GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / spi / spi-fsl-dspi.c
1 /*
2  * drivers/spi/spi-fsl-dspi.c
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  *
6  * Freescale DSPI driver
7  * This file contains a driver for the Freescale DSPI
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regmap.h>
31 #include <linux/sched.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/time.h>
35
36 #define DRIVER_NAME "fsl-dspi"
37
38 #define TRAN_STATE_RX_VOID              0x01
39 #define TRAN_STATE_TX_VOID              0x02
40 #define TRAN_STATE_WORD_ODD_NUM 0x04
41
42 #define DSPI_FIFO_SIZE                  4
43
44 #define SPI_MCR         0x00
45 #define SPI_MCR_MASTER          (1 << 31)
46 #define SPI_MCR_PCSIS           (0x3F << 16)
47 #define SPI_MCR_CLR_TXF (1 << 11)
48 #define SPI_MCR_CLR_RXF (1 << 10)
49
50 #define SPI_TCR                 0x08
51 #define SPI_TCR_GET_TCNT(x)     (((x) & 0xffff0000) >> 16)
52
53 #define SPI_CTAR(x)             (0x0c + (((x) & 0x3) * 4))
54 #define SPI_CTAR_FMSZ(x)        (((x) & 0x0000000f) << 27)
55 #define SPI_CTAR_CPOL(x)        ((x) << 26)
56 #define SPI_CTAR_CPHA(x)        ((x) << 25)
57 #define SPI_CTAR_LSBFE(x)       ((x) << 24)
58 #define SPI_CTAR_PCSSCK(x)      (((x) & 0x00000003) << 22)
59 #define SPI_CTAR_PASC(x)        (((x) & 0x00000003) << 20)
60 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
61 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
62 #define SPI_CTAR_CSSCK(x)       (((x) & 0x0000000f) << 12)
63 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
64 #define SPI_CTAR_DT(x)          (((x) & 0x0000000f) << 4)
65 #define SPI_CTAR_BR(x)          ((x) & 0x0000000f)
66 #define SPI_CTAR_SCALE_BITS     0xf
67
68 #define SPI_CTAR0_SLAVE 0x0c
69
70 #define SPI_SR                  0x2c
71 #define SPI_SR_EOQF             0x10000000
72 #define SPI_SR_TCFQF            0x80000000
73
74 #define SPI_RSER                0x30
75 #define SPI_RSER_EOQFE          0x10000000
76 #define SPI_RSER_TCFQE          0x80000000
77
78 #define SPI_PUSHR               0x34
79 #define SPI_PUSHR_CONT          (1 << 31)
80 #define SPI_PUSHR_CTAS(x)       (((x) & 0x00000003) << 28)
81 #define SPI_PUSHR_EOQ           (1 << 27)
82 #define SPI_PUSHR_CTCNT (1 << 26)
83 #define SPI_PUSHR_PCS(x)        (((1 << x) & 0x0000003f) << 16)
84 #define SPI_PUSHR_TXDATA(x)     ((x) & 0x0000ffff)
85
86 #define SPI_PUSHR_SLAVE 0x34
87
88 #define SPI_POPR                0x38
89 #define SPI_POPR_RXDATA(x)      ((x) & 0x0000ffff)
90
91 #define SPI_TXFR0               0x3c
92 #define SPI_TXFR1               0x40
93 #define SPI_TXFR2               0x44
94 #define SPI_TXFR3               0x48
95 #define SPI_RXFR0               0x7c
96 #define SPI_RXFR1               0x80
97 #define SPI_RXFR2               0x84
98 #define SPI_RXFR3               0x88
99
100 #define SPI_FRAME_BITS(bits)    SPI_CTAR_FMSZ((bits) - 1)
101 #define SPI_FRAME_BITS_MASK     SPI_CTAR_FMSZ(0xf)
102 #define SPI_FRAME_BITS_16       SPI_CTAR_FMSZ(0xf)
103 #define SPI_FRAME_BITS_8        SPI_CTAR_FMSZ(0x7)
104
105 #define SPI_CS_INIT             0x01
106 #define SPI_CS_ASSERT           0x02
107 #define SPI_CS_DROP             0x04
108
109 #define SPI_TCR_TCNT_MAX        0x10000
110
111 struct chip_data {
112         u32 mcr_val;
113         u32 ctar_val;
114         u16 void_write_data;
115 };
116
117 enum dspi_trans_mode {
118         DSPI_EOQ_MODE = 0,
119         DSPI_TCFQ_MODE,
120 };
121
122 struct fsl_dspi_devtype_data {
123         enum dspi_trans_mode trans_mode;
124 };
125
126 static const struct fsl_dspi_devtype_data vf610_data = {
127         .trans_mode = DSPI_EOQ_MODE,
128 };
129
130 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
131         .trans_mode = DSPI_TCFQ_MODE,
132 };
133
134 static const struct fsl_dspi_devtype_data ls2085a_data = {
135         .trans_mode = DSPI_TCFQ_MODE,
136 };
137
138 struct fsl_dspi {
139         struct spi_master       *master;
140         struct platform_device  *pdev;
141
142         struct regmap           *regmap;
143         int                     irq;
144         struct clk              *clk;
145
146         struct spi_transfer     *cur_transfer;
147         struct spi_message      *cur_msg;
148         struct chip_data        *cur_chip;
149         size_t                  len;
150         void                    *tx;
151         void                    *tx_end;
152         void                    *rx;
153         void                    *rx_end;
154         char                    dataflags;
155         u8                      cs;
156         u16                     void_write_data;
157         u32                     cs_change;
158         struct fsl_dspi_devtype_data *devtype_data;
159
160         wait_queue_head_t       waitq;
161         u32                     waitflags;
162
163         u32                     spi_tcnt;
164 };
165
166 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
167 {
168         unsigned int val;
169
170         regmap_read(dspi->regmap, SPI_CTAR(0), &val);
171
172         return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
173 }
174
175 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
176                 unsigned long clkrate)
177 {
178         /* Valid baud rate pre-scaler values */
179         int pbr_tbl[4] = {2, 3, 5, 7};
180         int brs[16] = { 2,      4,      6,      8,
181                 16,     32,     64,     128,
182                 256,    512,    1024,   2048,
183                 4096,   8192,   16384,  32768 };
184         int scale_needed, scale, minscale = INT_MAX;
185         int i, j;
186
187         scale_needed = clkrate / speed_hz;
188         if (clkrate % speed_hz)
189                 scale_needed++;
190
191         for (i = 0; i < ARRAY_SIZE(brs); i++)
192                 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
193                         scale = brs[i] * pbr_tbl[j];
194                         if (scale >= scale_needed) {
195                                 if (scale < minscale) {
196                                         minscale = scale;
197                                         *br = i;
198                                         *pbr = j;
199                                 }
200                                 break;
201                         }
202                 }
203
204         if (minscale == INT_MAX) {
205                 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
206                         speed_hz, clkrate);
207                 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
208                 *br =  ARRAY_SIZE(brs) - 1;
209         }
210 }
211
212 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
213                 unsigned long clkrate)
214 {
215         int pscale_tbl[4] = {1, 3, 5, 7};
216         int scale_needed, scale, minscale = INT_MAX;
217         int i, j;
218         u32 remainder;
219
220         scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
221                         &remainder);
222         if (remainder)
223                 scale_needed++;
224
225         for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
226                 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
227                         scale = pscale_tbl[i] * (2 << j);
228                         if (scale >= scale_needed) {
229                                 if (scale < minscale) {
230                                         minscale = scale;
231                                         *psc = i;
232                                         *sc = j;
233                                 }
234                                 break;
235                         }
236                 }
237
238         if (minscale == INT_MAX) {
239                 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
240                         delay_ns, clkrate);
241                 *psc = ARRAY_SIZE(pscale_tbl) - 1;
242                 *sc = SPI_CTAR_SCALE_BITS;
243         }
244 }
245
246 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
247 {
248         u16 d16;
249
250         if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
251                 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
252         else
253                 d16 = dspi->void_write_data;
254
255         dspi->tx += tx_word + 1;
256         dspi->len -= tx_word + 1;
257
258         return  SPI_PUSHR_TXDATA(d16) |
259                 SPI_PUSHR_PCS(dspi->cs) |
260                 SPI_PUSHR_CTAS(0) |
261                 SPI_PUSHR_CONT;
262 }
263
264 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
265 {
266         u16 d;
267         unsigned int val;
268
269         regmap_read(dspi->regmap, SPI_POPR, &val);
270         d = SPI_POPR_RXDATA(val);
271
272         if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
273                 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
274
275         dspi->rx += rx_word + 1;
276 }
277
278 static int dspi_eoq_write(struct fsl_dspi *dspi)
279 {
280         int tx_count = 0;
281         int tx_word;
282         u32 dspi_pushr = 0;
283
284         tx_word = is_double_byte_mode(dspi);
285
286         while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
287                 /* If we are in word mode, only have a single byte to transfer
288                  * switch to byte mode temporarily.  Will switch back at the
289                  * end of the transfer.
290                  */
291                 if (tx_word && (dspi->len == 1)) {
292                         dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
293                         regmap_update_bits(dspi->regmap, SPI_CTAR(0),
294                                         SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
295                         tx_word = 0;
296                 }
297
298                 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
299
300                 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
301                         /* last transfer in the transfer */
302                         dspi_pushr |= SPI_PUSHR_EOQ;
303                         if ((dspi->cs_change) && (!dspi->len))
304                                 dspi_pushr &= ~SPI_PUSHR_CONT;
305                 } else if (tx_word && (dspi->len == 1))
306                         dspi_pushr |= SPI_PUSHR_EOQ;
307
308                 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
309
310                 tx_count++;
311         }
312
313         return tx_count * (tx_word + 1);
314 }
315
316 static int dspi_eoq_read(struct fsl_dspi *dspi)
317 {
318         int rx_count = 0;
319         int rx_word = is_double_byte_mode(dspi);
320
321         while ((dspi->rx < dspi->rx_end)
322                         && (rx_count < DSPI_FIFO_SIZE)) {
323                 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
324                         rx_word = 0;
325
326                 dspi_data_from_popr(dspi, rx_word);
327                 rx_count++;
328         }
329
330         return rx_count;
331 }
332
333 static int dspi_tcfq_write(struct fsl_dspi *dspi)
334 {
335         int tx_word;
336         u32 dspi_pushr = 0;
337
338         tx_word = is_double_byte_mode(dspi);
339
340         if (tx_word && (dspi->len == 1)) {
341                 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
342                 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
343                                 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
344                 tx_word = 0;
345         }
346
347         dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
348
349         if ((dspi->cs_change) && (!dspi->len))
350                 dspi_pushr &= ~SPI_PUSHR_CONT;
351
352         regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
353
354         return tx_word + 1;
355 }
356
357 static void dspi_tcfq_read(struct fsl_dspi *dspi)
358 {
359         int rx_word = is_double_byte_mode(dspi);
360
361         if (rx_word && (dspi->rx_end - dspi->rx) == 1)
362                 rx_word = 0;
363
364         dspi_data_from_popr(dspi, rx_word);
365 }
366
367 static int dspi_transfer_one_message(struct spi_master *master,
368                 struct spi_message *message)
369 {
370         struct fsl_dspi *dspi = spi_master_get_devdata(master);
371         struct spi_device *spi = message->spi;
372         struct spi_transfer *transfer;
373         int status = 0;
374         enum dspi_trans_mode trans_mode;
375         u32 spi_tcr;
376
377         regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
378         dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
379
380         message->actual_length = 0;
381
382         list_for_each_entry(transfer, &message->transfers, transfer_list) {
383                 dspi->cur_transfer = transfer;
384                 dspi->cur_msg = message;
385                 dspi->cur_chip = spi_get_ctldata(spi);
386                 dspi->cs = spi->chip_select;
387                 dspi->cs_change = 0;
388                 if (dspi->cur_transfer->transfer_list.next
389                                 == &dspi->cur_msg->transfers)
390                         dspi->cs_change = 1;
391                 dspi->void_write_data = dspi->cur_chip->void_write_data;
392
393                 dspi->dataflags = 0;
394                 dspi->tx = (void *)transfer->tx_buf;
395                 dspi->tx_end = dspi->tx + transfer->len;
396                 dspi->rx = transfer->rx_buf;
397                 dspi->rx_end = dspi->rx + transfer->len;
398                 dspi->len = transfer->len;
399
400                 if (!dspi->rx)
401                         dspi->dataflags |= TRAN_STATE_RX_VOID;
402
403                 if (!dspi->tx)
404                         dspi->dataflags |= TRAN_STATE_TX_VOID;
405
406                 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
407                 regmap_update_bits(dspi->regmap, SPI_MCR,
408                                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
409                                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
410                 regmap_write(dspi->regmap, SPI_CTAR(0),
411                                 dspi->cur_chip->ctar_val);
412
413                 trans_mode = dspi->devtype_data->trans_mode;
414                 switch (trans_mode) {
415                 case DSPI_EOQ_MODE:
416                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
417                         dspi_eoq_write(dspi);
418                         break;
419                 case DSPI_TCFQ_MODE:
420                         regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
421                         dspi_tcfq_write(dspi);
422                         break;
423                 default:
424                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
425                                 trans_mode);
426                         status = -EINVAL;
427                         goto out;
428                 }
429
430                 if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
431                         dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
432                 dspi->waitflags = 0;
433
434                 if (transfer->delay_usecs)
435                         udelay(transfer->delay_usecs);
436         }
437
438 out:
439         message->status = status;
440         spi_finalize_current_message(master);
441
442         return status;
443 }
444
445 static int dspi_setup(struct spi_device *spi)
446 {
447         struct chip_data *chip;
448         struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
449         u32 cs_sck_delay = 0, sck_cs_delay = 0;
450         unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
451         unsigned char pasc = 0, asc = 0, fmsz = 0;
452         unsigned long clkrate;
453
454         if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
455                 fmsz = spi->bits_per_word - 1;
456         } else {
457                 pr_err("Invalid wordsize\n");
458                 return -ENODEV;
459         }
460
461         /* Only alloc on first setup */
462         chip = spi_get_ctldata(spi);
463         if (chip == NULL) {
464                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
465                 if (!chip)
466                         return -ENOMEM;
467         }
468
469         of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
470                         &cs_sck_delay);
471
472         of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
473                         &sck_cs_delay);
474
475         chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
476                 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
477
478         chip->void_write_data = 0;
479
480         clkrate = clk_get_rate(dspi->clk);
481         hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
482
483         /* Set PCS to SCK delay scale values */
484         ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
485
486         /* Set After SCK delay scale values */
487         ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
488
489         chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
490                 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
491                 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
492                 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
493                 | SPI_CTAR_PCSSCK(pcssck)
494                 | SPI_CTAR_CSSCK(cssck)
495                 | SPI_CTAR_PASC(pasc)
496                 | SPI_CTAR_ASC(asc)
497                 | SPI_CTAR_PBR(pbr)
498                 | SPI_CTAR_BR(br);
499
500         spi_set_ctldata(spi, chip);
501
502         return 0;
503 }
504
505 static void dspi_cleanup(struct spi_device *spi)
506 {
507         struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
508
509         dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
510                         spi->master->bus_num, spi->chip_select);
511
512         kfree(chip);
513 }
514
515 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
516 {
517         struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
518         struct spi_message *msg = dspi->cur_msg;
519         enum dspi_trans_mode trans_mode;
520         u32 spi_sr, spi_tcr;
521         u32 spi_tcnt, tcnt_diff;
522         int tx_word;
523
524         regmap_read(dspi->regmap, SPI_SR, &spi_sr);
525         regmap_write(dspi->regmap, SPI_SR, spi_sr);
526
527
528         if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
529                 tx_word = is_double_byte_mode(dspi);
530
531                 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
532                 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
533                 /*
534                  * The width of SPI Transfer Counter in SPI_TCR is 16bits,
535                  * so the max couner is 65535. When the counter reach 65535,
536                  * it will wrap around, counter reset to zero.
537                  * spi_tcnt my be less than dspi->spi_tcnt, it means the
538                  * counter already wrapped around.
539                  * SPI Transfer Counter is a counter of transmitted frames.
540                  * The size of frame maybe two bytes.
541                  */
542                 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
543                         % SPI_TCR_TCNT_MAX;
544                 tcnt_diff *= (tx_word + 1);
545                 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
546                         tcnt_diff--;
547
548                 msg->actual_length += tcnt_diff;
549
550                 dspi->spi_tcnt = spi_tcnt;
551
552                 trans_mode = dspi->devtype_data->trans_mode;
553                 switch (trans_mode) {
554                 case DSPI_EOQ_MODE:
555                         dspi_eoq_read(dspi);
556                         break;
557                 case DSPI_TCFQ_MODE:
558                         dspi_tcfq_read(dspi);
559                         break;
560                 default:
561                         dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
562                                 trans_mode);
563                                 return IRQ_HANDLED;
564                 }
565
566                 if (!dspi->len) {
567                         if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
568                                 regmap_update_bits(dspi->regmap,
569                                                    SPI_CTAR(0),
570                                                    SPI_FRAME_BITS_MASK,
571                                                    SPI_FRAME_BITS(16));
572                                 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
573                         }
574
575                         dspi->waitflags = 1;
576                         wake_up_interruptible(&dspi->waitq);
577                 } else {
578                         switch (trans_mode) {
579                         case DSPI_EOQ_MODE:
580                                 dspi_eoq_write(dspi);
581                                 break;
582                         case DSPI_TCFQ_MODE:
583                                 dspi_tcfq_write(dspi);
584                                 break;
585                         default:
586                                 dev_err(&dspi->pdev->dev,
587                                         "unsupported trans_mode %u\n",
588                                         trans_mode);
589                         }
590                 }
591         }
592
593         return IRQ_HANDLED;
594 }
595
596 static const struct of_device_id fsl_dspi_dt_ids[] = {
597         { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
598         { .compatible = "fsl,ls1021a-v1.0-dspi",
599                 .data = (void *)&ls1021a_v1_data, },
600         { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
601         { /* sentinel */ }
602 };
603 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
604
605 #ifdef CONFIG_PM_SLEEP
606 static int dspi_suspend(struct device *dev)
607 {
608         struct spi_master *master = dev_get_drvdata(dev);
609         struct fsl_dspi *dspi = spi_master_get_devdata(master);
610
611         spi_master_suspend(master);
612         clk_disable_unprepare(dspi->clk);
613
614         pinctrl_pm_select_sleep_state(dev);
615
616         return 0;
617 }
618
619 static int dspi_resume(struct device *dev)
620 {
621         struct spi_master *master = dev_get_drvdata(dev);
622         struct fsl_dspi *dspi = spi_master_get_devdata(master);
623
624         pinctrl_pm_select_default_state(dev);
625
626         clk_prepare_enable(dspi->clk);
627         spi_master_resume(master);
628
629         return 0;
630 }
631 #endif /* CONFIG_PM_SLEEP */
632
633 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
634
635 static const struct regmap_config dspi_regmap_config = {
636         .reg_bits = 32,
637         .val_bits = 32,
638         .reg_stride = 4,
639         .max_register = 0x88,
640 };
641
642 static int dspi_probe(struct platform_device *pdev)
643 {
644         struct device_node *np = pdev->dev.of_node;
645         struct spi_master *master;
646         struct fsl_dspi *dspi;
647         struct resource *res;
648         void __iomem *base;
649         int ret = 0, cs_num, bus_num;
650         const struct of_device_id *of_id =
651                         of_match_device(fsl_dspi_dt_ids, &pdev->dev);
652
653         master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
654         if (!master)
655                 return -ENOMEM;
656
657         dspi = spi_master_get_devdata(master);
658         dspi->pdev = pdev;
659         dspi->master = master;
660
661         master->transfer = NULL;
662         master->setup = dspi_setup;
663         master->transfer_one_message = dspi_transfer_one_message;
664         master->dev.of_node = pdev->dev.of_node;
665
666         master->cleanup = dspi_cleanup;
667         master->mode_bits = SPI_CPOL | SPI_CPHA;
668         master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
669                                         SPI_BPW_MASK(16);
670
671         ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
672         if (ret < 0) {
673                 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
674                 goto out_master_put;
675         }
676         master->num_chipselect = cs_num;
677
678         ret = of_property_read_u32(np, "bus-num", &bus_num);
679         if (ret < 0) {
680                 dev_err(&pdev->dev, "can't get bus-num\n");
681                 goto out_master_put;
682         }
683         master->bus_num = bus_num;
684
685         dspi->devtype_data = (struct fsl_dspi_devtype_data *)of_id->data;
686         if (!dspi->devtype_data) {
687                 dev_err(&pdev->dev, "can't get devtype_data\n");
688                 ret = -EFAULT;
689                 goto out_master_put;
690         }
691
692         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
693         base = devm_ioremap_resource(&pdev->dev, res);
694         if (IS_ERR(base)) {
695                 ret = PTR_ERR(base);
696                 goto out_master_put;
697         }
698
699         dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
700                                                 &dspi_regmap_config);
701         if (IS_ERR(dspi->regmap)) {
702                 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
703                                 PTR_ERR(dspi->regmap));
704                 return PTR_ERR(dspi->regmap);
705         }
706
707         dspi->irq = platform_get_irq(pdev, 0);
708         if (dspi->irq < 0) {
709                 dev_err(&pdev->dev, "can't get platform irq\n");
710                 ret = dspi->irq;
711                 goto out_master_put;
712         }
713
714         ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
715                         pdev->name, dspi);
716         if (ret < 0) {
717                 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
718                 goto out_master_put;
719         }
720
721         dspi->clk = devm_clk_get(&pdev->dev, "dspi");
722         if (IS_ERR(dspi->clk)) {
723                 ret = PTR_ERR(dspi->clk);
724                 dev_err(&pdev->dev, "unable to get clock\n");
725                 goto out_master_put;
726         }
727         clk_prepare_enable(dspi->clk);
728
729         init_waitqueue_head(&dspi->waitq);
730         platform_set_drvdata(pdev, master);
731
732         ret = spi_register_master(master);
733         if (ret != 0) {
734                 dev_err(&pdev->dev, "Problem registering DSPI master\n");
735                 goto out_clk_put;
736         }
737
738         return ret;
739
740 out_clk_put:
741         clk_disable_unprepare(dspi->clk);
742 out_master_put:
743         spi_master_put(master);
744
745         return ret;
746 }
747
748 static int dspi_remove(struct platform_device *pdev)
749 {
750         struct spi_master *master = platform_get_drvdata(pdev);
751         struct fsl_dspi *dspi = spi_master_get_devdata(master);
752
753         /* Disconnect from the SPI framework */
754         clk_disable_unprepare(dspi->clk);
755         spi_unregister_master(dspi->master);
756
757         return 0;
758 }
759
760 static struct platform_driver fsl_dspi_driver = {
761         .driver.name    = DRIVER_NAME,
762         .driver.of_match_table = fsl_dspi_dt_ids,
763         .driver.owner   = THIS_MODULE,
764         .driver.pm = &dspi_pm,
765         .probe          = dspi_probe,
766         .remove         = dspi_remove,
767 };
768 module_platform_driver(fsl_dspi_driver);
769
770 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
771 MODULE_LICENSE("GPL");
772 MODULE_ALIAS("platform:" DRIVER_NAME);