GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / spi / spi-topcliff-pch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI bus driver for the Topcliff PCH used by Intel SoCs
4  *
5  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6  */
7
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21
22 /* Register offsets */
23 #define PCH_SPCR                0x00    /* SPI control register */
24 #define PCH_SPBRR               0x04    /* SPI baud rate register */
25 #define PCH_SPSR                0x08    /* SPI status register */
26 #define PCH_SPDWR               0x0C    /* SPI write data register */
27 #define PCH_SPDRR               0x10    /* SPI read data register */
28 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
29 #define PCH_SRST                0x1C    /* SPI reset register */
30 #define PCH_ADDRESS_SIZE        0x20
31
32 #define PCH_SPSR_TFD            0x000007C0
33 #define PCH_SPSR_RFD            0x0000F800
34
35 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
37
38 #define PCH_RX_THOLD            7
39 #define PCH_RX_THOLD_MAX        15
40
41 #define PCH_TX_THOLD            2
42
43 #define PCH_MAX_BAUDRATE        5000000
44 #define PCH_MAX_FIFO_DEPTH      16
45
46 #define STATUS_RUNNING          1
47 #define STATUS_EXITING          2
48 #define PCH_SLEEP_TIME          10
49
50 #define SSN_LOW                 0x02U
51 #define SSN_HIGH                0x03U
52 #define SSN_NO_CONTROL          0x00U
53 #define PCH_MAX_CS              0xFF
54 #define PCI_DEVICE_ID_GE_SPI    0x8816
55
56 #define SPCR_SPE_BIT            (1 << 0)
57 #define SPCR_MSTR_BIT           (1 << 1)
58 #define SPCR_LSBF_BIT           (1 << 4)
59 #define SPCR_CPHA_BIT           (1 << 5)
60 #define SPCR_CPOL_BIT           (1 << 6)
61 #define SPCR_TFIE_BIT           (1 << 8)
62 #define SPCR_RFIE_BIT           (1 << 9)
63 #define SPCR_FIE_BIT            (1 << 10)
64 #define SPCR_ORIE_BIT           (1 << 11)
65 #define SPCR_MDFIE_BIT          (1 << 12)
66 #define SPCR_FICLR_BIT          (1 << 24)
67 #define SPSR_TFI_BIT            (1 << 0)
68 #define SPSR_RFI_BIT            (1 << 1)
69 #define SPSR_FI_BIT             (1 << 2)
70 #define SPSR_ORF_BIT            (1 << 3)
71 #define SPBRR_SIZE_BIT          (1 << 10)
72
73 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76 #define SPCR_RFIC_FIELD         20
77 #define SPCR_TFIC_FIELD         16
78
79 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
82
83 #define PCH_CLOCK_HZ            50000000
84 #define PCH_MAX_SPBR            1023
85
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
90
91 /*
92  * Set the number of SPI instance max
93  * Intel EG20T PCH :            1ch
94  * LAPIS Semiconductor ML7213 IOH :     2ch
95  * LAPIS Semiconductor ML7223 IOH :     1ch
96  * LAPIS Semiconductor ML7831 IOH :     1ch
97 */
98 #define PCH_SPI_MAX_DEV                 2
99
100 #define PCH_BUF_SIZE            4096
101 #define PCH_DMA_TRANS_SIZE      12
102
103 static int use_dma = 1;
104
105 struct pch_spi_dma_ctrl {
106         struct dma_async_tx_descriptor  *desc_tx;
107         struct dma_async_tx_descriptor  *desc_rx;
108         struct pch_dma_slave            param_tx;
109         struct pch_dma_slave            param_rx;
110         struct dma_chan         *chan_tx;
111         struct dma_chan         *chan_rx;
112         struct scatterlist              *sg_tx_p;
113         struct scatterlist              *sg_rx_p;
114         struct scatterlist              sg_tx;
115         struct scatterlist              sg_rx;
116         int                             nent;
117         void                            *tx_buf_virt;
118         void                            *rx_buf_virt;
119         dma_addr_t                      tx_buf_dma;
120         dma_addr_t                      rx_buf_dma;
121 };
122 /**
123  * struct pch_spi_data - Holds the SPI channel specific details
124  * @io_remap_addr:              The remapped PCI base address
125  * @io_base_addr:               Base address
126  * @master:                     Pointer to the SPI master structure
127  * @work:                       Reference to work queue handler
128  * @wait:                       Wait queue for waking up upon receiving an
129  *                              interrupt.
130  * @transfer_complete:          Status of SPI Transfer
131  * @bcurrent_msg_processing:    Status flag for message processing
132  * @lock:                       Lock for protecting this structure
133  * @queue:                      SPI Message queue
134  * @status:                     Status of the SPI driver
135  * @bpw_len:                    Length of data to be transferred in bits per
136  *                              word
137  * @transfer_active:            Flag showing active transfer
138  * @tx_index:                   Transmit data count; for bookkeeping during
139  *                              transfer
140  * @rx_index:                   Receive data count; for bookkeeping during
141  *                              transfer
142  * @pkt_tx_buff:                Buffer for data to be transmitted
143  * @pkt_rx_buff:                Buffer for received data
144  * @n_curnt_chip:               The chip number that this SPI driver currently
145  *                              operates on
146  * @current_chip:               Reference to the current chip that this SPI
147  *                              driver currently operates on
148  * @current_msg:                The current message that this SPI driver is
149  *                              handling
150  * @cur_trans:                  The current transfer that this SPI driver is
151  *                              handling
152  * @board_dat:                  Reference to the SPI device data structure
153  * @plat_dev:                   platform_device structure
154  * @ch:                         SPI channel number
155  * @dma:                        Local DMA information
156  * @use_dma:                    True if DMA is to be used
157  * @irq_reg_sts:                Status of IRQ registration
158  * @save_total_len:             Save length while data is being transferred
159  */
160 struct pch_spi_data {
161         void __iomem *io_remap_addr;
162         unsigned long io_base_addr;
163         struct spi_master *master;
164         struct work_struct work;
165         wait_queue_head_t wait;
166         u8 transfer_complete;
167         u8 bcurrent_msg_processing;
168         spinlock_t lock;
169         struct list_head queue;
170         u8 status;
171         u32 bpw_len;
172         u8 transfer_active;
173         u32 tx_index;
174         u32 rx_index;
175         u16 *pkt_tx_buff;
176         u16 *pkt_rx_buff;
177         u8 n_curnt_chip;
178         struct spi_device *current_chip;
179         struct spi_message *current_msg;
180         struct spi_transfer *cur_trans;
181         struct pch_spi_board_data *board_dat;
182         struct platform_device  *plat_dev;
183         int ch;
184         struct pch_spi_dma_ctrl dma;
185         int use_dma;
186         u8 irq_reg_sts;
187         int save_total_len;
188 };
189
190 /**
191  * struct pch_spi_board_data - Holds the SPI device specific details
192  * @pdev:               Pointer to the PCI device
193  * @suspend_sts:        Status of suspend
194  * @num:                The number of SPI device instance
195  */
196 struct pch_spi_board_data {
197         struct pci_dev *pdev;
198         u8 suspend_sts;
199         int num;
200 };
201
202 struct pch_pd_dev_save {
203         int num;
204         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
205         struct pch_spi_board_data *board_dat;
206 };
207
208 static const struct pci_device_id pch_spi_pcidev_id[] = {
209         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
210         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
211         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
212         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
213         { }
214 };
215
216 /**
217  * pch_spi_writereg() - Performs  register writes
218  * @master:     Pointer to struct spi_master.
219  * @idx:        Register offset.
220  * @val:        Value to be written to register.
221  */
222 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
223 {
224         struct pch_spi_data *data = spi_master_get_devdata(master);
225         iowrite32(val, (data->io_remap_addr + idx));
226 }
227
228 /**
229  * pch_spi_readreg() - Performs register reads
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  */
233 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
234 {
235         struct pch_spi_data *data = spi_master_get_devdata(master);
236         return ioread32(data->io_remap_addr + idx);
237 }
238
239 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
240                                       u32 set, u32 clr)
241 {
242         u32 tmp = pch_spi_readreg(master, idx);
243         tmp = (tmp & ~clr) | set;
244         pch_spi_writereg(master, idx, tmp);
245 }
246
247 static void pch_spi_set_master_mode(struct spi_master *master)
248 {
249         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
250 }
251
252 /**
253  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
254  * @master:     Pointer to struct spi_master.
255  */
256 static void pch_spi_clear_fifo(struct spi_master *master)
257 {
258         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
259         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
260 }
261
262 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
263                                 void __iomem *io_remap_addr)
264 {
265         u32 n_read, tx_index, rx_index, bpw_len;
266         u16 *pkt_rx_buffer, *pkt_tx_buff;
267         int read_cnt;
268         u32 reg_spcr_val;
269         void __iomem *spsr;
270         void __iomem *spdrr;
271         void __iomem *spdwr;
272
273         spsr = io_remap_addr + PCH_SPSR;
274         iowrite32(reg_spsr_val, spsr);
275
276         if (data->transfer_active) {
277                 rx_index = data->rx_index;
278                 tx_index = data->tx_index;
279                 bpw_len = data->bpw_len;
280                 pkt_rx_buffer = data->pkt_rx_buff;
281                 pkt_tx_buff = data->pkt_tx_buff;
282
283                 spdrr = io_remap_addr + PCH_SPDRR;
284                 spdwr = io_remap_addr + PCH_SPDWR;
285
286                 n_read = PCH_READABLE(reg_spsr_val);
287
288                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
289                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
290                         if (tx_index < bpw_len)
291                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
292                 }
293
294                 /* disable RFI if not needed */
295                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
296                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
297                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
298
299                         /* reset rx threshold */
300                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
301                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
302
303                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
304                 }
305
306                 /* update counts */
307                 data->tx_index = tx_index;
308                 data->rx_index = rx_index;
309
310                 /* if transfer complete interrupt */
311                 if (reg_spsr_val & SPSR_FI_BIT) {
312                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
313                                 /* disable interrupts */
314                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
315                                                    PCH_ALL);
316
317                                 /* transfer is completed;
318                                    inform pch_spi_process_messages */
319                                 data->transfer_complete = true;
320                                 data->transfer_active = false;
321                                 wake_up(&data->wait);
322                         } else {
323                                 dev_vdbg(&data->master->dev,
324                                         "%s : Transfer is not completed",
325                                         __func__);
326                         }
327                 }
328         }
329 }
330
331 /**
332  * pch_spi_handler() - Interrupt handler
333  * @irq:        The interrupt number.
334  * @dev_id:     Pointer to struct pch_spi_board_data.
335  */
336 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
337 {
338         u32 reg_spsr_val;
339         void __iomem *spsr;
340         void __iomem *io_remap_addr;
341         irqreturn_t ret = IRQ_NONE;
342         struct pch_spi_data *data = dev_id;
343         struct pch_spi_board_data *board_dat = data->board_dat;
344
345         if (board_dat->suspend_sts) {
346                 dev_dbg(&board_dat->pdev->dev,
347                         "%s returning due to suspend\n", __func__);
348                 return IRQ_NONE;
349         }
350
351         io_remap_addr = data->io_remap_addr;
352         spsr = io_remap_addr + PCH_SPSR;
353
354         reg_spsr_val = ioread32(spsr);
355
356         if (reg_spsr_val & SPSR_ORF_BIT) {
357                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
358                 if (data->current_msg->complete) {
359                         data->transfer_complete = true;
360                         data->current_msg->status = -EIO;
361                         data->current_msg->complete(data->current_msg->context);
362                         data->bcurrent_msg_processing = false;
363                         data->current_msg = NULL;
364                         data->cur_trans = NULL;
365                 }
366         }
367
368         if (data->use_dma)
369                 return IRQ_NONE;
370
371         /* Check if the interrupt is for SPI device */
372         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
373                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
374                 ret = IRQ_HANDLED;
375         }
376
377         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
378                 __func__, ret);
379
380         return ret;
381 }
382
383 /**
384  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
385  * @master:     Pointer to struct spi_master.
386  * @speed_hz:   Baud rate.
387  */
388 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
389 {
390         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
391
392         /* if baud rate is less than we can support limit it */
393         if (n_spbr > PCH_MAX_SPBR)
394                 n_spbr = PCH_MAX_SPBR;
395
396         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
397 }
398
399 /**
400  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
401  * @master:             Pointer to struct spi_master.
402  * @bits_per_word:      Bits per word for SPI transfer.
403  */
404 static void pch_spi_set_bits_per_word(struct spi_master *master,
405                                       u8 bits_per_word)
406 {
407         if (bits_per_word == 8)
408                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
409         else
410                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
411 }
412
413 /**
414  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
415  * @spi:        Pointer to struct spi_device.
416  */
417 static void pch_spi_setup_transfer(struct spi_device *spi)
418 {
419         u32 flags = 0;
420
421         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
422                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
423                 spi->max_speed_hz);
424         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
425
426         /* set bits per word */
427         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
428
429         if (!(spi->mode & SPI_LSB_FIRST))
430                 flags |= SPCR_LSBF_BIT;
431         if (spi->mode & SPI_CPOL)
432                 flags |= SPCR_CPOL_BIT;
433         if (spi->mode & SPI_CPHA)
434                 flags |= SPCR_CPHA_BIT;
435         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
436                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
437
438         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
439         pch_spi_clear_fifo(spi->master);
440 }
441
442 /**
443  * pch_spi_reset() - Clears SPI registers
444  * @master:     Pointer to struct spi_master.
445  */
446 static void pch_spi_reset(struct spi_master *master)
447 {
448         /* write 1 to reset SPI */
449         pch_spi_writereg(master, PCH_SRST, 0x1);
450
451         /* clear reset */
452         pch_spi_writereg(master, PCH_SRST, 0x0);
453 }
454
455 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
456 {
457
458         struct spi_transfer *transfer;
459         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
460         int retval;
461         unsigned long flags;
462
463         spin_lock_irqsave(&data->lock, flags);
464         /* validate Tx/Rx buffers and Transfer length */
465         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
466                 if (!transfer->tx_buf && !transfer->rx_buf) {
467                         dev_err(&pspi->dev,
468                                 "%s Tx and Rx buffer NULL\n", __func__);
469                         retval = -EINVAL;
470                         goto err_return_spinlock;
471                 }
472
473                 if (!transfer->len) {
474                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
475                                 __func__);
476                         retval = -EINVAL;
477                         goto err_return_spinlock;
478                 }
479
480                 dev_dbg(&pspi->dev,
481                         "%s Tx/Rx buffer valid. Transfer length valid\n",
482                         __func__);
483         }
484         spin_unlock_irqrestore(&data->lock, flags);
485
486         /* We won't process any messages if we have been asked to terminate */
487         if (data->status == STATUS_EXITING) {
488                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
489                 retval = -ESHUTDOWN;
490                 goto err_out;
491         }
492
493         /* If suspended ,return -EINVAL */
494         if (data->board_dat->suspend_sts) {
495                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
496                 retval = -EINVAL;
497                 goto err_out;
498         }
499
500         /* set status of message */
501         pmsg->actual_length = 0;
502         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
503
504         pmsg->status = -EINPROGRESS;
505         spin_lock_irqsave(&data->lock, flags);
506         /* add message to queue */
507         list_add_tail(&pmsg->queue, &data->queue);
508         spin_unlock_irqrestore(&data->lock, flags);
509
510         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
511
512         schedule_work(&data->work);
513         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
514
515         retval = 0;
516
517 err_out:
518         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
519         return retval;
520 err_return_spinlock:
521         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
522         spin_unlock_irqrestore(&data->lock, flags);
523         return retval;
524 }
525
526 static inline void pch_spi_select_chip(struct pch_spi_data *data,
527                                        struct spi_device *pspi)
528 {
529         if (data->current_chip != NULL) {
530                 if (pspi->chip_select != data->n_curnt_chip) {
531                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
532                         data->current_chip = NULL;
533                 }
534         }
535
536         data->current_chip = pspi;
537
538         data->n_curnt_chip = data->current_chip->chip_select;
539
540         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
541         pch_spi_setup_transfer(pspi);
542 }
543
544 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
545 {
546         int size;
547         u32 n_writes;
548         int j;
549         struct spi_message *pmsg, *tmp;
550         const u8 *tx_buf;
551         const u16 *tx_sbuf;
552
553         /* set baud rate if needed */
554         if (data->cur_trans->speed_hz) {
555                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
556                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
557         }
558
559         /* set bits per word if needed */
560         if (data->cur_trans->bits_per_word &&
561             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
562                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
563                 pch_spi_set_bits_per_word(data->master,
564                                           data->cur_trans->bits_per_word);
565                 *bpw = data->cur_trans->bits_per_word;
566         } else {
567                 *bpw = data->current_msg->spi->bits_per_word;
568         }
569
570         /* reset Tx/Rx index */
571         data->tx_index = 0;
572         data->rx_index = 0;
573
574         data->bpw_len = data->cur_trans->len / (*bpw / 8);
575
576         /* find alloc size */
577         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
578
579         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
580         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
581         if (data->pkt_tx_buff != NULL) {
582                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
583                 if (!data->pkt_rx_buff) {
584                         kfree(data->pkt_tx_buff);
585                         data->pkt_tx_buff = NULL;
586                 }
587         }
588
589         if (!data->pkt_rx_buff) {
590                 /* flush queue and set status of all transfers to -ENOMEM */
591                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
592                         pmsg->status = -ENOMEM;
593
594                         if (pmsg->complete)
595                                 pmsg->complete(pmsg->context);
596
597                         /* delete from queue */
598                         list_del_init(&pmsg->queue);
599                 }
600                 return;
601         }
602
603         /* copy Tx Data */
604         if (data->cur_trans->tx_buf != NULL) {
605                 if (*bpw == 8) {
606                         tx_buf = data->cur_trans->tx_buf;
607                         for (j = 0; j < data->bpw_len; j++)
608                                 data->pkt_tx_buff[j] = *tx_buf++;
609                 } else {
610                         tx_sbuf = data->cur_trans->tx_buf;
611                         for (j = 0; j < data->bpw_len; j++)
612                                 data->pkt_tx_buff[j] = *tx_sbuf++;
613                 }
614         }
615
616         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
617         n_writes = data->bpw_len;
618         if (n_writes > PCH_MAX_FIFO_DEPTH)
619                 n_writes = PCH_MAX_FIFO_DEPTH;
620
621         dev_dbg(&data->master->dev,
622                 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
623                 __func__);
624         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
625
626         for (j = 0; j < n_writes; j++)
627                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
628
629         /* update tx_index */
630         data->tx_index = j;
631
632         /* reset transfer complete flag */
633         data->transfer_complete = false;
634         data->transfer_active = true;
635 }
636
637 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
638 {
639         struct spi_message *pmsg, *tmp;
640         dev_dbg(&data->master->dev, "%s called\n", __func__);
641         /* Invoke complete callback
642          * [To the spi core..indicating end of transfer] */
643         data->current_msg->status = 0;
644
645         if (data->current_msg->complete) {
646                 dev_dbg(&data->master->dev,
647                         "%s:Invoking callback of SPI core\n", __func__);
648                 data->current_msg->complete(data->current_msg->context);
649         }
650
651         /* update status in global variable */
652         data->bcurrent_msg_processing = false;
653
654         dev_dbg(&data->master->dev,
655                 "%s:data->bcurrent_msg_processing = false\n", __func__);
656
657         data->current_msg = NULL;
658         data->cur_trans = NULL;
659
660         /* check if we have items in list and not suspending
661          * return 1 if list empty */
662         if ((list_empty(&data->queue) == 0) &&
663             (!data->board_dat->suspend_sts) &&
664             (data->status != STATUS_EXITING)) {
665                 /* We have some more work to do (either there is more tranint
666                  * bpw;sfer requests in the current message or there are
667                  *more messages)
668                  */
669                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
670                 schedule_work(&data->work);
671         } else if (data->board_dat->suspend_sts ||
672                    data->status == STATUS_EXITING) {
673                 dev_dbg(&data->master->dev,
674                         "%s suspend/remove initiated, flushing queue\n",
675                         __func__);
676                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
677                         pmsg->status = -EIO;
678
679                         if (pmsg->complete)
680                                 pmsg->complete(pmsg->context);
681
682                         /* delete from queue */
683                         list_del_init(&pmsg->queue);
684                 }
685         }
686 }
687
688 static void pch_spi_set_ir(struct pch_spi_data *data)
689 {
690         /* enable interrupts, set threshold, enable SPI */
691         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
692                 /* set receive threshold to PCH_RX_THOLD */
693                 pch_spi_setclr_reg(data->master, PCH_SPCR,
694                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
695                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
696                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
697                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
698         else
699                 /* set receive threshold to maximum */
700                 pch_spi_setclr_reg(data->master, PCH_SPCR,
701                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
702                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
703                                    SPCR_SPE_BIT,
704                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
705
706         /* Wait until the transfer completes; go to sleep after
707                                  initiating the transfer. */
708         dev_dbg(&data->master->dev,
709                 "%s:waiting for transfer to get over\n", __func__);
710
711         wait_event_interruptible(data->wait, data->transfer_complete);
712
713         /* clear all interrupts */
714         pch_spi_writereg(data->master, PCH_SPSR,
715                          pch_spi_readreg(data->master, PCH_SPSR));
716         /* Disable interrupts and SPI transfer */
717         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
718         /* clear FIFO */
719         pch_spi_clear_fifo(data->master);
720 }
721
722 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
723 {
724         int j;
725         u8 *rx_buf;
726         u16 *rx_sbuf;
727
728         /* copy Rx Data */
729         if (!data->cur_trans->rx_buf)
730                 return;
731
732         if (bpw == 8) {
733                 rx_buf = data->cur_trans->rx_buf;
734                 for (j = 0; j < data->bpw_len; j++)
735                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
736         } else {
737                 rx_sbuf = data->cur_trans->rx_buf;
738                 for (j = 0; j < data->bpw_len; j++)
739                         *rx_sbuf++ = data->pkt_rx_buff[j];
740         }
741 }
742
743 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
744 {
745         int j;
746         u8 *rx_buf;
747         u16 *rx_sbuf;
748         const u8 *rx_dma_buf;
749         const u16 *rx_dma_sbuf;
750
751         /* copy Rx Data */
752         if (!data->cur_trans->rx_buf)
753                 return;
754
755         if (bpw == 8) {
756                 rx_buf = data->cur_trans->rx_buf;
757                 rx_dma_buf = data->dma.rx_buf_virt;
758                 for (j = 0; j < data->bpw_len; j++)
759                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
760                 data->cur_trans->rx_buf = rx_buf;
761         } else {
762                 rx_sbuf = data->cur_trans->rx_buf;
763                 rx_dma_sbuf = data->dma.rx_buf_virt;
764                 for (j = 0; j < data->bpw_len; j++)
765                         *rx_sbuf++ = *rx_dma_sbuf++;
766                 data->cur_trans->rx_buf = rx_sbuf;
767         }
768 }
769
770 static int pch_spi_start_transfer(struct pch_spi_data *data)
771 {
772         struct pch_spi_dma_ctrl *dma;
773         unsigned long flags;
774         int rtn;
775
776         dma = &data->dma;
777
778         spin_lock_irqsave(&data->lock, flags);
779
780         /* disable interrupts, SPI set enable */
781         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
782
783         spin_unlock_irqrestore(&data->lock, flags);
784
785         /* Wait until the transfer completes; go to sleep after
786                                  initiating the transfer. */
787         dev_dbg(&data->master->dev,
788                 "%s:waiting for transfer to get over\n", __func__);
789         rtn = wait_event_interruptible_timeout(data->wait,
790                                                data->transfer_complete,
791                                                msecs_to_jiffies(2 * HZ));
792         if (!rtn)
793                 dev_err(&data->master->dev,
794                         "%s wait-event timeout\n", __func__);
795
796         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
797                             DMA_FROM_DEVICE);
798
799         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
800                             DMA_FROM_DEVICE);
801         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
802
803         async_tx_ack(dma->desc_rx);
804         async_tx_ack(dma->desc_tx);
805         kfree(dma->sg_tx_p);
806         kfree(dma->sg_rx_p);
807
808         spin_lock_irqsave(&data->lock, flags);
809
810         /* clear fifo threshold, disable interrupts, disable SPI transfer */
811         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
812                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
813                            SPCR_SPE_BIT);
814         /* clear all interrupts */
815         pch_spi_writereg(data->master, PCH_SPSR,
816                          pch_spi_readreg(data->master, PCH_SPSR));
817         /* clear FIFO */
818         pch_spi_clear_fifo(data->master);
819
820         spin_unlock_irqrestore(&data->lock, flags);
821
822         return rtn;
823 }
824
825 static void pch_dma_rx_complete(void *arg)
826 {
827         struct pch_spi_data *data = arg;
828
829         /* transfer is completed;inform pch_spi_process_messages_dma */
830         data->transfer_complete = true;
831         wake_up_interruptible(&data->wait);
832 }
833
834 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
835 {
836         struct pch_dma_slave *param = slave;
837
838         if ((chan->chan_id == param->chan_id) &&
839             (param->dma_dev == chan->device->dev)) {
840                 chan->private = param;
841                 return true;
842         } else {
843                 return false;
844         }
845 }
846
847 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
848 {
849         dma_cap_mask_t mask;
850         struct dma_chan *chan;
851         struct pci_dev *dma_dev;
852         struct pch_dma_slave *param;
853         struct pch_spi_dma_ctrl *dma;
854         unsigned int width;
855
856         if (bpw == 8)
857                 width = PCH_DMA_WIDTH_1_BYTE;
858         else
859                 width = PCH_DMA_WIDTH_2_BYTES;
860
861         dma = &data->dma;
862         dma_cap_zero(mask);
863         dma_cap_set(DMA_SLAVE, mask);
864
865         /* Get DMA's dev information */
866         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
867                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
868
869         /* Set Tx DMA */
870         param = &dma->param_tx;
871         param->dma_dev = &dma_dev->dev;
872         param->chan_id = data->ch * 2; /* Tx = 0, 2 */
873         param->tx_reg = data->io_base_addr + PCH_SPDWR;
874         param->width = width;
875         chan = dma_request_channel(mask, pch_spi_filter, param);
876         if (!chan) {
877                 dev_err(&data->master->dev,
878                         "ERROR: dma_request_channel FAILS(Tx)\n");
879                 data->use_dma = 0;
880                 return;
881         }
882         dma->chan_tx = chan;
883
884         /* Set Rx DMA */
885         param = &dma->param_rx;
886         param->dma_dev = &dma_dev->dev;
887         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
888         param->rx_reg = data->io_base_addr + PCH_SPDRR;
889         param->width = width;
890         chan = dma_request_channel(mask, pch_spi_filter, param);
891         if (!chan) {
892                 dev_err(&data->master->dev,
893                         "ERROR: dma_request_channel FAILS(Rx)\n");
894                 dma_release_channel(dma->chan_tx);
895                 dma->chan_tx = NULL;
896                 data->use_dma = 0;
897                 return;
898         }
899         dma->chan_rx = chan;
900 }
901
902 static void pch_spi_release_dma(struct pch_spi_data *data)
903 {
904         struct pch_spi_dma_ctrl *dma;
905
906         dma = &data->dma;
907         if (dma->chan_tx) {
908                 dma_release_channel(dma->chan_tx);
909                 dma->chan_tx = NULL;
910         }
911         if (dma->chan_rx) {
912                 dma_release_channel(dma->chan_rx);
913                 dma->chan_rx = NULL;
914         }
915 }
916
917 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
918 {
919         const u8 *tx_buf;
920         const u16 *tx_sbuf;
921         u8 *tx_dma_buf;
922         u16 *tx_dma_sbuf;
923         struct scatterlist *sg;
924         struct dma_async_tx_descriptor *desc_tx;
925         struct dma_async_tx_descriptor *desc_rx;
926         int num;
927         int i;
928         int size;
929         int rem;
930         int head;
931         unsigned long flags;
932         struct pch_spi_dma_ctrl *dma;
933
934         dma = &data->dma;
935
936         /* set baud rate if needed */
937         if (data->cur_trans->speed_hz) {
938                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
939                 spin_lock_irqsave(&data->lock, flags);
940                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
941                 spin_unlock_irqrestore(&data->lock, flags);
942         }
943
944         /* set bits per word if needed */
945         if (data->cur_trans->bits_per_word &&
946             (data->current_msg->spi->bits_per_word !=
947              data->cur_trans->bits_per_word)) {
948                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
949                 spin_lock_irqsave(&data->lock, flags);
950                 pch_spi_set_bits_per_word(data->master,
951                                           data->cur_trans->bits_per_word);
952                 spin_unlock_irqrestore(&data->lock, flags);
953                 *bpw = data->cur_trans->bits_per_word;
954         } else {
955                 *bpw = data->current_msg->spi->bits_per_word;
956         }
957         data->bpw_len = data->cur_trans->len / (*bpw / 8);
958
959         if (data->bpw_len > PCH_BUF_SIZE) {
960                 data->bpw_len = PCH_BUF_SIZE;
961                 data->cur_trans->len -= PCH_BUF_SIZE;
962         }
963
964         /* copy Tx Data */
965         if (data->cur_trans->tx_buf != NULL) {
966                 if (*bpw == 8) {
967                         tx_buf = data->cur_trans->tx_buf;
968                         tx_dma_buf = dma->tx_buf_virt;
969                         for (i = 0; i < data->bpw_len; i++)
970                                 *tx_dma_buf++ = *tx_buf++;
971                 } else {
972                         tx_sbuf = data->cur_trans->tx_buf;
973                         tx_dma_sbuf = dma->tx_buf_virt;
974                         for (i = 0; i < data->bpw_len; i++)
975                                 *tx_dma_sbuf++ = *tx_sbuf++;
976                 }
977         }
978
979         /* Calculate Rx parameter for DMA transmitting */
980         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
981                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
982                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
983                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
984                 } else {
985                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
986                         rem = PCH_DMA_TRANS_SIZE;
987                 }
988                 size = PCH_DMA_TRANS_SIZE;
989         } else {
990                 num = 1;
991                 size = data->bpw_len;
992                 rem = data->bpw_len;
993         }
994         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
995                 __func__, num, size, rem);
996         spin_lock_irqsave(&data->lock, flags);
997
998         /* set receive fifo threshold and transmit fifo threshold */
999         pch_spi_setclr_reg(data->master, PCH_SPCR,
1000                            ((size - 1) << SPCR_RFIC_FIELD) |
1001                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1002                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1003
1004         spin_unlock_irqrestore(&data->lock, flags);
1005
1006         /* RX */
1007         dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1008         if (!dma->sg_rx_p)
1009                 return;
1010
1011         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1012         /* offset, length setting */
1013         sg = dma->sg_rx_p;
1014         for (i = 0; i < num; i++, sg++) {
1015                 if (i == (num - 2)) {
1016                         sg->offset = size * i;
1017                         sg->offset = sg->offset * (*bpw / 8);
1018                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1019                                     sg->offset);
1020                         sg_dma_len(sg) = rem;
1021                 } else if (i == (num - 1)) {
1022                         sg->offset = size * (i - 1) + rem;
1023                         sg->offset = sg->offset * (*bpw / 8);
1024                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025                                     sg->offset);
1026                         sg_dma_len(sg) = size;
1027                 } else {
1028                         sg->offset = size * i;
1029                         sg->offset = sg->offset * (*bpw / 8);
1030                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1031                                     sg->offset);
1032                         sg_dma_len(sg) = size;
1033                 }
1034                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1035         }
1036         sg = dma->sg_rx_p;
1037         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1038                                         num, DMA_DEV_TO_MEM,
1039                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040         if (!desc_rx) {
1041                 dev_err(&data->master->dev,
1042                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1043                 return;
1044         }
1045         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1046         desc_rx->callback = pch_dma_rx_complete;
1047         desc_rx->callback_param = data;
1048         dma->nent = num;
1049         dma->desc_rx = desc_rx;
1050
1051         /* Calculate Tx parameter for DMA transmitting */
1052         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1053                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1054                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1055                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1056                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1057                 } else {
1058                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1059                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1060                               PCH_DMA_TRANS_SIZE - head;
1061                 }
1062                 size = PCH_DMA_TRANS_SIZE;
1063         } else {
1064                 num = 1;
1065                 size = data->bpw_len;
1066                 rem = data->bpw_len;
1067                 head = 0;
1068         }
1069
1070         dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1071         if (!dma->sg_tx_p)
1072                 return;
1073
1074         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1075         /* offset, length setting */
1076         sg = dma->sg_tx_p;
1077         for (i = 0; i < num; i++, sg++) {
1078                 if (i == 0) {
1079                         sg->offset = 0;
1080                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1081                                     sg->offset);
1082                         sg_dma_len(sg) = size + head;
1083                 } else if (i == (num - 1)) {
1084                         sg->offset = head + size * i;
1085                         sg->offset = sg->offset * (*bpw / 8);
1086                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1087                                     sg->offset);
1088                         sg_dma_len(sg) = rem;
1089                 } else {
1090                         sg->offset = head + size * i;
1091                         sg->offset = sg->offset * (*bpw / 8);
1092                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1093                                     sg->offset);
1094                         sg_dma_len(sg) = size;
1095                 }
1096                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1097         }
1098         sg = dma->sg_tx_p;
1099         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1100                                         sg, num, DMA_MEM_TO_DEV,
1101                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1102         if (!desc_tx) {
1103                 dev_err(&data->master->dev,
1104                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1105                 return;
1106         }
1107         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1108         desc_tx->callback = NULL;
1109         desc_tx->callback_param = data;
1110         dma->nent = num;
1111         dma->desc_tx = desc_tx;
1112
1113         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1114
1115         spin_lock_irqsave(&data->lock, flags);
1116         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1117         desc_rx->tx_submit(desc_rx);
1118         desc_tx->tx_submit(desc_tx);
1119         spin_unlock_irqrestore(&data->lock, flags);
1120
1121         /* reset transfer complete flag */
1122         data->transfer_complete = false;
1123 }
1124
1125 static void pch_spi_process_messages(struct work_struct *pwork)
1126 {
1127         struct spi_message *pmsg, *tmp;
1128         struct pch_spi_data *data;
1129         int bpw;
1130
1131         data = container_of(pwork, struct pch_spi_data, work);
1132         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1133
1134         spin_lock(&data->lock);
1135         /* check if suspend has been initiated;if yes flush queue */
1136         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1137                 dev_dbg(&data->master->dev,
1138                         "%s suspend/remove initiated, flushing queue\n", __func__);
1139                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1140                         pmsg->status = -EIO;
1141
1142                         if (pmsg->complete) {
1143                                 spin_unlock(&data->lock);
1144                                 pmsg->complete(pmsg->context);
1145                                 spin_lock(&data->lock);
1146                         }
1147
1148                         /* delete from queue */
1149                         list_del_init(&pmsg->queue);
1150                 }
1151
1152                 spin_unlock(&data->lock);
1153                 return;
1154         }
1155
1156         data->bcurrent_msg_processing = true;
1157         dev_dbg(&data->master->dev,
1158                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1159
1160         /* Get the message from the queue and delete it from there. */
1161         data->current_msg = list_entry(data->queue.next, struct spi_message,
1162                                         queue);
1163
1164         list_del_init(&data->current_msg->queue);
1165
1166         data->current_msg->status = 0;
1167
1168         pch_spi_select_chip(data, data->current_msg->spi);
1169
1170         spin_unlock(&data->lock);
1171
1172         if (data->use_dma)
1173                 pch_spi_request_dma(data,
1174                                     data->current_msg->spi->bits_per_word);
1175         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1176         do {
1177                 int cnt;
1178                 /* If we are already processing a message get the next
1179                 transfer structure from the message otherwise retrieve
1180                 the 1st transfer request from the message. */
1181                 spin_lock(&data->lock);
1182                 if (data->cur_trans == NULL) {
1183                         data->cur_trans =
1184                                 list_entry(data->current_msg->transfers.next,
1185                                            struct spi_transfer, transfer_list);
1186                         dev_dbg(&data->master->dev,
1187                                 "%s :Getting 1st transfer message\n",
1188                                 __func__);
1189                 } else {
1190                         data->cur_trans =
1191                                 list_entry(data->cur_trans->transfer_list.next,
1192                                            struct spi_transfer, transfer_list);
1193                         dev_dbg(&data->master->dev,
1194                                 "%s :Getting next transfer message\n",
1195                                 __func__);
1196                 }
1197                 spin_unlock(&data->lock);
1198
1199                 if (!data->cur_trans->len)
1200                         goto out;
1201                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1202                 data->save_total_len = data->cur_trans->len;
1203                 if (data->use_dma) {
1204                         int i;
1205                         char *save_rx_buf = data->cur_trans->rx_buf;
1206                         for (i = 0; i < cnt; i ++) {
1207                                 pch_spi_handle_dma(data, &bpw);
1208                                 if (!pch_spi_start_transfer(data)) {
1209                                         data->transfer_complete = true;
1210                                         data->current_msg->status = -EIO;
1211                                         data->current_msg->complete
1212                                                    (data->current_msg->context);
1213                                         data->bcurrent_msg_processing = false;
1214                                         data->current_msg = NULL;
1215                                         data->cur_trans = NULL;
1216                                         goto out;
1217                                 }
1218                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1219                         }
1220                         data->cur_trans->rx_buf = save_rx_buf;
1221                 } else {
1222                         pch_spi_set_tx(data, &bpw);
1223                         pch_spi_set_ir(data);
1224                         pch_spi_copy_rx_data(data, bpw);
1225                         kfree(data->pkt_rx_buff);
1226                         data->pkt_rx_buff = NULL;
1227                         kfree(data->pkt_tx_buff);
1228                         data->pkt_tx_buff = NULL;
1229                 }
1230                 /* increment message count */
1231                 data->cur_trans->len = data->save_total_len;
1232                 data->current_msg->actual_length += data->cur_trans->len;
1233
1234                 dev_dbg(&data->master->dev,
1235                         "%s:data->current_msg->actual_length=%d\n",
1236                         __func__, data->current_msg->actual_length);
1237
1238                 spi_transfer_delay_exec(data->cur_trans);
1239
1240                 spin_lock(&data->lock);
1241
1242                 /* No more transfer in this message. */
1243                 if ((data->cur_trans->transfer_list.next) ==
1244                     &(data->current_msg->transfers)) {
1245                         pch_spi_nomore_transfer(data);
1246                 }
1247
1248                 spin_unlock(&data->lock);
1249
1250         } while (data->cur_trans != NULL);
1251
1252 out:
1253         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1254         if (data->use_dma)
1255                 pch_spi_release_dma(data);
1256 }
1257
1258 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1259                                    struct pch_spi_data *data)
1260 {
1261         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1262
1263         flush_work(&data->work);
1264 }
1265
1266 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1267                                  struct pch_spi_data *data)
1268 {
1269         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1270
1271         /* reset PCH SPI h/w */
1272         pch_spi_reset(data->master);
1273         dev_dbg(&board_dat->pdev->dev,
1274                 "%s pch_spi_reset invoked successfully\n", __func__);
1275
1276         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1277
1278         return 0;
1279 }
1280
1281 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1282                              struct pch_spi_data *data)
1283 {
1284         struct pch_spi_dma_ctrl *dma;
1285
1286         dma = &data->dma;
1287         if (dma->tx_buf_dma)
1288                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1289                                   dma->tx_buf_virt, dma->tx_buf_dma);
1290         if (dma->rx_buf_dma)
1291                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1292                                   dma->rx_buf_virt, dma->rx_buf_dma);
1293 }
1294
1295 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1296                               struct pch_spi_data *data)
1297 {
1298         struct pch_spi_dma_ctrl *dma;
1299         int ret;
1300
1301         dma = &data->dma;
1302         ret = 0;
1303         /* Get Consistent memory for Tx DMA */
1304         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1305                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1306         if (!dma->tx_buf_virt)
1307                 ret = -ENOMEM;
1308
1309         /* Get Consistent memory for Rx DMA */
1310         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1311                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1312         if (!dma->rx_buf_virt)
1313                 ret = -ENOMEM;
1314
1315         return ret;
1316 }
1317
1318 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1319 {
1320         int ret;
1321         struct spi_master *master;
1322         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1323         struct pch_spi_data *data;
1324
1325         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1326
1327         master = spi_alloc_master(&board_dat->pdev->dev,
1328                                   sizeof(struct pch_spi_data));
1329         if (!master) {
1330                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1331                         plat_dev->id);
1332                 return -ENOMEM;
1333         }
1334
1335         data = spi_master_get_devdata(master);
1336         data->master = master;
1337
1338         platform_set_drvdata(plat_dev, data);
1339
1340         /* baseaddress + address offset) */
1341         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1342                                          PCH_ADDRESS_SIZE * plat_dev->id;
1343         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1344         if (!data->io_remap_addr) {
1345                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1346                 ret = -ENOMEM;
1347                 goto err_pci_iomap;
1348         }
1349         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1350
1351         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1352                 plat_dev->id, data->io_remap_addr);
1353
1354         /* initialize members of SPI master */
1355         master->num_chipselect = PCH_MAX_CS;
1356         master->transfer = pch_spi_transfer;
1357         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1358         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1359         master->max_speed_hz = PCH_MAX_BAUDRATE;
1360
1361         data->board_dat = board_dat;
1362         data->plat_dev = plat_dev;
1363         data->n_curnt_chip = 255;
1364         data->status = STATUS_RUNNING;
1365         data->ch = plat_dev->id;
1366         data->use_dma = use_dma;
1367
1368         INIT_LIST_HEAD(&data->queue);
1369         spin_lock_init(&data->lock);
1370         INIT_WORK(&data->work, pch_spi_process_messages);
1371         init_waitqueue_head(&data->wait);
1372
1373         ret = pch_spi_get_resources(board_dat, data);
1374         if (ret) {
1375                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1376                 goto err_spi_get_resources;
1377         }
1378
1379         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1380                           IRQF_SHARED, KBUILD_MODNAME, data);
1381         if (ret) {
1382                 dev_err(&plat_dev->dev,
1383                         "%s request_irq failed\n", __func__);
1384                 goto err_request_irq;
1385         }
1386         data->irq_reg_sts = true;
1387
1388         pch_spi_set_master_mode(master);
1389
1390         if (use_dma) {
1391                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1392                 ret = pch_alloc_dma_buf(board_dat, data);
1393                 if (ret)
1394                         goto err_spi_register_master;
1395         }
1396
1397         ret = spi_register_master(master);
1398         if (ret != 0) {
1399                 dev_err(&plat_dev->dev,
1400                         "%s spi_register_master FAILED\n", __func__);
1401                 goto err_spi_register_master;
1402         }
1403
1404         return 0;
1405
1406 err_spi_register_master:
1407         pch_free_dma_buf(board_dat, data);
1408         free_irq(board_dat->pdev->irq, data);
1409 err_request_irq:
1410         pch_spi_free_resources(board_dat, data);
1411 err_spi_get_resources:
1412         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1413 err_pci_iomap:
1414         spi_master_put(master);
1415
1416         return ret;
1417 }
1418
1419 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1420 {
1421         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1422         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1423         int count;
1424         unsigned long flags;
1425
1426         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1427                 __func__, plat_dev->id, board_dat->pdev->irq);
1428
1429         if (use_dma)
1430                 pch_free_dma_buf(board_dat, data);
1431
1432         /* check for any pending messages; no action is taken if the queue
1433          * is still full; but at least we tried.  Unload anyway */
1434         count = 500;
1435         spin_lock_irqsave(&data->lock, flags);
1436         data->status = STATUS_EXITING;
1437         while ((list_empty(&data->queue) == 0) && --count) {
1438                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1439                         __func__);
1440                 spin_unlock_irqrestore(&data->lock, flags);
1441                 msleep(PCH_SLEEP_TIME);
1442                 spin_lock_irqsave(&data->lock, flags);
1443         }
1444         spin_unlock_irqrestore(&data->lock, flags);
1445
1446         pch_spi_free_resources(board_dat, data);
1447         /* disable interrupts & free IRQ */
1448         if (data->irq_reg_sts) {
1449                 /* disable interrupts */
1450                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1451                 data->irq_reg_sts = false;
1452                 free_irq(board_dat->pdev->irq, data);
1453         }
1454
1455         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1456         spi_unregister_master(data->master);
1457
1458         return 0;
1459 }
1460 #ifdef CONFIG_PM
1461 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1462                               pm_message_t state)
1463 {
1464         u8 count;
1465         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1466         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1467
1468         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1469
1470         if (!board_dat) {
1471                 dev_err(&pd_dev->dev,
1472                         "%s pci_get_drvdata returned NULL\n", __func__);
1473                 return -EFAULT;
1474         }
1475
1476         /* check if the current message is processed:
1477            Only after thats done the transfer will be suspended */
1478         count = 255;
1479         while ((--count) > 0) {
1480                 if (!(data->bcurrent_msg_processing))
1481                         break;
1482                 msleep(PCH_SLEEP_TIME);
1483         }
1484
1485         /* Free IRQ */
1486         if (data->irq_reg_sts) {
1487                 /* disable all interrupts */
1488                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1489                 pch_spi_reset(data->master);
1490                 free_irq(board_dat->pdev->irq, data);
1491
1492                 data->irq_reg_sts = false;
1493                 dev_dbg(&pd_dev->dev,
1494                         "%s free_irq invoked successfully.\n", __func__);
1495         }
1496
1497         return 0;
1498 }
1499
1500 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1501 {
1502         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1503         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1504         int retval;
1505
1506         if (!board_dat) {
1507                 dev_err(&pd_dev->dev,
1508                         "%s pci_get_drvdata returned NULL\n", __func__);
1509                 return -EFAULT;
1510         }
1511
1512         if (!data->irq_reg_sts) {
1513                 /* register IRQ */
1514                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1515                                      IRQF_SHARED, KBUILD_MODNAME, data);
1516                 if (retval < 0) {
1517                         dev_err(&pd_dev->dev,
1518                                 "%s request_irq failed\n", __func__);
1519                         return retval;
1520                 }
1521
1522                 /* reset PCH SPI h/w */
1523                 pch_spi_reset(data->master);
1524                 pch_spi_set_master_mode(data->master);
1525                 data->irq_reg_sts = true;
1526         }
1527         return 0;
1528 }
1529 #else
1530 #define pch_spi_pd_suspend NULL
1531 #define pch_spi_pd_resume NULL
1532 #endif
1533
1534 static struct platform_driver pch_spi_pd_driver = {
1535         .driver = {
1536                 .name = "pch-spi",
1537         },
1538         .probe = pch_spi_pd_probe,
1539         .remove = pch_spi_pd_remove,
1540         .suspend = pch_spi_pd_suspend,
1541         .resume = pch_spi_pd_resume
1542 };
1543
1544 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1545 {
1546         struct pch_spi_board_data *board_dat;
1547         struct platform_device *pd_dev = NULL;
1548         int retval;
1549         int i;
1550         struct pch_pd_dev_save *pd_dev_save;
1551
1552         pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1553         if (!pd_dev_save)
1554                 return -ENOMEM;
1555
1556         board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1557         if (!board_dat) {
1558                 retval = -ENOMEM;
1559                 goto err_no_mem;
1560         }
1561
1562         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1563         if (retval) {
1564                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1565                 goto pci_request_regions;
1566         }
1567
1568         board_dat->pdev = pdev;
1569         board_dat->num = id->driver_data;
1570         pd_dev_save->num = id->driver_data;
1571         pd_dev_save->board_dat = board_dat;
1572
1573         retval = pci_enable_device(pdev);
1574         if (retval) {
1575                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1576                 goto pci_enable_device;
1577         }
1578
1579         for (i = 0; i < board_dat->num; i++) {
1580                 pd_dev = platform_device_alloc("pch-spi", i);
1581                 if (!pd_dev) {
1582                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1583                         retval = -ENOMEM;
1584                         goto err_platform_device;
1585                 }
1586                 pd_dev_save->pd_save[i] = pd_dev;
1587                 pd_dev->dev.parent = &pdev->dev;
1588
1589                 retval = platform_device_add_data(pd_dev, board_dat,
1590                                                   sizeof(*board_dat));
1591                 if (retval) {
1592                         dev_err(&pdev->dev,
1593                                 "platform_device_add_data failed\n");
1594                         platform_device_put(pd_dev);
1595                         goto err_platform_device;
1596                 }
1597
1598                 retval = platform_device_add(pd_dev);
1599                 if (retval) {
1600                         dev_err(&pdev->dev, "platform_device_add failed\n");
1601                         platform_device_put(pd_dev);
1602                         goto err_platform_device;
1603                 }
1604         }
1605
1606         pci_set_drvdata(pdev, pd_dev_save);
1607
1608         return 0;
1609
1610 err_platform_device:
1611         while (--i >= 0)
1612                 platform_device_unregister(pd_dev_save->pd_save[i]);
1613         pci_disable_device(pdev);
1614 pci_enable_device:
1615         pci_release_regions(pdev);
1616 pci_request_regions:
1617         kfree(board_dat);
1618 err_no_mem:
1619         kfree(pd_dev_save);
1620
1621         return retval;
1622 }
1623
1624 static void pch_spi_remove(struct pci_dev *pdev)
1625 {
1626         int i;
1627         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1628
1629         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1630
1631         for (i = 0; i < pd_dev_save->num; i++)
1632                 platform_device_unregister(pd_dev_save->pd_save[i]);
1633
1634         pci_disable_device(pdev);
1635         pci_release_regions(pdev);
1636         kfree(pd_dev_save->board_dat);
1637         kfree(pd_dev_save);
1638 }
1639
1640 static int __maybe_unused pch_spi_suspend(struct device *dev)
1641 {
1642         struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1643
1644         dev_dbg(dev, "%s ENTRY\n", __func__);
1645
1646         pd_dev_save->board_dat->suspend_sts = true;
1647
1648         return 0;
1649 }
1650
1651 static int __maybe_unused pch_spi_resume(struct device *dev)
1652 {
1653         struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1654
1655         dev_dbg(dev, "%s ENTRY\n", __func__);
1656
1657         /* set suspend status to false */
1658         pd_dev_save->board_dat->suspend_sts = false;
1659
1660         return 0;
1661 }
1662
1663 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1664
1665 static struct pci_driver pch_spi_pcidev_driver = {
1666         .name = "pch_spi",
1667         .id_table = pch_spi_pcidev_id,
1668         .probe = pch_spi_probe,
1669         .remove = pch_spi_remove,
1670         .driver.pm = &pch_spi_pm_ops,
1671 };
1672
1673 static int __init pch_spi_init(void)
1674 {
1675         int ret;
1676         ret = platform_driver_register(&pch_spi_pd_driver);
1677         if (ret)
1678                 return ret;
1679
1680         ret = pci_register_driver(&pch_spi_pcidev_driver);
1681         if (ret) {
1682                 platform_driver_unregister(&pch_spi_pd_driver);
1683                 return ret;
1684         }
1685
1686         return 0;
1687 }
1688 module_init(pch_spi_init);
1689
1690 static void __exit pch_spi_exit(void)
1691 {
1692         pci_unregister_driver(&pch_spi_pcidev_driver);
1693         platform_driver_unregister(&pch_spi_pd_driver);
1694 }
1695 module_exit(pch_spi_exit);
1696
1697 module_param(use_dma, int, 0644);
1698 MODULE_PARM_DESC(use_dma,
1699                  "to use DMA for data transfers pass 1 else 0; default 1");
1700
1701 MODULE_LICENSE("GPL");
1702 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1703 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1704