GNU Linux-libre 4.4.292-gnu1
[releases.git] / drivers / spi / spi-dw-mid.c
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/pci.h>
27 #include <linux/platform_data/dma-dw.h>
28
29 #define RX_BUSY         0
30 #define TX_BUSY         1
31
32 static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
33 static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
34
35 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
36 {
37         struct dw_dma_slave *s = param;
38
39         if (s->dma_dev != chan->device->dev)
40                 return false;
41
42         chan->private = s;
43         return true;
44 }
45
46 static int mid_spi_dma_init(struct dw_spi *dws)
47 {
48         struct pci_dev *dma_dev;
49         struct dw_dma_slave *tx = dws->dma_tx;
50         struct dw_dma_slave *rx = dws->dma_rx;
51         dma_cap_mask_t mask;
52
53         /*
54          * Get pci device for DMA controller, currently it could only
55          * be the DMA controller of Medfield
56          */
57         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
58         if (!dma_dev)
59                 return -ENODEV;
60
61         dma_cap_zero(mask);
62         dma_cap_set(DMA_SLAVE, mask);
63
64         /* 1. Init rx channel */
65         rx->dma_dev = &dma_dev->dev;
66         dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
67         if (!dws->rxchan)
68                 goto err_exit;
69         dws->master->dma_rx = dws->rxchan;
70
71         /* 2. Init tx channel */
72         tx->dma_dev = &dma_dev->dev;
73         dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
74         if (!dws->txchan)
75                 goto free_rxchan;
76         dws->master->dma_tx = dws->txchan;
77
78         dws->dma_inited = 1;
79         return 0;
80
81 free_rxchan:
82         dma_release_channel(dws->rxchan);
83 err_exit:
84         return -EBUSY;
85 }
86
87 static void mid_spi_dma_exit(struct dw_spi *dws)
88 {
89         if (!dws->dma_inited)
90                 return;
91
92         dmaengine_terminate_all(dws->txchan);
93         dma_release_channel(dws->txchan);
94
95         dmaengine_terminate_all(dws->rxchan);
96         dma_release_channel(dws->rxchan);
97 }
98
99 static irqreturn_t dma_transfer(struct dw_spi *dws)
100 {
101         u16 irq_status = dw_readl(dws, DW_SPI_ISR);
102
103         if (!irq_status)
104                 return IRQ_NONE;
105
106         dw_readl(dws, DW_SPI_ICR);
107         spi_reset_chip(dws);
108
109         dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
110         dws->master->cur_msg->status = -EIO;
111         spi_finalize_current_transfer(dws->master);
112         return IRQ_HANDLED;
113 }
114
115 static bool mid_spi_can_dma(struct spi_master *master, struct spi_device *spi,
116                 struct spi_transfer *xfer)
117 {
118         struct dw_spi *dws = spi_master_get_devdata(master);
119
120         if (!dws->dma_inited)
121                 return false;
122
123         return xfer->len > dws->fifo_len;
124 }
125
126 static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
127         if (dma_width == 1)
128                 return DMA_SLAVE_BUSWIDTH_1_BYTE;
129         else if (dma_width == 2)
130                 return DMA_SLAVE_BUSWIDTH_2_BYTES;
131
132         return DMA_SLAVE_BUSWIDTH_UNDEFINED;
133 }
134
135 /*
136  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
137  * channel will clear a corresponding bit.
138  */
139 static void dw_spi_dma_tx_done(void *arg)
140 {
141         struct dw_spi *dws = arg;
142
143         clear_bit(TX_BUSY, &dws->dma_chan_busy);
144         if (test_bit(RX_BUSY, &dws->dma_chan_busy))
145                 return;
146         spi_finalize_current_transfer(dws->master);
147 }
148
149 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
150                 struct spi_transfer *xfer)
151 {
152         struct dma_slave_config txconf;
153         struct dma_async_tx_descriptor *txdesc;
154
155         if (!xfer->tx_buf)
156                 return NULL;
157
158         memset(&txconf, 0, sizeof(txconf));
159         txconf.direction = DMA_MEM_TO_DEV;
160         txconf.dst_addr = dws->dma_addr;
161         txconf.dst_maxburst = 16;
162         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
163         txconf.dst_addr_width = convert_dma_width(dws->dma_width);
164         txconf.device_fc = false;
165
166         dmaengine_slave_config(dws->txchan, &txconf);
167
168         txdesc = dmaengine_prep_slave_sg(dws->txchan,
169                                 xfer->tx_sg.sgl,
170                                 xfer->tx_sg.nents,
171                                 DMA_MEM_TO_DEV,
172                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
173         if (!txdesc)
174                 return NULL;
175
176         txdesc->callback = dw_spi_dma_tx_done;
177         txdesc->callback_param = dws;
178
179         return txdesc;
180 }
181
182 /*
183  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
184  * channel will clear a corresponding bit.
185  */
186 static void dw_spi_dma_rx_done(void *arg)
187 {
188         struct dw_spi *dws = arg;
189
190         clear_bit(RX_BUSY, &dws->dma_chan_busy);
191         if (test_bit(TX_BUSY, &dws->dma_chan_busy))
192                 return;
193         spi_finalize_current_transfer(dws->master);
194 }
195
196 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
197                 struct spi_transfer *xfer)
198 {
199         struct dma_slave_config rxconf;
200         struct dma_async_tx_descriptor *rxdesc;
201
202         if (!xfer->rx_buf)
203                 return NULL;
204
205         memset(&rxconf, 0, sizeof(rxconf));
206         rxconf.direction = DMA_DEV_TO_MEM;
207         rxconf.src_addr = dws->dma_addr;
208         rxconf.src_maxburst = 16;
209         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
210         rxconf.src_addr_width = convert_dma_width(dws->dma_width);
211         rxconf.device_fc = false;
212
213         dmaengine_slave_config(dws->rxchan, &rxconf);
214
215         rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
216                                 xfer->rx_sg.sgl,
217                                 xfer->rx_sg.nents,
218                                 DMA_DEV_TO_MEM,
219                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
220         if (!rxdesc)
221                 return NULL;
222
223         rxdesc->callback = dw_spi_dma_rx_done;
224         rxdesc->callback_param = dws;
225
226         return rxdesc;
227 }
228
229 static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
230 {
231         u16 imr = 0, dma_ctrl = 0;
232
233         dw_writel(dws, DW_SPI_DMARDLR, 0xf);
234         dw_writel(dws, DW_SPI_DMATDLR, 0x10);
235
236         if (xfer->tx_buf) {
237                 dma_ctrl |= SPI_DMA_TDMAE;
238                 imr |= SPI_INT_TXOI;
239         }
240         if (xfer->rx_buf) {
241                 dma_ctrl |= SPI_DMA_RDMAE;
242                 imr |= SPI_INT_RXUI | SPI_INT_RXOI;
243         }
244         dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
245
246         /* Set the interrupt mask */
247         spi_umask_intr(dws, imr);
248
249         dws->transfer_handler = dma_transfer;
250
251         return 0;
252 }
253
254 static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
255 {
256         struct dma_async_tx_descriptor *txdesc, *rxdesc;
257
258         /* Prepare the TX dma transfer */
259         txdesc = dw_spi_dma_prepare_tx(dws, xfer);
260
261         /* Prepare the RX dma transfer */
262         rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
263
264         /* rx must be started before tx due to spi instinct */
265         if (rxdesc) {
266                 set_bit(RX_BUSY, &dws->dma_chan_busy);
267                 dmaengine_submit(rxdesc);
268                 dma_async_issue_pending(dws->rxchan);
269         }
270
271         if (txdesc) {
272                 set_bit(TX_BUSY, &dws->dma_chan_busy);
273                 dmaengine_submit(txdesc);
274                 dma_async_issue_pending(dws->txchan);
275         }
276
277         return 1;
278 }
279
280 static void mid_spi_dma_stop(struct dw_spi *dws)
281 {
282         if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
283                 dmaengine_terminate_all(dws->txchan);
284                 clear_bit(TX_BUSY, &dws->dma_chan_busy);
285         }
286         if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
287                 dmaengine_terminate_all(dws->rxchan);
288                 clear_bit(RX_BUSY, &dws->dma_chan_busy);
289         }
290 }
291
292 static struct dw_spi_dma_ops mid_dma_ops = {
293         .dma_init       = mid_spi_dma_init,
294         .dma_exit       = mid_spi_dma_exit,
295         .dma_setup      = mid_spi_dma_setup,
296         .can_dma        = mid_spi_can_dma,
297         .dma_transfer   = mid_spi_dma_transfer,
298         .dma_stop       = mid_spi_dma_stop,
299 };
300 #endif
301
302 /* Some specific info for SPI0 controller on Intel MID */
303
304 /* HW info for MRST Clk Control Unit, 32b reg per controller */
305 #define MRST_SPI_CLK_BASE       100000000       /* 100m */
306 #define MRST_CLK_SPI_REG        0xff11d86c
307 #define CLK_SPI_BDIV_OFFSET     0
308 #define CLK_SPI_BDIV_MASK       0x00000007
309 #define CLK_SPI_CDIV_OFFSET     9
310 #define CLK_SPI_CDIV_MASK       0x00000e00
311 #define CLK_SPI_DISABLE_OFFSET  8
312
313 int dw_spi_mid_init(struct dw_spi *dws)
314 {
315         void __iomem *clk_reg;
316         u32 clk_cdiv;
317
318         clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
319         if (!clk_reg)
320                 return -ENOMEM;
321
322         /* Get SPI controller operating freq info */
323         clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
324         clk_cdiv &= CLK_SPI_CDIV_MASK;
325         clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
326         dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
327
328         iounmap(clk_reg);
329
330 #ifdef CONFIG_SPI_DW_MID_DMA
331         dws->dma_tx = &mid_dma_tx;
332         dws->dma_rx = &mid_dma_rx;
333         dws->dma_ops = &mid_dma_ops;
334 #endif
335         return 0;
336 }