1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
11 #include "sysfs_local.h"
13 static DEFINE_IDA(sdw_ida);
15 static int sdw_get_id(struct sdw_bus *bus)
17 int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
27 * sdw_bus_master_add() - add a bus Master instance
29 * @parent: parent device
30 * @fwnode: firmware node handle
32 * Initializes the bus instance, read properties and create child
35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36 struct fwnode_handle *fwnode)
38 struct sdw_master_prop *prop = NULL;
42 pr_err("SoundWire parent device is not set\n");
46 ret = sdw_get_id(bus);
48 dev_err(parent, "Failed to get bus id\n");
52 ret = sdw_master_device_add(bus, parent, fwnode);
54 dev_err(parent, "Failed to add master device at link %d\n",
60 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
64 if (!bus->compute_params) {
66 "Bandwidth allocation not configured, compute_params no set\n");
70 mutex_init(&bus->msg_lock);
71 mutex_init(&bus->bus_lock);
72 INIT_LIST_HEAD(&bus->slaves);
73 INIT_LIST_HEAD(&bus->m_rt_list);
76 * Initialize multi_link flag
77 * TODO: populate this flag by reading property from FW node
79 bus->multi_link = false;
80 if (bus->ops->read_prop) {
81 ret = bus->ops->read_prop(bus);
84 "Bus read properties failed:%d\n", ret);
89 sdw_bus_debugfs_init(bus);
92 * Device numbers in SoundWire are 0 through 15. Enumeration device
93 * number (0), Broadcast device number (15), Group numbers (12 and
94 * 13) and Master device number (14) are not used for assignment so
95 * mask these and other higher bits.
98 /* Set higher order bits */
99 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101 /* Set enumuration device number and broadcast device number */
102 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
103 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105 /* Set group device numbers and master device number */
106 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
107 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
108 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
111 * SDW is an enumerable bus, but devices can be powered off. So,
112 * they won't be able to report as present.
114 * Create Slave devices based on Slaves described in
115 * the respective firmware (ACPI/DT)
117 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
118 ret = sdw_acpi_find_slaves(bus);
119 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
120 ret = sdw_of_find_slaves(bus);
122 ret = -ENOTSUPP; /* No ACPI/DT so error out */
125 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
130 * Initialize clock values based on Master properties. The max
131 * frequency is read from max_clk_freq property. Current assumption
132 * is that the bus will start at highest clock frequency when
135 * Default active bank will be 0 as out of reset the Slaves have
136 * to start with bank 0 (Table 40 of Spec)
139 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
140 bus->params.curr_dr_freq = bus->params.max_dr_freq;
141 bus->params.curr_bank = SDW_BANK0;
142 bus->params.next_bank = SDW_BANK1;
146 EXPORT_SYMBOL(sdw_bus_master_add);
148 static int sdw_delete_slave(struct device *dev, void *data)
150 struct sdw_slave *slave = dev_to_sdw_dev(dev);
151 struct sdw_bus *bus = slave->bus;
153 pm_runtime_disable(dev);
155 sdw_slave_debugfs_exit(slave);
157 mutex_lock(&bus->bus_lock);
159 if (slave->dev_num) /* clear dev_num if assigned */
160 clear_bit(slave->dev_num, bus->assigned);
162 list_del_init(&slave->node);
163 mutex_unlock(&bus->bus_lock);
165 device_unregister(dev);
170 * sdw_bus_master_delete() - delete the bus master instance
171 * @bus: bus to be deleted
173 * Remove the instance, delete the child devices.
175 void sdw_bus_master_delete(struct sdw_bus *bus)
177 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
178 sdw_master_device_del(bus);
180 sdw_bus_debugfs_exit(bus);
181 ida_free(&sdw_ida, bus->id);
183 EXPORT_SYMBOL(sdw_bus_master_delete);
189 static inline int find_response_code(enum sdw_command_response resp)
195 case SDW_CMD_IGNORED:
198 case SDW_CMD_TIMEOUT:
206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
208 int retry = bus->prop.err_threshold;
209 enum sdw_command_response resp;
212 for (i = 0; i <= retry; i++) {
213 resp = bus->ops->xfer_msg(bus, msg);
214 ret = find_response_code(resp);
216 /* if cmd is ok or ignored return */
217 if (ret == 0 || ret == -ENODATA)
224 static inline int do_transfer_defer(struct sdw_bus *bus,
226 struct sdw_defer *defer)
228 int retry = bus->prop.err_threshold;
229 enum sdw_command_response resp;
233 defer->length = msg->len;
234 init_completion(&defer->complete);
236 for (i = 0; i <= retry; i++) {
237 resp = bus->ops->xfer_msg_defer(bus, msg, defer);
238 ret = find_response_code(resp);
239 /* if cmd is ok or ignored return */
240 if (ret == 0 || ret == -ENODATA)
247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
249 int retry = bus->prop.err_threshold;
250 enum sdw_command_response resp;
253 for (i = 0; i <= retry; i++) {
254 resp = bus->ops->reset_page_addr(bus, dev_num);
255 ret = find_response_code(resp);
256 /* if cmd is ok or ignored return */
257 if (ret == 0 || ret == -ENODATA)
264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
268 ret = do_transfer(bus, msg);
269 if (ret != 0 && ret != -ENODATA)
270 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
272 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
273 msg->addr, msg->len);
276 sdw_reset_page(bus, msg->dev_num);
282 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
284 * @msg: SDW message to be xfered
286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
290 mutex_lock(&bus->msg_lock);
292 ret = sdw_transfer_unlocked(bus, msg);
294 mutex_unlock(&bus->msg_lock);
300 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
302 * @msg: SDW message to be xfered
303 * @defer: Defer block for signal completion
305 * Caller needs to hold the msg_lock lock while calling this
307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
308 struct sdw_defer *defer)
312 if (!bus->ops->xfer_msg_defer)
315 ret = do_transfer_defer(bus, msg, defer);
316 if (ret != 0 && ret != -ENODATA)
317 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
321 sdw_reset_page(bus, msg->dev_num);
326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
327 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
329 memset(msg, 0, sizeof(*msg));
330 msg->addr = addr; /* addr is 16 bit and truncated here */
332 msg->dev_num = dev_num;
336 if (addr < SDW_REG_NO_PAGE) /* no paging area */
339 if (addr >= SDW_REG_MAX) { /* illegal addr */
340 pr_err("SDW: Invalid address %x passed\n", addr);
344 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
345 if (slave && !slave->prop.paging_support)
347 /* no need for else as that will fall-through to paging */
350 /* paging mandatory */
351 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
352 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
357 pr_err("SDW: No slave for paging addr\n");
361 if (!slave->prop.paging_support) {
363 "address %x needs paging but no support\n", addr);
367 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
368 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
369 msg->addr |= BIT(15);
376 * Read/Write IO functions.
377 * no_pm versions can only be called by the bus, e.g. while enumerating or
378 * handling suspend-resume sequences.
379 * all clients need to use the pm versions
383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
388 ret = sdw_fill_msg(&msg, slave, addr, count,
389 slave->dev_num, SDW_MSG_FLAG_READ, val);
393 ret = sdw_transfer(slave->bus, &msg);
394 if (slave->is_mockup_device)
400 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
405 ret = sdw_fill_msg(&msg, slave, addr, count,
406 slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
410 ret = sdw_transfer(slave->bus, &msg);
411 if (slave->is_mockup_device)
416 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
418 return sdw_nwrite_no_pm(slave, addr, 1, &value);
420 EXPORT_SYMBOL(sdw_write_no_pm);
423 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
429 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
430 SDW_MSG_FLAG_READ, &buf);
434 ret = sdw_transfer(bus, &msg);
442 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
447 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
448 SDW_MSG_FLAG_WRITE, &value);
452 return sdw_transfer(bus, &msg);
455 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
461 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
462 SDW_MSG_FLAG_READ, &buf);
466 ret = sdw_transfer_unlocked(bus, &msg);
472 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
474 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
479 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
480 SDW_MSG_FLAG_WRITE, &value);
484 return sdw_transfer_unlocked(bus, &msg);
486 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
488 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
493 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
499 EXPORT_SYMBOL(sdw_read_no_pm);
501 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
505 tmp = sdw_read_no_pm(slave, addr);
509 tmp = (tmp & ~mask) | val;
510 return sdw_write_no_pm(slave, addr, tmp);
512 EXPORT_SYMBOL(sdw_update_no_pm);
514 /* Read-Modify-Write Slave register */
515 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
519 tmp = sdw_read(slave, addr);
523 tmp = (tmp & ~mask) | val;
524 return sdw_write(slave, addr, tmp);
526 EXPORT_SYMBOL(sdw_update);
529 * sdw_nread() - Read "n" contiguous SDW Slave registers
531 * @addr: Register address
533 * @val: Buffer for values to be read
535 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
539 ret = pm_runtime_resume_and_get(&slave->dev);
540 if (ret < 0 && ret != -EACCES)
543 ret = sdw_nread_no_pm(slave, addr, count, val);
545 pm_runtime_mark_last_busy(&slave->dev);
546 pm_runtime_put(&slave->dev);
550 EXPORT_SYMBOL(sdw_nread);
553 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
555 * @addr: Register address
557 * @val: Buffer for values to be written
559 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
563 ret = pm_runtime_resume_and_get(&slave->dev);
564 if (ret < 0 && ret != -EACCES)
567 ret = sdw_nwrite_no_pm(slave, addr, count, val);
569 pm_runtime_mark_last_busy(&slave->dev);
570 pm_runtime_put(&slave->dev);
574 EXPORT_SYMBOL(sdw_nwrite);
577 * sdw_read() - Read a SDW Slave register
579 * @addr: Register address
581 int sdw_read(struct sdw_slave *slave, u32 addr)
586 ret = sdw_nread(slave, addr, 1, &buf);
592 EXPORT_SYMBOL(sdw_read);
595 * sdw_write() - Write a SDW Slave register
597 * @addr: Register address
598 * @value: Register value
600 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
602 return sdw_nwrite(slave, addr, 1, &value);
604 EXPORT_SYMBOL(sdw_write);
610 /* called with bus_lock held */
611 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
613 struct sdw_slave *slave;
615 list_for_each_entry(slave, &bus->slaves, node) {
616 if (slave->dev_num == i)
623 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
625 if (slave->id.mfg_id != id.mfg_id ||
626 slave->id.part_id != id.part_id ||
627 slave->id.class_id != id.class_id ||
628 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
629 slave->id.unique_id != id.unique_id))
634 EXPORT_SYMBOL(sdw_compare_devid);
636 /* called with bus_lock held */
637 static int sdw_get_device_num(struct sdw_slave *slave)
641 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
642 if (bit == SDW_MAX_DEVICES) {
648 * Do not update dev_num in Slave data structure here,
649 * Update once program dev_num is successful
651 set_bit(bit, slave->bus->assigned);
657 static int sdw_assign_device_num(struct sdw_slave *slave)
659 struct sdw_bus *bus = slave->bus;
661 bool new_device = false;
663 /* check first if device number is assigned, if so reuse that */
664 if (!slave->dev_num) {
665 if (!slave->dev_num_sticky) {
666 mutex_lock(&slave->bus->bus_lock);
667 dev_num = sdw_get_device_num(slave);
668 mutex_unlock(&slave->bus->bus_lock);
670 dev_err(bus->dev, "Get dev_num failed: %d\n",
674 slave->dev_num = dev_num;
675 slave->dev_num_sticky = dev_num;
678 slave->dev_num = slave->dev_num_sticky;
684 "Slave already registered, reusing dev_num:%d\n",
687 /* Clear the slave->dev_num to transfer message on device 0 */
688 dev_num = slave->dev_num;
691 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
693 dev_err(bus->dev, "Program device_num %d failed: %d\n",
698 /* After xfer of msg, restore dev_num */
699 slave->dev_num = slave->dev_num_sticky;
704 void sdw_extract_slave_id(struct sdw_bus *bus,
705 u64 addr, struct sdw_slave_id *id)
707 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
709 id->sdw_version = SDW_VERSION(addr);
710 id->unique_id = SDW_UNIQUE_ID(addr);
711 id->mfg_id = SDW_MFG_ID(addr);
712 id->part_id = SDW_PART_ID(addr);
713 id->class_id = SDW_CLASS_ID(addr);
716 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
717 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
719 EXPORT_SYMBOL(sdw_extract_slave_id);
721 static int sdw_program_device_num(struct sdw_bus *bus)
723 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
724 struct sdw_slave *slave, *_s;
725 struct sdw_slave_id id;
731 /* No Slave, so use raw xfer api */
732 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
733 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
738 ret = sdw_transfer(bus, &msg);
739 if (ret == -ENODATA) { /* end of device id reads */
740 dev_dbg(bus->dev, "No more devices to enumerate\n");
745 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
750 * Construct the addr and extract. Cast the higher shift
751 * bits to avoid truncation due to size limit.
753 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
754 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
757 sdw_extract_slave_id(bus, addr, &id);
760 /* Now compare with entries */
761 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
762 if (sdw_compare_devid(slave, id) == 0) {
766 * Assign a new dev_num to this Slave and
767 * not mark it present. It will be marked
768 * present after it reports ATTACHED on new
771 ret = sdw_assign_device_num(slave);
774 "Assign dev_num failed:%d\n",
784 /* TODO: Park this device in Group 13 */
787 * add Slave device even if there is no platform
788 * firmware description. There will be no driver probe
789 * but the user/integration will be able to see the
790 * device, enumeration status and device number in sysfs
792 sdw_slave_add(bus, &id, NULL);
794 dev_err(bus->dev, "Slave Entry not found\n");
800 * Check till error out or retry (count) exhausts.
801 * Device can drop off and rejoin during enumeration
802 * so count till twice the bound.
805 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
810 static void sdw_modify_slave_status(struct sdw_slave *slave,
811 enum sdw_slave_status status)
813 struct sdw_bus *bus = slave->bus;
815 mutex_lock(&bus->bus_lock);
818 "%s: changing status slave %d status %d new status %d\n",
819 __func__, slave->dev_num, slave->status, status);
821 if (status == SDW_SLAVE_UNATTACHED) {
823 "%s: initializing enumeration and init completion for Slave %d\n",
824 __func__, slave->dev_num);
826 init_completion(&slave->enumeration_complete);
827 init_completion(&slave->initialization_complete);
829 } else if ((status == SDW_SLAVE_ATTACHED) &&
830 (slave->status == SDW_SLAVE_UNATTACHED)) {
832 "%s: signaling enumeration completion for Slave %d\n",
833 __func__, slave->dev_num);
835 complete(&slave->enumeration_complete);
837 slave->status = status;
838 mutex_unlock(&bus->bus_lock);
841 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
842 enum sdw_clk_stop_mode mode,
843 enum sdw_clk_stop_type type)
847 if (slave->ops && slave->ops->clk_stop) {
848 ret = slave->ops->clk_stop(slave, mode, type);
856 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
857 enum sdw_clk_stop_mode mode,
864 wake_en = slave->prop.wake_capable;
867 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
869 if (mode == SDW_CLK_STOP_MODE1)
870 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
873 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
875 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
878 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
882 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
885 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
887 if (ret < 0 && ret != -ENODATA)
888 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
893 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
895 int retry = bus->clk_stop_timeout;
899 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
902 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
905 val &= SDW_SCP_STAT_CLK_STP_NF;
907 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
912 usleep_range(1000, 1500);
916 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
923 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
925 * @bus: SDW bus instance
927 * Query Slave for clock stop mode and prepare for that mode.
929 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
931 bool simple_clk_stop = true;
932 struct sdw_slave *slave;
933 bool is_slave = false;
937 * In order to save on transition time, prepare
938 * each Slave and then wait for all Slave(s) to be
939 * prepared for clock stop.
940 * If one of the Slave devices has lost sync and
941 * replies with Command Ignored/-ENODATA, we continue
944 list_for_each_entry(slave, &bus->slaves, node) {
948 if (slave->status != SDW_SLAVE_ATTACHED &&
949 slave->status != SDW_SLAVE_ALERT)
952 /* Identify if Slave(s) are available on Bus */
955 ret = sdw_slave_clk_stop_callback(slave,
957 SDW_CLK_PRE_PREPARE);
958 if (ret < 0 && ret != -ENODATA) {
959 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
963 /* Only prepare a Slave device if needed */
964 if (!slave->prop.simple_clk_stop_capable) {
965 simple_clk_stop = false;
967 ret = sdw_slave_clk_stop_prepare(slave,
970 if (ret < 0 && ret != -ENODATA) {
971 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
977 /* Skip remaining clock stop preparation if no Slave is attached */
982 * Don't wait for all Slaves to be ready if they follow the simple
985 if (!simple_clk_stop) {
986 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
987 SDW_BROADCAST_DEV_NUM);
989 * if there are no Slave devices present and the reply is
990 * Command_Ignored/-ENODATA, we don't need to continue with the
991 * flow and can just return here. The error code is not modified
992 * and its handling left as an exercise for the caller.
998 /* Inform slaves that prep is done */
999 list_for_each_entry(slave, &bus->slaves, node) {
1000 if (!slave->dev_num)
1003 if (slave->status != SDW_SLAVE_ATTACHED &&
1004 slave->status != SDW_SLAVE_ALERT)
1007 ret = sdw_slave_clk_stop_callback(slave,
1009 SDW_CLK_POST_PREPARE);
1011 if (ret < 0 && ret != -ENODATA) {
1012 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1019 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1022 * sdw_bus_clk_stop: stop bus clock
1024 * @bus: SDW bus instance
1026 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1027 * write to SCP_CTRL register.
1029 int sdw_bus_clk_stop(struct sdw_bus *bus)
1034 * broadcast clock stop now, attached Slaves will ACK this,
1035 * unattached will ignore
1037 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1038 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1040 if (ret != -ENODATA)
1041 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1047 EXPORT_SYMBOL(sdw_bus_clk_stop);
1050 * sdw_bus_exit_clk_stop: Exit clock stop mode
1052 * @bus: SDW bus instance
1054 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1055 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1058 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1060 bool simple_clk_stop = true;
1061 struct sdw_slave *slave;
1062 bool is_slave = false;
1066 * In order to save on transition time, de-prepare
1067 * each Slave and then wait for all Slave(s) to be
1068 * de-prepared after clock resume.
1070 list_for_each_entry(slave, &bus->slaves, node) {
1071 if (!slave->dev_num)
1074 if (slave->status != SDW_SLAVE_ATTACHED &&
1075 slave->status != SDW_SLAVE_ALERT)
1078 /* Identify if Slave(s) are available on Bus */
1081 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1082 SDW_CLK_PRE_DEPREPARE);
1084 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1086 /* Only de-prepare a Slave device if needed */
1087 if (!slave->prop.simple_clk_stop_capable) {
1088 simple_clk_stop = false;
1090 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1094 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1098 /* Skip remaining clock stop de-preparation if no Slave is attached */
1103 * Don't wait for all Slaves to be ready if they follow the simple
1106 if (!simple_clk_stop) {
1107 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1109 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1112 list_for_each_entry(slave, &bus->slaves, node) {
1113 if (!slave->dev_num)
1116 if (slave->status != SDW_SLAVE_ATTACHED &&
1117 slave->status != SDW_SLAVE_ALERT)
1120 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1121 SDW_CLK_POST_DEPREPARE);
1123 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1128 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1130 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1131 int port, bool enable, int mask)
1137 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1138 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1139 enable ? "on" : "off");
1140 mask |= SDW_DPN_INT_TEST_FAIL;
1143 addr = SDW_DPN_INTMASK(port);
1145 /* Set/Clear port ready interrupt mask */
1148 val |= SDW_DPN_INT_PORT_READY;
1151 val &= ~SDW_DPN_INT_PORT_READY;
1154 ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1156 dev_err(&slave->dev,
1157 "SDW_DPN_INTMASK write failed:%d\n", val);
1162 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1164 u32 mclk_freq = slave->bus->prop.mclk_freq;
1165 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1172 * frequency base and scale registers are required for SDCA
1173 * devices. They may also be used for 1.2+/non-SDCA devices,
1174 * but we will need a DisCo property to cover this case
1176 if (!slave->id.class_id)
1180 dev_err(&slave->dev,
1181 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1186 * map base frequency using Table 89 of SoundWire 1.2 spec.
1187 * The order of the tests just follows the specification, this
1188 * is not a selection between possible values or a search for
1189 * the best value but just a mapping. Only one case per platform
1191 * Some BIOS have inconsistent values for mclk_freq but a
1192 * correct root so we force the mclk_freq to avoid variations.
1194 if (!(19200000 % mclk_freq)) {
1195 mclk_freq = 19200000;
1196 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1197 } else if (!(24000000 % mclk_freq)) {
1198 mclk_freq = 24000000;
1199 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1200 } else if (!(24576000 % mclk_freq)) {
1201 mclk_freq = 24576000;
1202 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1203 } else if (!(22579200 % mclk_freq)) {
1204 mclk_freq = 22579200;
1205 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1206 } else if (!(32000000 % mclk_freq)) {
1207 mclk_freq = 32000000;
1208 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1210 dev_err(&slave->dev,
1211 "Unsupported clock base, mclk %d\n",
1216 if (mclk_freq % curr_freq) {
1217 dev_err(&slave->dev,
1218 "mclk %d is not multiple of bus curr_freq %d\n",
1219 mclk_freq, curr_freq);
1223 scale = mclk_freq / curr_freq;
1226 * map scale to Table 90 of SoundWire 1.2 spec - and check
1227 * that the scale is a power of two and maximum 64
1229 scale_index = ilog2(scale);
1231 if (BIT(scale_index) != scale || scale_index > 6) {
1232 dev_err(&slave->dev,
1233 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1234 scale, mclk_freq, curr_freq);
1239 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1241 dev_err(&slave->dev,
1242 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1246 /* initialize scale for both banks */
1247 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1249 dev_err(&slave->dev,
1250 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1253 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1255 dev_err(&slave->dev,
1256 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1258 dev_dbg(&slave->dev,
1259 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1260 base, scale_index, mclk_freq, curr_freq);
1265 static int sdw_initialize_slave(struct sdw_slave *slave)
1267 struct sdw_slave_prop *prop = &slave->prop;
1272 ret = sdw_slave_set_frequency(slave);
1276 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1277 /* Clear bus clash interrupt before enabling interrupt mask */
1278 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1280 dev_err(&slave->dev,
1281 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1284 if (status & SDW_SCP_INT1_BUS_CLASH) {
1285 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1286 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1288 dev_err(&slave->dev,
1289 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1294 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1295 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1296 /* Clear parity interrupt before enabling interrupt mask */
1297 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1299 dev_err(&slave->dev,
1300 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1303 if (status & SDW_SCP_INT1_PARITY) {
1304 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1305 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1307 dev_err(&slave->dev,
1308 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1315 * Set SCP_INT1_MASK register, typically bus clash and
1316 * implementation-defined interrupt mask. The Parity detection
1317 * may not always be correct on startup so its use is
1318 * device-dependent, it might e.g. only be enabled in
1319 * steady-state after a couple of frames.
1321 val = slave->prop.scp_int1_mask;
1323 /* Enable SCP interrupts */
1324 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1326 dev_err(&slave->dev,
1327 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1331 /* No need to continue if DP0 is not present */
1332 if (!slave->prop.dp0_prop)
1335 /* Enable DP0 interrupts */
1336 val = prop->dp0_prop->imp_def_interrupts;
1337 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1339 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1341 dev_err(&slave->dev,
1342 "SDW_DP0_INTMASK read failed:%d\n", ret);
1346 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1348 u8 clear, impl_int_mask;
1349 int status, status2, ret, count = 0;
1351 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1353 dev_err(&slave->dev,
1354 "SDW_DP0_INT read failed:%d\n", status);
1359 clear = status & ~SDW_DP0_INTERRUPTS;
1361 if (status & SDW_DP0_INT_TEST_FAIL) {
1362 dev_err(&slave->dev, "Test fail for port 0\n");
1363 clear |= SDW_DP0_INT_TEST_FAIL;
1367 * Assumption: PORT_READY interrupt will be received only for
1368 * ports implementing Channel Prepare state machine (CP_SM)
1371 if (status & SDW_DP0_INT_PORT_READY) {
1372 complete(&slave->port_ready[0]);
1373 clear |= SDW_DP0_INT_PORT_READY;
1376 if (status & SDW_DP0_INT_BRA_FAILURE) {
1377 dev_err(&slave->dev, "BRA failed\n");
1378 clear |= SDW_DP0_INT_BRA_FAILURE;
1381 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1382 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1384 if (status & impl_int_mask) {
1385 clear |= impl_int_mask;
1386 *slave_status = clear;
1389 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1390 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1392 dev_err(&slave->dev,
1393 "SDW_DP0_INT write failed:%d\n", ret);
1397 /* Read DP0 interrupt again */
1398 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1400 dev_err(&slave->dev,
1401 "SDW_DP0_INT read failed:%d\n", status2);
1404 /* filter to limit loop to interrupts identified in the first status read */
1409 /* we can get alerts while processing so keep retrying */
1410 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1412 if (count == SDW_READ_INTR_CLEAR_RETRY)
1413 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1418 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1419 int port, u8 *slave_status)
1421 u8 clear, impl_int_mask;
1422 int status, status2, ret, count = 0;
1426 return sdw_handle_dp0_interrupt(slave, slave_status);
1428 addr = SDW_DPN_INT(port);
1429 status = sdw_read_no_pm(slave, addr);
1431 dev_err(&slave->dev,
1432 "SDW_DPN_INT read failed:%d\n", status);
1438 clear = status & ~SDW_DPN_INTERRUPTS;
1440 if (status & SDW_DPN_INT_TEST_FAIL) {
1441 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1442 clear |= SDW_DPN_INT_TEST_FAIL;
1446 * Assumption: PORT_READY interrupt will be received only
1447 * for ports implementing CP_SM.
1449 if (status & SDW_DPN_INT_PORT_READY) {
1450 complete(&slave->port_ready[port]);
1451 clear |= SDW_DPN_INT_PORT_READY;
1454 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1455 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1457 if (status & impl_int_mask) {
1458 clear |= impl_int_mask;
1459 *slave_status = clear;
1462 /* clear the interrupt but don't touch reserved fields */
1463 ret = sdw_write_no_pm(slave, addr, clear);
1465 dev_err(&slave->dev,
1466 "SDW_DPN_INT write failed:%d\n", ret);
1470 /* Read DPN interrupt again */
1471 status2 = sdw_read_no_pm(slave, addr);
1473 dev_err(&slave->dev,
1474 "SDW_DPN_INT read failed:%d\n", status2);
1477 /* filter to limit loop to interrupts identified in the first status read */
1482 /* we can get alerts while processing so keep retrying */
1483 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1485 if (count == SDW_READ_INTR_CLEAR_RETRY)
1486 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1491 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1493 struct sdw_slave_intr_status slave_intr;
1494 u8 clear = 0, bit, port_status[15] = {0};
1495 int port_num, stat, ret, count = 0;
1498 u8 sdca_cascade = 0;
1499 u8 buf, buf2[2], _buf, _buf2[2];
1503 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1505 ret = pm_runtime_resume_and_get(&slave->dev);
1506 if (ret < 0 && ret != -EACCES) {
1507 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1511 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1512 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1514 dev_err(&slave->dev,
1515 "SDW_SCP_INT1 read failed:%d\n", ret);
1520 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1522 dev_err(&slave->dev,
1523 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1527 if (slave->prop.is_sdca) {
1528 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1530 dev_err(&slave->dev,
1531 "SDW_DP0_INT read failed:%d\n", ret);
1534 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1538 slave_notify = false;
1541 * Check parity, bus clash and Slave (impl defined)
1544 if (buf & SDW_SCP_INT1_PARITY) {
1545 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1546 parity_quirk = !slave->first_interrupt_done &&
1547 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1549 if (parity_check && !parity_quirk)
1550 dev_err(&slave->dev, "Parity error detected\n");
1551 clear |= SDW_SCP_INT1_PARITY;
1554 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1555 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1556 dev_err(&slave->dev, "Bus clash detected\n");
1557 clear |= SDW_SCP_INT1_BUS_CLASH;
1561 * When bus clash or parity errors are detected, such errors
1562 * are unlikely to be recoverable errors.
1563 * TODO: In such scenario, reset bus. Make this configurable
1564 * via sysfs property with bus reset being the default.
1567 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1568 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1569 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1570 slave_notify = true;
1572 clear |= SDW_SCP_INT1_IMPL_DEF;
1575 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1577 slave_notify = true;
1579 /* Check port 0 - 3 interrupts */
1580 port = buf & SDW_SCP_INT1_PORT0_3;
1582 /* To get port number corresponding to bits, shift it */
1583 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1584 for_each_set_bit(bit, &port, 8) {
1585 sdw_handle_port_interrupt(slave, bit,
1589 /* Check if cascade 2 interrupt is present */
1590 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1591 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1592 for_each_set_bit(bit, &port, 8) {
1593 /* scp2 ports start from 4 */
1595 sdw_handle_port_interrupt(slave,
1597 &port_status[port_num]);
1601 /* now check last cascade */
1602 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1603 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1604 for_each_set_bit(bit, &port, 8) {
1605 /* scp3 ports start from 11 */
1606 port_num = bit + 10;
1607 sdw_handle_port_interrupt(slave,
1609 &port_status[port_num]);
1613 /* Update the Slave driver */
1614 if (slave_notify && slave->ops &&
1615 slave->ops->interrupt_callback) {
1616 slave_intr.sdca_cascade = sdca_cascade;
1617 slave_intr.control_port = clear;
1618 memcpy(slave_intr.port, &port_status,
1619 sizeof(slave_intr.port));
1621 slave->ops->interrupt_callback(slave, &slave_intr);
1625 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1627 dev_err(&slave->dev,
1628 "SDW_SCP_INT1 write failed:%d\n", ret);
1632 /* at this point all initial interrupt sources were handled */
1633 slave->first_interrupt_done = true;
1636 * Read status again to ensure no new interrupts arrived
1637 * while servicing interrupts.
1639 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1641 dev_err(&slave->dev,
1642 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1647 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1649 dev_err(&slave->dev,
1650 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1654 if (slave->prop.is_sdca) {
1655 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1657 dev_err(&slave->dev,
1658 "SDW_DP0_INT recheck read failed:%d\n", ret);
1661 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1665 * Make sure no interrupts are pending, but filter to limit loop
1666 * to interrupts identified in the first status read
1669 buf2[0] &= _buf2[0];
1670 buf2[1] &= _buf2[1];
1671 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1674 * Exit loop if Slave is continuously in ALERT state even
1675 * after servicing the interrupt multiple times.
1679 /* we can get alerts while processing so keep retrying */
1680 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1682 if (count == SDW_READ_INTR_CLEAR_RETRY)
1683 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1686 pm_runtime_mark_last_busy(&slave->dev);
1687 pm_runtime_put_autosuspend(&slave->dev);
1692 static int sdw_update_slave_status(struct sdw_slave *slave,
1693 enum sdw_slave_status status)
1697 if (!slave->probed) {
1699 * the slave status update is typically handled in an
1700 * interrupt thread, which can race with the driver
1701 * probe, e.g. when a module needs to be loaded.
1703 * make sure the probe is complete before updating
1706 time = wait_for_completion_timeout(&slave->probe_complete,
1707 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1709 dev_err(&slave->dev, "Probe not complete, timed out\n");
1714 if (!slave->ops || !slave->ops->update_status)
1717 return slave->ops->update_status(slave, status);
1721 * sdw_handle_slave_status() - Handle Slave status
1722 * @bus: SDW bus instance
1723 * @status: Status for all Slave(s)
1725 int sdw_handle_slave_status(struct sdw_bus *bus,
1726 enum sdw_slave_status status[])
1728 enum sdw_slave_status prev_status;
1729 struct sdw_slave *slave;
1730 bool attached_initializing;
1733 /* first check if any Slaves fell off the bus */
1734 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1735 mutex_lock(&bus->bus_lock);
1736 if (test_bit(i, bus->assigned) == false) {
1737 mutex_unlock(&bus->bus_lock);
1740 mutex_unlock(&bus->bus_lock);
1742 slave = sdw_get_slave(bus, i);
1746 if (status[i] == SDW_SLAVE_UNATTACHED &&
1747 slave->status != SDW_SLAVE_UNATTACHED) {
1748 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1750 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1754 if (status[0] == SDW_SLAVE_ATTACHED) {
1755 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1756 ret = sdw_program_device_num(bus);
1758 dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1760 * programming a device number will have side effects,
1761 * so we deal with other devices at a later time
1766 /* Continue to check other slave statuses */
1767 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1768 mutex_lock(&bus->bus_lock);
1769 if (test_bit(i, bus->assigned) == false) {
1770 mutex_unlock(&bus->bus_lock);
1773 mutex_unlock(&bus->bus_lock);
1775 slave = sdw_get_slave(bus, i);
1779 attached_initializing = false;
1781 switch (status[i]) {
1782 case SDW_SLAVE_UNATTACHED:
1783 if (slave->status == SDW_SLAVE_UNATTACHED)
1786 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1789 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1792 case SDW_SLAVE_ALERT:
1793 ret = sdw_handle_slave_alerts(slave);
1795 dev_err(&slave->dev,
1796 "Slave %d alert handling failed: %d\n",
1800 case SDW_SLAVE_ATTACHED:
1801 if (slave->status == SDW_SLAVE_ATTACHED)
1804 prev_status = slave->status;
1805 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1807 if (prev_status == SDW_SLAVE_ALERT)
1810 attached_initializing = true;
1812 ret = sdw_initialize_slave(slave);
1814 dev_err(&slave->dev,
1815 "Slave %d initialization failed: %d\n",
1821 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1826 ret = sdw_update_slave_status(slave, status[i]);
1828 dev_err(&slave->dev,
1829 "Update Slave status failed:%d\n", ret);
1830 if (attached_initializing) {
1831 dev_dbg(&slave->dev,
1832 "%s: signaling initialization completion for Slave %d\n",
1833 __func__, slave->dev_num);
1835 complete(&slave->initialization_complete);
1838 * If the manager became pm_runtime active, the peripherals will be
1839 * restarted and attach, but their pm_runtime status may remain
1840 * suspended. If the 'update_slave_status' callback initiates
1841 * any sort of deferred processing, this processing would not be
1842 * cancelled on pm_runtime suspend.
1843 * To avoid such zombie states, we queue a request to resume.
1844 * This would be a no-op in case the peripheral was being resumed
1845 * by e.g. the ALSA/ASoC framework.
1847 pm_request_resume(&slave->dev);
1853 EXPORT_SYMBOL(sdw_handle_slave_status);
1855 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1857 struct sdw_slave *slave;
1860 /* Check all non-zero devices */
1861 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1862 mutex_lock(&bus->bus_lock);
1863 if (test_bit(i, bus->assigned) == false) {
1864 mutex_unlock(&bus->bus_lock);
1867 mutex_unlock(&bus->bus_lock);
1869 slave = sdw_get_slave(bus, i);
1873 if (slave->status != SDW_SLAVE_UNATTACHED) {
1874 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1875 slave->first_interrupt_done = false;
1876 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1879 /* keep track of request, used in pm_runtime resume */
1880 slave->unattach_request = request;
1883 EXPORT_SYMBOL(sdw_clear_slave_status);