GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / spi / spi-bcm-qspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26
27 #define DRIVER_NAME "bcm_qspi"
28
29
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID                        0x000
32 #define BSPI_SCRATCH                            0x004
33 #define BSPI_MAST_N_BOOT_CTRL                   0x008
34 #define BSPI_BUSY_STATUS                        0x00c
35 #define BSPI_INTR_STATUS                        0x010
36 #define BSPI_B0_STATUS                          0x014
37 #define BSPI_B0_CTRL                            0x018
38 #define BSPI_B1_STATUS                          0x01c
39 #define BSPI_B1_CTRL                            0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
41 #define BSPI_FLEX_MODE_ENABLE                   0x028
42 #define BSPI_BITS_PER_CYCLE                     0x02c
43 #define BSPI_BITS_PER_PHASE                     0x030
44 #define BSPI_CMD_AND_MODE_BYTE                  0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46 #define BSPI_BSPI_XOR_VALUE                     0x03c
47 #define BSPI_BSPI_XOR_ENABLE                    0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
49 #define BSPI_BSPI_PIO_IODIR                     0x048
50 #define BSPI_BSPI_PIO_DATA                      0x04c
51
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR                     0x100
54 #define BSPI_RAF_NUM_WORDS                      0x104
55 #define BSPI_RAF_CTRL                           0x108
56 #define BSPI_RAF_FULLNESS                       0x10c
57 #define BSPI_RAF_WATERMARK                      0x110
58 #define BSPI_RAF_STATUS                 0x114
59 #define BSPI_RAF_READ_DATA                      0x118
60 #define BSPI_RAF_WORD_CNT                       0x11c
61 #define BSPI_RAF_CURR_ADDR                      0x120
62
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
69
70 #define BSPI_ADDRLEN_3BYTES                     3
71 #define BSPI_ADDRLEN_4BYTES                     4
72
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
74
75 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
77
78 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
80
81 #define BSPI_READ_LENGTH                        256
82
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB                          0x000
85 #define MSPI_SPCR0_MSB                          0x004
86 #define MSPI_SPCR1_LSB                          0x008
87 #define MSPI_SPCR1_MSB                          0x00c
88 #define MSPI_NEWQP                              0x010
89 #define MSPI_ENDQP                              0x014
90 #define MSPI_SPCR2                              0x018
91 #define MSPI_MSPI_STATUS                        0x020
92 #define MSPI_CPTQP                              0x024
93 #define MSPI_SPCR3                              0x028
94 #define MSPI_REV                                0x02c
95 #define MSPI_TXRAM                              0x040
96 #define MSPI_RXRAM                              0x0c0
97 #define MSPI_CDRAM                              0x140
98 #define MSPI_WRITE_LOCK                 0x180
99
100 #define MSPI_MASTER_BIT                 BIT(7)
101
102 #define MSPI_NUM_CDRAM                          16
103 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
104 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
105 #define MSPI_CDRAM_PCS                          0xf
106
107 #define MSPI_SPCR2_SPE                          BIT(6)
108 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
109
110 #define MSPI_SPCR3_FASTBR                       BIT(0)
111 #define MSPI_SPCR3_FASTDT                       BIT(1)
112 #define MSPI_SPCR3_SYSCLKSEL_MASK               GENMASK(11, 10)
113 #define MSPI_SPCR3_SYSCLKSEL_27                 (MSPI_SPCR3_SYSCLKSEL_MASK & \
114                                                  ~(BIT(10) | BIT(11)))
115 #define MSPI_SPCR3_SYSCLKSEL_108                (MSPI_SPCR3_SYSCLKSEL_MASK & \
116                                                  BIT(11))
117
118 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
119
120 #define INTR_BASE_BIT_SHIFT                     0x02
121 #define INTR_COUNT                              0x07
122
123 #define NUM_CHIPSELECT                          4
124 #define QSPI_SPBR_MAX                           255U
125 #define MSPI_BASE_FREQ                          27000000UL
126
127 #define OPCODE_DIOR                             0xBB
128 #define OPCODE_QIOR                             0xEB
129 #define OPCODE_DIOR_4B                          0xBC
130 #define OPCODE_QIOR_4B                          0xEC
131
132 #define MAX_CMD_SIZE                            6
133
134 #define ADDR_4MB_MASK                           GENMASK(22, 0)
135
136 /* stop at end of transfer, no other reason */
137 #define TRANS_STATUS_BREAK_NONE         0
138 /* stop at end of spi_message */
139 #define TRANS_STATUS_BREAK_EOM                  1
140 /* stop at end of spi_transfer if delay */
141 #define TRANS_STATUS_BREAK_DELAY                2
142 /* stop at end of spi_transfer if cs_change */
143 #define TRANS_STATUS_BREAK_CS_CHANGE            4
144 /* stop if we run out of bytes */
145 #define TRANS_STATUS_BREAK_NO_BYTES             8
146
147 /* events that make us stop filling TX slots */
148 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
149                                TRANS_STATUS_BREAK_DELAY |               \
150                                TRANS_STATUS_BREAK_CS_CHANGE)
151
152 /* events that make us deassert CS */
153 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
154                                      TRANS_STATUS_BREAK_CS_CHANGE)
155
156 struct bcm_qspi_parms {
157         u32 speed_hz;
158         u8 mode;
159         u8 bits_per_word;
160 };
161
162 struct bcm_xfer_mode {
163         bool flex_mode;
164         unsigned int width;
165         unsigned int addrlen;
166         unsigned int hp;
167 };
168
169 enum base_type {
170         MSPI,
171         BSPI,
172         CHIP_SELECT,
173         BASEMAX,
174 };
175
176 enum irq_source {
177         SINGLE_L2,
178         MUXED_L1,
179 };
180
181 struct bcm_qspi_irq {
182         const char *irq_name;
183         const irq_handler_t irq_handler;
184         int irq_source;
185         u32 mask;
186 };
187
188 struct bcm_qspi_dev_id {
189         const struct bcm_qspi_irq *irqp;
190         void *dev;
191 };
192
193
194 struct qspi_trans {
195         struct spi_transfer *trans;
196         int byte;
197         bool mspi_last_trans;
198 };
199
200 struct bcm_qspi {
201         struct platform_device *pdev;
202         struct spi_master *master;
203         struct clk *clk;
204         u32 base_clk;
205         u32 max_speed_hz;
206         void __iomem *base[BASEMAX];
207
208         /* Some SoCs provide custom interrupt status register(s) */
209         struct bcm_qspi_soc_intc        *soc_intc;
210
211         struct bcm_qspi_parms last_parms;
212         struct qspi_trans  trans_pos;
213         int curr_cs;
214         int bspi_maj_rev;
215         int bspi_min_rev;
216         int bspi_enabled;
217         const struct spi_mem_op *bspi_rf_op;
218         u32 bspi_rf_op_idx;
219         u32 bspi_rf_op_len;
220         u32 bspi_rf_op_status;
221         struct bcm_xfer_mode xfer_mode;
222         u32 s3_strap_override_ctrl;
223         bool bspi_mode;
224         bool big_endian;
225         int num_irqs;
226         struct bcm_qspi_dev_id *dev_ids;
227         struct completion mspi_done;
228         struct completion bspi_done;
229         u8 mspi_maj_rev;
230         u8 mspi_min_rev;
231         bool mspi_spcr3_sysclk;
232 };
233
234 static inline bool has_bspi(struct bcm_qspi *qspi)
235 {
236         return qspi->bspi_mode;
237 }
238
239 /* hardware supports spcr3 and fast baud-rate  */
240 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
241 {
242         if (!has_bspi(qspi) &&
243             ((qspi->mspi_maj_rev >= 1) &&
244              (qspi->mspi_min_rev >= 5)))
245                 return true;
246
247         return false;
248 }
249
250 /* hardware supports sys clk 108Mhz  */
251 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
252 {
253         if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
254             ((qspi->mspi_maj_rev >= 1) &&
255              (qspi->mspi_min_rev >= 6))))
256                 return true;
257
258         return false;
259 }
260
261 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
262 {
263         if (bcm_qspi_has_fastbr(qspi))
264                 return 1;
265         else
266                 return 8;
267 }
268
269 /* Read qspi controller register*/
270 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
271                                 unsigned int offset)
272 {
273         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
274 }
275
276 /* Write qspi controller register*/
277 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
278                                   unsigned int offset, unsigned int data)
279 {
280         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
281 }
282
283 /* BSPI helpers */
284 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
285 {
286         int i;
287
288         /* this should normally finish within 10us */
289         for (i = 0; i < 1000; i++) {
290                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
291                         return 0;
292                 udelay(1);
293         }
294         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
295         return -EIO;
296 }
297
298 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
299 {
300         if (qspi->bspi_maj_rev < 4)
301                 return true;
302         return false;
303 }
304
305 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
306 {
307         bcm_qspi_bspi_busy_poll(qspi);
308         /* Force rising edge for the b0/b1 'flush' field */
309         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
310         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
311         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
312         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
313 }
314
315 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
316 {
317         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
318                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
319 }
320
321 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
322 {
323         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
324
325         /* BSPI v3 LR is LE only, convert data to host endianness */
326         if (bcm_qspi_bspi_ver_three(qspi))
327                 data = le32_to_cpu(data);
328
329         return data;
330 }
331
332 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
333 {
334         bcm_qspi_bspi_busy_poll(qspi);
335         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
336                        BSPI_RAF_CTRL_START_MASK);
337 }
338
339 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
340 {
341         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
342                        BSPI_RAF_CTRL_CLEAR_MASK);
343         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
344 }
345
346 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
347 {
348         u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
349         u32 data = 0;
350
351         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
352                 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
353         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
354                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
355                 if (likely(qspi->bspi_rf_op_len >= 4) &&
356                     IS_ALIGNED((uintptr_t)buf, 4)) {
357                         buf[qspi->bspi_rf_op_idx++] = data;
358                         qspi->bspi_rf_op_len -= 4;
359                 } else {
360                         /* Read out remaining bytes, make sure*/
361                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
362
363                         data = cpu_to_le32(data);
364                         while (qspi->bspi_rf_op_len) {
365                                 *cbuf++ = (u8)data;
366                                 data >>= 8;
367                                 qspi->bspi_rf_op_len--;
368                         }
369                 }
370         }
371 }
372
373 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
374                                           int bpp, int bpc, int flex_mode)
375 {
376         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
377         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
378         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
379         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
380         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
381 }
382
383 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
384                                        const struct spi_mem_op *op, int hp)
385 {
386         int bpc = 0, bpp = 0;
387         u8 command = op->cmd.opcode;
388         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
389         int addrlen = op->addr.nbytes;
390         int flex_mode = 1;
391
392         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
393                 width, addrlen, hp);
394
395         if (addrlen == BSPI_ADDRLEN_4BYTES)
396                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
397
398         bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
399
400         switch (width) {
401         case SPI_NBITS_SINGLE:
402                 if (addrlen == BSPI_ADDRLEN_3BYTES)
403                         /* default mode, does not need flex_cmd */
404                         flex_mode = 0;
405                 break;
406         case SPI_NBITS_DUAL:
407                 bpc = 0x00000001;
408                 if (hp) {
409                         bpc |= 0x00010100; /* address and mode are 2-bit */
410                         bpp = BSPI_BPP_MODE_SELECT_MASK;
411                 }
412                 break;
413         case SPI_NBITS_QUAD:
414                 bpc = 0x00000002;
415                 if (hp) {
416                         bpc |= 0x00020200; /* address and mode are 4-bit */
417                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
418                 }
419                 break;
420         default:
421                 return -EINVAL;
422         }
423
424         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
425
426         return 0;
427 }
428
429 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
430                                       const struct spi_mem_op *op, int hp)
431 {
432         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
433         int addrlen = op->addr.nbytes;
434         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
435
436         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
437                 width, addrlen, hp);
438
439         switch (width) {
440         case SPI_NBITS_SINGLE:
441                 /* clear quad/dual mode */
442                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
443                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
444                 break;
445         case SPI_NBITS_QUAD:
446                 /* clear dual mode and set quad mode */
447                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
448                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
449                 break;
450         case SPI_NBITS_DUAL:
451                 /* clear quad mode set dual mode */
452                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
453                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
454                 break;
455         default:
456                 return -EINVAL;
457         }
458
459         if (addrlen == BSPI_ADDRLEN_4BYTES)
460                 /* set 4byte mode*/
461                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
462         else
463                 /* clear 4 byte mode */
464                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
465
466         /* set the override mode */
467         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
468         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
469         bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
470
471         return 0;
472 }
473
474 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
475                                   const struct spi_mem_op *op, int hp)
476 {
477         int error = 0;
478         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
479         int addrlen = op->addr.nbytes;
480
481         /* default mode */
482         qspi->xfer_mode.flex_mode = true;
483
484         if (!bcm_qspi_bspi_ver_three(qspi)) {
485                 u32 val, mask;
486
487                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
488                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
489                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
490                         qspi->xfer_mode.flex_mode = false;
491                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
492                         error = bcm_qspi_bspi_set_override(qspi, op, hp);
493                 }
494         }
495
496         if (qspi->xfer_mode.flex_mode)
497                 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
498
499         if (error) {
500                 dev_warn(&qspi->pdev->dev,
501                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
502                          width, addrlen, hp);
503         } else if (qspi->xfer_mode.width != width ||
504                    qspi->xfer_mode.addrlen != addrlen ||
505                    qspi->xfer_mode.hp != hp) {
506                 qspi->xfer_mode.width = width;
507                 qspi->xfer_mode.addrlen = addrlen;
508                 qspi->xfer_mode.hp = hp;
509                 dev_dbg(&qspi->pdev->dev,
510                         "cs:%d %d-lane output, %d-byte address%s\n",
511                         qspi->curr_cs,
512                         qspi->xfer_mode.width,
513                         qspi->xfer_mode.addrlen,
514                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
515         }
516
517         return error;
518 }
519
520 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
521 {
522         if (!has_bspi(qspi))
523                 return;
524
525         qspi->bspi_enabled = 1;
526         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
527                 return;
528
529         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
530         udelay(1);
531         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
532         udelay(1);
533 }
534
535 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
536 {
537         if (!has_bspi(qspi))
538                 return;
539
540         qspi->bspi_enabled = 0;
541         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
542                 return;
543
544         bcm_qspi_bspi_busy_poll(qspi);
545         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
546         udelay(1);
547 }
548
549 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
550 {
551         u32 rd = 0;
552         u32 wr = 0;
553
554         if (cs >= 0 && qspi->base[CHIP_SELECT]) {
555                 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
556                 wr = (rd & ~0xff) | (1 << cs);
557                 if (rd == wr)
558                         return;
559                 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
560                 usleep_range(10, 20);
561         }
562
563         dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
564         qspi->curr_cs = cs;
565 }
566
567 /* MSPI helpers */
568 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
569                                   const struct bcm_qspi_parms *xp)
570 {
571         u32 spcr, spbr = 0;
572
573         if (xp->speed_hz)
574                 spbr = qspi->base_clk / (2 * xp->speed_hz);
575
576         spcr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
577         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
578
579         if (!qspi->mspi_maj_rev)
580                 /* legacy controller */
581                 spcr = MSPI_MASTER_BIT;
582         else
583                 spcr = 0;
584
585         /* for 16 bit the data should be zero */
586         if (xp->bits_per_word != 16)
587                 spcr |= xp->bits_per_word << 2;
588         spcr |= xp->mode & 3;
589
590         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
591
592         if (bcm_qspi_has_fastbr(qspi)) {
593                 spcr = 0;
594
595                 /* enable fastbr */
596                 spcr |= MSPI_SPCR3_FASTBR;
597
598                 if (bcm_qspi_has_sysclk_108(qspi)) {
599                         /* SYSCLK_108 */
600                         spcr |= MSPI_SPCR3_SYSCLKSEL_108;
601                         qspi->base_clk = MSPI_BASE_FREQ * 4;
602                         /* Change spbr as we changed sysclk */
603                         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, 4);
604                 }
605
606                 bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
607         }
608
609         qspi->last_parms = *xp;
610 }
611
612 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
613                                   struct spi_device *spi,
614                                   struct spi_transfer *trans)
615 {
616         struct bcm_qspi_parms xp;
617
618         xp.speed_hz = trans->speed_hz;
619         xp.bits_per_word = trans->bits_per_word;
620         xp.mode = spi->mode;
621
622         bcm_qspi_hw_set_parms(qspi, &xp);
623 }
624
625 static int bcm_qspi_setup(struct spi_device *spi)
626 {
627         struct bcm_qspi_parms *xp;
628
629         if (spi->bits_per_word > 16)
630                 return -EINVAL;
631
632         xp = spi_get_ctldata(spi);
633         if (!xp) {
634                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
635                 if (!xp)
636                         return -ENOMEM;
637                 spi_set_ctldata(spi, xp);
638         }
639         xp->speed_hz = spi->max_speed_hz;
640         xp->mode = spi->mode;
641
642         if (spi->bits_per_word)
643                 xp->bits_per_word = spi->bits_per_word;
644         else
645                 xp->bits_per_word = 8;
646
647         return 0;
648 }
649
650 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
651                                            struct qspi_trans *qt)
652 {
653         if (qt->mspi_last_trans &&
654             spi_transfer_is_last(qspi->master, qt->trans))
655                 return true;
656         else
657                 return false;
658 }
659
660 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
661                                         struct qspi_trans *qt, int flags)
662 {
663         int ret = TRANS_STATUS_BREAK_NONE;
664
665         /* count the last transferred bytes */
666         if (qt->trans->bits_per_word <= 8)
667                 qt->byte++;
668         else
669                 qt->byte += 2;
670
671         if (qt->byte >= qt->trans->len) {
672                 /* we're at the end of the spi_transfer */
673                 /* in TX mode, need to pause for a delay or CS change */
674                 if (qt->trans->delay_usecs &&
675                     (flags & TRANS_STATUS_BREAK_DELAY))
676                         ret |= TRANS_STATUS_BREAK_DELAY;
677                 if (qt->trans->cs_change &&
678                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
679                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
680
681                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
682                         ret |= TRANS_STATUS_BREAK_EOM;
683                 else
684                         ret |= TRANS_STATUS_BREAK_NO_BYTES;
685
686                 qt->trans = NULL;
687         }
688
689         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
690                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
691         return ret;
692 }
693
694 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
695 {
696         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
697
698         /* mask out reserved bits */
699         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
700 }
701
702 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
703 {
704         u32 reg_offset = MSPI_RXRAM;
705         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
706         u32 msb_offset = reg_offset + (slot << 3);
707
708         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
709                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
710 }
711
712 static void read_from_hw(struct bcm_qspi *qspi, int slots)
713 {
714         struct qspi_trans tp;
715         int slot;
716
717         bcm_qspi_disable_bspi(qspi);
718
719         if (slots > MSPI_NUM_CDRAM) {
720                 /* should never happen */
721                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
722                 return;
723         }
724
725         tp = qspi->trans_pos;
726
727         for (slot = 0; slot < slots; slot++) {
728                 if (tp.trans->bits_per_word <= 8) {
729                         u8 *buf = tp.trans->rx_buf;
730
731                         if (buf)
732                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
733                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
734                                 buf ? buf[tp.byte] : 0x0);
735                 } else {
736                         u16 *buf = tp.trans->rx_buf;
737
738                         if (buf)
739                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
740                                                                       slot);
741                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
742                                 buf ? buf[tp.byte / 2] : 0x0);
743                 }
744
745                 update_qspi_trans_byte_count(qspi, &tp,
746                                              TRANS_STATUS_BREAK_NONE);
747         }
748
749         qspi->trans_pos = tp;
750 }
751
752 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
753                                        u8 val)
754 {
755         u32 reg_offset = MSPI_TXRAM + (slot << 3);
756
757         /* mask out reserved bits */
758         bcm_qspi_write(qspi, MSPI, reg_offset, val);
759 }
760
761 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
762                                         u16 val)
763 {
764         u32 reg_offset = MSPI_TXRAM;
765         u32 msb_offset = reg_offset + (slot << 3);
766         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
767
768         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
769         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
770 }
771
772 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
773 {
774         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
775 }
776
777 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
778 {
779         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
780 }
781
782 /* Return number of slots written */
783 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
784 {
785         struct qspi_trans tp;
786         int slot = 0, tstatus = 0;
787         u32 mspi_cdram = 0;
788
789         bcm_qspi_disable_bspi(qspi);
790         tp = qspi->trans_pos;
791         bcm_qspi_update_parms(qspi, spi, tp.trans);
792
793         /* Run until end of transfer or reached the max data */
794         while (!tstatus && slot < MSPI_NUM_CDRAM) {
795                 if (tp.trans->bits_per_word <= 8) {
796                         const u8 *buf = tp.trans->tx_buf;
797                         u8 val = buf ? buf[tp.byte] : 0x00;
798
799                         write_txram_slot_u8(qspi, slot, val);
800                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
801                 } else {
802                         const u16 *buf = tp.trans->tx_buf;
803                         u16 val = buf ? buf[tp.byte / 2] : 0x0000;
804
805                         write_txram_slot_u16(qspi, slot, val);
806                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
807                 }
808                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
809
810                 if (has_bspi(qspi))
811                         mspi_cdram &= ~1;
812                 else
813                         mspi_cdram |= (~(1 << spi->chip_select) &
814                                        MSPI_CDRAM_PCS);
815
816                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
817                                 MSPI_CDRAM_BITSE_BIT);
818
819                 write_cdram_slot(qspi, slot, mspi_cdram);
820
821                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
822                                                        TRANS_STATUS_BREAK_TX);
823                 slot++;
824         }
825
826         if (!slot) {
827                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
828                 goto done;
829         }
830
831         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
832         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
833         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
834
835         /*
836          *  case 1) EOM =1, cs_change =0: SSb inactive
837          *  case 2) EOM =1, cs_change =1: SSb stay active
838          *  case 3) EOM =0, cs_change =0: SSb stay active
839          *  case 4) EOM =0, cs_change =1: SSb inactive
840          */
841         if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
842              == TRANS_STATUS_BREAK_CS_CHANGE) ||
843             ((tstatus & TRANS_STATUS_BREAK_DESELECT)
844              == TRANS_STATUS_BREAK_EOM)) {
845                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
846                         ~MSPI_CDRAM_CONT_BIT;
847                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
848         }
849
850         if (has_bspi(qspi))
851                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
852
853         /* Must flush previous writes before starting MSPI operation */
854         mb();
855         /* Set cont | spe | spifie */
856         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
857
858 done:
859         return slot;
860 }
861
862 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
863                                      const struct spi_mem_op *op)
864 {
865         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
866         u32 addr = 0, len, rdlen, len_words, from = 0;
867         int ret = 0;
868         unsigned long timeo = msecs_to_jiffies(100);
869         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
870
871         if (bcm_qspi_bspi_ver_three(qspi))
872                 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
873                         return -EIO;
874
875         from = op->addr.val;
876         if (!spi->cs_gpiod)
877                 bcm_qspi_chip_select(qspi, spi->chip_select);
878         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
879
880         /*
881          * when using flex mode we need to send
882          * the upper address byte to bspi
883          */
884         if (bcm_qspi_bspi_ver_three(qspi) == false) {
885                 addr = from & 0xff000000;
886                 bcm_qspi_write(qspi, BSPI,
887                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
888         }
889
890         if (!qspi->xfer_mode.flex_mode)
891                 addr = from;
892         else
893                 addr = from & 0x00ffffff;
894
895         if (bcm_qspi_bspi_ver_three(qspi) == true)
896                 addr = (addr + 0xc00000) & 0xffffff;
897
898         /*
899          * read into the entire buffer by breaking the reads
900          * into RAF buffer read lengths
901          */
902         len = op->data.nbytes;
903         qspi->bspi_rf_op_idx = 0;
904
905         do {
906                 if (len > BSPI_READ_LENGTH)
907                         rdlen = BSPI_READ_LENGTH;
908                 else
909                         rdlen = len;
910
911                 reinit_completion(&qspi->bspi_done);
912                 bcm_qspi_enable_bspi(qspi);
913                 len_words = (rdlen + 3) >> 2;
914                 qspi->bspi_rf_op = op;
915                 qspi->bspi_rf_op_status = 0;
916                 qspi->bspi_rf_op_len = rdlen;
917                 dev_dbg(&qspi->pdev->dev,
918                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
919                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
920                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
921                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
922                 if (qspi->soc_intc) {
923                         /*
924                          * clear soc MSPI and BSPI interrupts and enable
925                          * BSPI interrupts.
926                          */
927                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
928                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
929                 }
930
931                 /* Must flush previous writes before starting BSPI operation */
932                 mb();
933                 bcm_qspi_bspi_lr_start(qspi);
934                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
935                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
936                         ret = -ETIMEDOUT;
937                         break;
938                 }
939
940                 /* set msg return length */
941                 addr += rdlen;
942                 len -= rdlen;
943         } while (len);
944
945         return ret;
946 }
947
948 static int bcm_qspi_transfer_one(struct spi_master *master,
949                                  struct spi_device *spi,
950                                  struct spi_transfer *trans)
951 {
952         struct bcm_qspi *qspi = spi_master_get_devdata(master);
953         int slots;
954         unsigned long timeo = msecs_to_jiffies(100);
955
956         if (!spi->cs_gpiod)
957                 bcm_qspi_chip_select(qspi, spi->chip_select);
958         qspi->trans_pos.trans = trans;
959         qspi->trans_pos.byte = 0;
960
961         while (qspi->trans_pos.byte < trans->len) {
962                 reinit_completion(&qspi->mspi_done);
963
964                 slots = write_to_hw(qspi, spi);
965                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
966                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
967                         return -ETIMEDOUT;
968                 }
969
970                 read_from_hw(qspi, slots);
971         }
972         bcm_qspi_enable_bspi(qspi);
973
974         return 0;
975 }
976
977 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
978                                      const struct spi_mem_op *op)
979 {
980         struct spi_master *master = spi->master;
981         struct bcm_qspi *qspi = spi_master_get_devdata(master);
982         struct spi_transfer t[2];
983         u8 cmd[6] = { };
984         int ret, i;
985
986         memset(cmd, 0, sizeof(cmd));
987         memset(t, 0, sizeof(t));
988
989         /* tx */
990         /* opcode is in cmd[0] */
991         cmd[0] = op->cmd.opcode;
992         for (i = 0; i < op->addr.nbytes; i++)
993                 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
994
995         t[0].tx_buf = cmd;
996         t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
997         t[0].bits_per_word = spi->bits_per_word;
998         t[0].tx_nbits = op->cmd.buswidth;
999         /* lets mspi know that this is not last transfer */
1000         qspi->trans_pos.mspi_last_trans = false;
1001         ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1002
1003         /* rx */
1004         qspi->trans_pos.mspi_last_trans = true;
1005         if (!ret) {
1006                 /* rx */
1007                 t[1].rx_buf = op->data.buf.in;
1008                 t[1].len = op->data.nbytes;
1009                 t[1].rx_nbits =  op->data.buswidth;
1010                 t[1].bits_per_word = spi->bits_per_word;
1011                 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1012         }
1013
1014         return ret;
1015 }
1016
1017 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1018                                 const struct spi_mem_op *op)
1019 {
1020         struct spi_device *spi = mem->spi;
1021         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1022         int ret = 0;
1023         bool mspi_read = false;
1024         u32 addr = 0, len;
1025         u_char *buf;
1026
1027         if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1028             op->data.dir != SPI_MEM_DATA_IN)
1029                 return -ENOTSUPP;
1030
1031         buf = op->data.buf.in;
1032         addr = op->addr.val;
1033         len = op->data.nbytes;
1034
1035         if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1036                 /*
1037                  * The address coming into this function is a raw flash offset.
1038                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
1039                  * address. If it crosses a 4MB boundary, just revert back to
1040                  * using MSPI.
1041                  */
1042                 addr = (addr + 0xc00000) & 0xffffff;
1043
1044                 if ((~ADDR_4MB_MASK & addr) ^
1045                     (~ADDR_4MB_MASK & (addr + len - 1)))
1046                         mspi_read = true;
1047         }
1048
1049         /* non-aligned and very short transfers are handled by MSPI */
1050         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1051             len < 4 || op->cmd.opcode == SPINOR_OP_RDSFDP)
1052                 mspi_read = true;
1053
1054         if (!has_bspi(qspi) || mspi_read)
1055                 return bcm_qspi_mspi_exec_mem_op(spi, op);
1056
1057         ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1058
1059         if (!ret)
1060                 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1061
1062         return ret;
1063 }
1064
1065 static void bcm_qspi_cleanup(struct spi_device *spi)
1066 {
1067         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1068
1069         kfree(xp);
1070 }
1071
1072 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1073 {
1074         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1075         struct bcm_qspi *qspi = qspi_dev_id->dev;
1076         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1077
1078         if (status & MSPI_MSPI_STATUS_SPIF) {
1079                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1080                 /* clear interrupt */
1081                 status &= ~MSPI_MSPI_STATUS_SPIF;
1082                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1083                 if (qspi->soc_intc)
1084                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1085                 complete(&qspi->mspi_done);
1086                 return IRQ_HANDLED;
1087         }
1088
1089         return IRQ_NONE;
1090 }
1091
1092 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1093 {
1094         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1095         struct bcm_qspi *qspi = qspi_dev_id->dev;
1096         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1097         u32 status = qspi_dev_id->irqp->mask;
1098
1099         if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1100                 bcm_qspi_bspi_lr_data_read(qspi);
1101                 if (qspi->bspi_rf_op_len == 0) {
1102                         qspi->bspi_rf_op = NULL;
1103                         if (qspi->soc_intc) {
1104                                 /* disable soc BSPI interrupt */
1105                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1106                                                            false);
1107                                 /* indicate done */
1108                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1109                         }
1110
1111                         if (qspi->bspi_rf_op_status)
1112                                 bcm_qspi_bspi_lr_clear(qspi);
1113                         else
1114                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1115                 }
1116
1117                 if (qspi->soc_intc)
1118                         /* clear soc BSPI interrupt */
1119                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1120         }
1121
1122         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1123         if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1124                 complete(&qspi->bspi_done);
1125
1126         return IRQ_HANDLED;
1127 }
1128
1129 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1130 {
1131         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1132         struct bcm_qspi *qspi = qspi_dev_id->dev;
1133         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1134
1135         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1136         qspi->bspi_rf_op_status = -EIO;
1137         if (qspi->soc_intc)
1138                 /* clear soc interrupt */
1139                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1140
1141         complete(&qspi->bspi_done);
1142         return IRQ_HANDLED;
1143 }
1144
1145 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1146 {
1147         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1148         struct bcm_qspi *qspi = qspi_dev_id->dev;
1149         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1150         irqreturn_t ret = IRQ_NONE;
1151
1152         if (soc_intc) {
1153                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1154
1155                 if (status & MSPI_DONE)
1156                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1157                 else if (status & BSPI_DONE)
1158                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1159                 else if (status & BSPI_ERR)
1160                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1161         }
1162
1163         return ret;
1164 }
1165
1166 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1167         {
1168                 .irq_name = "spi_lr_fullness_reached",
1169                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1170                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1171         },
1172         {
1173                 .irq_name = "spi_lr_session_aborted",
1174                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1175                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1176         },
1177         {
1178                 .irq_name = "spi_lr_impatient",
1179                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1180                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1181         },
1182         {
1183                 .irq_name = "spi_lr_session_done",
1184                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1185                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1186         },
1187 #ifdef QSPI_INT_DEBUG
1188         /* this interrupt is for debug purposes only, dont request irq */
1189         {
1190                 .irq_name = "spi_lr_overread",
1191                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1192                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1193         },
1194 #endif
1195         {
1196                 .irq_name = "mspi_done",
1197                 .irq_handler = bcm_qspi_mspi_l2_isr,
1198                 .mask = INTR_MSPI_DONE_MASK,
1199         },
1200         {
1201                 .irq_name = "mspi_halted",
1202                 .irq_handler = bcm_qspi_mspi_l2_isr,
1203                 .mask = INTR_MSPI_HALTED_MASK,
1204         },
1205         {
1206                 /* single muxed L1 interrupt source */
1207                 .irq_name = "spi_l1_intr",
1208                 .irq_handler = bcm_qspi_l1_isr,
1209                 .irq_source = MUXED_L1,
1210                 .mask = QSPI_INTERRUPTS_ALL,
1211         },
1212 };
1213
1214 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1215 {
1216         u32 val = 0;
1217
1218         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1219         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1220         qspi->bspi_min_rev = val & 0xff;
1221         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1222                 /* Force mapping of BSPI address -> flash offset */
1223                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1224                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1225         }
1226         qspi->bspi_enabled = 1;
1227         bcm_qspi_disable_bspi(qspi);
1228         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1229         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1230 }
1231
1232 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1233 {
1234         struct bcm_qspi_parms parms;
1235
1236         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1237         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1238         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1239         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1240         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1241
1242         parms.mode = SPI_MODE_3;
1243         parms.bits_per_word = 8;
1244         parms.speed_hz = qspi->max_speed_hz;
1245         bcm_qspi_hw_set_parms(qspi, &parms);
1246
1247         if (has_bspi(qspi))
1248                 bcm_qspi_bspi_init(qspi);
1249 }
1250
1251 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1252 {
1253         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1254
1255         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1256         if (has_bspi(qspi))
1257                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1258
1259         /* clear interrupt */
1260         bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1261 }
1262
1263 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1264         .exec_op = bcm_qspi_exec_mem_op,
1265 };
1266
1267 struct bcm_qspi_data {
1268         bool    has_mspi_rev;
1269         bool    has_spcr3_sysclk;
1270 };
1271
1272 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1273         .has_mspi_rev   = false,
1274         .has_spcr3_sysclk = false,
1275 };
1276
1277 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1278         .has_mspi_rev   = true,
1279         .has_spcr3_sysclk = false,
1280 };
1281
1282 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1283         .has_mspi_rev   = true,
1284         .has_spcr3_sysclk = true,
1285 };
1286
1287 static const struct of_device_id bcm_qspi_of_match[] = {
1288         {
1289                 .compatible = "brcm,spi-bcm7445-qspi",
1290                 .data = &bcm_qspi_rev_data,
1291
1292         },
1293         {
1294                 .compatible = "brcm,spi-bcm-qspi",
1295                 .data = &bcm_qspi_no_rev_data,
1296         },
1297         {
1298                 .compatible = "brcm,spi-bcm7216-qspi",
1299                 .data = &bcm_qspi_spcr3_data,
1300         },
1301         {
1302                 .compatible = "brcm,spi-bcm7278-qspi",
1303                 .data = &bcm_qspi_spcr3_data,
1304         },
1305         {},
1306 };
1307 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1308
1309 int bcm_qspi_probe(struct platform_device *pdev,
1310                    struct bcm_qspi_soc_intc *soc_intc)
1311 {
1312         const struct of_device_id *of_id = NULL;
1313         const struct bcm_qspi_data *data;
1314         struct device *dev = &pdev->dev;
1315         struct bcm_qspi *qspi;
1316         struct spi_master *master;
1317         struct resource *res;
1318         int irq, ret = 0, num_ints = 0;
1319         u32 val;
1320         u32 rev = 0;
1321         const char *name = NULL;
1322         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1323
1324         /* We only support device-tree instantiation */
1325         if (!dev->of_node)
1326                 return -ENODEV;
1327
1328         of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1329         if (!of_id)
1330                 return -ENODEV;
1331
1332         data = of_id->data;
1333
1334         master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1335         if (!master) {
1336                 dev_err(dev, "error allocating spi_master\n");
1337                 return -ENOMEM;
1338         }
1339
1340         qspi = spi_master_get_devdata(master);
1341
1342         qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1343         if (IS_ERR(qspi->clk))
1344                 return PTR_ERR(qspi->clk);
1345
1346         qspi->pdev = pdev;
1347         qspi->trans_pos.trans = NULL;
1348         qspi->trans_pos.byte = 0;
1349         qspi->trans_pos.mspi_last_trans = true;
1350         qspi->master = master;
1351
1352         master->bus_num = -1;
1353         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1354         master->setup = bcm_qspi_setup;
1355         master->transfer_one = bcm_qspi_transfer_one;
1356         master->mem_ops = &bcm_qspi_mem_ops;
1357         master->cleanup = bcm_qspi_cleanup;
1358         master->dev.of_node = dev->of_node;
1359         master->num_chipselect = NUM_CHIPSELECT;
1360         master->use_gpio_descriptors = true;
1361
1362         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1363
1364         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1365                 master->num_chipselect = val;
1366
1367         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1368         if (!res)
1369                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1370                                                    "mspi");
1371
1372         qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1373         if (IS_ERR(qspi->base[MSPI]))
1374                 return PTR_ERR(qspi->base[MSPI]);
1375
1376         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1377         if (res) {
1378                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1379                 if (IS_ERR(qspi->base[BSPI]))
1380                         return PTR_ERR(qspi->base[BSPI]);
1381                 qspi->bspi_mode = true;
1382         } else {
1383                 qspi->bspi_mode = false;
1384         }
1385
1386         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1387
1388         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1389         if (res) {
1390                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1391                 if (IS_ERR(qspi->base[CHIP_SELECT]))
1392                         return PTR_ERR(qspi->base[CHIP_SELECT]);
1393         }
1394
1395         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1396                                 GFP_KERNEL);
1397         if (!qspi->dev_ids)
1398                 return -ENOMEM;
1399
1400         /*
1401          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1402          * in specific ways
1403          */
1404         if (soc_intc) {
1405                 qspi->soc_intc = soc_intc;
1406                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1407         } else {
1408                 qspi->soc_intc = NULL;
1409         }
1410
1411         if (qspi->clk) {
1412                 ret = clk_prepare_enable(qspi->clk);
1413                 if (ret) {
1414                         dev_err(dev, "failed to prepare clock\n");
1415                         goto qspi_probe_err;
1416                 }
1417                 qspi->base_clk = clk_get_rate(qspi->clk);
1418         } else {
1419                 qspi->base_clk = MSPI_BASE_FREQ;
1420         }
1421
1422         if (data->has_mspi_rev) {
1423                 rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1424                 /* some older revs do not have a MSPI_REV register */
1425                 if ((rev & 0xff) == 0xff)
1426                         rev = 0;
1427         }
1428
1429         qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1430         qspi->mspi_min_rev = rev & 0xf;
1431         qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1432
1433         qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1434
1435         /*
1436          * On SW resets it is possible to have the mask still enabled
1437          * Need to disable the mask and clear the status while we init
1438          */
1439         bcm_qspi_hw_uninit(qspi);
1440
1441         for (val = 0; val < num_irqs; val++) {
1442                 irq = -1;
1443                 name = qspi_irq_tab[val].irq_name;
1444                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1445                         /* get the l2 interrupts */
1446                         irq = platform_get_irq_byname_optional(pdev, name);
1447                 } else if (!num_ints && soc_intc) {
1448                         /* all mspi, bspi intrs muxed to one L1 intr */
1449                         irq = platform_get_irq(pdev, 0);
1450                 }
1451
1452                 if (irq  >= 0) {
1453                         ret = devm_request_irq(&pdev->dev, irq,
1454                                                qspi_irq_tab[val].irq_handler, 0,
1455                                                name,
1456                                                &qspi->dev_ids[val]);
1457                         if (ret < 0) {
1458                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1459                                 goto qspi_unprepare_err;
1460                         }
1461
1462                         qspi->dev_ids[val].dev = qspi;
1463                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1464                         num_ints++;
1465                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1466                                 qspi_irq_tab[val].irq_name,
1467                                 irq);
1468                 }
1469         }
1470
1471         if (!num_ints) {
1472                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1473                 ret = -EINVAL;
1474                 goto qspi_unprepare_err;
1475         }
1476
1477         bcm_qspi_hw_init(qspi);
1478         init_completion(&qspi->mspi_done);
1479         init_completion(&qspi->bspi_done);
1480         qspi->curr_cs = -1;
1481
1482         platform_set_drvdata(pdev, qspi);
1483
1484         qspi->xfer_mode.width = -1;
1485         qspi->xfer_mode.addrlen = -1;
1486         qspi->xfer_mode.hp = -1;
1487
1488         ret = spi_register_master(master);
1489         if (ret < 0) {
1490                 dev_err(dev, "can't register master\n");
1491                 goto qspi_reg_err;
1492         }
1493
1494         return 0;
1495
1496 qspi_reg_err:
1497         bcm_qspi_hw_uninit(qspi);
1498 qspi_unprepare_err:
1499         clk_disable_unprepare(qspi->clk);
1500 qspi_probe_err:
1501         kfree(qspi->dev_ids);
1502         return ret;
1503 }
1504 /* probe function to be called by SoC specific platform driver probe */
1505 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1506
1507 int bcm_qspi_remove(struct platform_device *pdev)
1508 {
1509         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1510
1511         spi_unregister_master(qspi->master);
1512         bcm_qspi_hw_uninit(qspi);
1513         clk_disable_unprepare(qspi->clk);
1514         kfree(qspi->dev_ids);
1515
1516         return 0;
1517 }
1518 /* function to be called by SoC specific platform driver remove() */
1519 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1520
1521 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1522 {
1523         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1524
1525         /* store the override strap value */
1526         if (!bcm_qspi_bspi_ver_three(qspi))
1527                 qspi->s3_strap_override_ctrl =
1528                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1529
1530         spi_master_suspend(qspi->master);
1531         clk_disable_unprepare(qspi->clk);
1532         bcm_qspi_hw_uninit(qspi);
1533
1534         return 0;
1535 };
1536
1537 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1538 {
1539         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1540         int ret = 0;
1541
1542         bcm_qspi_hw_init(qspi);
1543         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1544         if (qspi->soc_intc)
1545                 /* enable MSPI interrupt */
1546                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1547                                                  true);
1548
1549         ret = clk_prepare_enable(qspi->clk);
1550         if (!ret)
1551                 spi_master_resume(qspi->master);
1552
1553         return ret;
1554 }
1555
1556 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1557
1558 /* pm_ops to be called by SoC specific platform driver */
1559 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1560
1561 MODULE_AUTHOR("Kamal Dasu");
1562 MODULE_DESCRIPTION("Broadcom QSPI driver");
1563 MODULE_LICENSE("GPL v2");
1564 MODULE_ALIAS("platform:" DRIVER_NAME);