GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / spi / spi-fsl-espi.c
1 /*
2  * Freescale eSPI controller driver.
3  *
4  * Copyright 2010 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/pm_runtime.h>
24 #include <sysdev/fsl_soc.h>
25
26 /* eSPI Controller registers */
27 #define ESPI_SPMODE     0x00    /* eSPI mode register */
28 #define ESPI_SPIE       0x04    /* eSPI event register */
29 #define ESPI_SPIM       0x08    /* eSPI mask register */
30 #define ESPI_SPCOM      0x0c    /* eSPI command register */
31 #define ESPI_SPITF      0x10    /* eSPI transmit FIFO access register*/
32 #define ESPI_SPIRF      0x14    /* eSPI receive FIFO access register*/
33 #define ESPI_SPMODE0    0x20    /* eSPI cs0 mode register */
34
35 #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
36
37 /* eSPI Controller mode register definitions */
38 #define SPMODE_ENABLE           BIT(31)
39 #define SPMODE_LOOP             BIT(30)
40 #define SPMODE_TXTHR(x)         ((x) << 8)
41 #define SPMODE_RXTHR(x)         ((x) << 0)
42
43 /* eSPI Controller CS mode register definitions */
44 #define CSMODE_CI_INACTIVEHIGH  BIT(31)
45 #define CSMODE_CP_BEGIN_EDGECLK BIT(30)
46 #define CSMODE_REV              BIT(29)
47 #define CSMODE_DIV16            BIT(28)
48 #define CSMODE_PM(x)            ((x) << 24)
49 #define CSMODE_POL_1            BIT(20)
50 #define CSMODE_LEN(x)           ((x) << 16)
51 #define CSMODE_BEF(x)           ((x) << 12)
52 #define CSMODE_AFT(x)           ((x) << 8)
53 #define CSMODE_CG(x)            ((x) << 3)
54
55 #define FSL_ESPI_FIFO_SIZE      32
56 #define FSL_ESPI_RXTHR          15
57
58 /* Default mode/csmode for eSPI controller */
59 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
60 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
61                 | CSMODE_AFT(0) | CSMODE_CG(1))
62
63 /* SPIE register values */
64 #define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
65 #define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
66 #define SPIE_TXE                BIT(15) /* TX FIFO empty */
67 #define SPIE_DON                BIT(14) /* TX done */
68 #define SPIE_RXT                BIT(13) /* RX FIFO threshold */
69 #define SPIE_RXF                BIT(12) /* RX FIFO full */
70 #define SPIE_TXT                BIT(11) /* TX FIFO threshold*/
71 #define SPIE_RNE                BIT(9)  /* RX FIFO not empty */
72 #define SPIE_TNF                BIT(8)  /* TX FIFO not full */
73
74 /* SPIM register values */
75 #define SPIM_TXE                BIT(15) /* TX FIFO empty */
76 #define SPIM_DON                BIT(14) /* TX done */
77 #define SPIM_RXT                BIT(13) /* RX FIFO threshold */
78 #define SPIM_RXF                BIT(12) /* RX FIFO full */
79 #define SPIM_TXT                BIT(11) /* TX FIFO threshold*/
80 #define SPIM_RNE                BIT(9)  /* RX FIFO not empty */
81 #define SPIM_TNF                BIT(8)  /* TX FIFO not full */
82
83 /* SPCOM register values */
84 #define SPCOM_CS(x)             ((x) << 30)
85 #define SPCOM_DO                BIT(28) /* Dual output */
86 #define SPCOM_TO                BIT(27) /* TX only */
87 #define SPCOM_RXSKIP(x)         ((x) << 16)
88 #define SPCOM_TRANLEN(x)        ((x) << 0)
89
90 #define SPCOM_TRANLEN_MAX       0x10000 /* Max transaction length */
91
92 #define AUTOSUSPEND_TIMEOUT 2000
93
94 struct fsl_espi {
95         struct device *dev;
96         void __iomem *reg_base;
97
98         struct list_head *m_transfers;
99         struct spi_transfer *tx_t;
100         unsigned int tx_pos;
101         bool tx_done;
102         struct spi_transfer *rx_t;
103         unsigned int rx_pos;
104         bool rx_done;
105
106         bool swab;
107         unsigned int rxskip;
108
109         spinlock_t lock;
110
111         u32 spibrg;             /* SPIBRG input clock */
112
113         struct completion done;
114 };
115
116 struct fsl_espi_cs {
117         u32 hw_mode;
118 };
119
120 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
121 {
122         return ioread32be(espi->reg_base + offset);
123 }
124
125 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
126 {
127         return ioread16be(espi->reg_base + offset);
128 }
129
130 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
131 {
132         return ioread8(espi->reg_base + offset);
133 }
134
135 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136                                       u32 val)
137 {
138         iowrite32be(val, espi->reg_base + offset);
139 }
140
141 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142                                         u16 val)
143 {
144         iowrite16be(val, espi->reg_base + offset);
145 }
146
147 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148                                        u8 val)
149 {
150         iowrite8(val, espi->reg_base + offset);
151 }
152
153 static int fsl_espi_check_message(struct spi_message *m)
154 {
155         struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156         struct spi_transfer *t, *first;
157
158         if (m->frame_length > SPCOM_TRANLEN_MAX) {
159                 dev_err(espi->dev, "message too long, size is %u bytes\n",
160                         m->frame_length);
161                 return -EMSGSIZE;
162         }
163
164         first = list_first_entry(&m->transfers, struct spi_transfer,
165                                  transfer_list);
166
167         list_for_each_entry(t, &m->transfers, transfer_list) {
168                 if (first->bits_per_word != t->bits_per_word ||
169                     first->speed_hz != t->speed_hz) {
170                         dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171                         return -EINVAL;
172                 }
173         }
174
175         /* ESPI supports MSB-first transfers for word size 8 / 16 only */
176         if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177             first->bits_per_word != 16) {
178                 dev_err(espi->dev,
179                         "MSB-first transfer not supported for wordsize %u\n",
180                         first->bits_per_word);
181                 return -EINVAL;
182         }
183
184         return 0;
185 }
186
187 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
188 {
189         struct spi_transfer *t;
190         unsigned int i = 0, rxskip = 0;
191
192         /*
193          * prerequisites for ESPI rxskip mode:
194          * - message has two transfers
195          * - first transfer is a write and second is a read
196          *
197          * In addition the current low-level transfer mechanism requires
198          * that the rxskip bytes fit into the TX FIFO. Else the transfer
199          * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200          * the TX FIFO isn't re-filled.
201          */
202         list_for_each_entry(t, &m->transfers, transfer_list) {
203                 if (i == 0) {
204                         if (!t->tx_buf || t->rx_buf ||
205                             t->len > FSL_ESPI_FIFO_SIZE)
206                                 return 0;
207                         rxskip = t->len;
208                 } else if (i == 1) {
209                         if (t->tx_buf || !t->rx_buf)
210                                 return 0;
211                 }
212                 i++;
213         }
214
215         return i == 2 ? rxskip : 0;
216 }
217
218 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
219 {
220         u32 tx_fifo_avail;
221         unsigned int tx_left;
222         const void *tx_buf;
223
224         /* if events is zero transfer has not started and tx fifo is empty */
225         tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
226 start:
227         tx_left = espi->tx_t->len - espi->tx_pos;
228         tx_buf = espi->tx_t->tx_buf;
229         while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230                 if (tx_left >= 4) {
231                         if (!tx_buf)
232                                 fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233                         else if (espi->swab)
234                                 fsl_espi_write_reg(espi, ESPI_SPITF,
235                                         swahb32p(tx_buf + espi->tx_pos));
236                         else
237                                 fsl_espi_write_reg(espi, ESPI_SPITF,
238                                         *(u32 *)(tx_buf + espi->tx_pos));
239                         espi->tx_pos += 4;
240                         tx_left -= 4;
241                         tx_fifo_avail -= 4;
242                 } else if (tx_left >= 2 && tx_buf && espi->swab) {
243                         fsl_espi_write_reg16(espi, ESPI_SPITF,
244                                         swab16p(tx_buf + espi->tx_pos));
245                         espi->tx_pos += 2;
246                         tx_left -= 2;
247                         tx_fifo_avail -= 2;
248                 } else {
249                         if (!tx_buf)
250                                 fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251                         else
252                                 fsl_espi_write_reg8(espi, ESPI_SPITF,
253                                         *(u8 *)(tx_buf + espi->tx_pos));
254                         espi->tx_pos += 1;
255                         tx_left -= 1;
256                         tx_fifo_avail -= 1;
257                 }
258         }
259
260         if (!tx_left) {
261                 /* Last transfer finished, in rxskip mode only one is needed */
262                 if (list_is_last(&espi->tx_t->transfer_list,
263                     espi->m_transfers) || espi->rxskip) {
264                         espi->tx_done = true;
265                         return;
266                 }
267                 espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268                 espi->tx_pos = 0;
269                 /* continue with next transfer if tx fifo is not full */
270                 if (tx_fifo_avail)
271                         goto start;
272         }
273 }
274
275 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
276 {
277         u32 rx_fifo_avail = SPIE_RXCNT(events);
278         unsigned int rx_left;
279         void *rx_buf;
280
281 start:
282         rx_left = espi->rx_t->len - espi->rx_pos;
283         rx_buf = espi->rx_t->rx_buf;
284         while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285                 if (rx_left >= 4) {
286                         u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
287
288                         if (rx_buf && espi->swab)
289                                 *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290                         else if (rx_buf)
291                                 *(u32 *)(rx_buf + espi->rx_pos) = val;
292                         espi->rx_pos += 4;
293                         rx_left -= 4;
294                         rx_fifo_avail -= 4;
295                 } else if (rx_left >= 2 && rx_buf && espi->swab) {
296                         u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
297
298                         *(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299                         espi->rx_pos += 2;
300                         rx_left -= 2;
301                         rx_fifo_avail -= 2;
302                 } else {
303                         u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
304
305                         if (rx_buf)
306                                 *(u8 *)(rx_buf + espi->rx_pos) = val;
307                         espi->rx_pos += 1;
308                         rx_left -= 1;
309                         rx_fifo_avail -= 1;
310                 }
311         }
312
313         if (!rx_left) {
314                 if (list_is_last(&espi->rx_t->transfer_list,
315                     espi->m_transfers)) {
316                         espi->rx_done = true;
317                         return;
318                 }
319                 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320                 espi->rx_pos = 0;
321                 /* continue with next transfer if rx fifo is not empty */
322                 if (rx_fifo_avail)
323                         goto start;
324         }
325 }
326
327 static void fsl_espi_setup_transfer(struct spi_device *spi,
328                                         struct spi_transfer *t)
329 {
330         struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331         int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332         u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333         struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334         u32 hw_mode_old = cs->hw_mode;
335
336         /* mask out bits we are going to set */
337         cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
338
339         cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
340
341         pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
342
343         if (pm > 15) {
344                 cs->hw_mode |= CSMODE_DIV16;
345                 pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
346         }
347
348         cs->hw_mode |= CSMODE_PM(pm);
349
350         /* don't write the mode register if the mode doesn't change */
351         if (cs->hw_mode != hw_mode_old)
352                 fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353                                    cs->hw_mode);
354 }
355
356 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
357 {
358         struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359         unsigned int rx_len = t->len;
360         u32 mask, spcom;
361         int ret;
362
363         reinit_completion(&espi->done);
364
365         /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366         spcom = SPCOM_CS(spi->chip_select);
367         spcom |= SPCOM_TRANLEN(t->len - 1);
368
369         /* configure RXSKIP mode */
370         if (espi->rxskip) {
371                 spcom |= SPCOM_RXSKIP(espi->rxskip);
372                 rx_len = t->len - espi->rxskip;
373                 if (t->rx_nbits == SPI_NBITS_DUAL)
374                         spcom |= SPCOM_DO;
375         }
376
377         fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
378
379         /* enable interrupts */
380         mask = SPIM_DON;
381         if (rx_len > FSL_ESPI_FIFO_SIZE)
382                 mask |= SPIM_RXT;
383         fsl_espi_write_reg(espi, ESPI_SPIM, mask);
384
385         /* Prevent filling the fifo from getting interrupted */
386         spin_lock_irq(&espi->lock);
387         fsl_espi_fill_tx_fifo(espi, 0);
388         spin_unlock_irq(&espi->lock);
389
390         /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391         ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392         if (ret == 0)
393                 dev_err(espi->dev, "Transfer timed out!\n");
394
395         /* disable rx ints */
396         fsl_espi_write_reg(espi, ESPI_SPIM, 0);
397
398         return ret == 0 ? -ETIMEDOUT : 0;
399 }
400
401 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
402 {
403         struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404         struct spi_device *spi = m->spi;
405         int ret;
406
407         /* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408         espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
409
410         espi->m_transfers = &m->transfers;
411         espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412                                       transfer_list);
413         espi->tx_pos = 0;
414         espi->tx_done = false;
415         espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416                                       transfer_list);
417         espi->rx_pos = 0;
418         espi->rx_done = false;
419
420         espi->rxskip = fsl_espi_check_rxskip_mode(m);
421         if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422                 dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423                 return -EINVAL;
424         }
425
426         /* In RXSKIP mode skip first transfer for reads */
427         if (espi->rxskip)
428                 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
429
430         fsl_espi_setup_transfer(spi, trans);
431
432         ret = fsl_espi_bufs(spi, trans);
433
434         if (trans->delay_usecs)
435                 udelay(trans->delay_usecs);
436
437         return ret;
438 }
439
440 static int fsl_espi_do_one_msg(struct spi_master *master,
441                                struct spi_message *m)
442 {
443         unsigned int delay_usecs = 0, rx_nbits = 0;
444         struct spi_transfer *t, trans = {};
445         int ret;
446
447         ret = fsl_espi_check_message(m);
448         if (ret)
449                 goto out;
450
451         list_for_each_entry(t, &m->transfers, transfer_list) {
452                 if (t->delay_usecs > delay_usecs)
453                         delay_usecs = t->delay_usecs;
454                 if (t->rx_nbits > rx_nbits)
455                         rx_nbits = t->rx_nbits;
456         }
457
458         t = list_first_entry(&m->transfers, struct spi_transfer,
459                              transfer_list);
460
461         trans.len = m->frame_length;
462         trans.speed_hz = t->speed_hz;
463         trans.bits_per_word = t->bits_per_word;
464         trans.delay_usecs = delay_usecs;
465         trans.rx_nbits = rx_nbits;
466
467         if (trans.len)
468                 ret = fsl_espi_trans(m, &trans);
469
470         m->actual_length = ret ? 0 : trans.len;
471 out:
472         if (m->status == -EINPROGRESS)
473                 m->status = ret;
474
475         spi_finalize_current_message(master);
476
477         return ret;
478 }
479
480 static int fsl_espi_setup(struct spi_device *spi)
481 {
482         struct fsl_espi *espi;
483         u32 loop_mode;
484         struct fsl_espi_cs *cs = spi_get_ctldata(spi);
485
486         if (!cs) {
487                 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488                 if (!cs)
489                         return -ENOMEM;
490                 spi_set_ctldata(spi, cs);
491         }
492
493         espi = spi_master_get_devdata(spi->master);
494
495         pm_runtime_get_sync(espi->dev);
496
497         cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
498         /* mask out bits we are going to set */
499         cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500                          | CSMODE_REV);
501
502         if (spi->mode & SPI_CPHA)
503                 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504         if (spi->mode & SPI_CPOL)
505                 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506         if (!(spi->mode & SPI_LSB_FIRST))
507                 cs->hw_mode |= CSMODE_REV;
508
509         /* Handle the loop mode */
510         loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511         loop_mode &= ~SPMODE_LOOP;
512         if (spi->mode & SPI_LOOP)
513                 loop_mode |= SPMODE_LOOP;
514         fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
515
516         fsl_espi_setup_transfer(spi, NULL);
517
518         pm_runtime_mark_last_busy(espi->dev);
519         pm_runtime_put_autosuspend(espi->dev);
520
521         return 0;
522 }
523
524 static void fsl_espi_cleanup(struct spi_device *spi)
525 {
526         struct fsl_espi_cs *cs = spi_get_ctldata(spi);
527
528         kfree(cs);
529         spi_set_ctldata(spi, NULL);
530 }
531
532 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
533 {
534         if (!espi->rx_done)
535                 fsl_espi_read_rx_fifo(espi, events);
536
537         if (!espi->tx_done)
538                 fsl_espi_fill_tx_fifo(espi, events);
539
540         if (!espi->tx_done || !espi->rx_done)
541                 return;
542
543         /* we're done, but check for errors before returning */
544         events = fsl_espi_read_reg(espi, ESPI_SPIE);
545
546         if (!(events & SPIE_DON))
547                 dev_err(espi->dev,
548                         "Transfer done but SPIE_DON isn't set!\n");
549
550         if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
551                 dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
552
553         complete(&espi->done);
554 }
555
556 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
557 {
558         struct fsl_espi *espi = context_data;
559         u32 events, mask;
560
561         spin_lock(&espi->lock);
562
563         /* Get interrupt events(tx/rx) */
564         events = fsl_espi_read_reg(espi, ESPI_SPIE);
565         mask = fsl_espi_read_reg(espi, ESPI_SPIM);
566         if (!(events & mask)) {
567                 spin_unlock(&espi->lock);
568                 return IRQ_NONE;
569         }
570
571         dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
572
573         fsl_espi_cpu_irq(espi, events);
574
575         /* Clear the events */
576         fsl_espi_write_reg(espi, ESPI_SPIE, events);
577
578         spin_unlock(&espi->lock);
579
580         return IRQ_HANDLED;
581 }
582
583 #ifdef CONFIG_PM
584 static int fsl_espi_runtime_suspend(struct device *dev)
585 {
586         struct spi_master *master = dev_get_drvdata(dev);
587         struct fsl_espi *espi = spi_master_get_devdata(master);
588         u32 regval;
589
590         regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
591         regval &= ~SPMODE_ENABLE;
592         fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
593
594         return 0;
595 }
596
597 static int fsl_espi_runtime_resume(struct device *dev)
598 {
599         struct spi_master *master = dev_get_drvdata(dev);
600         struct fsl_espi *espi = spi_master_get_devdata(master);
601         u32 regval;
602
603         regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
604         regval |= SPMODE_ENABLE;
605         fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
606
607         return 0;
608 }
609 #endif
610
611 static size_t fsl_espi_max_message_size(struct spi_device *spi)
612 {
613         return SPCOM_TRANLEN_MAX;
614 }
615
616 static void fsl_espi_init_regs(struct device *dev, bool initial)
617 {
618         struct spi_master *master = dev_get_drvdata(dev);
619         struct fsl_espi *espi = spi_master_get_devdata(master);
620         struct device_node *nc;
621         u32 csmode, cs, prop;
622         int ret;
623
624         /* SPI controller initializations */
625         fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
626         fsl_espi_write_reg(espi, ESPI_SPIM, 0);
627         fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
628         fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
629
630         /* Init eSPI CS mode register */
631         for_each_available_child_of_node(master->dev.of_node, nc) {
632                 /* get chip select */
633                 ret = of_property_read_u32(nc, "reg", &cs);
634                 if (ret || cs >= master->num_chipselect)
635                         continue;
636
637                 csmode = CSMODE_INIT_VAL;
638
639                 /* check if CSBEF is set in device tree */
640                 ret = of_property_read_u32(nc, "fsl,csbef", &prop);
641                 if (!ret) {
642                         csmode &= ~(CSMODE_BEF(0xf));
643                         csmode |= CSMODE_BEF(prop);
644                 }
645
646                 /* check if CSAFT is set in device tree */
647                 ret = of_property_read_u32(nc, "fsl,csaft", &prop);
648                 if (!ret) {
649                         csmode &= ~(CSMODE_AFT(0xf));
650                         csmode |= CSMODE_AFT(prop);
651                 }
652
653                 fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
654
655                 if (initial)
656                         dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
657         }
658
659         /* Enable SPI interface */
660         fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
661 }
662
663 static int fsl_espi_probe(struct device *dev, struct resource *mem,
664                           unsigned int irq, unsigned int num_cs)
665 {
666         struct spi_master *master;
667         struct fsl_espi *espi;
668         int ret;
669
670         master = spi_alloc_master(dev, sizeof(struct fsl_espi));
671         if (!master)
672                 return -ENOMEM;
673
674         dev_set_drvdata(dev, master);
675
676         master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
677                             SPI_LSB_FIRST | SPI_LOOP;
678         master->dev.of_node = dev->of_node;
679         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
680         master->setup = fsl_espi_setup;
681         master->cleanup = fsl_espi_cleanup;
682         master->transfer_one_message = fsl_espi_do_one_msg;
683         master->auto_runtime_pm = true;
684         master->max_message_size = fsl_espi_max_message_size;
685         master->num_chipselect = num_cs;
686
687         espi = spi_master_get_devdata(master);
688         spin_lock_init(&espi->lock);
689
690         espi->dev = dev;
691         espi->spibrg = fsl_get_sys_freq();
692         if (espi->spibrg == -1) {
693                 dev_err(dev, "Can't get sys frequency!\n");
694                 ret = -EINVAL;
695                 goto err_probe;
696         }
697         /* determined by clock divider fields DIV16/PM in register SPMODEx */
698         master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
699         master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
700
701         init_completion(&espi->done);
702
703         espi->reg_base = devm_ioremap_resource(dev, mem);
704         if (IS_ERR(espi->reg_base)) {
705                 ret = PTR_ERR(espi->reg_base);
706                 goto err_probe;
707         }
708
709         /* Register for SPI Interrupt */
710         ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
711         if (ret)
712                 goto err_probe;
713
714         fsl_espi_init_regs(dev, true);
715
716         pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
717         pm_runtime_use_autosuspend(dev);
718         pm_runtime_set_active(dev);
719         pm_runtime_enable(dev);
720         pm_runtime_get_sync(dev);
721
722         ret = devm_spi_register_master(dev, master);
723         if (ret < 0)
724                 goto err_pm;
725
726         dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
727
728         pm_runtime_mark_last_busy(dev);
729         pm_runtime_put_autosuspend(dev);
730
731         return 0;
732
733 err_pm:
734         pm_runtime_put_noidle(dev);
735         pm_runtime_disable(dev);
736         pm_runtime_set_suspended(dev);
737 err_probe:
738         spi_master_put(master);
739         return ret;
740 }
741
742 static int of_fsl_espi_get_chipselects(struct device *dev)
743 {
744         struct device_node *np = dev->of_node;
745         u32 num_cs;
746         int ret;
747
748         ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
749         if (ret) {
750                 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
751                 return 0;
752         }
753
754         return num_cs;
755 }
756
757 static int of_fsl_espi_probe(struct platform_device *ofdev)
758 {
759         struct device *dev = &ofdev->dev;
760         struct device_node *np = ofdev->dev.of_node;
761         struct resource mem;
762         unsigned int irq, num_cs;
763         int ret;
764
765         if (of_property_read_bool(np, "mode")) {
766                 dev_err(dev, "mode property is not supported on ESPI!\n");
767                 return -EINVAL;
768         }
769
770         num_cs = of_fsl_espi_get_chipselects(dev);
771         if (!num_cs)
772                 return -EINVAL;
773
774         ret = of_address_to_resource(np, 0, &mem);
775         if (ret)
776                 return ret;
777
778         irq = irq_of_parse_and_map(np, 0);
779         if (!irq)
780                 return -EINVAL;
781
782         return fsl_espi_probe(dev, &mem, irq, num_cs);
783 }
784
785 static int of_fsl_espi_remove(struct platform_device *dev)
786 {
787         pm_runtime_disable(&dev->dev);
788
789         return 0;
790 }
791
792 #ifdef CONFIG_PM_SLEEP
793 static int of_fsl_espi_suspend(struct device *dev)
794 {
795         struct spi_master *master = dev_get_drvdata(dev);
796         int ret;
797
798         ret = spi_master_suspend(master);
799         if (ret) {
800                 dev_warn(dev, "cannot suspend master\n");
801                 return ret;
802         }
803
804         return pm_runtime_force_suspend(dev);
805 }
806
807 static int of_fsl_espi_resume(struct device *dev)
808 {
809         struct spi_master *master = dev_get_drvdata(dev);
810         int ret;
811
812         fsl_espi_init_regs(dev, false);
813
814         ret = pm_runtime_force_resume(dev);
815         if (ret < 0)
816                 return ret;
817
818         return spi_master_resume(master);
819 }
820 #endif /* CONFIG_PM_SLEEP */
821
822 static const struct dev_pm_ops espi_pm = {
823         SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
824                            fsl_espi_runtime_resume, NULL)
825         SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
826 };
827
828 static const struct of_device_id of_fsl_espi_match[] = {
829         { .compatible = "fsl,mpc8536-espi" },
830         {}
831 };
832 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
833
834 static struct platform_driver fsl_espi_driver = {
835         .driver = {
836                 .name = "fsl_espi",
837                 .of_match_table = of_fsl_espi_match,
838                 .pm = &espi_pm,
839         },
840         .probe          = of_fsl_espi_probe,
841         .remove         = of_fsl_espi_remove,
842 };
843 module_platform_driver(fsl_espi_driver);
844
845 MODULE_AUTHOR("Mingkai Hu");
846 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
847 MODULE_LICENSE("GPL");