GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1                 0x00
25 #define STM32F4_SPI_CR2                 0x04
26 #define STM32F4_SPI_SR                  0x08
27 #define STM32F4_SPI_DR                  0x0C
28 #define STM32F4_SPI_I2SCFGR             0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA            BIT(0)
32 #define STM32F4_SPI_CR1_CPOL            BIT(1)
33 #define STM32F4_SPI_CR1_MSTR            BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT        3
35 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE             BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
38 #define STM32F4_SPI_CR1_SSI             BIT(8)
39 #define STM32F4_SPI_CR1_SSM             BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
41 #define STM32F4_SPI_CR1_DFF             BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN          0
47 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
52 #define STM32F4_SPI_CR2_SSOE            BIT(2)
53 #define STM32F4_SPI_CR2_FRF             BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE             BIT(0)
60 #define STM32F4_SPI_SR_TXE              BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
62 #define STM32F4_SPI_SR_UDR              BIT(3)
63 #define STM32F4_SPI_SR_CRCERR           BIT(4)
64 #define STM32F4_SPI_SR_MODF             BIT(5)
65 #define STM32F4_SPI_SR_OVR              BIT(6)
66 #define STM32F4_SPI_SR_BSY              BIT(7)
67 #define STM32F4_SPI_SR_FRE              BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1                 0x00
78 #define STM32H7_SPI_CR2                 0x04
79 #define STM32H7_SPI_CFG1                0x08
80 #define STM32H7_SPI_CFG2                0x0C
81 #define STM32H7_SPI_IER                 0x10
82 #define STM32H7_SPI_SR                  0x14
83 #define STM32H7_SPI_IFCR                0x18
84 #define STM32H7_SPI_TXDR                0x20
85 #define STM32H7_SPI_RXDR                0x30
86 #define STM32H7_SPI_I2SCFGR             0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE             BIT(0)
90 #define STM32H7_SPI_CR1_MASRX           BIT(8)
91 #define STM32H7_SPI_CR1_CSTART          BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
94 #define STM32H7_SPI_CR1_SSI             BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT     0
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
104 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN        0
110 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT     4
114 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT     17
116 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT       19
118 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
123 #define STM32H7_SPI_CFG2_SSM            BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE           BIT(0)
128 #define STM32H7_SPI_IER_TXPIE           BIT(1)
129 #define STM32H7_SPI_IER_DXPIE           BIT(2)
130 #define STM32H7_SPI_IER_EOTIE           BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
132 #define STM32H7_SPI_IER_OVRIE           BIT(6)
133 #define STM32H7_SPI_IER_MODFIE          BIT(9)
134 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP              BIT(0)
138 #define STM32H7_SPI_SR_TXP              BIT(1)
139 #define STM32H7_SPI_SR_EOT              BIT(3)
140 #define STM32H7_SPI_SR_OVR              BIT(6)
141 #define STM32H7_SPI_SR_MODF             BIT(9)
142 #define STM32H7_SPI_SR_SUSP             BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT     13
144 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE            BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX         0
159 #define STM32H7_SPI_SIMPLEX_TX          1
160 #define STM32H7_SPI_SIMPLEX_RX          2
161 #define STM32H7_SPI_HALF_DUPLEX         3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX         0
165 #define SPI_SIMPLEX_TX          1
166 #define SPI_SIMPLEX_RX          2
167 #define SPI_3WIRE_TX            3
168 #define SPI_3WIRE_RX            4
169
170 #define SPI_1HZ_NS              1000000000
171
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES       16
177
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:                register offset
181  * @mask:               bitfield mask
182  * @shift:              left shift
183  */
184 struct stm32_spi_reg {
185         int reg;
186         int mask;
187         int shift;
188 };
189
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203         const struct stm32_spi_reg en;
204         const struct stm32_spi_reg dma_rx_en;
205         const struct stm32_spi_reg dma_tx_en;
206         const struct stm32_spi_reg cpol;
207         const struct stm32_spi_reg cpha;
208         const struct stm32_spi_reg lsb_first;
209         const struct stm32_spi_reg br;
210         const struct stm32_spi_reg rx;
211         const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243         const struct stm32_spi_regspec *regs;
244         int (*get_fifo_size)(struct stm32_spi *spi);
245         int (*get_bpw_mask)(struct stm32_spi *spi);
246         void (*disable)(struct stm32_spi *spi);
247         int (*config)(struct stm32_spi *spi);
248         void (*set_bpw)(struct stm32_spi *spi);
249         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252         void (*transfer_one_dma_start)(struct stm32_spi *spi);
253         void (*dma_rx_cb)(void *data);
254         void (*dma_tx_cb)(void *data);
255         int (*transfer_one_irq)(struct stm32_spi *spi);
256         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258         unsigned int baud_rate_div_min;
259         unsigned int baud_rate_div_max;
260         bool has_fifo;
261 };
262
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291         struct device *dev;
292         struct spi_master *master;
293         const struct stm32_spi_cfg *cfg;
294         void __iomem *base;
295         struct clk *clk;
296         u32 clk_rate;
297         struct reset_control *rst;
298         spinlock_t lock; /* prevent I/O concurrent access */
299         int irq;
300         unsigned int fifo_size;
301
302         unsigned int cur_midi;
303         unsigned int cur_speed;
304         unsigned int cur_bpw;
305         unsigned int cur_fthlv;
306         unsigned int cur_comm;
307         unsigned int cur_xferlen;
308         bool cur_usedma;
309
310         const void *tx_buf;
311         void *rx_buf;
312         int tx_len;
313         int rx_len;
314         struct dma_chan *dma_tx;
315         struct dma_chan *dma_rx;
316         dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330         .rx = { STM32F4_SPI_DR },
331         .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335         /* SPI data transfer is enabled but spi_ker_ck is idle.
336          * CFG1 and CFG2 registers are write protected when SPE is enabled.
337          */
338         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347                 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349         .rx = { STM32H7_SPI_RXDR },
350         .tx = { STM32H7_SPI_TXDR },
351 };
352
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354                                       u32 offset, u32 bits)
355 {
356         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357                        spi->base + offset);
358 }
359
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361                                       u32 offset, u32 bits)
362 {
363         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364                        spi->base + offset);
365 }
366
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373         unsigned long flags;
374         u32 count = 0;
375
376         spin_lock_irqsave(&spi->lock, flags);
377
378         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385         spin_unlock_irqrestore(&spi->lock, flags);
386
387         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389         return count;
390 }
391
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408         unsigned long flags;
409         u32 cfg1, max_bpw;
410
411         spin_lock_irqsave(&spi->lock, flags);
412
413         /*
414          * The most significant bit at DSIZE bit field is reserved when the
415          * maximum data size of periperal instances is limited to 16-bit
416          */
417         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420         max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421                   STM32H7_SPI_CFG1_DSIZE_SHIFT;
422         max_bpw += 1;
423
424         spin_unlock_irqrestore(&spi->lock, flags);
425
426         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428         return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441                                  u32 min_div, u32 max_div)
442 {
443         u32 div, mbrdiv;
444
445         /* Ensure spi->clk_rate is even */
446         div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447
448         /*
449          * SPI framework set xfer->speed_hz to master->max_speed_hz if
450          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452          * no need to check it there.
453          * However, we need to ensure the following calculations.
454          */
455         if ((div < min_div) || (div > max_div))
456                 return -EINVAL;
457
458         /* Determine the first power of 2 greater than or equal to div */
459         if (div & (div - 1))
460                 mbrdiv = fls(div);
461         else
462                 mbrdiv = fls(div) - 1;
463
464         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466         return mbrdiv - 1;
467 }
468
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476         u32 fthlv, half_fifo, packet;
477
478         /* data packet should not exceed 1/2 of fifo space */
479         half_fifo = (spi->fifo_size / 2);
480
481         /* data_packet should not exceed transfer length */
482         if (half_fifo > xfer_len)
483                 packet = xfer_len;
484         else
485                 packet = half_fifo;
486
487         if (spi->cur_bpw <= 8)
488                 fthlv = packet;
489         else if (spi->cur_bpw <= 16)
490                 fthlv = packet / 2;
491         else
492                 fthlv = packet / 4;
493
494         /* align packet size with data registers access */
495         if (spi->cur_bpw > 8)
496                 fthlv += (fthlv % 2) ? 1 : 0;
497         else
498                 fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
499
500         if (!fthlv)
501                 fthlv = 1;
502
503         return fthlv;
504 }
505
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516                                   STM32F4_SPI_SR_TXE)) {
517                 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519                 if (spi->cur_bpw == 16) {
520                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523                         spi->tx_len -= sizeof(u16);
524                 } else {
525                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528                         spi->tx_len -= sizeof(u8);
529                 }
530         }
531
532         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544         while ((spi->tx_len > 0) &&
545                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546                         STM32H7_SPI_SR_TXP)) {
547                 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549                 if (spi->tx_len >= sizeof(u32)) {
550                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553                         spi->tx_len -= sizeof(u32);
554                 } else if (spi->tx_len >= sizeof(u16)) {
555                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558                         spi->tx_len -= sizeof(u16);
559                 } else {
560                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563                         spi->tx_len -= sizeof(u8);
564                 }
565         }
566
567         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580                                   STM32F4_SPI_SR_RXNE)) {
581                 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583                 if (spi->cur_bpw == 16) {
584                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587                         spi->rx_len -= sizeof(u16);
588                 } else {
589                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592                         spi->rx_len -= sizeof(u8);
593                 }
594         }
595
596         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610         u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611                      STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613         while ((spi->rx_len > 0) &&
614                ((sr & STM32H7_SPI_SR_RXP) ||
615                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616                 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618                 if ((spi->rx_len >= sizeof(u32)) ||
619                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623                         spi->rx_len -= sizeof(u32);
624                 } else if ((spi->rx_len >= sizeof(u16)) ||
625                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629                         spi->rx_len -= sizeof(u16);
630                 } else {
631                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634                         spi->rx_len -= sizeof(u8);
635                 }
636
637                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638                 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639                          STM32H7_SPI_SR_RXPLVL_SHIFT;
640         }
641
642         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643                 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652         dev_dbg(spi->dev, "enable controller\n");
653
654         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655                            spi->cfg->regs->en.mask);
656 }
657
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664         unsigned long flags;
665         u32 sr;
666
667         dev_dbg(spi->dev, "disable controller\n");
668
669         spin_lock_irqsave(&spi->lock, flags);
670
671         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672               STM32F4_SPI_CR1_SPE)) {
673                 spin_unlock_irqrestore(&spi->lock, flags);
674                 return;
675         }
676
677         /* Disable interrupts */
678         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679                                                  STM32F4_SPI_CR2_RXNEIE |
680                                                  STM32F4_SPI_CR2_ERRIE);
681
682         /* Wait until BSY = 0 */
683         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684                                               sr, !(sr & STM32F4_SPI_SR_BSY),
685                                               10, 100000) < 0) {
686                 dev_warn(spi->dev, "disabling condition timeout\n");
687         }
688
689         if (spi->cur_usedma && spi->dma_tx)
690                 dmaengine_terminate_all(spi->dma_tx);
691         if (spi->cur_usedma && spi->dma_rx)
692                 dmaengine_terminate_all(spi->dma_rx);
693
694         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697                                                  STM32F4_SPI_CR2_RXDMAEN);
698
699         /* Sequence to clear OVR flag */
700         readl_relaxed(spi->base + STM32F4_SPI_DR);
701         readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703         spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720         unsigned long flags;
721         u32 cr1, sr;
722
723         dev_dbg(spi->dev, "disable controller\n");
724
725         spin_lock_irqsave(&spi->lock, flags);
726
727         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730                 spin_unlock_irqrestore(&spi->lock, flags);
731                 return;
732         }
733
734         /* Wait on EOT or suspend the flow */
735         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736                                               sr, !(sr & STM32H7_SPI_SR_EOT),
737                                               10, 100000) < 0) {
738                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740                                        spi->base + STM32H7_SPI_CR1);
741                         if (readl_relaxed_poll_timeout_atomic(
742                                                 spi->base + STM32H7_SPI_SR,
743                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
744                                                 10, 100000) < 0)
745                                 dev_warn(spi->dev,
746                                          "Suspend request timeout\n");
747                 }
748         }
749
750         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751                 stm32h7_spi_read_rxfifo(spi, true);
752
753         if (spi->cur_usedma && spi->dma_tx)
754                 dmaengine_terminate_all(spi->dma_tx);
755         if (spi->cur_usedma && spi->dma_rx)
756                 dmaengine_terminate_all(spi->dma_rx);
757
758         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761                                                 STM32H7_SPI_CFG1_RXDMAEN);
762
763         /* Disable interrupts and clear status flags */
764         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767         spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780                               struct spi_device *spi_dev,
781                               struct spi_transfer *transfer)
782 {
783         unsigned int dma_size;
784         struct stm32_spi *spi = spi_master_get_devdata(master);
785
786         if (spi->cfg->has_fifo)
787                 dma_size = spi->fifo_size;
788         else
789                 dma_size = SPI_DMA_MIN_BYTES;
790
791         dev_dbg(spi->dev, "%s: %s\n", __func__,
792                 (transfer->len > dma_size) ? "true" : "false");
793
794         return (transfer->len > dma_size);
795 }
796
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804         struct spi_master *master = dev_id;
805         struct stm32_spi *spi = spi_master_get_devdata(master);
806         u32 sr, mask = 0;
807         bool end = false;
808
809         spin_lock(&spi->lock);
810
811         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812         /*
813          * BSY flag is not handled in interrupt but it is normal behavior when
814          * this flag is set.
815          */
816         sr &= ~STM32F4_SPI_SR_BSY;
817
818         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819                                  spi->cur_comm == SPI_3WIRE_TX)) {
820                 /* OVR flag shouldn't be handled for TX only mode */
821                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822                 mask |= STM32F4_SPI_SR_TXE;
823         }
824
825         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826                                 spi->cur_comm == SPI_SIMPLEX_RX ||
827                                 spi->cur_comm == SPI_3WIRE_RX)) {
828                 /* TXE flag is set and is handled when RXNE flag occurs */
829                 sr &= ~STM32F4_SPI_SR_TXE;
830                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831         }
832
833         if (!(sr & mask)) {
834                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835                 spin_unlock(&spi->lock);
836                 return IRQ_NONE;
837         }
838
839         if (sr & STM32F4_SPI_SR_OVR) {
840                 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842                 /* Sequence to clear OVR flag */
843                 readl_relaxed(spi->base + STM32F4_SPI_DR);
844                 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846                 /*
847                  * If overrun is detected, it means that something went wrong,
848                  * so stop the current transfer. Transfer can wait for next
849                  * RXNE but DR is already read and end never happens.
850                  */
851                 end = true;
852                 goto end_irq;
853         }
854
855         if (sr & STM32F4_SPI_SR_TXE) {
856                 if (spi->tx_buf)
857                         stm32f4_spi_write_tx(spi);
858                 if (spi->tx_len == 0)
859                         end = true;
860         }
861
862         if (sr & STM32F4_SPI_SR_RXNE) {
863                 stm32f4_spi_read_rx(spi);
864                 if (spi->rx_len == 0)
865                         end = true;
866                 else if (spi->tx_buf)/* Load data for discontinuous mode */
867                         stm32f4_spi_write_tx(spi);
868         }
869
870 end_irq:
871         if (end) {
872                 /* Immediately disable interrupts to do not generate new one */
873                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874                                         STM32F4_SPI_CR2_TXEIE |
875                                         STM32F4_SPI_CR2_RXNEIE |
876                                         STM32F4_SPI_CR2_ERRIE);
877                 spin_unlock(&spi->lock);
878                 return IRQ_WAKE_THREAD;
879         }
880
881         spin_unlock(&spi->lock);
882         return IRQ_HANDLED;
883 }
884
885 /**
886  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887  * @irq: interrupt line
888  * @dev_id: SPI controller master interface
889  */
890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892         struct spi_master *master = dev_id;
893         struct stm32_spi *spi = spi_master_get_devdata(master);
894
895         spi_finalize_current_transfer(master);
896         stm32f4_spi_disable(spi);
897
898         return IRQ_HANDLED;
899 }
900
901 /**
902  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903  * @irq: interrupt line
904  * @dev_id: SPI controller master interface
905  */
906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908         struct spi_master *master = dev_id;
909         struct stm32_spi *spi = spi_master_get_devdata(master);
910         u32 sr, ier, mask;
911         unsigned long flags;
912         bool end = false;
913
914         spin_lock_irqsave(&spi->lock, flags);
915
916         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919         mask = ier;
920         /*
921          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
922          * SUSP to acknowledge it later. TXC is automatically cleared
923          */
924
925         mask |= STM32H7_SPI_SR_SUSP;
926         /*
927          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
928          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
929          */
930         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
931                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
932
933         if (!(sr & mask)) {
934                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
935                          sr, ier);
936                 spin_unlock_irqrestore(&spi->lock, flags);
937                 return IRQ_NONE;
938         }
939
940         if (sr & STM32H7_SPI_SR_SUSP) {
941                 static DEFINE_RATELIMIT_STATE(rs,
942                                               DEFAULT_RATELIMIT_INTERVAL * 10,
943                                               1);
944                 if (__ratelimit(&rs))
945                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
946                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
947                         stm32h7_spi_read_rxfifo(spi, false);
948                 /*
949                  * If communication is suspended while using DMA, it means
950                  * that something went wrong, so stop the current transfer
951                  */
952                 if (spi->cur_usedma)
953                         end = true;
954         }
955
956         if (sr & STM32H7_SPI_SR_MODF) {
957                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
958                 end = true;
959         }
960
961         if (sr & STM32H7_SPI_SR_OVR) {
962                 dev_err(spi->dev, "Overrun: RX data lost\n");
963                 end = true;
964         }
965
966         if (sr & STM32H7_SPI_SR_EOT) {
967                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
968                         stm32h7_spi_read_rxfifo(spi, true);
969                 end = true;
970         }
971
972         if (sr & STM32H7_SPI_SR_TXP)
973                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
974                         stm32h7_spi_write_txfifo(spi);
975
976         if (sr & STM32H7_SPI_SR_RXP)
977                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
978                         stm32h7_spi_read_rxfifo(spi, false);
979
980         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
981
982         spin_unlock_irqrestore(&spi->lock, flags);
983
984         if (end) {
985                 stm32h7_spi_disable(spi);
986                 spi_finalize_current_transfer(master);
987         }
988
989         return IRQ_HANDLED;
990 }
991
992 /**
993  * stm32_spi_prepare_msg - set up the controller to transfer a single message
994  * @master: controller master interface
995  * @msg: pointer to spi message
996  */
997 static int stm32_spi_prepare_msg(struct spi_master *master,
998                                  struct spi_message *msg)
999 {
1000         struct stm32_spi *spi = spi_master_get_devdata(master);
1001         struct spi_device *spi_dev = msg->spi;
1002         struct device_node *np = spi_dev->dev.of_node;
1003         unsigned long flags;
1004         u32 clrb = 0, setb = 0;
1005
1006         /* SPI slave device may need time between data frames */
1007         spi->cur_midi = 0;
1008         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1009                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1010
1011         if (spi_dev->mode & SPI_CPOL)
1012                 setb |= spi->cfg->regs->cpol.mask;
1013         else
1014                 clrb |= spi->cfg->regs->cpol.mask;
1015
1016         if (spi_dev->mode & SPI_CPHA)
1017                 setb |= spi->cfg->regs->cpha.mask;
1018         else
1019                 clrb |= spi->cfg->regs->cpha.mask;
1020
1021         if (spi_dev->mode & SPI_LSB_FIRST)
1022                 setb |= spi->cfg->regs->lsb_first.mask;
1023         else
1024                 clrb |= spi->cfg->regs->lsb_first.mask;
1025
1026         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1027                 spi_dev->mode & SPI_CPOL,
1028                 spi_dev->mode & SPI_CPHA,
1029                 spi_dev->mode & SPI_LSB_FIRST,
1030                 spi_dev->mode & SPI_CS_HIGH);
1031
1032         spin_lock_irqsave(&spi->lock, flags);
1033
1034         /* CPOL, CPHA and LSB FIRST bits have common register */
1035         if (clrb || setb)
1036                 writel_relaxed(
1037                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1038                          ~clrb) | setb,
1039                         spi->base + spi->cfg->regs->cpol.reg);
1040
1041         spin_unlock_irqrestore(&spi->lock, flags);
1042
1043         return 0;
1044 }
1045
1046 /**
1047  * stm32f4_spi_dma_tx_cb - dma callback
1048  * @data: pointer to the spi controller data structure
1049  *
1050  * DMA callback is called when the transfer is complete for DMA TX channel.
1051  */
1052 static void stm32f4_spi_dma_tx_cb(void *data)
1053 {
1054         struct stm32_spi *spi = data;
1055
1056         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1057                 spi_finalize_current_transfer(spi->master);
1058                 stm32f4_spi_disable(spi);
1059         }
1060 }
1061
1062 /**
1063  * stm32f4_spi_dma_rx_cb - dma callback
1064  * @data: pointer to the spi controller data structure
1065  *
1066  * DMA callback is called when the transfer is complete for DMA RX channel.
1067  */
1068 static void stm32f4_spi_dma_rx_cb(void *data)
1069 {
1070         struct stm32_spi *spi = data;
1071
1072         spi_finalize_current_transfer(spi->master);
1073         stm32f4_spi_disable(spi);
1074 }
1075
1076 /**
1077  * stm32h7_spi_dma_cb - dma callback
1078  * @data: pointer to the spi controller data structure
1079  *
1080  * DMA callback is called when the transfer is complete or when an error
1081  * occurs. If the transfer is complete, EOT flag is raised.
1082  */
1083 static void stm32h7_spi_dma_cb(void *data)
1084 {
1085         struct stm32_spi *spi = data;
1086         unsigned long flags;
1087         u32 sr;
1088
1089         spin_lock_irqsave(&spi->lock, flags);
1090
1091         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1092
1093         spin_unlock_irqrestore(&spi->lock, flags);
1094
1095         if (!(sr & STM32H7_SPI_SR_EOT))
1096                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1097
1098         /* Now wait for EOT, or SUSP or OVR in case of error */
1099 }
1100
1101 /**
1102  * stm32_spi_dma_config - configure dma slave channel depending on current
1103  *                        transfer bits_per_word.
1104  * @spi: pointer to the spi controller data structure
1105  * @dma_conf: pointer to the dma_slave_config structure
1106  * @dir: direction of the dma transfer
1107  */
1108 static void stm32_spi_dma_config(struct stm32_spi *spi,
1109                                  struct dma_slave_config *dma_conf,
1110                                  enum dma_transfer_direction dir)
1111 {
1112         enum dma_slave_buswidth buswidth;
1113         u32 maxburst;
1114
1115         if (spi->cur_bpw <= 8)
1116                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117         else if (spi->cur_bpw <= 16)
1118                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1119         else
1120                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1121
1122         if (spi->cfg->has_fifo) {
1123                 /* Valid for DMA Half or Full Fifo threshold */
1124                 if (spi->cur_fthlv == 2)
1125                         maxburst = 1;
1126                 else
1127                         maxburst = spi->cur_fthlv;
1128         } else {
1129                 maxburst = 1;
1130         }
1131
1132         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1133         dma_conf->direction = dir;
1134         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1135                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1136                 dma_conf->src_addr_width = buswidth;
1137                 dma_conf->src_maxburst = maxburst;
1138
1139                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1140                         buswidth, maxburst);
1141         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1142                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1143                 dma_conf->dst_addr_width = buswidth;
1144                 dma_conf->dst_maxburst = maxburst;
1145
1146                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1147                         buswidth, maxburst);
1148         }
1149 }
1150
1151 /**
1152  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1153  *                                interrupts
1154  * @spi: pointer to the spi controller data structure
1155  *
1156  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1157  * in progress.
1158  */
1159 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1160 {
1161         unsigned long flags;
1162         u32 cr2 = 0;
1163
1164         /* Enable the interrupts relative to the current communication mode */
1165         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1166                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1167         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1168                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1169                                 spi->cur_comm == SPI_3WIRE_RX) {
1170                 /* In transmit-only mode, the OVR flag is set in the SR register
1171                  * since the received data are never read. Therefore set OVR
1172                  * interrupt only when rx buffer is available.
1173                  */
1174                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1175         } else {
1176                 return -EINVAL;
1177         }
1178
1179         spin_lock_irqsave(&spi->lock, flags);
1180
1181         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1182
1183         stm32_spi_enable(spi);
1184
1185         /* starting data transfer when buffer is loaded */
1186         if (spi->tx_buf)
1187                 stm32f4_spi_write_tx(spi);
1188
1189         spin_unlock_irqrestore(&spi->lock, flags);
1190
1191         return 1;
1192 }
1193
1194 /**
1195  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1196  *                                interrupts
1197  * @spi: pointer to the spi controller data structure
1198  *
1199  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1200  * in progress.
1201  */
1202 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1203 {
1204         unsigned long flags;
1205         u32 ier = 0;
1206
1207         /* Enable the interrupts relative to the current communication mode */
1208         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1209                 ier |= STM32H7_SPI_IER_DXPIE;
1210         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1211                 ier |= STM32H7_SPI_IER_TXPIE;
1212         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1213                 ier |= STM32H7_SPI_IER_RXPIE;
1214
1215         /* Enable the interrupts relative to the end of transfer */
1216         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1217                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1218
1219         spin_lock_irqsave(&spi->lock, flags);
1220
1221         stm32_spi_enable(spi);
1222
1223         /* Be sure to have data in fifo before starting data transfer */
1224         if (spi->tx_buf)
1225                 stm32h7_spi_write_txfifo(spi);
1226
1227         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1228
1229         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1230
1231         spin_unlock_irqrestore(&spi->lock, flags);
1232
1233         return 1;
1234 }
1235
1236 /**
1237  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1238  *                                      transfer using DMA
1239  * @spi: pointer to the spi controller data structure
1240  */
1241 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1242 {
1243         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1244         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1245             spi->cur_comm == SPI_FULL_DUPLEX) {
1246                 /*
1247                  * In transmit-only mode, the OVR flag is set in the SR register
1248                  * since the received data are never read. Therefore set OVR
1249                  * interrupt only when rx buffer is available.
1250                  */
1251                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1252         }
1253
1254         stm32_spi_enable(spi);
1255 }
1256
1257 /**
1258  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1259  *                                      transfer using DMA
1260  * @spi: pointer to the spi controller data structure
1261  */
1262 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1263 {
1264         /* Enable the interrupts relative to the end of transfer */
1265         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1266                                                  STM32H7_SPI_IER_TXTFIE |
1267                                                  STM32H7_SPI_IER_OVRIE |
1268                                                  STM32H7_SPI_IER_MODFIE);
1269
1270         stm32_spi_enable(spi);
1271
1272         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1273 }
1274
1275 /**
1276  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1277  * @spi: pointer to the spi controller data structure
1278  * @xfer: pointer to the spi_transfer structure
1279  *
1280  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1281  * in progress.
1282  */
1283 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1284                                       struct spi_transfer *xfer)
1285 {
1286         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1287         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1288         unsigned long flags;
1289
1290         spin_lock_irqsave(&spi->lock, flags);
1291
1292         rx_dma_desc = NULL;
1293         if (spi->rx_buf && spi->dma_rx) {
1294                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1295                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1296
1297                 /* Enable Rx DMA request */
1298                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1299                                    spi->cfg->regs->dma_rx_en.mask);
1300
1301                 rx_dma_desc = dmaengine_prep_slave_sg(
1302                                         spi->dma_rx, xfer->rx_sg.sgl,
1303                                         xfer->rx_sg.nents,
1304                                         rx_dma_conf.direction,
1305                                         DMA_PREP_INTERRUPT);
1306         }
1307
1308         tx_dma_desc = NULL;
1309         if (spi->tx_buf && spi->dma_tx) {
1310                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1311                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1312
1313                 tx_dma_desc = dmaengine_prep_slave_sg(
1314                                         spi->dma_tx, xfer->tx_sg.sgl,
1315                                         xfer->tx_sg.nents,
1316                                         tx_dma_conf.direction,
1317                                         DMA_PREP_INTERRUPT);
1318         }
1319
1320         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1321             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1322                 goto dma_desc_error;
1323
1324         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1325                 goto dma_desc_error;
1326
1327         if (rx_dma_desc) {
1328                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1329                 rx_dma_desc->callback_param = spi;
1330
1331                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1332                         dev_err(spi->dev, "Rx DMA submit failed\n");
1333                         goto dma_desc_error;
1334                 }
1335                 /* Enable Rx DMA channel */
1336                 dma_async_issue_pending(spi->dma_rx);
1337         }
1338
1339         if (tx_dma_desc) {
1340                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1341                     spi->cur_comm == SPI_3WIRE_TX) {
1342                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1343                         tx_dma_desc->callback_param = spi;
1344                 }
1345
1346                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1347                         dev_err(spi->dev, "Tx DMA submit failed\n");
1348                         goto dma_submit_error;
1349                 }
1350                 /* Enable Tx DMA channel */
1351                 dma_async_issue_pending(spi->dma_tx);
1352
1353                 /* Enable Tx DMA request */
1354                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1355                                    spi->cfg->regs->dma_tx_en.mask);
1356         }
1357
1358         spi->cfg->transfer_one_dma_start(spi);
1359
1360         spin_unlock_irqrestore(&spi->lock, flags);
1361
1362         return 1;
1363
1364 dma_submit_error:
1365         if (spi->dma_rx)
1366                 dmaengine_terminate_all(spi->dma_rx);
1367
1368 dma_desc_error:
1369         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1370                            spi->cfg->regs->dma_rx_en.mask);
1371
1372         spin_unlock_irqrestore(&spi->lock, flags);
1373
1374         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1375
1376         spi->cur_usedma = false;
1377         return spi->cfg->transfer_one_irq(spi);
1378 }
1379
1380 /**
1381  * stm32f4_spi_set_bpw - Configure bits per word
1382  * @spi: pointer to the spi controller data structure
1383  */
1384 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1385 {
1386         if (spi->cur_bpw == 16)
1387                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1388         else
1389                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1390 }
1391
1392 /**
1393  * stm32h7_spi_set_bpw - configure bits per word
1394  * @spi: pointer to the spi controller data structure
1395  */
1396 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1397 {
1398         u32 bpw, fthlv;
1399         u32 cfg1_clrb = 0, cfg1_setb = 0;
1400
1401         bpw = spi->cur_bpw - 1;
1402
1403         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1404         cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1405                      STM32H7_SPI_CFG1_DSIZE;
1406
1407         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1408         fthlv = spi->cur_fthlv - 1;
1409
1410         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1411         cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1412                      STM32H7_SPI_CFG1_FTHLV;
1413
1414         writel_relaxed(
1415                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1416                  ~cfg1_clrb) | cfg1_setb,
1417                 spi->base + STM32H7_SPI_CFG1);
1418 }
1419
1420 /**
1421  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1422  * @spi: pointer to the spi controller data structure
1423  * @mbrdiv: baud rate divisor value
1424  */
1425 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1426 {
1427         u32 clrb = 0, setb = 0;
1428
1429         clrb |= spi->cfg->regs->br.mask;
1430         setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1431                 spi->cfg->regs->br.mask;
1432
1433         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1434                         ~clrb) | setb,
1435                        spi->base + spi->cfg->regs->br.reg);
1436 }
1437
1438 /**
1439  * stm32_spi_communication_type - return transfer communication type
1440  * @spi_dev: pointer to the spi device
1441  * @transfer: pointer to spi transfer
1442  */
1443 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1444                                                  struct spi_transfer *transfer)
1445 {
1446         unsigned int type = SPI_FULL_DUPLEX;
1447
1448         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1449                 /*
1450                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1451                  * is forbidden and unvalidated by SPI subsystem so depending
1452                  * on the valid buffer, we can determine the direction of the
1453                  * transfer.
1454                  */
1455                 if (!transfer->tx_buf)
1456                         type = SPI_3WIRE_RX;
1457                 else
1458                         type = SPI_3WIRE_TX;
1459         } else {
1460                 if (!transfer->tx_buf)
1461                         type = SPI_SIMPLEX_RX;
1462                 else if (!transfer->rx_buf)
1463                         type = SPI_SIMPLEX_TX;
1464         }
1465
1466         return type;
1467 }
1468
1469 /**
1470  * stm32f4_spi_set_mode - configure communication mode
1471  * @spi: pointer to the spi controller data structure
1472  * @comm_type: type of communication to configure
1473  */
1474 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1475 {
1476         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1477                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1478                                         STM32F4_SPI_CR1_BIDIMODE |
1479                                         STM32F4_SPI_CR1_BIDIOE);
1480         } else if (comm_type == SPI_FULL_DUPLEX ||
1481                                 comm_type == SPI_SIMPLEX_RX) {
1482                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1483                                         STM32F4_SPI_CR1_BIDIMODE |
1484                                         STM32F4_SPI_CR1_BIDIOE);
1485         } else if (comm_type == SPI_3WIRE_RX) {
1486                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1487                                         STM32F4_SPI_CR1_BIDIMODE);
1488                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1489                                         STM32F4_SPI_CR1_BIDIOE);
1490         } else {
1491                 return -EINVAL;
1492         }
1493
1494         return 0;
1495 }
1496
1497 /**
1498  * stm32h7_spi_set_mode - configure communication mode
1499  * @spi: pointer to the spi controller data structure
1500  * @comm_type: type of communication to configure
1501  */
1502 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1503 {
1504         u32 mode;
1505         u32 cfg2_clrb = 0, cfg2_setb = 0;
1506
1507         if (comm_type == SPI_3WIRE_RX) {
1508                 mode = STM32H7_SPI_HALF_DUPLEX;
1509                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1510         } else if (comm_type == SPI_3WIRE_TX) {
1511                 mode = STM32H7_SPI_HALF_DUPLEX;
1512                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1513         } else if (comm_type == SPI_SIMPLEX_RX) {
1514                 mode = STM32H7_SPI_SIMPLEX_RX;
1515         } else if (comm_type == SPI_SIMPLEX_TX) {
1516                 mode = STM32H7_SPI_SIMPLEX_TX;
1517         } else {
1518                 mode = STM32H7_SPI_FULL_DUPLEX;
1519         }
1520
1521         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1522         cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1523                      STM32H7_SPI_CFG2_COMM;
1524
1525         writel_relaxed(
1526                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1527                  ~cfg2_clrb) | cfg2_setb,
1528                 spi->base + STM32H7_SPI_CFG2);
1529
1530         return 0;
1531 }
1532
1533 /**
1534  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1535  *                             consecutive data frames in master mode
1536  * @spi: pointer to the spi controller data structure
1537  * @len: transfer len
1538  */
1539 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1540 {
1541         u32 cfg2_clrb = 0, cfg2_setb = 0;
1542
1543         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1544         if ((len > 1) && (spi->cur_midi > 0)) {
1545                 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1546                 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1547                                (u32)STM32H7_SPI_CFG2_MIDI >>
1548                                STM32H7_SPI_CFG2_MIDI_SHIFT);
1549
1550                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1551                         sck_period_ns, midi, midi * sck_period_ns);
1552                 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1553                              STM32H7_SPI_CFG2_MIDI;
1554         }
1555
1556         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1557                         ~cfg2_clrb) | cfg2_setb,
1558                        spi->base + STM32H7_SPI_CFG2);
1559 }
1560
1561 /**
1562  * stm32h7_spi_number_of_data - configure number of data at current transfer
1563  * @spi: pointer to the spi controller data structure
1564  * @nb_words: transfer length (in words)
1565  */
1566 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1567 {
1568         u32 cr2_clrb = 0, cr2_setb = 0;
1569
1570         if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1571                          STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1572                 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1573                 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1574                 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1575                                 ~cr2_clrb) | cr2_setb,
1576                                spi->base + STM32H7_SPI_CR2);
1577         } else {
1578                 return -EMSGSIZE;
1579         }
1580
1581         return 0;
1582 }
1583
1584 /**
1585  * stm32_spi_transfer_one_setup - common setup to transfer a single
1586  *                                spi_transfer either using DMA or
1587  *                                interrupts.
1588  * @spi: pointer to the spi controller data structure
1589  * @spi_dev: pointer to the spi device
1590  * @transfer: pointer to spi transfer
1591  */
1592 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1593                                         struct spi_device *spi_dev,
1594                                         struct spi_transfer *transfer)
1595 {
1596         unsigned long flags;
1597         unsigned int comm_type;
1598         int nb_words, ret = 0;
1599         int mbr;
1600
1601         spin_lock_irqsave(&spi->lock, flags);
1602
1603         spi->cur_xferlen = transfer->len;
1604
1605         spi->cur_bpw = transfer->bits_per_word;
1606         spi->cfg->set_bpw(spi);
1607
1608         /* Update spi->cur_speed with real clock speed */
1609         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1610                                     spi->cfg->baud_rate_div_min,
1611                                     spi->cfg->baud_rate_div_max);
1612         if (mbr < 0) {
1613                 ret = mbr;
1614                 goto out;
1615         }
1616
1617         transfer->speed_hz = spi->cur_speed;
1618         stm32_spi_set_mbr(spi, mbr);
1619
1620         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1621         ret = spi->cfg->set_mode(spi, comm_type);
1622         if (ret < 0)
1623                 goto out;
1624
1625         spi->cur_comm = comm_type;
1626
1627         if (spi->cfg->set_data_idleness)
1628                 spi->cfg->set_data_idleness(spi, transfer->len);
1629
1630         if (spi->cur_bpw <= 8)
1631                 nb_words = transfer->len;
1632         else if (spi->cur_bpw <= 16)
1633                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1634         else
1635                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1636
1637         if (spi->cfg->set_number_of_data) {
1638                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1639                 if (ret < 0)
1640                         goto out;
1641         }
1642
1643         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1644                 spi->cur_comm);
1645         dev_dbg(spi->dev,
1646                 "data frame of %d-bit, data packet of %d data frames\n",
1647                 spi->cur_bpw, spi->cur_fthlv);
1648         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1649         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1650                 spi->cur_xferlen, nb_words);
1651         dev_dbg(spi->dev, "dma %s\n",
1652                 (spi->cur_usedma) ? "enabled" : "disabled");
1653
1654 out:
1655         spin_unlock_irqrestore(&spi->lock, flags);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * stm32_spi_transfer_one - transfer a single spi_transfer
1662  * @master: controller master interface
1663  * @spi_dev: pointer to the spi device
1664  * @transfer: pointer to spi transfer
1665  *
1666  * It must return 0 if the transfer is finished or 1 if the transfer is still
1667  * in progress.
1668  */
1669 static int stm32_spi_transfer_one(struct spi_master *master,
1670                                   struct spi_device *spi_dev,
1671                                   struct spi_transfer *transfer)
1672 {
1673         struct stm32_spi *spi = spi_master_get_devdata(master);
1674         int ret;
1675
1676         /* Don't do anything on 0 bytes transfers */
1677         if (transfer->len == 0)
1678                 return 0;
1679
1680         spi->tx_buf = transfer->tx_buf;
1681         spi->rx_buf = transfer->rx_buf;
1682         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1683         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1684
1685         spi->cur_usedma = (master->can_dma &&
1686                            master->can_dma(master, spi_dev, transfer));
1687
1688         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1689         if (ret) {
1690                 dev_err(spi->dev, "SPI transfer setup failed\n");
1691                 return ret;
1692         }
1693
1694         if (spi->cur_usedma)
1695                 return stm32_spi_transfer_one_dma(spi, transfer);
1696         else
1697                 return spi->cfg->transfer_one_irq(spi);
1698 }
1699
1700 /**
1701  * stm32_spi_unprepare_msg - relax the hardware
1702  * @master: controller master interface
1703  * @msg: pointer to the spi message
1704  */
1705 static int stm32_spi_unprepare_msg(struct spi_master *master,
1706                                    struct spi_message *msg)
1707 {
1708         struct stm32_spi *spi = spi_master_get_devdata(master);
1709
1710         spi->cfg->disable(spi);
1711
1712         return 0;
1713 }
1714
1715 /**
1716  * stm32f4_spi_config - Configure SPI controller as SPI master
1717  * @spi: pointer to the spi controller data structure
1718  */
1719 static int stm32f4_spi_config(struct stm32_spi *spi)
1720 {
1721         unsigned long flags;
1722
1723         spin_lock_irqsave(&spi->lock, flags);
1724
1725         /* Ensure I2SMOD bit is kept cleared */
1726         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1727                            STM32F4_SPI_I2SCFGR_I2SMOD);
1728
1729         /*
1730          * - SS input value high
1731          * - transmitter half duplex direction
1732          * - Set the master mode (default Motorola mode)
1733          * - Consider 1 master/n slaves configuration and
1734          *   SS input value is determined by the SSI bit
1735          */
1736         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1737                                                  STM32F4_SPI_CR1_BIDIOE |
1738                                                  STM32F4_SPI_CR1_MSTR |
1739                                                  STM32F4_SPI_CR1_SSM);
1740
1741         spin_unlock_irqrestore(&spi->lock, flags);
1742
1743         return 0;
1744 }
1745
1746 /**
1747  * stm32h7_spi_config - Configure SPI controller as SPI master
1748  * @spi: pointer to the spi controller data structure
1749  */
1750 static int stm32h7_spi_config(struct stm32_spi *spi)
1751 {
1752         unsigned long flags;
1753
1754         spin_lock_irqsave(&spi->lock, flags);
1755
1756         /* Ensure I2SMOD bit is kept cleared */
1757         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1758                            STM32H7_SPI_I2SCFGR_I2SMOD);
1759
1760         /*
1761          * - SS input value high
1762          * - transmitter half duplex direction
1763          * - automatic communication suspend when RX-Fifo is full
1764          */
1765         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1766                                                  STM32H7_SPI_CR1_HDDIR |
1767                                                  STM32H7_SPI_CR1_MASRX);
1768
1769         /*
1770          * - Set the master mode (default Motorola mode)
1771          * - Consider 1 master/n slaves configuration and
1772          *   SS input value is determined by the SSI bit
1773          * - keep control of all associated GPIOs
1774          */
1775         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1776                                                   STM32H7_SPI_CFG2_SSM |
1777                                                   STM32H7_SPI_CFG2_AFCNTR);
1778
1779         spin_unlock_irqrestore(&spi->lock, flags);
1780
1781         return 0;
1782 }
1783
1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1785         .regs = &stm32f4_spi_regspec,
1786         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1787         .disable = stm32f4_spi_disable,
1788         .config = stm32f4_spi_config,
1789         .set_bpw = stm32f4_spi_set_bpw,
1790         .set_mode = stm32f4_spi_set_mode,
1791         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1792         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1793         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1794         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1795         .irq_handler_event = stm32f4_spi_irq_event,
1796         .irq_handler_thread = stm32f4_spi_irq_thread,
1797         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1798         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1799         .has_fifo = false,
1800 };
1801
1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1803         .regs = &stm32h7_spi_regspec,
1804         .get_fifo_size = stm32h7_spi_get_fifo_size,
1805         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1806         .disable = stm32h7_spi_disable,
1807         .config = stm32h7_spi_config,
1808         .set_bpw = stm32h7_spi_set_bpw,
1809         .set_mode = stm32h7_spi_set_mode,
1810         .set_data_idleness = stm32h7_spi_data_idleness,
1811         .set_number_of_data = stm32h7_spi_number_of_data,
1812         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1813         .dma_rx_cb = stm32h7_spi_dma_cb,
1814         .dma_tx_cb = stm32h7_spi_dma_cb,
1815         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1816         .irq_handler_thread = stm32h7_spi_irq_thread,
1817         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1818         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1819         .has_fifo = true,
1820 };
1821
1822 static const struct of_device_id stm32_spi_of_match[] = {
1823         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1824         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1825         {},
1826 };
1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1828
1829 static int stm32_spi_probe(struct platform_device *pdev)
1830 {
1831         struct spi_master *master;
1832         struct stm32_spi *spi;
1833         struct resource *res;
1834         int ret;
1835
1836         master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1837         if (!master) {
1838                 dev_err(&pdev->dev, "spi master allocation failed\n");
1839                 return -ENOMEM;
1840         }
1841         platform_set_drvdata(pdev, master);
1842
1843         spi = spi_master_get_devdata(master);
1844         spi->dev = &pdev->dev;
1845         spi->master = master;
1846         spin_lock_init(&spi->lock);
1847
1848         spi->cfg = (const struct stm32_spi_cfg *)
1849                 of_match_device(pdev->dev.driver->of_match_table,
1850                                 &pdev->dev)->data;
1851
1852         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1853         spi->base = devm_ioremap_resource(&pdev->dev, res);
1854         if (IS_ERR(spi->base))
1855                 return PTR_ERR(spi->base);
1856
1857         spi->phys_addr = (dma_addr_t)res->start;
1858
1859         spi->irq = platform_get_irq(pdev, 0);
1860         if (spi->irq <= 0)
1861                 return dev_err_probe(&pdev->dev, spi->irq,
1862                                      "failed to get irq\n");
1863
1864         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1865                                         spi->cfg->irq_handler_event,
1866                                         spi->cfg->irq_handler_thread,
1867                                         IRQF_ONESHOT, pdev->name, master);
1868         if (ret) {
1869                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1870                         ret);
1871                 return ret;
1872         }
1873
1874         spi->clk = devm_clk_get(&pdev->dev, NULL);
1875         if (IS_ERR(spi->clk)) {
1876                 ret = PTR_ERR(spi->clk);
1877                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1878                 return ret;
1879         }
1880
1881         ret = clk_prepare_enable(spi->clk);
1882         if (ret) {
1883                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1884                 return ret;
1885         }
1886         spi->clk_rate = clk_get_rate(spi->clk);
1887         if (!spi->clk_rate) {
1888                 dev_err(&pdev->dev, "clk rate = 0\n");
1889                 ret = -EINVAL;
1890                 goto err_clk_disable;
1891         }
1892
1893         spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1894         if (!IS_ERR(spi->rst)) {
1895                 reset_control_assert(spi->rst);
1896                 udelay(2);
1897                 reset_control_deassert(spi->rst);
1898         }
1899
1900         if (spi->cfg->has_fifo)
1901                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1902
1903         ret = spi->cfg->config(spi);
1904         if (ret) {
1905                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1906                         ret);
1907                 goto err_clk_disable;
1908         }
1909
1910         master->dev.of_node = pdev->dev.of_node;
1911         master->auto_runtime_pm = true;
1912         master->bus_num = pdev->id;
1913         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1914                             SPI_3WIRE;
1915         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1916         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1917         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1918         master->use_gpio_descriptors = true;
1919         master->prepare_message = stm32_spi_prepare_msg;
1920         master->transfer_one = stm32_spi_transfer_one;
1921         master->unprepare_message = stm32_spi_unprepare_msg;
1922         master->flags = SPI_MASTER_MUST_TX;
1923
1924         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1925         if (IS_ERR(spi->dma_tx)) {
1926                 ret = PTR_ERR(spi->dma_tx);
1927                 spi->dma_tx = NULL;
1928                 if (ret == -EPROBE_DEFER)
1929                         goto err_clk_disable;
1930
1931                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1932         } else {
1933                 master->dma_tx = spi->dma_tx;
1934         }
1935
1936         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1937         if (IS_ERR(spi->dma_rx)) {
1938                 ret = PTR_ERR(spi->dma_rx);
1939                 spi->dma_rx = NULL;
1940                 if (ret == -EPROBE_DEFER)
1941                         goto err_dma_release;
1942
1943                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1944         } else {
1945                 master->dma_rx = spi->dma_rx;
1946         }
1947
1948         if (spi->dma_tx || spi->dma_rx)
1949                 master->can_dma = stm32_spi_can_dma;
1950
1951         pm_runtime_set_active(&pdev->dev);
1952         pm_runtime_get_noresume(&pdev->dev);
1953         pm_runtime_enable(&pdev->dev);
1954
1955         ret = spi_register_master(master);
1956         if (ret) {
1957                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1958                         ret);
1959                 goto err_pm_disable;
1960         }
1961
1962         if (!master->cs_gpiods) {
1963                 dev_err(&pdev->dev, "no CS gpios available\n");
1964                 ret = -EINVAL;
1965                 goto err_pm_disable;
1966         }
1967
1968         dev_info(&pdev->dev, "driver initialized\n");
1969
1970         return 0;
1971
1972 err_pm_disable:
1973         pm_runtime_disable(&pdev->dev);
1974         pm_runtime_put_noidle(&pdev->dev);
1975         pm_runtime_set_suspended(&pdev->dev);
1976 err_dma_release:
1977         if (spi->dma_tx)
1978                 dma_release_channel(spi->dma_tx);
1979         if (spi->dma_rx)
1980                 dma_release_channel(spi->dma_rx);
1981 err_clk_disable:
1982         clk_disable_unprepare(spi->clk);
1983
1984         return ret;
1985 }
1986
1987 static int stm32_spi_remove(struct platform_device *pdev)
1988 {
1989         struct spi_master *master = platform_get_drvdata(pdev);
1990         struct stm32_spi *spi = spi_master_get_devdata(master);
1991
1992         pm_runtime_get_sync(&pdev->dev);
1993
1994         spi_unregister_master(master);
1995         spi->cfg->disable(spi);
1996
1997         pm_runtime_disable(&pdev->dev);
1998         pm_runtime_put_noidle(&pdev->dev);
1999         pm_runtime_set_suspended(&pdev->dev);
2000         if (master->dma_tx)
2001                 dma_release_channel(master->dma_tx);
2002         if (master->dma_rx)
2003                 dma_release_channel(master->dma_rx);
2004
2005         clk_disable_unprepare(spi->clk);
2006
2007
2008         pinctrl_pm_select_sleep_state(&pdev->dev);
2009
2010         return 0;
2011 }
2012
2013 #ifdef CONFIG_PM
2014 static int stm32_spi_runtime_suspend(struct device *dev)
2015 {
2016         struct spi_master *master = dev_get_drvdata(dev);
2017         struct stm32_spi *spi = spi_master_get_devdata(master);
2018
2019         clk_disable_unprepare(spi->clk);
2020
2021         return pinctrl_pm_select_sleep_state(dev);
2022 }
2023
2024 static int stm32_spi_runtime_resume(struct device *dev)
2025 {
2026         struct spi_master *master = dev_get_drvdata(dev);
2027         struct stm32_spi *spi = spi_master_get_devdata(master);
2028         int ret;
2029
2030         ret = pinctrl_pm_select_default_state(dev);
2031         if (ret)
2032                 return ret;
2033
2034         return clk_prepare_enable(spi->clk);
2035 }
2036 #endif
2037
2038 #ifdef CONFIG_PM_SLEEP
2039 static int stm32_spi_suspend(struct device *dev)
2040 {
2041         struct spi_master *master = dev_get_drvdata(dev);
2042         int ret;
2043
2044         ret = spi_master_suspend(master);
2045         if (ret)
2046                 return ret;
2047
2048         return pm_runtime_force_suspend(dev);
2049 }
2050
2051 static int stm32_spi_resume(struct device *dev)
2052 {
2053         struct spi_master *master = dev_get_drvdata(dev);
2054         struct stm32_spi *spi = spi_master_get_devdata(master);
2055         int ret;
2056
2057         ret = pm_runtime_force_resume(dev);
2058         if (ret)
2059                 return ret;
2060
2061         ret = spi_master_resume(master);
2062         if (ret) {
2063                 clk_disable_unprepare(spi->clk);
2064                 return ret;
2065         }
2066
2067         ret = pm_runtime_get_sync(dev);
2068         if (ret < 0) {
2069                 pm_runtime_put_noidle(dev);
2070                 dev_err(dev, "Unable to power device:%d\n", ret);
2071                 return ret;
2072         }
2073
2074         spi->cfg->config(spi);
2075
2076         pm_runtime_mark_last_busy(dev);
2077         pm_runtime_put_autosuspend(dev);
2078
2079         return 0;
2080 }
2081 #endif
2082
2083 static const struct dev_pm_ops stm32_spi_pm_ops = {
2084         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2085         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2086                            stm32_spi_runtime_resume, NULL)
2087 };
2088
2089 static struct platform_driver stm32_spi_driver = {
2090         .probe = stm32_spi_probe,
2091         .remove = stm32_spi_remove,
2092         .driver = {
2093                 .name = DRIVER_NAME,
2094                 .pm = &stm32_spi_pm_ops,
2095                 .of_match_table = stm32_spi_of_match,
2096         },
2097 };
2098
2099 module_platform_driver(stm32_spi_driver);
2100
2101 MODULE_ALIAS("platform:" DRIVER_NAME);
2102 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2103 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2104 MODULE_LICENSE("GPL v2");