GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355         } else {
356                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357                 int i;
358                 u32 csr;
359
360                 /* Make sure clock polarity is correct */
361                 for (i = 0; i < spi->master->num_chipselect; i++) {
362                         csr = spi_readl(as, CSR0 + 4 * i);
363                         if ((csr ^ cpol) & SPI_BIT(CPOL))
364                                 spi_writel(as, CSR0 + 4 * i,
365                                                 csr ^ SPI_BIT(CPOL));
366                 }
367
368                 mr = spi_readl(as, MR);
369                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370                 spi_writel(as, MR, mr);
371         }
372
373         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375
376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378         int chip_select;
379         u32 mr;
380
381         if (spi->cs_gpiod)
382                 chip_select = as->native_cs_for_gpio;
383         else
384                 chip_select = spi->chip_select;
385
386         /* only deactivate *this* device; sometimes transfers to
387          * another device may be active when this routine is called.
388          */
389         mr = spi_readl(as, MR);
390         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391                 mr = SPI_BFINS(PCS, 0xf, mr);
392                 spi_writel(as, MR, mr);
393         }
394
395         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397         if (!spi->cs_gpiod)
398                 spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400
401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403         spin_lock_irqsave(&as->lock, as->flags);
404 }
405
406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408         spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410
411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415
416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417                                 struct spi_transfer *xfer)
418 {
419         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421
422 static bool atmel_spi_can_dma(struct spi_master *master,
423                               struct spi_device *spi,
424                               struct spi_transfer *xfer)
425 {
426         struct atmel_spi *as = spi_master_get_devdata(master);
427
428         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429                 return atmel_spi_use_dma(as, xfer) &&
430                         !atmel_spi_is_vmalloc_xfer(xfer);
431         else
432                 return atmel_spi_use_dma(as, xfer);
433
434 }
435
436 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437                                 struct dma_slave_config *slave_config,
438                                 u8 bits_per_word)
439 {
440         struct spi_master *master = platform_get_drvdata(as->pdev);
441         int err = 0;
442
443         if (bits_per_word > 8) {
444                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446         } else {
447                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449         }
450
451         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453         slave_config->src_maxburst = 1;
454         slave_config->dst_maxburst = 1;
455         slave_config->device_fc = false;
456
457         /*
458          * This driver uses fixed peripheral select mode (PS bit set to '0' in
459          * the Mode Register).
460          * So according to the datasheet, when FIFOs are available (and
461          * enabled), the Transmit FIFO operates in Multiple Data Mode.
462          * In this mode, up to 2 data, not 4, can be written into the Transmit
463          * Data Register in a single access.
464          * However, the first data has to be written into the lowest 16 bits and
465          * the second data into the highest 16 bits of the Transmit
466          * Data Register. For 8bit data (the most frequent case), it would
467          * require to rework tx_buf so each data would actualy fit 16 bits.
468          * So we'd rather write only one data at the time. Hence the transmit
469          * path works the same whether FIFOs are available (and enabled) or not.
470          */
471         slave_config->direction = DMA_MEM_TO_DEV;
472         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473                 dev_err(&as->pdev->dev,
474                         "failed to configure tx dma channel\n");
475                 err = -EINVAL;
476         }
477
478         /*
479          * This driver configures the spi controller for master mode (MSTR bit
480          * set to '1' in the Mode Register).
481          * So according to the datasheet, when FIFOs are available (and
482          * enabled), the Receive FIFO operates in Single Data Mode.
483          * So the receive path works the same whether FIFOs are available (and
484          * enabled) or not.
485          */
486         slave_config->direction = DMA_DEV_TO_MEM;
487         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488                 dev_err(&as->pdev->dev,
489                         "failed to configure rx dma channel\n");
490                 err = -EINVAL;
491         }
492
493         return err;
494 }
495
496 static int atmel_spi_configure_dma(struct spi_master *master,
497                                    struct atmel_spi *as)
498 {
499         struct dma_slave_config slave_config;
500         struct device *dev = &as->pdev->dev;
501         int err;
502
503         dma_cap_mask_t mask;
504         dma_cap_zero(mask);
505         dma_cap_set(DMA_SLAVE, mask);
506
507         master->dma_tx = dma_request_chan(dev, "tx");
508         if (IS_ERR(master->dma_tx)) {
509                 err = dev_err_probe(dev, PTR_ERR(master->dma_tx),
510                                     "No TX DMA channel, DMA is disabled\n");
511                 goto error_clear;
512         }
513
514         master->dma_rx = dma_request_chan(dev, "rx");
515         if (IS_ERR(master->dma_rx)) {
516                 err = PTR_ERR(master->dma_rx);
517                 /*
518                  * No reason to check EPROBE_DEFER here since we have already
519                  * requested tx channel.
520                  */
521                 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
522                 goto error;
523         }
524
525         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
526         if (err)
527                 goto error;
528
529         dev_info(&as->pdev->dev,
530                         "Using %s (tx) and %s (rx) for DMA transfers\n",
531                         dma_chan_name(master->dma_tx),
532                         dma_chan_name(master->dma_rx));
533
534         return 0;
535 error:
536         if (!IS_ERR(master->dma_rx))
537                 dma_release_channel(master->dma_rx);
538         if (!IS_ERR(master->dma_tx))
539                 dma_release_channel(master->dma_tx);
540 error_clear:
541         master->dma_tx = master->dma_rx = NULL;
542         return err;
543 }
544
545 static void atmel_spi_stop_dma(struct spi_master *master)
546 {
547         if (master->dma_rx)
548                 dmaengine_terminate_all(master->dma_rx);
549         if (master->dma_tx)
550                 dmaengine_terminate_all(master->dma_tx);
551 }
552
553 static void atmel_spi_release_dma(struct spi_master *master)
554 {
555         if (master->dma_rx) {
556                 dma_release_channel(master->dma_rx);
557                 master->dma_rx = NULL;
558         }
559         if (master->dma_tx) {
560                 dma_release_channel(master->dma_tx);
561                 master->dma_tx = NULL;
562         }
563 }
564
565 /* This function is called by the DMA driver from tasklet context */
566 static void dma_callback(void *data)
567 {
568         struct spi_master       *master = data;
569         struct atmel_spi        *as = spi_master_get_devdata(master);
570
571         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
572             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
573                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
574                        as->current_transfer->len);
575         }
576         complete(&as->xfer_completion);
577 }
578
579 /*
580  * Next transfer using PIO without FIFO.
581  */
582 static void atmel_spi_next_xfer_single(struct spi_master *master,
583                                        struct spi_transfer *xfer)
584 {
585         struct atmel_spi        *as = spi_master_get_devdata(master);
586         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
587
588         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
589
590         /* Make sure data is not remaining in RDR */
591         spi_readl(as, RDR);
592         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
593                 spi_readl(as, RDR);
594                 cpu_relax();
595         }
596
597         if (xfer->bits_per_word > 8)
598                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
599         else
600                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
601
602         dev_dbg(master->dev.parent,
603                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
604                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
605                 xfer->bits_per_word);
606
607         /* Enable relevant interrupts */
608         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
609 }
610
611 /*
612  * Next transfer using PIO with FIFO.
613  */
614 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
615                                      struct spi_transfer *xfer)
616 {
617         struct atmel_spi *as = spi_master_get_devdata(master);
618         u32 current_remaining_data, num_data;
619         u32 offset = xfer->len - as->current_remaining_bytes;
620         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
621         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
622         u16 td0, td1;
623         u32 fifomr;
624
625         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
626
627         /* Compute the number of data to transfer in the current iteration */
628         current_remaining_data = ((xfer->bits_per_word > 8) ?
629                                   ((u32)as->current_remaining_bytes >> 1) :
630                                   (u32)as->current_remaining_bytes);
631         num_data = min(current_remaining_data, as->fifo_size);
632
633         /* Flush RX and TX FIFOs */
634         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
635         while (spi_readl(as, FLR))
636                 cpu_relax();
637
638         /* Set RX FIFO Threshold to the number of data to transfer */
639         fifomr = spi_readl(as, FMR);
640         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
641
642         /* Clear FIFO flags in the Status Register, especially RXFTHF */
643         (void)spi_readl(as, SR);
644
645         /* Fill TX FIFO */
646         while (num_data >= 2) {
647                 if (xfer->bits_per_word > 8) {
648                         td0 = *words++;
649                         td1 = *words++;
650                 } else {
651                         td0 = *bytes++;
652                         td1 = *bytes++;
653                 }
654
655                 spi_writel(as, TDR, (td1 << 16) | td0);
656                 num_data -= 2;
657         }
658
659         if (num_data) {
660                 if (xfer->bits_per_word > 8)
661                         td0 = *words++;
662                 else
663                         td0 = *bytes++;
664
665                 spi_writew(as, TDR, td0);
666                 num_data--;
667         }
668
669         dev_dbg(master->dev.parent,
670                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
671                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
672                 xfer->bits_per_word);
673
674         /*
675          * Enable RX FIFO Threshold Flag interrupt to be notified about
676          * transfer completion.
677          */
678         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
679 }
680
681 /*
682  * Next transfer using PIO.
683  */
684 static void atmel_spi_next_xfer_pio(struct spi_master *master,
685                                     struct spi_transfer *xfer)
686 {
687         struct atmel_spi *as = spi_master_get_devdata(master);
688
689         if (as->fifo_size)
690                 atmel_spi_next_xfer_fifo(master, xfer);
691         else
692                 atmel_spi_next_xfer_single(master, xfer);
693 }
694
695 /*
696  * Submit next transfer for DMA.
697  */
698 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
699                                 struct spi_transfer *xfer,
700                                 u32 *plen)
701         __must_hold(&as->lock)
702 {
703         struct atmel_spi        *as = spi_master_get_devdata(master);
704         struct dma_chan         *rxchan = master->dma_rx;
705         struct dma_chan         *txchan = master->dma_tx;
706         struct dma_async_tx_descriptor *rxdesc;
707         struct dma_async_tx_descriptor *txdesc;
708         struct dma_slave_config slave_config;
709         dma_cookie_t            cookie;
710
711         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
712
713         /* Check that the channels are available */
714         if (!rxchan || !txchan)
715                 return -ENODEV;
716
717         /* release lock for DMA operations */
718         atmel_spi_unlock(as);
719
720         *plen = xfer->len;
721
722         if (atmel_spi_dma_slave_config(as, &slave_config,
723                                        xfer->bits_per_word))
724                 goto err_exit;
725
726         /* Send both scatterlists */
727         if (atmel_spi_is_vmalloc_xfer(xfer) &&
728             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
729                 rxdesc = dmaengine_prep_slave_single(rxchan,
730                                                      as->dma_addr_rx_bbuf,
731                                                      xfer->len,
732                                                      DMA_DEV_TO_MEM,
733                                                      DMA_PREP_INTERRUPT |
734                                                      DMA_CTRL_ACK);
735         } else {
736                 rxdesc = dmaengine_prep_slave_sg(rxchan,
737                                                  xfer->rx_sg.sgl,
738                                                  xfer->rx_sg.nents,
739                                                  DMA_DEV_TO_MEM,
740                                                  DMA_PREP_INTERRUPT |
741                                                  DMA_CTRL_ACK);
742         }
743         if (!rxdesc)
744                 goto err_dma;
745
746         if (atmel_spi_is_vmalloc_xfer(xfer) &&
747             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
748                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
749                 txdesc = dmaengine_prep_slave_single(txchan,
750                                                      as->dma_addr_tx_bbuf,
751                                                      xfer->len, DMA_MEM_TO_DEV,
752                                                      DMA_PREP_INTERRUPT |
753                                                      DMA_CTRL_ACK);
754         } else {
755                 txdesc = dmaengine_prep_slave_sg(txchan,
756                                                  xfer->tx_sg.sgl,
757                                                  xfer->tx_sg.nents,
758                                                  DMA_MEM_TO_DEV,
759                                                  DMA_PREP_INTERRUPT |
760                                                  DMA_CTRL_ACK);
761         }
762         if (!txdesc)
763                 goto err_dma;
764
765         dev_dbg(master->dev.parent,
766                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
767                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
768                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
769
770         /* Enable relevant interrupts */
771         spi_writel(as, IER, SPI_BIT(OVRES));
772
773         /* Put the callback on the RX transfer only, that should finish last */
774         rxdesc->callback = dma_callback;
775         rxdesc->callback_param = master;
776
777         /* Submit and fire RX and TX with TX last so we're ready to read! */
778         cookie = rxdesc->tx_submit(rxdesc);
779         if (dma_submit_error(cookie))
780                 goto err_dma;
781         cookie = txdesc->tx_submit(txdesc);
782         if (dma_submit_error(cookie))
783                 goto err_dma;
784         rxchan->device->device_issue_pending(rxchan);
785         txchan->device->device_issue_pending(txchan);
786
787         /* take back lock */
788         atmel_spi_lock(as);
789         return 0;
790
791 err_dma:
792         spi_writel(as, IDR, SPI_BIT(OVRES));
793         atmel_spi_stop_dma(master);
794 err_exit:
795         atmel_spi_lock(as);
796         return -ENOMEM;
797 }
798
799 static void atmel_spi_next_xfer_data(struct spi_master *master,
800                                 struct spi_transfer *xfer,
801                                 dma_addr_t *tx_dma,
802                                 dma_addr_t *rx_dma,
803                                 u32 *plen)
804 {
805         *rx_dma = xfer->rx_dma + xfer->len - *plen;
806         *tx_dma = xfer->tx_dma + xfer->len - *plen;
807         if (*plen > master->max_dma_len)
808                 *plen = master->max_dma_len;
809 }
810
811 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
812                                     struct spi_device *spi,
813                                     struct spi_transfer *xfer)
814 {
815         u32                     scbr, csr;
816         unsigned long           bus_hz;
817         int chip_select;
818
819         if (spi->cs_gpiod)
820                 chip_select = as->native_cs_for_gpio;
821         else
822                 chip_select = spi->chip_select;
823
824         /* v1 chips start out at half the peripheral bus speed. */
825         bus_hz = as->spi_clk;
826         if (!atmel_spi_is_v2(as))
827                 bus_hz /= 2;
828
829         /*
830          * Calculate the lowest divider that satisfies the
831          * constraint, assuming div32/fdiv/mbz == 0.
832          */
833         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
834
835         /*
836          * If the resulting divider doesn't fit into the
837          * register bitfield, we can't satisfy the constraint.
838          */
839         if (scbr >= (1 << SPI_SCBR_SIZE)) {
840                 dev_err(&spi->dev,
841                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
842                         xfer->speed_hz, scbr, bus_hz/255);
843                 return -EINVAL;
844         }
845         if (scbr == 0) {
846                 dev_err(&spi->dev,
847                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
848                         xfer->speed_hz, scbr, bus_hz);
849                 return -EINVAL;
850         }
851         csr = spi_readl(as, CSR0 + 4 * chip_select);
852         csr = SPI_BFINS(SCBR, scbr, csr);
853         spi_writel(as, CSR0 + 4 * chip_select, csr);
854         xfer->effective_speed_hz = bus_hz / scbr;
855
856         return 0;
857 }
858
859 /*
860  * Submit next transfer for PDC.
861  * lock is held, spi irq is blocked
862  */
863 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
864                                         struct spi_transfer *xfer)
865 {
866         struct atmel_spi        *as = spi_master_get_devdata(master);
867         u32                     len;
868         dma_addr_t              tx_dma, rx_dma;
869
870         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
871
872         len = as->current_remaining_bytes;
873         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
874         as->current_remaining_bytes -= len;
875
876         spi_writel(as, RPR, rx_dma);
877         spi_writel(as, TPR, tx_dma);
878
879         if (xfer->bits_per_word > 8)
880                 len >>= 1;
881         spi_writel(as, RCR, len);
882         spi_writel(as, TCR, len);
883
884         dev_dbg(&master->dev,
885                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
886                 xfer, xfer->len, xfer->tx_buf,
887                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
888                 (unsigned long long)xfer->rx_dma);
889
890         if (as->current_remaining_bytes) {
891                 len = as->current_remaining_bytes;
892                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
893                 as->current_remaining_bytes -= len;
894
895                 spi_writel(as, RNPR, rx_dma);
896                 spi_writel(as, TNPR, tx_dma);
897
898                 if (xfer->bits_per_word > 8)
899                         len >>= 1;
900                 spi_writel(as, RNCR, len);
901                 spi_writel(as, TNCR, len);
902
903                 dev_dbg(&master->dev,
904                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
905                         xfer, xfer->len, xfer->tx_buf,
906                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
907                         (unsigned long long)xfer->rx_dma);
908         }
909
910         /* REVISIT: We're waiting for RXBUFF before we start the next
911          * transfer because we need to handle some difficult timing
912          * issues otherwise. If we wait for TXBUFE in one transfer and
913          * then starts waiting for RXBUFF in the next, it's difficult
914          * to tell the difference between the RXBUFF interrupt we're
915          * actually waiting for and the RXBUFF interrupt of the
916          * previous transfer.
917          *
918          * It should be doable, though. Just not now...
919          */
920         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
921         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
922 }
923
924 /*
925  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
926  *  - The buffer is either valid for CPU access, else NULL
927  *  - If the buffer is valid, so is its DMA address
928  *
929  * This driver manages the dma address unless message->is_dma_mapped.
930  */
931 static int
932 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
933 {
934         struct device   *dev = &as->pdev->dev;
935
936         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
937         if (xfer->tx_buf) {
938                 /* tx_buf is a const void* where we need a void * for the dma
939                  * mapping */
940                 void *nonconst_tx = (void *)xfer->tx_buf;
941
942                 xfer->tx_dma = dma_map_single(dev,
943                                 nonconst_tx, xfer->len,
944                                 DMA_TO_DEVICE);
945                 if (dma_mapping_error(dev, xfer->tx_dma))
946                         return -ENOMEM;
947         }
948         if (xfer->rx_buf) {
949                 xfer->rx_dma = dma_map_single(dev,
950                                 xfer->rx_buf, xfer->len,
951                                 DMA_FROM_DEVICE);
952                 if (dma_mapping_error(dev, xfer->rx_dma)) {
953                         if (xfer->tx_buf)
954                                 dma_unmap_single(dev,
955                                                 xfer->tx_dma, xfer->len,
956                                                 DMA_TO_DEVICE);
957                         return -ENOMEM;
958                 }
959         }
960         return 0;
961 }
962
963 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
964                                      struct spi_transfer *xfer)
965 {
966         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
967                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
968                                  xfer->len, DMA_TO_DEVICE);
969         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
970                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
971                                  xfer->len, DMA_FROM_DEVICE);
972 }
973
974 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
975 {
976         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
977 }
978
979 static void
980 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
981 {
982         u8              *rxp;
983         u16             *rxp16;
984         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
985
986         if (xfer->bits_per_word > 8) {
987                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
988                 *rxp16 = spi_readl(as, RDR);
989         } else {
990                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
991                 *rxp = spi_readl(as, RDR);
992         }
993         if (xfer->bits_per_word > 8) {
994                 if (as->current_remaining_bytes > 2)
995                         as->current_remaining_bytes -= 2;
996                 else
997                         as->current_remaining_bytes = 0;
998         } else {
999                 as->current_remaining_bytes--;
1000         }
1001 }
1002
1003 static void
1004 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005 {
1006         u32 fifolr = spi_readl(as, FLR);
1007         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1008         u32 offset = xfer->len - as->current_remaining_bytes;
1009         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1010         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1011         u16 rd; /* RD field is the lowest 16 bits of RDR */
1012
1013         /* Update the number of remaining bytes to transfer */
1014         num_bytes = ((xfer->bits_per_word > 8) ?
1015                      (num_data << 1) :
1016                      num_data);
1017
1018         if (as->current_remaining_bytes > num_bytes)
1019                 as->current_remaining_bytes -= num_bytes;
1020         else
1021                 as->current_remaining_bytes = 0;
1022
1023         /* Handle odd number of bytes when data are more than 8bit width */
1024         if (xfer->bits_per_word > 8)
1025                 as->current_remaining_bytes &= ~0x1;
1026
1027         /* Read data */
1028         while (num_data) {
1029                 rd = spi_readl(as, RDR);
1030                 if (xfer->bits_per_word > 8)
1031                         *words++ = rd;
1032                 else
1033                         *bytes++ = rd;
1034                 num_data--;
1035         }
1036 }
1037
1038 /* Called from IRQ
1039  *
1040  * Must update "current_remaining_bytes" to keep track of data
1041  * to transfer.
1042  */
1043 static void
1044 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1045 {
1046         if (as->fifo_size)
1047                 atmel_spi_pump_fifo_data(as, xfer);
1048         else
1049                 atmel_spi_pump_single_data(as, xfer);
1050 }
1051
1052 /* Interrupt
1053  *
1054  * No need for locking in this Interrupt handler: done_status is the
1055  * only information modified.
1056  */
1057 static irqreturn_t
1058 atmel_spi_pio_interrupt(int irq, void *dev_id)
1059 {
1060         struct spi_master       *master = dev_id;
1061         struct atmel_spi        *as = spi_master_get_devdata(master);
1062         u32                     status, pending, imr;
1063         struct spi_transfer     *xfer;
1064         int                     ret = IRQ_NONE;
1065
1066         imr = spi_readl(as, IMR);
1067         status = spi_readl(as, SR);
1068         pending = status & imr;
1069
1070         if (pending & SPI_BIT(OVRES)) {
1071                 ret = IRQ_HANDLED;
1072                 spi_writel(as, IDR, SPI_BIT(OVRES));
1073                 dev_warn(master->dev.parent, "overrun\n");
1074
1075                 /*
1076                  * When we get an overrun, we disregard the current
1077                  * transfer. Data will not be copied back from any
1078                  * bounce buffer and msg->actual_len will not be
1079                  * updated with the last xfer.
1080                  *
1081                  * We will also not process any remaning transfers in
1082                  * the message.
1083                  */
1084                 as->done_status = -EIO;
1085                 smp_wmb();
1086
1087                 /* Clear any overrun happening while cleaning up */
1088                 spi_readl(as, SR);
1089
1090                 complete(&as->xfer_completion);
1091
1092         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1093                 atmel_spi_lock(as);
1094
1095                 if (as->current_remaining_bytes) {
1096                         ret = IRQ_HANDLED;
1097                         xfer = as->current_transfer;
1098                         atmel_spi_pump_pio_data(as, xfer);
1099                         if (!as->current_remaining_bytes)
1100                                 spi_writel(as, IDR, pending);
1101
1102                         complete(&as->xfer_completion);
1103                 }
1104
1105                 atmel_spi_unlock(as);
1106         } else {
1107                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1108                 ret = IRQ_HANDLED;
1109                 spi_writel(as, IDR, pending);
1110         }
1111
1112         return ret;
1113 }
1114
1115 static irqreturn_t
1116 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1117 {
1118         struct spi_master       *master = dev_id;
1119         struct atmel_spi        *as = spi_master_get_devdata(master);
1120         u32                     status, pending, imr;
1121         int                     ret = IRQ_NONE;
1122
1123         imr = spi_readl(as, IMR);
1124         status = spi_readl(as, SR);
1125         pending = status & imr;
1126
1127         if (pending & SPI_BIT(OVRES)) {
1128
1129                 ret = IRQ_HANDLED;
1130
1131                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1132                                      | SPI_BIT(OVRES)));
1133
1134                 /* Clear any overrun happening while cleaning up */
1135                 spi_readl(as, SR);
1136
1137                 as->done_status = -EIO;
1138
1139                 complete(&as->xfer_completion);
1140
1141         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1142                 ret = IRQ_HANDLED;
1143
1144                 spi_writel(as, IDR, pending);
1145
1146                 complete(&as->xfer_completion);
1147         }
1148
1149         return ret;
1150 }
1151
1152 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1153 {
1154         struct spi_delay *delay = &spi->word_delay;
1155         u32 value = delay->value;
1156
1157         switch (delay->unit) {
1158         case SPI_DELAY_UNIT_NSECS:
1159                 value /= 1000;
1160                 break;
1161         case SPI_DELAY_UNIT_USECS:
1162                 break;
1163         default:
1164                 return -EINVAL;
1165         }
1166
1167         return (as->spi_clk / 1000000 * value) >> 5;
1168 }
1169
1170 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1171 {
1172         int i;
1173         struct spi_master *master = platform_get_drvdata(as->pdev);
1174
1175         if (!as->native_cs_free)
1176                 return; /* already initialized */
1177
1178         if (!master->cs_gpiods)
1179                 return; /* No CS GPIO */
1180
1181         /*
1182          * On the first version of the controller (AT91RM9200), CS0
1183          * can't be used associated with GPIO
1184          */
1185         if (atmel_spi_is_v2(as))
1186                 i = 0;
1187         else
1188                 i = 1;
1189
1190         for (; i < 4; i++)
1191                 if (master->cs_gpiods[i])
1192                         as->native_cs_free |= BIT(i);
1193
1194         if (as->native_cs_free)
1195                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1196 }
1197
1198 static int atmel_spi_setup(struct spi_device *spi)
1199 {
1200         struct atmel_spi        *as;
1201         struct atmel_spi_device *asd;
1202         u32                     csr;
1203         unsigned int            bits = spi->bits_per_word;
1204         int chip_select;
1205         int                     word_delay_csr;
1206
1207         as = spi_master_get_devdata(spi->master);
1208
1209         /* see notes above re chipselect */
1210         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1211                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1212                 return -EINVAL;
1213         }
1214
1215         /* Setup() is called during spi_register_controller(aka
1216          * spi_register_master) but after all membmers of the cs_gpiod
1217          * array have been filled, so we can looked for which native
1218          * CS will be free for using with GPIO
1219          */
1220         initialize_native_cs_for_gpio(as);
1221
1222         if (spi->cs_gpiod && as->native_cs_free) {
1223                 dev_err(&spi->dev,
1224                         "No native CS available to support this GPIO CS\n");
1225                 return -EBUSY;
1226         }
1227
1228         if (spi->cs_gpiod)
1229                 chip_select = as->native_cs_for_gpio;
1230         else
1231                 chip_select = spi->chip_select;
1232
1233         csr = SPI_BF(BITS, bits - 8);
1234         if (spi->mode & SPI_CPOL)
1235                 csr |= SPI_BIT(CPOL);
1236         if (!(spi->mode & SPI_CPHA))
1237                 csr |= SPI_BIT(NCPHA);
1238
1239         if (!spi->cs_gpiod)
1240                 csr |= SPI_BIT(CSAAT);
1241         csr |= SPI_BF(DLYBS, 0);
1242
1243         word_delay_csr = atmel_word_delay_csr(spi, as);
1244         if (word_delay_csr < 0)
1245                 return word_delay_csr;
1246
1247         /* DLYBCT adds delays between words.  This is useful for slow devices
1248          * that need a bit of time to setup the next transfer.
1249          */
1250         csr |= SPI_BF(DLYBCT, word_delay_csr);
1251
1252         asd = spi->controller_state;
1253         if (!asd) {
1254                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1255                 if (!asd)
1256                         return -ENOMEM;
1257
1258                 spi->controller_state = asd;
1259         }
1260
1261         asd->csr = csr;
1262
1263         dev_dbg(&spi->dev,
1264                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1265                 bits, spi->mode, spi->chip_select, csr);
1266
1267         if (!atmel_spi_is_v2(as))
1268                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1269
1270         return 0;
1271 }
1272
1273 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1274 {
1275         struct atmel_spi *as = spi_master_get_devdata(spi->master);
1276         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1277          * since we already have routines for activate/deactivate translate
1278          * high/low to active/inactive
1279          */
1280         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1281
1282         if (enable) {
1283                 cs_activate(as, spi);
1284         } else {
1285                 cs_deactivate(as, spi);
1286         }
1287
1288 }
1289
1290 static int atmel_spi_one_transfer(struct spi_master *master,
1291                                         struct spi_device *spi,
1292                                         struct spi_transfer *xfer)
1293 {
1294         struct atmel_spi        *as;
1295         u8                      bits;
1296         u32                     len;
1297         struct atmel_spi_device *asd;
1298         int                     timeout;
1299         int                     ret;
1300         unsigned long           dma_timeout;
1301
1302         as = spi_master_get_devdata(master);
1303         /* This lock was orignally taken in atmel_spi_trasfer_one_message */
1304         atmel_spi_lock(as);
1305
1306         asd = spi->controller_state;
1307         bits = (asd->csr >> 4) & 0xf;
1308         if (bits != xfer->bits_per_word - 8) {
1309                 dev_dbg(&spi->dev,
1310                         "you can't yet change bits_per_word in transfers\n");
1311                 return -ENOPROTOOPT;
1312         }
1313
1314         /*
1315          * DMA map early, for performance (empties dcache ASAP) and
1316          * better fault reporting.
1317          */
1318         if ((!master->cur_msg->is_dma_mapped)
1319                 && as->use_pdc) {
1320                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321                         return -ENOMEM;
1322         }
1323
1324         atmel_spi_set_xfer_speed(as, spi, xfer);
1325
1326         as->done_status = 0;
1327         as->current_transfer = xfer;
1328         as->current_remaining_bytes = xfer->len;
1329         while (as->current_remaining_bytes) {
1330                 reinit_completion(&as->xfer_completion);
1331
1332                 if (as->use_pdc) {
1333                         atmel_spi_pdc_next_xfer(master, xfer);
1334                 } else if (atmel_spi_use_dma(as, xfer)) {
1335                         len = as->current_remaining_bytes;
1336                         ret = atmel_spi_next_xfer_dma_submit(master,
1337                                                                 xfer, &len);
1338                         if (ret) {
1339                                 dev_err(&spi->dev,
1340                                         "unable to use DMA, fallback to PIO\n");
1341                                 as->done_status = ret;
1342                                 break;
1343                         } else {
1344                                 as->current_remaining_bytes -= len;
1345                                 if (as->current_remaining_bytes < 0)
1346                                         as->current_remaining_bytes = 0;
1347                         }
1348                 } else {
1349                         atmel_spi_next_xfer_pio(master, xfer);
1350                 }
1351
1352                 /* interrupts are disabled, so free the lock for schedule */
1353                 atmel_spi_unlock(as);
1354                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1355                                                           SPI_DMA_TIMEOUT);
1356                 atmel_spi_lock(as);
1357                 if (WARN_ON(dma_timeout == 0)) {
1358                         dev_err(&spi->dev, "spi transfer timeout\n");
1359                         as->done_status = -EIO;
1360                 }
1361
1362                 if (as->done_status)
1363                         break;
1364         }
1365
1366         if (as->done_status) {
1367                 if (as->use_pdc) {
1368                         dev_warn(master->dev.parent,
1369                                 "overrun (%u/%u remaining)\n",
1370                                 spi_readl(as, TCR), spi_readl(as, RCR));
1371
1372                         /*
1373                          * Clean up DMA registers and make sure the data
1374                          * registers are empty.
1375                          */
1376                         spi_writel(as, RNCR, 0);
1377                         spi_writel(as, TNCR, 0);
1378                         spi_writel(as, RCR, 0);
1379                         spi_writel(as, TCR, 0);
1380                         for (timeout = 1000; timeout; timeout--)
1381                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1382                                         break;
1383                         if (!timeout)
1384                                 dev_warn(master->dev.parent,
1385                                          "timeout waiting for TXEMPTY");
1386                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1387                                 spi_readl(as, RDR);
1388
1389                         /* Clear any overrun happening while cleaning up */
1390                         spi_readl(as, SR);
1391
1392                 } else if (atmel_spi_use_dma(as, xfer)) {
1393                         atmel_spi_stop_dma(master);
1394                 }
1395         }
1396
1397         if (!master->cur_msg->is_dma_mapped
1398                 && as->use_pdc)
1399                 atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401         if (as->use_pdc)
1402                 atmel_spi_disable_pdc_transfer(as);
1403
1404         atmel_spi_unlock(as);
1405
1406         return as->done_status;
1407 }
1408
1409 static void atmel_spi_cleanup(struct spi_device *spi)
1410 {
1411         struct atmel_spi_device *asd = spi->controller_state;
1412
1413         if (!asd)
1414                 return;
1415
1416         spi->controller_state = NULL;
1417         kfree(asd);
1418 }
1419
1420 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1421 {
1422         return spi_readl(as, VERSION) & 0x00000fff;
1423 }
1424
1425 static void atmel_get_caps(struct atmel_spi *as)
1426 {
1427         unsigned int version;
1428
1429         version = atmel_get_version(as);
1430
1431         as->caps.is_spi2 = version > 0x121;
1432         as->caps.has_wdrbt = version >= 0x210;
1433         as->caps.has_dma_support = version >= 0x212;
1434         as->caps.has_pdc_support = version < 0x212;
1435 }
1436
1437 static void atmel_spi_init(struct atmel_spi *as)
1438 {
1439         spi_writel(as, CR, SPI_BIT(SWRST));
1440         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1441
1442         /* It is recommended to enable FIFOs first thing after reset */
1443         if (as->fifo_size)
1444                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1445
1446         if (as->caps.has_wdrbt) {
1447                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1448                                 | SPI_BIT(MSTR));
1449         } else {
1450                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1451         }
1452
1453         if (as->use_pdc)
1454                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1455         spi_writel(as, CR, SPI_BIT(SPIEN));
1456 }
1457
1458 static int atmel_spi_probe(struct platform_device *pdev)
1459 {
1460         struct resource         *regs;
1461         int                     irq;
1462         struct clk              *clk;
1463         int                     ret;
1464         struct spi_master       *master;
1465         struct atmel_spi        *as;
1466
1467         /* Select default pin state */
1468         pinctrl_pm_select_default_state(&pdev->dev);
1469
1470         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471         if (!regs)
1472                 return -ENXIO;
1473
1474         irq = platform_get_irq(pdev, 0);
1475         if (irq < 0)
1476                 return irq;
1477
1478         clk = devm_clk_get(&pdev->dev, "spi_clk");
1479         if (IS_ERR(clk))
1480                 return PTR_ERR(clk);
1481
1482         /* setup spi core then atmel-specific driver state */
1483         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1484         if (!master)
1485                 return -ENOMEM;
1486
1487         /* the spi->mode bits understood by this driver: */
1488         master->use_gpio_descriptors = true;
1489         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1490         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1491         master->dev.of_node = pdev->dev.of_node;
1492         master->bus_num = pdev->id;
1493         master->num_chipselect = 4;
1494         master->setup = atmel_spi_setup;
1495         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1496                         SPI_MASTER_GPIO_SS);
1497         master->transfer_one = atmel_spi_one_transfer;
1498         master->set_cs = atmel_spi_set_cs;
1499         master->cleanup = atmel_spi_cleanup;
1500         master->auto_runtime_pm = true;
1501         master->max_dma_len = SPI_MAX_DMA_XFER;
1502         master->can_dma = atmel_spi_can_dma;
1503         platform_set_drvdata(pdev, master);
1504
1505         as = spi_master_get_devdata(master);
1506
1507         spin_lock_init(&as->lock);
1508
1509         as->pdev = pdev;
1510         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1511         if (IS_ERR(as->regs)) {
1512                 ret = PTR_ERR(as->regs);
1513                 goto out_unmap_regs;
1514         }
1515         as->phybase = regs->start;
1516         as->irq = irq;
1517         as->clk = clk;
1518
1519         init_completion(&as->xfer_completion);
1520
1521         atmel_get_caps(as);
1522
1523         as->use_dma = false;
1524         as->use_pdc = false;
1525         if (as->caps.has_dma_support) {
1526                 ret = atmel_spi_configure_dma(master, as);
1527                 if (ret == 0) {
1528                         as->use_dma = true;
1529                 } else if (ret == -EPROBE_DEFER) {
1530                         goto out_unmap_regs;
1531                 }
1532         } else if (as->caps.has_pdc_support) {
1533                 as->use_pdc = true;
1534         }
1535
1536         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1537                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1538                                                       SPI_MAX_DMA_XFER,
1539                                                       &as->dma_addr_rx_bbuf,
1540                                                       GFP_KERNEL | GFP_DMA);
1541                 if (!as->addr_rx_bbuf) {
1542                         as->use_dma = false;
1543                 } else {
1544                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1545                                         SPI_MAX_DMA_XFER,
1546                                         &as->dma_addr_tx_bbuf,
1547                                         GFP_KERNEL | GFP_DMA);
1548                         if (!as->addr_tx_bbuf) {
1549                                 as->use_dma = false;
1550                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1551                                                   as->addr_rx_bbuf,
1552                                                   as->dma_addr_rx_bbuf);
1553                         }
1554                 }
1555                 if (!as->use_dma)
1556                         dev_info(master->dev.parent,
1557                                  "  can not allocate dma coherent memory\n");
1558         }
1559
1560         if (as->caps.has_dma_support && !as->use_dma)
1561                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1562
1563         if (as->use_pdc) {
1564                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1565                                         0, dev_name(&pdev->dev), master);
1566         } else {
1567                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1568                                         0, dev_name(&pdev->dev), master);
1569         }
1570         if (ret)
1571                 goto out_unmap_regs;
1572
1573         /* Initialize the hardware */
1574         ret = clk_prepare_enable(clk);
1575         if (ret)
1576                 goto out_free_irq;
1577
1578         as->spi_clk = clk_get_rate(clk);
1579
1580         as->fifo_size = 0;
1581         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1582                                   &as->fifo_size)) {
1583                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1584         }
1585
1586         atmel_spi_init(as);
1587
1588         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1589         pm_runtime_use_autosuspend(&pdev->dev);
1590         pm_runtime_set_active(&pdev->dev);
1591         pm_runtime_enable(&pdev->dev);
1592
1593         ret = devm_spi_register_master(&pdev->dev, master);
1594         if (ret)
1595                 goto out_free_dma;
1596
1597         /* go! */
1598         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1599                         atmel_get_version(as), (unsigned long)regs->start,
1600                         irq);
1601
1602         return 0;
1603
1604 out_free_dma:
1605         pm_runtime_disable(&pdev->dev);
1606         pm_runtime_set_suspended(&pdev->dev);
1607
1608         if (as->use_dma)
1609                 atmel_spi_release_dma(master);
1610
1611         spi_writel(as, CR, SPI_BIT(SWRST));
1612         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1613         clk_disable_unprepare(clk);
1614 out_free_irq:
1615 out_unmap_regs:
1616         spi_master_put(master);
1617         return ret;
1618 }
1619
1620 static int atmel_spi_remove(struct platform_device *pdev)
1621 {
1622         struct spi_master       *master = platform_get_drvdata(pdev);
1623         struct atmel_spi        *as = spi_master_get_devdata(master);
1624
1625         pm_runtime_get_sync(&pdev->dev);
1626
1627         /* reset the hardware and block queue progress */
1628         if (as->use_dma) {
1629                 atmel_spi_stop_dma(master);
1630                 atmel_spi_release_dma(master);
1631                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1632                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1633                                           as->addr_tx_bbuf,
1634                                           as->dma_addr_tx_bbuf);
1635                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1636                                           as->addr_rx_bbuf,
1637                                           as->dma_addr_rx_bbuf);
1638                 }
1639         }
1640
1641         spin_lock_irq(&as->lock);
1642         spi_writel(as, CR, SPI_BIT(SWRST));
1643         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1644         spi_readl(as, SR);
1645         spin_unlock_irq(&as->lock);
1646
1647         clk_disable_unprepare(as->clk);
1648
1649         pm_runtime_put_noidle(&pdev->dev);
1650         pm_runtime_disable(&pdev->dev);
1651
1652         return 0;
1653 }
1654
1655 #ifdef CONFIG_PM
1656 static int atmel_spi_runtime_suspend(struct device *dev)
1657 {
1658         struct spi_master *master = dev_get_drvdata(dev);
1659         struct atmel_spi *as = spi_master_get_devdata(master);
1660
1661         clk_disable_unprepare(as->clk);
1662         pinctrl_pm_select_sleep_state(dev);
1663
1664         return 0;
1665 }
1666
1667 static int atmel_spi_runtime_resume(struct device *dev)
1668 {
1669         struct spi_master *master = dev_get_drvdata(dev);
1670         struct atmel_spi *as = spi_master_get_devdata(master);
1671
1672         pinctrl_pm_select_default_state(dev);
1673
1674         return clk_prepare_enable(as->clk);
1675 }
1676
1677 #ifdef CONFIG_PM_SLEEP
1678 static int atmel_spi_suspend(struct device *dev)
1679 {
1680         struct spi_master *master = dev_get_drvdata(dev);
1681         int ret;
1682
1683         /* Stop the queue running */
1684         ret = spi_master_suspend(master);
1685         if (ret)
1686                 return ret;
1687
1688         if (!pm_runtime_suspended(dev))
1689                 atmel_spi_runtime_suspend(dev);
1690
1691         return 0;
1692 }
1693
1694 static int atmel_spi_resume(struct device *dev)
1695 {
1696         struct spi_master *master = dev_get_drvdata(dev);
1697         struct atmel_spi *as = spi_master_get_devdata(master);
1698         int ret;
1699
1700         ret = clk_prepare_enable(as->clk);
1701         if (ret)
1702                 return ret;
1703
1704         atmel_spi_init(as);
1705
1706         clk_disable_unprepare(as->clk);
1707
1708         if (!pm_runtime_suspended(dev)) {
1709                 ret = atmel_spi_runtime_resume(dev);
1710                 if (ret)
1711                         return ret;
1712         }
1713
1714         /* Start the queue running */
1715         return spi_master_resume(master);
1716 }
1717 #endif
1718
1719 static const struct dev_pm_ops atmel_spi_pm_ops = {
1720         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1721         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1722                            atmel_spi_runtime_resume, NULL)
1723 };
1724 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1725 #else
1726 #define ATMEL_SPI_PM_OPS        NULL
1727 #endif
1728
1729 static const struct of_device_id atmel_spi_dt_ids[] = {
1730         { .compatible = "atmel,at91rm9200-spi" },
1731         { /* sentinel */ }
1732 };
1733
1734 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1735
1736 static struct platform_driver atmel_spi_driver = {
1737         .driver         = {
1738                 .name   = "atmel_spi",
1739                 .pm     = ATMEL_SPI_PM_OPS,
1740                 .of_match_table = atmel_spi_dt_ids,
1741         },
1742         .probe          = atmel_spi_probe,
1743         .remove         = atmel_spi_remove,
1744 };
1745 module_platform_driver(atmel_spi_driver);
1746
1747 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1748 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1749 MODULE_LICENSE("GPL");
1750 MODULE_ALIAS("platform:atmel_spi");