURE(status))
2387                                 return -ENODEV;
2388
2389                         if (ctlr) {
2390                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2391                                         return -ENODEV;
2392                         } else {
2393                                 struct acpi_device *adev;
2394
2395                                 adev = acpi_fetch_acpi_dev(parent_handle);
2396                                 if (!adev)
2397                                         return -ENODEV;
2398
2399                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2400                                 if (!ctlr)
2401                                         return -EPROBE_DEFER;
2402
2403                                 lookup->ctlr = ctlr;
2404                         }
2405
2406                         /*
2407                          * ACPI DeviceSelection numbering is handled by the
2408                          * host controller driver in Windows and can vary
2409                          * from driver to driver. In Linux we always expect
2410                          * 0 .. max - 1 so we need to ask the driver to
2411                          * translate between the two schemes.
2412                          */
2413                         if (ctlr->fw_translate_cs) {
2414                                 int cs = ctlr->fw_translate_cs(ctlr,
2415                                                 sb->device_selection);
2416                                 if (cs < 0)
2417                                         return cs;
2418                                 lookup->chip_select = cs;
2419                         } else {
2420                                 lookup->chip_select = sb->device_selection;
2421                         }
2422
2423                         lookup->max_speed_hz = sb->connection_speed;
2424                         lookup->bits_per_word = sb->data_bit_length;
2425
2426                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2427                                 lookup->mode |= SPI_CPHA;
2428                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2429                                 lookup->mode |= SPI_CPOL;
2430                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2431                                 lookup->mode |= SPI_CS_HIGH;
2432                 }
2433         } else if (lookup->irq < 0) {
2434                 struct resource r;
2435
2436                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2437                         lookup->irq = r.start;
2438         }
2439
2440         /* Always tell the ACPI core to skip this resource */
2441         return 1;
2442 }
2443
2444 /**
2445  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2446  * @ctlr: controller to which the spi device belongs
2447  * @adev: ACPI Device for the spi device
2448  * @index: Index of the spi resource inside the ACPI Node
2449  *
2450  * This should be used to allocate a new spi device from and ACPI Node.
2451  * The caller is responsible for calling spi_add_device to register the spi device.
2452  *
2453  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2454  * using the resource.
2455  * If index is set to -1, index is not used.
2456  * Note: If index is -1, ctlr must be set.
2457  *
2458  * Return: a pointer to the new device, or ERR_PTR on error.
2459  */
2460 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2461                                          struct acpi_device *adev,
2462                                          int index)
2463 {
2464         acpi_handle parent_handle = NULL;
2465         struct list_head resource_list;
2466         struct acpi_spi_lookup lookup = {};
2467         struct spi_device *spi;
2468         int ret;
2469
2470         if (!ctlr && index == -1)
2471                 return ERR_PTR(-EINVAL);
2472
2473         lookup.ctlr             = ctlr;
2474         lookup.irq              = -1;
2475         lookup.index            = index;
2476         lookup.n                = 0;
2477
2478         INIT_LIST_HEAD(&resource_list);
2479         ret = acpi_dev_get_resources(adev, &resource_list,
2480                                      acpi_spi_add_resource, &lookup);
2481         acpi_dev_free_resource_list(&resource_list);
2482
2483         if (ret < 0)
2484                 /* found SPI in _CRS but it points to another controller */
2485                 return ERR_PTR(-ENODEV);
2486
2487         if (!lookup.max_speed_hz &&
2488             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2489             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2490                 /* Apple does not use _CRS but nested devices for SPI slaves */
2491                 acpi_spi_parse_apple_properties(adev, &lookup);
2492         }
2493
2494         if (!lookup.max_speed_hz)
2495                 return ERR_PTR(-ENODEV);
2496
2497         spi = spi_alloc_device(lookup.ctlr);
2498         if (!spi) {
2499                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2500                         dev_name(&adev->dev));
2501                 return ERR_PTR(-ENOMEM);
2502         }
2503
2504         ACPI_COMPANION_SET(&spi->dev, adev);
2505         spi->max_speed_hz       = lookup.max_speed_hz;
2506         spi->mode               |= lookup.mode;
2507         spi->irq                = lookup.irq;
2508         spi->bits_per_word      = lookup.bits_per_word;
2509         spi->chip_select        = lookup.chip_select;
2510
2511         return spi;
2512 }
2513 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2514
2515 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2516                                             struct acpi_device *adev)
2517 {
2518         struct spi_device *spi;
2519
2520         if (acpi_bus_get_status(adev) || !adev->status.present ||
2521             acpi_device_enumerated(adev))
2522                 return AE_OK;
2523
2524         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2525         if (IS_ERR(spi)) {
2526                 if (PTR_ERR(spi) == -ENOMEM)
2527                         return AE_NO_MEMORY;
2528                 else
2529                         return AE_OK;
2530         }
2531
2532         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2533                           sizeof(spi->modalias));
2534
2535         if (spi->irq < 0)
2536                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2537
2538         acpi_device_set_enumerated(adev);
2539
2540         adev->power.flags.ignore_parent = true;
2541         if (spi_add_device(spi)) {
2542                 adev->power.flags.ignore_parent = false;
2543                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2544                         dev_name(&adev->dev));
2545                 spi_dev_put(spi);
2546         }
2547
2548         return AE_OK;
2549 }
2550
2551 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2552                                        void *data, void **return_value)
2553 {
2554         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2555         struct spi_controller *ctlr = data;
2556
2557         if (!adev)
2558                 return AE_OK;
2559
2560         return acpi_register_spi_device(ctlr, adev);
2561 }
2562
2563 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2564
2565 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2566 {
2567         acpi_status status;
2568         acpi_handle handle;
2569
2570         handle = ACPI_HANDLE(ctlr->dev.parent);
2571         if (!handle)
2572                 return;
2573
2574         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2575                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2576                                      acpi_spi_add_device, NULL, ctlr, NULL);
2577         if (ACPI_FAILURE(status))
2578                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2579 }
2580 #else
2581 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2582 #endif /* CONFIG_ACPI */
2583
2584 static void spi_controller_release(struct device *dev)
2585 {
2586         struct spi_controller *ctlr;
2587
2588         ctlr = container_of(dev, struct spi_controller, dev);
2589         kfree(ctlr);
2590 }
2591
2592 static struct class spi_master_class = {
2593         .name           = "spi_master",
2594         .owner          = THIS_MODULE,
2595         .dev_release    = spi_controller_release,
2596         .dev_groups     = spi_master_groups,
2597 };
2598
2599 #ifdef CONFIG_SPI_SLAVE
2600 /**
2601  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2602  *                   controller
2603  * @spi: device used for the current transfer
2604  */
2605 int spi_slave_abort(struct spi_device *spi)
2606 {
2607         struct spi_controller *ctlr = spi->controller;
2608
2609         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2610                 return ctlr->slave_abort(ctlr);
2611
2612         return -ENOTSUPP;
2613 }
2614 EXPORT_SYMBOL_GPL(spi_slave_abort);
2615
2616 static int match_true(struct device *dev, void *data)
2617 {
2618         return 1;
2619 }
2620
2621 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2622                           char *buf)
2623 {
2624         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2625                                                    dev);
2626         struct device *child;
2627
2628         child = device_find_child(&ctlr->dev, NULL, match_true);
2629         return sprintf(buf, "%s\n",
2630                        child ? to_spi_device(child)->modalias : NULL);
2631 }
2632
2633 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2634                            const char *buf, size_t count)
2635 {
2636         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2637                                                    dev);
2638         struct spi_device *spi;
2639         struct device *child;
2640         char name[32];
2641         int rc;
2642
2643         rc = sscanf(buf, "%31s", name);
2644         if (rc != 1 || !name[0])
2645                 return -EINVAL;
2646
2647         child = device_find_child(&ctlr->dev, NULL, match_true);
2648         if (child) {
2649                 /* Remove registered slave */
2650                 device_unregister(child);
2651                 put_device(child);
2652         }
2653
2654         if (strcmp(name, "(null)")) {
2655                 /* Register new slave */
2656                 spi = spi_alloc_device(ctlr);
2657                 if (!spi)
2658                         return -ENOMEM;
2659
2660                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2661
2662                 rc = spi_add_device(spi);
2663                 if (rc) {
2664                         spi_dev_put(spi);
2665                         return rc;
2666                 }
2667         }
2668
2669         return count;
2670 }
2671
2672 static DEVICE_ATTR_RW(slave);
2673
2674 static struct attribute *spi_slave_attrs[] = {
2675         &dev_attr_slave.attr,
2676         NULL,
2677 };
2678
2679 static const struct attribute_group spi_slave_group = {
2680         .attrs = spi_slave_attrs,
2681 };
2682
2683 static const struct attribute_group *spi_slave_groups[] = {
2684         &spi_controller_statistics_group,
2685         &spi_slave_group,
2686         NULL,
2687 };
2688
2689 static struct class spi_slave_class = {
2690         .name           = "spi_slave",
2691         .owner          = THIS_MODULE,
2692         .dev_release    = spi_controller_release,
2693         .dev_groups     = spi_slave_groups,
2694 };
2695 #else
2696 extern struct class spi_slave_class;    /* dummy */
2697 #endif
2698
2699 /**
2700  * __spi_alloc_controller - allocate an SPI master or slave controller
2701  * @dev: the controller, possibly using the platform_bus
2702  * @size: how much zeroed driver-private data to allocate; the pointer to this
2703  *      memory is in the driver_data field of the returned device, accessible
2704  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2705  *      drivers granting DMA access to portions of their private data need to
2706  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2707  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2708  *      slave (true) controller
2709  * Context: can sleep
2710  *
2711  * This call is used only by SPI controller drivers, which are the
2712  * only ones directly touching chip registers.  It's how they allocate
2713  * an spi_controller structure, prior to calling spi_register_controller().
2714  *
2715  * This must be called from context that can sleep.
2716  *
2717  * The caller is responsible for assigning the bus number and initializing the
2718  * controller's methods before calling spi_register_controller(); and (after
2719  * errors adding the device) calling spi_controller_put() to prevent a memory
2720  * leak.
2721  *
2722  * Return: the SPI controller structure on success, else NULL.
2723  */
2724 struct spi_controller *__spi_alloc_controller(struct device *dev,
2725                                               unsigned int size, bool slave)
2726 {
2727         struct spi_controller   *ctlr;
2728         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2729
2730         if (!dev)
2731                 return NULL;
2732
2733         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2734         if (!ctlr)
2735                 return NULL;
2736
2737         device_initialize(&ctlr->dev);
2738         INIT_LIST_HEAD(&ctlr->queue);
2739         spin_lock_init(&ctlr->queue_lock);
2740         spin_lock_init(&ctlr->bus_lock_spinlock);
2741         mutex_init(&ctlr->bus_lock_mutex);
2742         mutex_init(&ctlr->io_mutex);
2743         mutex_init(&ctlr->add_lock);
2744         ctlr->bus_num = -1;
2745         ctlr->num_chipselect = 1;
2746         ctlr->slave = slave;
2747         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2748                 ctlr->dev.class = &spi_slave_class;
2749         else
2750                 ctlr->dev.class = &spi_master_class;
2751         ctlr->dev.parent = dev;
2752         pm_suspend_ignore_children(&ctlr->dev, true);
2753         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2754
2755         return ctlr;
2756 }
2757 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2758
2759 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2760 {
2761         spi_controller_put(*(struct spi_controller **)ctlr);
2762 }
2763
2764 /**
2765  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2766  * @dev: physical device of SPI controller
2767  * @size: how much zeroed driver-private data to allocate
2768  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2769  * Context: can sleep
2770  *
2771  * Allocate an SPI controller and automatically release a reference on it
2772  * when @dev is unbound from its driver.  Drivers are thus relieved from
2773  * having to call spi_controller_put().
2774  *
2775  * The arguments to this function are identical to __spi_alloc_controller().
2776  *
2777  * Return: the SPI controller structure on success, else NULL.
2778  */
2779 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2780                                                    unsigned int size,
2781                                                    bool slave)
2782 {
2783         struct spi_controller **ptr, *ctlr;
2784
2785         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2786                            GFP_KERNEL);
2787         if (!ptr)
2788                 return NULL;
2789
2790         ctlr = __spi_alloc_controller(dev, size, slave);
2791         if (ctlr) {
2792                 ctlr->devm_allocated = true;
2793                 *ptr = ctlr;
2794                 devres_add(dev, ptr);
2795         } else {
2796                 devres_free(ptr);
2797         }
2798
2799         return ctlr;
2800 }
2801 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2802
2803 /**
2804  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2805  * @ctlr: The SPI master to grab GPIO descriptors for
2806  */
2807 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2808 {
2809         int nb, i;
2810         struct gpio_desc **cs;
2811         struct device *dev = &ctlr->dev;
2812         unsigned long native_cs_mask = 0;
2813         unsigned int num_cs_gpios = 0;
2814
2815         nb = gpiod_count(dev, "cs");
2816         if (nb < 0) {
2817                 /* No GPIOs at all is fine, else return the error */
2818                 if (nb == -ENOENT)
2819                         return 0;
2820                 return nb;
2821         }
2822
2823         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2824
2825         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2826                           GFP_KERNEL);
2827         if (!cs)
2828                 return -ENOMEM;
2829         ctlr->cs_gpiods = cs;
2830
2831         for (i = 0; i < nb; i++) {
2832                 /*
2833                  * Most chipselects are active low, the inverted
2834                  * semantics are handled by special quirks in gpiolib,
2835                  * so initializing them GPIOD_OUT_LOW here means
2836                  * "unasserted", in most cases this will drive the physical
2837                  * line high.
2838                  */
2839                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2840                                                       GPIOD_OUT_LOW);
2841                 if (IS_ERR(cs[i]))
2842                         return PTR_ERR(cs[i]);
2843
2844                 if (cs[i]) {
2845                         /*
2846                          * If we find a CS GPIO, name it after the device and
2847                          * chip select line.
2848                          */
2849                         char *gpioname;
2850
2851                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2852                                                   dev_name(dev), i);
2853                         if (!gpioname)
2854                                 return -ENOMEM;
2855                         gpiod_set_consumer_name(cs[i], gpioname);
2856                         num_cs_gpios++;
2857                         continue;
2858                 }
2859
2860                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2861                         dev_err(dev, "Invalid native chip select %d\n", i);
2862                         return -EINVAL;
2863                 }
2864                 native_cs_mask |= BIT(i);
2865         }
2866
2867         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2868
2869         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2870             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2871                 dev_err(dev, "No unused native chip select available\n");
2872                 return -EINVAL;
2873         }
2874
2875         return 0;
2876 }
2877
2878 static int spi_controller_check_ops(struct spi_controller *ctlr)
2879 {
2880         /*
2881          * The controller may implement only the high-level SPI-memory like
2882          * operations if it does not support regular SPI transfers, and this is
2883          * valid use case.
2884          * If ->mem_ops is NULL, we request that at least one of the
2885          * ->transfer_xxx() method be implemented.
2886          */
2887         if (ctlr->mem_ops) {
2888                 if (!ctlr->mem_ops->exec_op)
2889                         return -EINVAL;
2890         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2891                    !ctlr->transfer_one_message) {
2892                 return -EINVAL;
2893         }
2894
2895         return 0;
2896 }
2897
2898 /**
2899  * spi_register_controller - register SPI master or slave controller
2900  * @ctlr: initialized master, originally from spi_alloc_master() or
2901  *      spi_alloc_slave()
2902  * Context: can sleep
2903  *
2904  * SPI controllers connect to their drivers using some non-SPI bus,
2905  * such as the platform bus.  The final stage of probe() in that code
2906  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2907  *
2908  * SPI controllers use board specific (often SOC specific) bus numbers,
2909  * and board-specific addressing for SPI devices combines those numbers
2910  * with chip select numbers.  Since SPI does not directly support dynamic
2911  * device identification, boards need configuration tables telling which
2912  * chip is at which address.
2913  *
2914  * This must be called from context that can sleep.  It returns zero on
2915  * success, else a negative error code (dropping the controller's refcount).
2916  * After a successful return, the caller is responsible for calling
2917  * spi_unregister_controller().
2918  *
2919  * Return: zero on success, else a negative error code.
2920  */
2921 int spi_register_controller(struct spi_controller *ctlr)
2922 {
2923         struct device           *dev = ctlr->dev.parent;
2924         struct boardinfo        *bi;
2925         int                     status;
2926         int                     id, first_dynamic;
2927
2928         if (!dev)
2929                 return -ENODEV;
2930
2931         /*
2932          * Make sure all necessary hooks are implemented before registering
2933          * the SPI controller.
2934          */
2935         status = spi_controller_check_ops(ctlr);
2936         if (status)
2937                 return status;
2938
2939         if (ctlr->bus_num >= 0) {
2940                 /* devices with a fixed bus num must check-in with the num */
2941                 mutex_lock(&board_lock);
2942                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2943                         ctlr->bus_num + 1, GFP_KERNEL);
2944                 mutex_unlock(&board_lock);
2945                 if (WARN(id < 0, "couldn't get idr"))
2946                         return id == -ENOSPC ? -EBUSY : id;
2947                 ctlr->bus_num = id;
2948         } else if (ctlr->dev.of_node) {
2949                 /* allocate dynamic bus number using Linux idr */
2950                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2951                 if (id >= 0) {
2952                         ctlr->bus_num = id;
2953                         mutex_lock(&board_lock);
2954                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2955                                        ctlr->bus_num + 1, GFP_KERNEL);
2956                         mutex_unlock(&board_lock);
2957                         if (WARN(id < 0, "couldn't get idr"))
2958                                 return id == -ENOSPC ? -EBUSY : id;
2959                 }
2960         }
2961         if (ctlr->bus_num < 0) {
2962                 first_dynamic = of_alias_get_highest_id("spi");
2963                 if (first_dynamic < 0)
2964                         first_dynamic = 0;
2965                 else
2966                         first_dynamic++;
2967
2968                 mutex_lock(&board_lock);
2969                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2970                                0, GFP_KERNEL);
2971                 mutex_unlock(&board_lock);
2972                 if (WARN(id < 0, "couldn't get idr"))
2973                         return id;
2974                 ctlr->bus_num = id;
2975         }
2976         ctlr->bus_lock_flag = 0;
2977         init_completion(&ctlr->xfer_completion);
2978         if (!ctlr->max_dma_len)
2979                 ctlr->max_dma_len = INT_MAX;
2980
2981         /*
2982          * Register the device, then userspace will see it.
2983          * Registration fails if the bus ID is in use.
2984          */
2985         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2986
2987         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
2988                 status = spi_get_gpio_descs(ctlr);
2989                 if (status)
2990                         goto free_bus_id;
2991                 /*
2992                  * A controller using GPIO descriptors always
2993                  * supports SPI_CS_HIGH if need be.
2994                  */
2995                 ctlr->mode_bits |= SPI_CS_HIGH;
2996         }
2997
2998         /*
2999          * Even if it's just one always-selected device, there must
3000          * be at least one chipselect.
3001          */
3002         if (!ctlr->num_chipselect) {
3003                 status = -EINVAL;
3004                 goto free_bus_id;
3005         }
3006
3007         /* setting last_cs to -1 means no chip selected */
3008         ctlr->last_cs = -1;
3009
3010         status = device_add(&ctlr->dev);
3011         if (status < 0)
3012                 goto free_bus_id;
3013         dev_dbg(dev, "registered %s %s\n",
3014                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3015                         dev_name(&ctlr->dev));
3016
3017         /*
3018          * If we're using a queued driver, start the queue. Note that we don't
3019          * need the queueing logic if the driver is only supporting high-level
3020          * memory operations.
3021          */
3022         if (ctlr->transfer) {
3023                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3024         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3025                 status = spi_controller_initialize_queue(ctlr);
3026                 if (status) {
3027                         device_del(&ctlr->dev);
3028                         goto free_bus_id;
3029                 }
3030         }
3031         /* add statistics */
3032         spin_lock_init(&ctlr->statistics.lock);
3033
3034         mutex_lock(&board_lock);
3035         list_add_tail(&ctlr->list, &spi_controller_list);
3036         list_for_each_entry(bi, &board_list, list)
3037                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3038         mutex_unlock(&board_lock);
3039
3040         /* Register devices from the device tree and ACPI */
3041         of_register_spi_devices(ctlr);
3042         acpi_register_spi_devices(ctlr);
3043         return status;
3044
3045 free_bus_id:
3046         mutex_lock(&board_lock);
3047         idr_remove(&spi_master_idr, ctlr->bus_num);
3048         mutex_unlock(&board_lock);
3049         return status;
3050 }
3051 EXPORT_SYMBOL_GPL(spi_register_controller);
3052
3053 static void devm_spi_unregister(struct device *dev, void *res)
3054 {
3055         spi_unregister_controller(*(struct spi_controller **)res);
3056 }
3057
3058 /**
3059  * devm_spi_register_controller - register managed SPI master or slave
3060  *      controller
3061  * @dev:    device managing SPI controller
3062  * @ctlr: initialized controller, originally from spi_alloc_master() or
3063  *      spi_alloc_slave()
3064  * Context: can sleep
3065  *
3066  * Register a SPI device as with spi_register_controller() which will
3067  * automatically be unregistered and freed.
3068  *
3069  * Return: zero on success, else a negative error code.
3070  */
3071 int devm_spi_register_controller(struct device *dev,
3072                                  struct spi_controller *ctlr)
3073 {
3074         struct spi_controller **ptr;
3075         int ret;
3076
3077         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3078         if (!ptr)
3079                 return -ENOMEM;
3080
3081         ret = spi_register_controller(ctlr);
3082         if (!ret) {
3083                 *ptr = ctlr;
3084                 devres_add(dev, ptr);
3085         } else {
3086                 devres_free(ptr);
3087         }
3088
3089         return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3092
3093 static int __unregister(struct device *dev, void *null)
3094 {
3095         spi_unregister_device(to_spi_device(dev));
3096         return 0;
3097 }
3098
3099 /**
3100  * spi_unregister_controller - unregister SPI master or slave controller
3101  * @ctlr: the controller being unregistered
3102  * Context: can sleep
3103  *
3104  * This call is used only by SPI controller drivers, which are the
3105  * only ones directly touching chip registers.
3106  *
3107  * This must be called from context that can sleep.
3108  *
3109  * Note that this function also drops a reference to the controller.
3110  */
3111 void spi_unregister_controller(struct spi_controller *ctlr)
3112 {
3113         struct spi_controller *found;
3114         int id = ctlr->bus_num;
3115
3116         /* Prevent addition of new devices, unregister existing ones */
3117         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3118                 mutex_lock(&ctlr->add_lock);
3119
3120         device_for_each_child(&ctlr->dev, NULL, __unregister);
3121
3122         /* First make sure that this controller was ever added */
3123         mutex_lock(&board_lock);
3124         found = idr_find(&spi_master_idr, id);
3125         mutex_unlock(&board_lock);
3126         if (ctlr->queued) {
3127                 if (spi_destroy_queue(ctlr))
3128                         dev_err(&ctlr->dev, "queue remove failed\n");
3129         }
3130         mutex_lock(&board_lock);
3131         list_del(&ctlr->list);
3132         mutex_unlock(&board_lock);
3133
3134         device_del(&ctlr->dev);
3135
3136         /* free bus id */
3137         mutex_lock(&board_lock);
3138         if (found == ctlr)
3139                 idr_remove(&spi_master_idr, id);
3140         mutex_unlock(&board_lock);
3141
3142         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3143                 mutex_unlock(&ctlr->add_lock);
3144
3145         /* Release the last reference on the controller if its driver
3146          * has not yet been converted to devm_spi_alloc_master/slave().
3147          */
3148         if (!ctlr->devm_allocated)
3149                 put_device(&ctlr->dev);
3150 }
3151 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3152
3153 int spi_controller_suspend(struct spi_controller *ctlr)
3154 {
3155         int ret;
3156
3157         /* Basically no-ops for non-queued controllers */
3158         if (!ctlr->queued)
3159                 return 0;
3160
3161         ret = spi_stop_queue(ctlr);
3162         if (ret)
3163                 dev_err(&ctlr->dev, "queue stop failed\n");
3164
3165         return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3168
3169 int spi_controller_resume(struct spi_controller *ctlr)
3170 {
3171         int ret;
3172
3173         if (!ctlr->queued)
3174                 return 0;
3175
3176         ret = spi_start_queue(ctlr);
3177         if (ret)
3178                 dev_err(&ctlr->dev, "queue restart failed\n");
3179
3180         return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(spi_controller_resume);
3183
3184 /*-------------------------------------------------------------------------*/
3185
3186 /* Core methods for spi_message alterations */
3187
3188 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3189                                             struct spi_message *msg,
3190                                             void *res)
3191 {
3192         struct spi_replaced_transfers *rxfer = res;
3193         size_t i;
3194
3195         /* call extra callback if requested */
3196         if (rxfer->release)
3197                 rxfer->release(ctlr, msg, res);
3198
3199         /* insert replaced transfers back into the message */
3200         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3201
3202         /* remove the formerly inserted entries */
3203         for (i = 0; i < rxfer->inserted; i++)
3204                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3205 }
3206
3207 /**
3208  * spi_replace_transfers - replace transfers with several transfers
3209  *                         and register change with spi_message.resources
3210  * @msg:           the spi_message we work upon
3211  * @xfer_first:    the first spi_transfer we want to replace
3212  * @remove:        number of transfers to remove
3213  * @insert:        the number of transfers we want to insert instead
3214  * @release:       extra release code necessary in some circumstances
3215  * @extradatasize: extra data to allocate (with alignment guarantees
3216  *                 of struct @spi_transfer)
3217  * @gfp:           gfp flags
3218  *
3219  * Returns: pointer to @spi_replaced_transfers,
3220  *          PTR_ERR(...) in case of errors.
3221  */
3222 static struct spi_replaced_transfers *spi_replace_transfers(
3223         struct spi_message *msg,
3224         struct spi_transfer *xfer_first,
3225         size_t remove,
3226         size_t insert,
3227         spi_replaced_release_t release,
3228         size_t extradatasize,
3229         gfp_t gfp)
3230 {
3231         struct spi_replaced_transfers *rxfer;
3232         struct spi_transfer *xfer;
3233         size_t i;
3234
3235         /* allocate the structure using spi_res */
3236         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3237                               struct_size(rxfer, inserted_transfers, insert)
3238                               + extradatasize,
3239                               gfp);
3240         if (!rxfer)
3241                 return ERR_PTR(-ENOMEM);
3242
3243         /* the release code to invoke before running the generic release */
3244         rxfer->release = release;
3245
3246         /* assign extradata */
3247         if (extradatasize)
3248                 rxfer->extradata =
3249                         &rxfer->inserted_transfers[insert];
3250
3251         /* init the replaced_transfers list */
3252         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3253
3254         /*
3255          * Assign the list_entry after which we should reinsert
3256          * the @replaced_transfers - it may be spi_message.messages!
3257          */
3258         rxfer->replaced_after = xfer_first->transfer_list.prev;
3259
3260         /* remove the requested number of transfers */
3261         for (i = 0; i < remove; i++) {
3262                 /*
3263                  * If the entry after replaced_after it is msg->transfers
3264                  * then we have been requested to remove more transfers
3265                  * than are in the list.
3266                  */
3267                 if (rxfer->replaced_after->next == &msg->transfers) {
3268                         dev_err(&msg->spi->dev,
3269                                 "requested to remove more spi_transfers than are available\n");
3270                         /* insert replaced transfers back into the message */
3271                         list_splice(&rxfer->replaced_transfers,
3272                                     rxfer->replaced_after);
3273
3274                         /* free the spi_replace_transfer structure */
3275                         spi_res_free(rxfer);
3276
3277                         /* and return with an error */
3278                         return ERR_PTR(-EINVAL);
3279                 }
3280
3281                 /*
3282                  * Remove the entry after replaced_after from list of
3283                  * transfers and add it to list of replaced_transfers.
3284                  */
3285                 list_move_tail(rxfer->replaced_after->next,
3286                                &rxfer->replaced_transfers);
3287         }
3288
3289         /*
3290          * Create copy of the given xfer with identical settings
3291          * based on the first transfer to get removed.
3292          */
3293         for (i = 0; i < insert; i++) {
3294                 /* we need to run in reverse order */
3295                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3296
3297                 /* copy all spi_transfer data */
3298                 memcpy(xfer, xfer_first, sizeof(*xfer));
3299
3300                 /* add to list */
3301                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3302
3303                 /* clear cs_change and delay for all but the last */
3304                 if (i) {
3305                         xfer->cs_change = false;
3306                         xfer->delay.value = 0;
3307                 }
3308         }
3309
3310         /* set up inserted */
3311         rxfer->inserted = insert;
3312
3313         /* and register it with spi_res/spi_message */
3314         spi_res_add(msg, rxfer);
3315
3316         return rxfer;
3317 }
3318
3319 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3320                                         struct spi_message *msg,
3321                                         struct spi_transfer **xferp,
3322                                         size_t maxsize,
3323                                         gfp_t gfp)
3324 {
3325         struct spi_transfer *xfer = *xferp, *xfers;
3326         struct spi_replaced_transfers *srt;
3327         size_t offset;
3328         size_t count, i;
3329
3330         /* calculate how many we have to replace */
3331         count = DIV_ROUND_UP(xfer->len, maxsize);
3332
3333         /* create replacement */
3334         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3335         if (IS_ERR(srt))
3336                 return PTR_ERR(srt);
3337         xfers = srt->inserted_transfers;
3338
3339         /*
3340          * Now handle each of those newly inserted spi_transfers.
3341          * Note that the replacements spi_transfers all are preset
3342          * to the same values as *xferp, so tx_buf, rx_buf and len
3343          * are all identical (as well as most others)
3344          * so we just have to fix up len and the pointers.
3345          *
3346          * This also includes support for the depreciated
3347          * spi_message.is_dma_mapped interface.
3348          */
3349
3350         /*
3351          * The first transfer just needs the length modified, so we
3352          * run it outside the loop.
3353          */
3354         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3355
3356         /* all the others need rx_buf/tx_buf also set */
3357         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3358                 /* update rx_buf, tx_buf and dma */
3359                 if (xfers[i].rx_buf)
3360                         xfers[i].rx_buf += offset;
3361                 if (xfers[i].rx_dma)
3362                         xfers[i].rx_dma += offset;
3363                 if (xfers[i].tx_buf)
3364                         xfers[i].tx_buf += offset;
3365                 if (xfers[i].tx_dma)
3366                         xfers[i].tx_dma += offset;
3367
3368                 /* update length */
3369                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3370         }
3371
3372         /*
3373          * We set up xferp to the last entry we have inserted,
3374          * so that we skip those already split transfers.
3375          */
3376         *xferp = &xfers[count - 1];
3377
3378         /* increment statistics counters */
3379         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3380                                        transfers_split_maxsize);
3381         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3382                                        transfers_split_maxsize);
3383
3384         return 0;
3385 }
3386
3387 /**
3388  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3389  *                               when an individual transfer exceeds a
3390  *                               certain size
3391  * @ctlr:    the @spi_controller for this transfer
3392  * @msg:   the @spi_message to transform
3393  * @maxsize:  the maximum when to apply this
3394  * @gfp: GFP allocation flags
3395  *
3396  * Return: status of transformation
3397  */
3398 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3399                                 struct spi_message *msg,
3400                                 size_t maxsize,
3401                                 gfp_t gfp)
3402 {
3403         struct spi_transfer *xfer;
3404         int ret;
3405
3406         /*
3407          * Iterate over the transfer_list,
3408          * but note that xfer is advanced to the last transfer inserted
3409          * to avoid checking sizes again unnecessarily (also xfer does
3410          * potentially belong to a different list by the time the
3411          * replacement has happened).
3412          */
3413         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3414                 if (xfer->len > maxsize) {
3415                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3416                                                            maxsize, gfp);
3417                         if (ret)
3418                                 return ret;
3419                 }
3420         }
3421
3422         return 0;
3423 }
3424 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3425
3426 /*-------------------------------------------------------------------------*/
3427
3428 /* Core methods for SPI controller protocol drivers.  Some of the
3429  * other core methods are currently defined as inline functions.
3430  */
3431
3432 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3433                                         u8 bits_per_word)
3434 {
3435         if (ctlr->bits_per_word_mask) {
3436                 /* Only 32 bits fit in the mask */
3437                 if (bits_per_word > 32)
3438                         return -EINVAL;
3439                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3440                         return -EINVAL;
3441         }
3442
3443         return 0;
3444 }
3445
3446 /**
3447  * spi_setup - setup SPI mode and clock rate
3448  * @spi: the device whose settings are being modified
3449  * Context: can sleep, and no requests are queued to the device
3450  *
3451  * SPI protocol drivers may need to update the transfer mode if the
3452  * device doesn't work with its default.  They may likewise need
3453  * to update clock rates or word sizes from initial values.  This function
3454  * changes those settings, and must be called from a context that can sleep.
3455  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3456  * effect the next time the device is selected and data is transferred to
3457  * or from it.  When this function returns, the spi device is deselected.
3458  *
3459  * Note that this call will fail if the protocol driver specifies an option
3460  * that the underlying controller or its driver does not support.  For
3461  * example, not all hardware supports wire transfers using nine bit words,
3462  * LSB-first wire encoding, or active-high chipselects.
3463  *
3464  * Return: zero on success, else a negative error code.
3465  */
3466 int spi_setup(struct spi_device *spi)
3467 {
3468         unsigned        bad_bits, ugly_bits;
3469         int             status = 0;
3470
3471         /*
3472          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3473          * are set at the same time.
3474          */
3475         if ((hweight_long(spi->mode &
3476                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3477             (hweight_long(spi->mode &
3478                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3479                 dev_err(&spi->dev,
3480                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3481                 return -EINVAL;
3482         }
3483         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3484         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3485                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3486                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3487                 return -EINVAL;
3488         /*
3489          * Help drivers fail *cleanly* when they need options
3490          * that aren't supported with their current controller.
3491          * SPI_CS_WORD has a fallback software implementation,
3492          * so it is ignored here.
3493          */
3494         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3495                                  SPI_NO_TX | SPI_NO_RX);
3496         ugly_bits = bad_bits &
3497                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3498                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3499         if (ugly_bits) {
3500                 dev_warn(&spi->dev,
3501                          "setup: ignoring unsupported mode bits %x\n",
3502                          ugly_bits);
3503                 spi->mode &= ~ugly_bits;
3504                 bad_bits &= ~ugly_bits;
3505         }
3506         if (bad_bits) {
3507                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3508                         bad_bits);
3509                 return -EINVAL;
3510         }
3511
3512         if (!spi->bits_per_word) {
3513                 spi->bits_per_word = 8;
3514         } else {
3515                 /*
3516                  * Some controllers may not support the default 8 bits-per-word
3517                  * so only perform the check when this is explicitly provided.
3518                  */
3519                 status = __spi_validate_bits_per_word(spi->controller,
3520                                                       spi->bits_per_word);
3521                 if (status)
3522                         return status;
3523         }
3524
3525         if (spi->controller->max_speed_hz &&
3526             (!spi->max_speed_hz ||
3527              spi->max_speed_hz > spi->controller->max_speed_hz))
3528                 spi->max_speed_hz = spi->controller->max_speed_hz;
3529
3530         mutex_lock(&spi->controller->io_mutex);
3531
3532         if (spi->controller->setup) {
3533                 status = spi->controller->setup(spi);
3534                 if (status) {
3535                         mutex_unlock(&spi->controller->io_mutex);
3536                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3537                                 status);
3538                         return status;
3539                 }
3540         }
3541
3542         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3543                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3544                 if (status < 0) {
3545                         mutex_unlock(&spi->controller->io_mutex);
3546                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3547                                 status);
3548                         return status;
3549                 }
3550
3551                 /*
3552                  * We do not want to return positive value from pm_runtime_get,
3553                  * there are many instances of devices calling spi_setup() and
3554                  * checking for a non-zero return value instead of a negative
3555                  * return value.
3556                  */
3557                 status = 0;
3558
3559                 spi_set_cs(spi, false, true);
3560                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3561                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3562         } else {
3563                 spi_set_cs(spi, false, true);
3564         }
3565
3566         mutex_unlock(&spi->controller->io_mutex);
3567
3568         if (spi->rt && !spi->controller->rt) {
3569                 spi->controller->rt = true;
3570                 spi_set_thread_rt(spi->controller);
3571         }
3572
3573         trace_spi_setup(spi, status);
3574
3575         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3576                         spi->mode & SPI_MODE_X_MASK,
3577                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3578                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3579                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3580                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3581                         spi->bits_per_word, spi->max_speed_hz,
3582                         status);
3583
3584         return status;
3585 }
3586 EXPORT_SYMBOL_GPL(spi_setup);
3587
3588 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3589                                        struct spi_device *spi)
3590 {
3591         int delay1, delay2;
3592
3593         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3594         if (delay1 < 0)
3595                 return delay1;
3596
3597         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3598         if (delay2 < 0)
3599                 return delay2;
3600
3601         if (delay1 < delay2)
3602                 memcpy(&xfer->word_delay, &spi->word_delay,
3603                        sizeof(xfer->word_delay));
3604
3605         return 0;
3606 }
3607
3608 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3609 {
3610         struct spi_controller *ctlr = spi->controller;
3611         struct spi_transfer *xfer;
3612         int w_size;
3613
3614         if (list_empty(&message->transfers))
3615                 return -EINVAL;
3616
3617         /*
3618          * If an SPI controller does not support toggling the CS line on each
3619          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3620          * for the CS line, we can emulate the CS-per-word hardware function by
3621          * splitting transfers into one-word transfers and ensuring that
3622          * cs_change is set for each transfer.
3623          */
3624         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3625                                           spi->cs_gpiod)) {
3626                 size_t maxsize;
3627                 int ret;
3628
3629                 maxsize = (spi->bits_per_word + 7) / 8;
3630
3631                 /* spi_split_transfers_maxsize() requires message->spi */
3632                 message->spi = spi;
3633
3634                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3635                                                   GFP_KERNEL);
3636                 if (ret)
3637                         return ret;
3638
3639                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3640                         /* don't change cs_change on the last entry in the list */
3641                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3642                                 break;
3643                         xfer->cs_change = 1;
3644                 }
3645         }
3646
3647         /*
3648          * Half-duplex links include original MicroWire, and ones with
3649          * only one data pin like SPI_3WIRE (switches direction) or where
3650          * either MOSI or MISO is missing.  They can also be caused by
3651          * software limitations.
3652          */
3653         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3654             (spi->mode & SPI_3WIRE)) {
3655                 unsigned flags = ctlr->flags;
3656
3657                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3658                         if (xfer->rx_buf && xfer->tx_buf)
3659                                 return -EINVAL;
3660                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3661                                 return -EINVAL;
3662                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3663                                 return -EINVAL;
3664                 }
3665         }
3666
3667         /*
3668          * Set transfer bits_per_word and max speed as spi device default if
3669          * it is not set for this transfer.
3670          * Set transfer tx_nbits and rx_nbits as single transfer default
3671          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3672          * Ensure transfer word_delay is at least as long as that required by
3673          * device itself.
3674          */
3675         message->frame_length = 0;
3676         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3677                 xfer->effective_speed_hz = 0;
3678                 message->frame_length += xfer->len;
3679                 if (!xfer->bits_per_word)
3680                         xfer->bits_per_word = spi->bits_per_word;
3681
3682                 if (!xfer->speed_hz)
3683                         xfer->speed_hz = spi->max_speed_hz;
3684
3685                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3686                         xfer->speed_hz = ctlr->max_speed_hz;
3687
3688                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3689                         return -EINVAL;
3690
3691                 /*
3692                  * SPI transfer length should be multiple of SPI word size
3693                  * where SPI word size should be power-of-two multiple.
3694                  */
3695                 if (xfer->bits_per_word <= 8)
3696                         w_size = 1;
3697                 else if (xfer->bits_per_word <= 16)
3698                         w_size = 2;
3699                 else
3700                         w_size = 4;
3701
3702                 /* No partial transfers accepted */
3703                 if (xfer->len % w_size)
3704                         return -EINVAL;
3705
3706                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3707                     xfer->speed_hz < ctlr->min_speed_hz)
3708                         return -EINVAL;
3709
3710                 if (xfer->tx_buf && !xfer->tx_nbits)
3711                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3712                 if (xfer->rx_buf && !xfer->rx_nbits)
3713                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3714                 /*
3715                  * Check transfer tx/rx_nbits:
3716                  * 1. check the value matches one of single, dual and quad
3717                  * 2. check tx/rx_nbits match the mode in spi_device
3718                  */
3719                 if (xfer->tx_buf) {
3720                         if (spi->mode & SPI_NO_TX)
3721                                 return -EINVAL;
3722                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3723                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3724                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3725                                 return -EINVAL;
3726                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3727                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3728                                 return -EINVAL;
3729                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3730                                 !(spi->mode & SPI_TX_QUAD))
3731                                 return -EINVAL;
3732                 }
3733                 /* check transfer rx_nbits */
3734                 if (xfer->rx_buf) {
3735                         if (spi->mode & SPI_NO_RX)
3736                                 return -EINVAL;
3737                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3738                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3739                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3740                                 return -EINVAL;
3741                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3742                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3743                                 return -EINVAL;
3744                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3745                                 !(spi->mode & SPI_RX_QUAD))
3746                                 return -EINVAL;
3747                 }
3748
3749                 if (_spi_xfer_word_delay_update(xfer, spi))
3750                         return -EINVAL;
3751         }
3752
3753         message->status = -EINPROGRESS;
3754
3755         return 0;
3756 }
3757
3758 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3759 {
3760         struct spi_controller *ctlr = spi->controller;
3761         struct spi_transfer *xfer;
3762
3763         /*
3764          * Some controllers do not support doing regular SPI transfers. Return
3765          * ENOTSUPP when this is the case.
3766          */
3767         if (!ctlr->transfer)
3768                 return -ENOTSUPP;
3769
3770         message->spi = spi;
3771
3772         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3773         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3774
3775         trace_spi_message_submit(message);
3776
3777         if (!ctlr->ptp_sts_supported) {
3778                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3779                         xfer->ptp_sts_word_pre = 0;
3780                         ptp_read_system_prets(xfer->ptp_sts);
3781                 }
3782         }
3783
3784         return ctlr->transfer(spi, message);
3785 }
3786
3787 /**
3788  * spi_async - asynchronous SPI transfer
3789  * @spi: device with which data will be exchanged
3790  * @message: describes the data transfers, including completion callback
3791  * Context: any (irqs may be blocked, etc)
3792  *
3793  * This call may be used in_irq and other contexts which can't sleep,
3794  * as well as from task contexts which can sleep.
3795  *
3796  * The completion callback is invoked in a context which can't sleep.
3797  * Before that invocation, the value of message->status is undefined.
3798  * When the callback is issued, message->status holds either zero (to
3799  * indicate complete success) or a negative error code.  After that
3800  * callback returns, the driver which issued the transfer request may
3801  * deallocate the associated memory; it's no longer in use by any SPI
3802  * core or controller driver code.
3803  *
3804  * Note that although all messages to a spi_device are handled in
3805  * FIFO order, messages may go to different devices in other orders.
3806  * Some device might be higher priority, or have various "hard" access
3807  * time requirements, for example.
3808  *
3809  * On detection of any fault during the transfer, processing of
3810  * the entire message is aborted, and the device is deselected.
3811  * Until returning from the associated message completion callback,
3812  * no other spi_message queued to that device will be processed.
3813  * (This rule applies equally to all the synchronous transfer calls,
3814  * which are wrappers around this core asynchronous primitive.)
3815  *
3816  * Return: zero on success, else a negative error code.
3817  */
3818 int spi_async(struct spi_device *spi, struct spi_message *message)
3819 {
3820         struct spi_controller *ctlr = spi->controller;
3821         int ret;
3822         unsigned long flags;
3823
3824         ret = __spi_validate(spi, message);
3825         if (ret != 0)
3826                 return ret;
3827
3828         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3829
3830         if (ctlr->bus_lock_flag)
3831                 ret = -EBUSY;
3832         else
3833                 ret = __spi_async(spi, message);
3834
3835         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3836
3837         return ret;
3838 }
3839 EXPORT_SYMBOL_GPL(spi_async);
3840
3841 /**
3842  * spi_async_locked - version of spi_async with exclusive bus usage
3843  * @spi: device with which data will be exchanged
3844  * @message: describes the data transfers, including completion callback
3845  * Context: any (irqs may be blocked, etc)
3846  *
3847  * This call may be used in_irq and other contexts which can't sleep,
3848  * as well as from task contexts which can sleep.
3849  *
3850  * The completion callback is invoked in a context which can't sleep.
3851  * Before that invocation, the value of message->status is undefined.
3852  * When the callback is issued, message->status holds either zero (to
3853  * indicate complete success) or a negative error code.  After that
3854  * callback returns, the driver which issued the transfer request may
3855  * deallocate the associated memory; it's no longer in use by any SPI
3856  * core or controller driver code.
3857  *
3858  * Note that although all messages to a spi_device are handled in
3859  * FIFO order, messages may go to different devices in other orders.
3860  * Some device might be higher priority, or have various "hard" access
3861  * time requirements, for example.
3862  *
3863  * On detection of any fault during the transfer, processing of
3864  * the entire message is aborted, and the device is deselected.
3865  * Until returning from the associated message completion callback,
3866  * no other spi_message queued to that device will be processed.
3867  * (This rule applies equally to all the synchronous transfer calls,
3868  * which are wrappers around this core asynchronous primitive.)
3869  *
3870  * Return: zero on success, else a negative error code.
3871  */
3872 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3873 {
3874         struct spi_controller *ctlr = spi->controller;
3875         int ret;
3876         unsigned long flags;
3877
3878         ret = __spi_validate(spi, message);
3879         if (ret != 0)
3880                 return ret;
3881
3882         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3883
3884         ret = __spi_async(spi, message);
3885
3886         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3887
3888         return ret;
3889
3890 }
3891
3892 /*-------------------------------------------------------------------------*/
3893
3894 /*
3895  * Utility methods for SPI protocol drivers, layered on
3896  * top of the core.  Some other utility methods are defined as
3897  * inline functions.
3898  */
3899
3900 static void spi_complete(void *arg)
3901 {
3902         complete(arg);
3903 }
3904
3905 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3906 {
3907         DECLARE_COMPLETION_ONSTACK(done);
3908         int status;
3909         struct spi_controller *ctlr = spi->controller;
3910         unsigned long flags;
3911
3912         status = __spi_validate(spi, message);
3913         if (status != 0)
3914                 return status;
3915
3916         message->complete = spi_complete;
3917         message->context = &done;
3918         message->spi = spi;
3919
3920         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3921         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3922
3923         /*
3924          * If we're not using the legacy transfer method then we will
3925          * try to transfer in the calling context so special case.
3926          * This code would be less tricky if we could remove the
3927          * support for driver implemented message queues.
3928          */
3929         if (ctlr->transfer == spi_queued_transfer) {
3930                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3931
3932                 trace_spi_message_submit(message);
3933
3934                 status = __spi_queued_transfer(spi, message, false);
3935
3936                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3937         } else {
3938                 status = spi_async_locked(spi, message);
3939         }
3940
3941         if (status == 0) {
3942                 /* Push out the messages in the calling context if we can */
3943                 if (ctlr->transfer == spi_queued_transfer) {
3944                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3945                                                        spi_sync_immediate);
3946                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3947                                                        spi_sync_immediate);
3948                         __spi_pump_messages(ctlr, false);
3949                 }
3950
3951                 wait_for_completion(&done);
3952                 status = message->status;
3953         }
3954         message->context = NULL;
3955         return status;
3956 }
3957
3958 /**
3959  * spi_sync - blocking/synchronous SPI data transfers
3960  * @spi: device with which data will be exchanged
3961  * @message: describes the data transfers
3962  * Context: can sleep
3963  *
3964  * This call may only be used from a context that may sleep.  The sleep
3965  * is non-interruptible, and has no timeout.  Low-overhead controller
3966  * drivers may DMA directly into and out of the message buffers.
3967  *
3968  * Note that the SPI device's chip select is active during the message,
3969  * and then is normally disabled between messages.  Drivers for some
3970  * frequently-used devices may want to minimize costs of selecting a chip,
3971  * by leaving it selected in anticipation that the next message will go
3972  * to the same chip.  (That may increase power usage.)
3973  *
3974  * Also, the caller is guaranteeing that the memory associated with the
3975  * message will not be freed before this call returns.
3976  *
3977  * Return: zero on success, else a negative error code.
3978  */
3979 int spi_sync(struct spi_device *spi, struct spi_message *message)
3980 {
3981         int ret;
3982
3983         mutex_lock(&spi->controller->bus_lock_mutex);
3984         ret = __spi_sync(spi, message);
3985         mutex_unlock(&spi->controller->bus_lock_mutex);
3986
3987         return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(spi_sync);
3990
3991 /**
3992  * spi_sync_locked - version of spi_sync with exclusive bus usage
3993  * @spi: device with which data will be exchanged
3994  * @message: describes the data transfers
3995  * Context: can sleep
3996  *
3997  * This call may only be used from a context that may sleep.  The sleep
3998  * is non-interruptible, and has no timeout.  Low-overhead controller
3999  * drivers may DMA directly into and out of the message buffers.
4000  *
4001  * This call should be used by drivers that require exclusive access to the
4002  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4003  * be released by a spi_bus_unlock call when the exclusive access is over.
4004  *
4005  * Return: zero on success, else a negative error code.
4006  */
4007 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4008 {
4009         return __spi_sync(spi, message);
4010 }
4011 EXPORT_SYMBOL_GPL(spi_sync_locked);
4012
4013 /**
4014  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4015  * @ctlr: SPI bus master that should be locked for exclusive bus access
4016  * Context: can sleep
4017  *
4018  * This call may only be used from a context that may sleep.  The sleep
4019  * is non-interruptible, and has no timeout.
4020  *
4021  * This call should be used by drivers that require exclusive access to the
4022  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4023  * exclusive access is over. Data transfer must be done by spi_sync_locked
4024  * and spi_async_locked calls when the SPI bus lock is held.
4025  *
4026  * Return: always zero.
4027  */
4028 int spi_bus_lock(struct spi_controller *ctlr)
4029 {
4030         unsigned long flags;
4031
4032         mutex_lock(&ctlr->bus_lock_mutex);
4033
4034         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4035         ctlr->bus_lock_flag = 1;
4036         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4037
4038         /* mutex remains locked until spi_bus_unlock is called */
4039
4040         return 0;
4041 }
4042 EXPORT_SYMBOL_GPL(spi_bus_lock);
4043
4044 /**
4045  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4046  * @ctlr: SPI bus master that was locked for exclusive bus access
4047  * Context: can sleep
4048  *
4049  * This call may only be used from a context that may sleep.  The sleep
4050  * is non-interruptible, and has no timeout.
4051  *
4052  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4053  * call.
4054  *
4055  * Return: always zero.
4056  */
4057 int spi_bus_unlock(struct spi_controller *ctlr)
4058 {
4059         ctlr->bus_lock_flag = 0;
4060
4061         mutex_unlock(&ctlr->bus_lock_mutex);
4062
4063         return 0;
4064 }
4065 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4066
4067 /* portable code must never pass more than 32 bytes */
4068 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4069
4070 static u8       *buf;
4071
4072 /**
4073  * spi_write_then_read - SPI synchronous write followed by read
4074  * @spi: device with which data will be exchanged
4075  * @txbuf: data to be written (need not be dma-safe)
4076  * @n_tx: size of txbuf, in bytes
4077  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4078  * @n_rx: size of rxbuf, in bytes
4079  * Context: can sleep
4080  *
4081  * This performs a half duplex MicroWire style transaction with the
4082  * device, sending txbuf and then reading rxbuf.  The return value
4083  * is zero for success, else a negative errno status code.
4084  * This call may only be used from a context that may sleep.
4085  *
4086  * Parameters to this routine are always copied using a small buffer.
4087  * Performance-sensitive or bulk transfer code should instead use
4088  * spi_{async,sync}() calls with dma-safe buffers.
4089  *
4090  * Return: zero on success, else a negative error code.
4091  */
4092 int spi_write_then_read(struct spi_device *spi,
4093                 const void *txbuf, unsigned n_tx,
4094                 void *rxbuf, unsigned n_rx)
4095 {
4096         static DEFINE_MUTEX(lock);
4097
4098         int                     status;
4099         struct spi_message      message;
4100         struct spi_transfer     x[2];
4101         u8                      *local_buf;
4102
4103         /*
4104          * Use preallocated DMA-safe buffer if we can. We can't avoid
4105          * copying here, (as a pure convenience thing), but we can
4106          * keep heap costs out of the hot path unless someone else is
4107          * using the pre-allocated buffer or the transfer is too large.
4108          */
4109         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4110                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4111                                     GFP_KERNEL | GFP_DMA);
4112                 if (!local_buf)
4113                         return -ENOMEM;
4114         } else {
4115                 local_buf = buf;
4116         }
4117
4118         spi_message_init(&message);
4119         memset(x, 0, sizeof(x));
4120         if (n_tx) {
4121                 x[0].len = n_tx;
4122                 spi_message_add_tail(&x[0], &message);
4123         }
4124         if (n_rx) {
4125                 x[1].len = n_rx;
4126                 spi_message_add_tail(&x[1], &message);
4127         }
4128
4129         memcpy(local_buf, txbuf, n_tx);
4130         x[0].tx_buf = local_buf;
4131         x[1].rx_buf = local_buf + n_tx;
4132
4133         /* do the i/o */
4134         status = spi_sync(spi, &message);
4135         if (status == 0)
4136                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4137
4138         if (x[0].tx_buf == buf)
4139                 mutex_unlock(&lock);
4140         else
4141                 kfree(local_buf);
4142
4143         return status;
4144 }
4145 EXPORT_SYMBOL_GPL(spi_write_then_read);
4146
4147 /*-------------------------------------------------------------------------*/
4148
4149 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4150 /* must call put_device() when done with returned spi_device device */
4151 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4152 {
4153         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4154
4155         return dev ? to_spi_device(dev) : NULL;
4156 }
4157
4158 /* the spi controllers are not using spi_bus, so we find it with another way */
4159 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4160 {
4161         struct device *dev;
4162
4163         dev = class_find_device_by_of_node(&spi_master_class, node);
4164         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4165                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4166         if (!dev)
4167                 return NULL;
4168
4169         /* reference got in class_find_device */
4170         return container_of(dev, struct spi_controller, dev);
4171 }
4172
4173 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4174                          void *arg)
4175 {
4176         struct of_reconfig_data *rd = arg;
4177         struct spi_controller *ctlr;
4178         struct spi_device *spi;
4179
4180         switch (of_reconfig_get_state_change(action, arg)) {
4181         case OF_RECONFIG_CHANGE_ADD:
4182                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4183                 if (ctlr == NULL)
4184                         return NOTIFY_OK;       /* not for us */
4185
4186                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4187                         put_device(&ctlr->dev);
4188                         return NOTIFY_OK;
4189                 }
4190
4191                 spi = of_register_spi_device(ctlr, rd->dn);
4192                 put_device(&ctlr->dev);
4193
4194                 if (IS_ERR(spi)) {
4195                         pr_err("%s: failed to create for '%pOF'\n",
4196                                         __func__, rd->dn);
4197                         of_node_clear_flag(rd->dn, OF_POPULATED);
4198                         return notifier_from_errno(PTR_ERR(spi));
4199                 }
4200                 break;
4201
4202         case OF_RECONFIG_CHANGE_REMOVE:
4203                 /* already depopulated? */
4204                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4205                         return NOTIFY_OK;
4206
4207                 /* find our device by node */
4208                 spi = of_find_spi_device_by_node(rd->dn);
4209                 if (spi == NULL)
4210                         return NOTIFY_OK;       /* no? not meant for us */
4211
4212                 /* unregister takes one ref away */
4213                 spi_unregister_device(spi);
4214
4215                 /* and put the reference of the find */
4216                 put_device(&spi->dev);
4217                 break;
4218         }
4219
4220         return NOTIFY_OK;
4221 }
4222
4223 static struct notifier_block spi_of_notifier = {
4224         .notifier_call = of_spi_notify,
4225 };
4226 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4227 extern struct notifier_block spi_of_notifier;
4228 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4229
4230 #if IS_ENABLED(CONFIG_ACPI)
4231 static int spi_acpi_controller_match(struct device *dev, const void *data)
4232 {
4233         return ACPI_COMPANION(dev->parent) == data;
4234 }
4235
4236 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4237 {
4238         struct device *dev;
4239
4240         dev = class_find_device(&spi_master_class, NULL, adev,
4241                                 spi_acpi_controller_match);
4242         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4243                 dev = class_find_device(&spi_slave_class, NULL, adev,
4244                                         spi_acpi_controller_match);
4245         if (!dev)
4246                 return NULL;
4247
4248         return container_of(dev, struct spi_controller, dev);
4249 }
4250
4251 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4252 {
4253         struct device *dev;
4254
4255         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4256         return to_spi_device(dev);
4257 }
4258
4259 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4260                            void *arg)
4261 {
4262         struct acpi_device *adev = arg;
4263         struct spi_controller *ctlr;
4264         struct spi_device *spi;
4265
4266         switch (value) {
4267         case ACPI_RECONFIG_DEVICE_ADD:
4268                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4269                 if (!ctlr)
4270                         break;
4271
4272                 acpi_register_spi_device(ctlr, adev);
4273                 put_device(&ctlr->dev);
4274                 break;
4275         case ACPI_RECONFIG_DEVICE_REMOVE:
4276                 if (!acpi_device_enumerated(adev))
4277                         break;
4278
4279                 spi = acpi_spi_find_device_by_adev(adev);
4280                 if (!spi)
4281                         break;
4282
4283                 spi_unregister_device(spi);
4284                 put_device(&spi->dev);
4285                 break;
4286         }
4287
4288         return NOTIFY_OK;
4289 }
4290
4291 static struct notifier_block spi_acpi_notifier = {
4292         .notifier_call = acpi_spi_notify,
4293 };
4294 #else
4295 extern struct notifier_block spi_acpi_notifier;
4296 #endif
4297
4298 static int __init spi_init(void)
4299 {
4300         int     status;
4301
4302         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4303         if (!buf) {
4304                 status = -ENOMEM;
4305                 goto err0;
4306         }
4307
4308         status = bus_register(&spi_bus_type);
4309         if (status < 0)
4310                 goto err1;
4311
4312         status = class_register(&spi_master_class);
4313         if (status < 0)
4314                 goto err2;
4315
4316         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4317                 status = class_register(&spi_slave_class);
4318                 if (status < 0)
4319                         goto err3;
4320         }
4321
4322         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4323                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4324         if (IS_ENABLED(CONFIG_ACPI))
4325                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4326
4327         return 0;
4328
4329 err3:
4330         class_unregister(&spi_master_class);
4331 err2:
4332         bus_unregister(&spi_bus_type);
4333 err1:
4334         kfree(buf);
4335         buf = NULL;
4336 err0:
4337         return status;
4338 }
4339
4340 /*
4341  * A board_info is normally registered in arch_initcall(),
4342  * but even essential drivers wait till later.
4343  *
4344  * REVISIT only boardinfo really needs static linking. The rest (device and
4345  * driver registration) _could_ be dynamically linked (modular) ... Costs
4346  * include needing to have boardinfo data structures be much more public.
4347  */
4348 postcore_initcall(spi_init);