GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / soc / ti / knav_qmss_queue.c
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Cyril Chemparathy <cyril@ti.com>
7  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18
19 #include <linux/debugfs.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/firmware.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/soc/ti/knav_qmss.h>
31
32 #include "knav_qmss.h"
33
34 static struct knav_device *kdev;
35 static DEFINE_MUTEX(knav_dev_lock);
36
37 /* Queue manager register indices in DTS */
38 #define KNAV_QUEUE_PEEK_REG_INDEX       0
39 #define KNAV_QUEUE_STATUS_REG_INDEX     1
40 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
41 #define KNAV_QUEUE_REGION_REG_INDEX     3
42 #define KNAV_QUEUE_PUSH_REG_INDEX       4
43 #define KNAV_QUEUE_POP_REG_INDEX        5
44
45 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
46  * There are no status and vbusm push registers on this version
47  * of QMSS. Push registers are same as pop, So all indices above 1
48  * are to be re-defined
49  */
50 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
51 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
52 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
53
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
59
60 #define knav_queue_idx_to_inst(kdev, idx)                       \
61         (kdev->instances + (idx << kdev->inst_shift))
62
63 #define for_each_handle_rcu(qh, inst)                   \
64         list_for_each_entry_rcu(qh, &inst->handles, list)
65
66 #define for_each_instance(idx, inst, kdev)              \
67         for (idx = 0, inst = kdev->instances;           \
68              idx < (kdev)->num_queues_in_use;                   \
69              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70
71 /* All firmware file names end up here. List the firmware file names below.
72  * Newest followed by older ones. Search is done from start of the array
73  * until a firmware file is found.
74  */
75 static const char * const knav_acc_firmwares[] = {"/*(DEBLOBBED)*/"};
76
77 static bool device_ready;
78 bool knav_qmss_device_ready(void)
79 {
80         return device_ready;
81 }
82 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
83
84 /**
85  * knav_queue_notify: qmss queue notfier call
86  *
87  * @inst:               qmss queue instance like accumulator
88  */
89 void knav_queue_notify(struct knav_queue_inst *inst)
90 {
91         struct knav_queue *qh;
92
93         if (!inst)
94                 return;
95
96         rcu_read_lock();
97         for_each_handle_rcu(qh, inst) {
98                 if (atomic_read(&qh->notifier_enabled) <= 0)
99                         continue;
100                 if (WARN_ON(!qh->notifier_fn))
101                         continue;
102                 this_cpu_inc(qh->stats->notifies);
103                 qh->notifier_fn(qh->notifier_fn_arg);
104         }
105         rcu_read_unlock();
106 }
107 EXPORT_SYMBOL_GPL(knav_queue_notify);
108
109 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
110 {
111         struct knav_queue_inst *inst = _instdata;
112
113         knav_queue_notify(inst);
114         return IRQ_HANDLED;
115 }
116
117 static int knav_queue_setup_irq(struct knav_range_info *range,
118                           struct knav_queue_inst *inst)
119 {
120         unsigned queue = inst->id - range->queue_base;
121         int ret = 0, irq;
122
123         if (range->flags & RANGE_HAS_IRQ) {
124                 irq = range->irqs[queue].irq;
125                 ret = request_irq(irq, knav_queue_int_handler, 0,
126                                         inst->irq_name, inst);
127                 if (ret)
128                         return ret;
129                 disable_irq(irq);
130                 if (range->irqs[queue].cpu_mask) {
131                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
132                         if (ret) {
133                                 dev_warn(range->kdev->dev,
134                                          "Failed to set IRQ affinity\n");
135                                 return ret;
136                         }
137                 }
138         }
139         return ret;
140 }
141
142 static void knav_queue_free_irq(struct knav_queue_inst *inst)
143 {
144         struct knav_range_info *range = inst->range;
145         unsigned queue = inst->id - inst->range->queue_base;
146         int irq;
147
148         if (range->flags & RANGE_HAS_IRQ) {
149                 irq = range->irqs[queue].irq;
150                 irq_set_affinity_hint(irq, NULL);
151                 free_irq(irq, inst);
152         }
153 }
154
155 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
156 {
157         return !list_empty(&inst->handles);
158 }
159
160 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
161 {
162         return inst->range->flags & RANGE_RESERVED;
163 }
164
165 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
166 {
167         struct knav_queue *tmp;
168
169         rcu_read_lock();
170         for_each_handle_rcu(tmp, inst) {
171                 if (tmp->flags & KNAV_QUEUE_SHARED) {
172                         rcu_read_unlock();
173                         return true;
174                 }
175         }
176         rcu_read_unlock();
177         return false;
178 }
179
180 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
181                                                 unsigned type)
182 {
183         if ((type == KNAV_QUEUE_QPEND) &&
184             (inst->range->flags & RANGE_HAS_IRQ)) {
185                 return true;
186         } else if ((type == KNAV_QUEUE_ACC) &&
187                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
188                 return true;
189         } else if ((type == KNAV_QUEUE_GP) &&
190                 !(inst->range->flags &
191                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
192                 return true;
193         }
194         return false;
195 }
196
197 static inline struct knav_queue_inst *
198 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
199 {
200         struct knav_queue_inst *inst;
201         int idx;
202
203         for_each_instance(idx, inst, kdev) {
204                 if (inst->id == id)
205                         return inst;
206         }
207         return NULL;
208 }
209
210 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
211 {
212         if (kdev->base_id <= id &&
213             kdev->base_id + kdev->num_queues > id) {
214                 id -= kdev->base_id;
215                 return knav_queue_match_id_to_inst(kdev, id);
216         }
217         return NULL;
218 }
219
220 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
221                                       const char *name, unsigned flags)
222 {
223         struct knav_queue *qh;
224         unsigned id;
225         int ret = 0;
226
227         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
228         if (!qh)
229                 return ERR_PTR(-ENOMEM);
230
231         qh->stats = alloc_percpu(struct knav_queue_stats);
232         if (!qh->stats) {
233                 ret = -ENOMEM;
234                 goto err;
235         }
236
237         qh->flags = flags;
238         qh->inst = inst;
239         id = inst->id - inst->qmgr->start_queue;
240         qh->reg_push = &inst->qmgr->reg_push[id];
241         qh->reg_pop = &inst->qmgr->reg_pop[id];
242         qh->reg_peek = &inst->qmgr->reg_peek[id];
243
244         /* first opener? */
245         if (!knav_queue_is_busy(inst)) {
246                 struct knav_range_info *range = inst->range;
247
248                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
249                 if (range->ops && range->ops->open_queue)
250                         ret = range->ops->open_queue(range, inst, flags);
251
252                 if (ret)
253                         goto err;
254         }
255         list_add_tail_rcu(&qh->list, &inst->handles);
256         return qh;
257
258 err:
259         if (qh->stats)
260                 free_percpu(qh->stats);
261         devm_kfree(inst->kdev->dev, qh);
262         return ERR_PTR(ret);
263 }
264
265 static struct knav_queue *
266 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
267 {
268         struct knav_queue_inst *inst;
269         struct knav_queue *qh;
270
271         mutex_lock(&knav_dev_lock);
272
273         qh = ERR_PTR(-ENODEV);
274         inst = knav_queue_find_by_id(id);
275         if (!inst)
276                 goto unlock_ret;
277
278         qh = ERR_PTR(-EEXIST);
279         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
280                 goto unlock_ret;
281
282         qh = ERR_PTR(-EBUSY);
283         if ((flags & KNAV_QUEUE_SHARED) &&
284             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
285                 goto unlock_ret;
286
287         qh = __knav_queue_open(inst, name, flags);
288
289 unlock_ret:
290         mutex_unlock(&knav_dev_lock);
291
292         return qh;
293 }
294
295 static struct knav_queue *knav_queue_open_by_type(const char *name,
296                                                 unsigned type, unsigned flags)
297 {
298         struct knav_queue_inst *inst;
299         struct knav_queue *qh = ERR_PTR(-EINVAL);
300         int idx;
301
302         mutex_lock(&knav_dev_lock);
303
304         for_each_instance(idx, inst, kdev) {
305                 if (knav_queue_is_reserved(inst))
306                         continue;
307                 if (!knav_queue_match_type(inst, type))
308                         continue;
309                 if (knav_queue_is_busy(inst))
310                         continue;
311                 qh = __knav_queue_open(inst, name, flags);
312                 goto unlock_ret;
313         }
314
315 unlock_ret:
316         mutex_unlock(&knav_dev_lock);
317         return qh;
318 }
319
320 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
321 {
322         struct knav_range_info *range = inst->range;
323
324         if (range->ops && range->ops->set_notify)
325                 range->ops->set_notify(range, inst, enabled);
326 }
327
328 static int knav_queue_enable_notifier(struct knav_queue *qh)
329 {
330         struct knav_queue_inst *inst = qh->inst;
331         bool first;
332
333         if (WARN_ON(!qh->notifier_fn))
334                 return -EINVAL;
335
336         /* Adjust the per handle notifier count */
337         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
338         if (!first)
339                 return 0; /* nothing to do */
340
341         /* Now adjust the per instance notifier count */
342         first = (atomic_inc_return(&inst->num_notifiers) == 1);
343         if (first)
344                 knav_queue_set_notify(inst, true);
345
346         return 0;
347 }
348
349 static int knav_queue_disable_notifier(struct knav_queue *qh)
350 {
351         struct knav_queue_inst *inst = qh->inst;
352         bool last;
353
354         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
355         if (!last)
356                 return 0; /* nothing to do */
357
358         last = (atomic_dec_return(&inst->num_notifiers) == 0);
359         if (last)
360                 knav_queue_set_notify(inst, false);
361
362         return 0;
363 }
364
365 static int knav_queue_set_notifier(struct knav_queue *qh,
366                                 struct knav_queue_notify_config *cfg)
367 {
368         knav_queue_notify_fn old_fn = qh->notifier_fn;
369
370         if (!cfg)
371                 return -EINVAL;
372
373         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
374                 return -ENOTSUPP;
375
376         if (!cfg->fn && old_fn)
377                 knav_queue_disable_notifier(qh);
378
379         qh->notifier_fn = cfg->fn;
380         qh->notifier_fn_arg = cfg->fn_arg;
381
382         if (cfg->fn && !old_fn)
383                 knav_queue_enable_notifier(qh);
384
385         return 0;
386 }
387
388 static int knav_gp_set_notify(struct knav_range_info *range,
389                                struct knav_queue_inst *inst,
390                                bool enabled)
391 {
392         unsigned queue;
393
394         if (range->flags & RANGE_HAS_IRQ) {
395                 queue = inst->id - range->queue_base;
396                 if (enabled)
397                         enable_irq(range->irqs[queue].irq);
398                 else
399                         disable_irq_nosync(range->irqs[queue].irq);
400         }
401         return 0;
402 }
403
404 static int knav_gp_open_queue(struct knav_range_info *range,
405                                 struct knav_queue_inst *inst, unsigned flags)
406 {
407         return knav_queue_setup_irq(range, inst);
408 }
409
410 static int knav_gp_close_queue(struct knav_range_info *range,
411                                 struct knav_queue_inst *inst)
412 {
413         knav_queue_free_irq(inst);
414         return 0;
415 }
416
417 struct knav_range_ops knav_gp_range_ops = {
418         .set_notify     = knav_gp_set_notify,
419         .open_queue     = knav_gp_open_queue,
420         .close_queue    = knav_gp_close_queue,
421 };
422
423
424 static int knav_queue_get_count(void *qhandle)
425 {
426         struct knav_queue *qh = qhandle;
427         struct knav_queue_inst *inst = qh->inst;
428
429         return readl_relaxed(&qh->reg_peek[0].entry_count) +
430                 atomic_read(&inst->desc_count);
431 }
432
433 static void knav_queue_debug_show_instance(struct seq_file *s,
434                                         struct knav_queue_inst *inst)
435 {
436         struct knav_device *kdev = inst->kdev;
437         struct knav_queue *qh;
438         int cpu = 0;
439         int pushes = 0;
440         int pops = 0;
441         int push_errors = 0;
442         int pop_errors = 0;
443         int notifies = 0;
444
445         if (!knav_queue_is_busy(inst))
446                 return;
447
448         seq_printf(s, "\tqueue id %d (%s)\n",
449                    kdev->base_id + inst->id, inst->name);
450         for_each_handle_rcu(qh, inst) {
451                 for_each_possible_cpu(cpu) {
452                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
453                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
454                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
455                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
456                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
457                 }
458
459                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
460                                 qh,
461                                 pushes,
462                                 pops,
463                                 knav_queue_get_count(qh),
464                                 notifies,
465                                 push_errors,
466                                 pop_errors);
467         }
468 }
469
470 static int knav_queue_debug_show(struct seq_file *s, void *v)
471 {
472         struct knav_queue_inst *inst;
473         int idx;
474
475         mutex_lock(&knav_dev_lock);
476         seq_printf(s, "%s: %u-%u\n",
477                    dev_name(kdev->dev), kdev->base_id,
478                    kdev->base_id + kdev->num_queues - 1);
479         for_each_instance(idx, inst, kdev)
480                 knav_queue_debug_show_instance(s, inst);
481         mutex_unlock(&knav_dev_lock);
482
483         return 0;
484 }
485
486 static int knav_queue_debug_open(struct inode *inode, struct file *file)
487 {
488         return single_open(file, knav_queue_debug_show, NULL);
489 }
490
491 static const struct file_operations knav_queue_debug_ops = {
492         .open           = knav_queue_debug_open,
493         .read           = seq_read,
494         .llseek         = seq_lseek,
495         .release        = single_release,
496 };
497
498 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
499                                         u32 flags)
500 {
501         unsigned long end;
502         u32 val = 0;
503
504         end = jiffies + msecs_to_jiffies(timeout);
505         while (time_after(end, jiffies)) {
506                 val = readl_relaxed(addr);
507                 if (flags)
508                         val &= flags;
509                 if (!val)
510                         break;
511                 cpu_relax();
512         }
513         return val ? -ETIMEDOUT : 0;
514 }
515
516
517 static int knav_queue_flush(struct knav_queue *qh)
518 {
519         struct knav_queue_inst *inst = qh->inst;
520         unsigned id = inst->id - inst->qmgr->start_queue;
521
522         atomic_set(&inst->desc_count, 0);
523         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
524         return 0;
525 }
526
527 /**
528  * knav_queue_open()    - open a hardware queue
529  * @name                - name to give the queue handle
530  * @id                  - desired queue number if any or specifes the type
531  *                        of queue
532  * @flags               - the following flags are applicable to queues:
533  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
534  *                           exclusive by default.
535  *                           Subsequent attempts to open a shared queue should
536  *                           also have this flag.
537  *
538  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
539  * to check the returned value for error codes.
540  */
541 void *knav_queue_open(const char *name, unsigned id,
542                                         unsigned flags)
543 {
544         struct knav_queue *qh = ERR_PTR(-EINVAL);
545
546         switch (id) {
547         case KNAV_QUEUE_QPEND:
548         case KNAV_QUEUE_ACC:
549         case KNAV_QUEUE_GP:
550                 qh = knav_queue_open_by_type(name, id, flags);
551                 break;
552
553         default:
554                 qh = knav_queue_open_by_id(name, id, flags);
555                 break;
556         }
557         return qh;
558 }
559 EXPORT_SYMBOL_GPL(knav_queue_open);
560
561 /**
562  * knav_queue_close()   - close a hardware queue handle
563  * @qh                  - handle to close
564  */
565 void knav_queue_close(void *qhandle)
566 {
567         struct knav_queue *qh = qhandle;
568         struct knav_queue_inst *inst = qh->inst;
569
570         while (atomic_read(&qh->notifier_enabled) > 0)
571                 knav_queue_disable_notifier(qh);
572
573         mutex_lock(&knav_dev_lock);
574         list_del_rcu(&qh->list);
575         mutex_unlock(&knav_dev_lock);
576         synchronize_rcu();
577         if (!knav_queue_is_busy(inst)) {
578                 struct knav_range_info *range = inst->range;
579
580                 if (range->ops && range->ops->close_queue)
581                         range->ops->close_queue(range, inst);
582         }
583         free_percpu(qh->stats);
584         devm_kfree(inst->kdev->dev, qh);
585 }
586 EXPORT_SYMBOL_GPL(knav_queue_close);
587
588 /**
589  * knav_queue_device_control()  - Perform control operations on a queue
590  * @qh                          - queue handle
591  * @cmd                         - control commands
592  * @arg                         - command argument
593  *
594  * Returns 0 on success, errno otherwise.
595  */
596 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
597                                 unsigned long arg)
598 {
599         struct knav_queue *qh = qhandle;
600         struct knav_queue_notify_config *cfg;
601         int ret;
602
603         switch ((int)cmd) {
604         case KNAV_QUEUE_GET_ID:
605                 ret = qh->inst->kdev->base_id + qh->inst->id;
606                 break;
607
608         case KNAV_QUEUE_FLUSH:
609                 ret = knav_queue_flush(qh);
610                 break;
611
612         case KNAV_QUEUE_SET_NOTIFIER:
613                 cfg = (void *)arg;
614                 ret = knav_queue_set_notifier(qh, cfg);
615                 break;
616
617         case KNAV_QUEUE_ENABLE_NOTIFY:
618                 ret = knav_queue_enable_notifier(qh);
619                 break;
620
621         case KNAV_QUEUE_DISABLE_NOTIFY:
622                 ret = knav_queue_disable_notifier(qh);
623                 break;
624
625         case KNAV_QUEUE_GET_COUNT:
626                 ret = knav_queue_get_count(qh);
627                 break;
628
629         default:
630                 ret = -ENOTSUPP;
631                 break;
632         }
633         return ret;
634 }
635 EXPORT_SYMBOL_GPL(knav_queue_device_control);
636
637
638
639 /**
640  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
641  * @qh                  - hardware queue handle
642  * @data                - data to push
643  * @size                - size of data to push
644  * @flags               - can be used to pass additional information
645  *
646  * Returns 0 on success, errno otherwise.
647  */
648 int knav_queue_push(void *qhandle, dma_addr_t dma,
649                                         unsigned size, unsigned flags)
650 {
651         struct knav_queue *qh = qhandle;
652         u32 val;
653
654         val = (u32)dma | ((size / 16) - 1);
655         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
656
657         this_cpu_inc(qh->stats->pushes);
658         return 0;
659 }
660 EXPORT_SYMBOL_GPL(knav_queue_push);
661
662 /**
663  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
664  * @qh                  - hardware queue handle
665  * @size                - (optional) size of the data pop'ed.
666  *
667  * Returns a DMA address on success, 0 on failure.
668  */
669 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
670 {
671         struct knav_queue *qh = qhandle;
672         struct knav_queue_inst *inst = qh->inst;
673         dma_addr_t dma;
674         u32 val, idx;
675
676         /* are we accumulated? */
677         if (inst->descs) {
678                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
679                         atomic_inc(&inst->desc_count);
680                         return 0;
681                 }
682                 idx  = atomic_inc_return(&inst->desc_head);
683                 idx &= ACC_DESCS_MASK;
684                 val = inst->descs[idx];
685         } else {
686                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
687                 if (unlikely(!val))
688                         return 0;
689         }
690
691         dma = val & DESC_PTR_MASK;
692         if (size)
693                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
694
695         this_cpu_inc(qh->stats->pops);
696         return dma;
697 }
698 EXPORT_SYMBOL_GPL(knav_queue_pop);
699
700 /* carve out descriptors and push into queue */
701 static void kdesc_fill_pool(struct knav_pool *pool)
702 {
703         struct knav_region *region;
704         int i;
705
706         region = pool->region;
707         pool->desc_size = region->desc_size;
708         for (i = 0; i < pool->num_desc; i++) {
709                 int index = pool->region_offset + i;
710                 dma_addr_t dma_addr;
711                 unsigned dma_size;
712                 dma_addr = region->dma_start + (region->desc_size * index);
713                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
714                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
715                                            DMA_TO_DEVICE);
716                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
717         }
718 }
719
720 /* pop out descriptors and close the queue */
721 static void kdesc_empty_pool(struct knav_pool *pool)
722 {
723         dma_addr_t dma;
724         unsigned size;
725         void *desc;
726         int i;
727
728         if (!pool->queue)
729                 return;
730
731         for (i = 0;; i++) {
732                 dma = knav_queue_pop(pool->queue, &size);
733                 if (!dma)
734                         break;
735                 desc = knav_pool_desc_dma_to_virt(pool, dma);
736                 if (!desc) {
737                         dev_dbg(pool->kdev->dev,
738                                 "couldn't unmap desc, continuing\n");
739                         continue;
740                 }
741         }
742         WARN_ON(i != pool->num_desc);
743         knav_queue_close(pool->queue);
744 }
745
746
747 /* Get the DMA address of a descriptor */
748 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
749 {
750         struct knav_pool *pool = ph;
751         return pool->region->dma_start + (virt - pool->region->virt_start);
752 }
753 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
754
755 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
756 {
757         struct knav_pool *pool = ph;
758         return pool->region->virt_start + (dma - pool->region->dma_start);
759 }
760 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
761
762 /**
763  * knav_pool_create()   - Create a pool of descriptors
764  * @name                - name to give the pool handle
765  * @num_desc            - numbers of descriptors in the pool
766  * @region_id           - QMSS region id from which the descriptors are to be
767  *                        allocated.
768  *
769  * Returns a pool handle on success.
770  * Use IS_ERR_OR_NULL() to identify error values on return.
771  */
772 void *knav_pool_create(const char *name,
773                                         int num_desc, int region_id)
774 {
775         struct knav_region *reg_itr, *region = NULL;
776         struct knav_pool *pool, *pi;
777         struct list_head *node;
778         unsigned last_offset;
779         bool slot_found;
780         int ret;
781
782         if (!kdev)
783                 return ERR_PTR(-EPROBE_DEFER);
784
785         if (!kdev->dev)
786                 return ERR_PTR(-ENODEV);
787
788         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
789         if (!pool) {
790                 dev_err(kdev->dev, "out of memory allocating pool\n");
791                 return ERR_PTR(-ENOMEM);
792         }
793
794         for_each_region(kdev, reg_itr) {
795                 if (reg_itr->id != region_id)
796                         continue;
797                 region = reg_itr;
798                 break;
799         }
800
801         if (!region) {
802                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
803                 ret = -EINVAL;
804                 goto err;
805         }
806
807         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
808         if (IS_ERR_OR_NULL(pool->queue)) {
809                 dev_err(kdev->dev,
810                         "failed to open queue for pool(%s), error %ld\n",
811                         name, PTR_ERR(pool->queue));
812                 ret = PTR_ERR(pool->queue);
813                 goto err;
814         }
815
816         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
817         pool->kdev = kdev;
818         pool->dev = kdev->dev;
819
820         mutex_lock(&knav_dev_lock);
821
822         if (num_desc > (region->num_desc - region->used_desc)) {
823                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
824                         region_id, name);
825                 ret = -ENOMEM;
826                 goto err_unlock;
827         }
828
829         /* Region maintains a sorted (by region offset) list of pools
830          * use the first free slot which is large enough to accomodate
831          * the request
832          */
833         last_offset = 0;
834         slot_found = false;
835         node = &region->pools;
836         list_for_each_entry(pi, &region->pools, region_inst) {
837                 if ((pi->region_offset - last_offset) >= num_desc) {
838                         slot_found = true;
839                         break;
840                 }
841                 last_offset = pi->region_offset + pi->num_desc;
842         }
843         node = &pi->region_inst;
844
845         if (slot_found) {
846                 pool->region = region;
847                 pool->num_desc = num_desc;
848                 pool->region_offset = last_offset;
849                 region->used_desc += num_desc;
850                 list_add_tail(&pool->list, &kdev->pools);
851                 list_add_tail(&pool->region_inst, node);
852         } else {
853                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
854                         name, region_id);
855                 ret = -ENOMEM;
856                 goto err_unlock;
857         }
858
859         mutex_unlock(&knav_dev_lock);
860         kdesc_fill_pool(pool);
861         return pool;
862
863 err_unlock:
864         mutex_unlock(&knav_dev_lock);
865 err:
866         kfree(pool->name);
867         devm_kfree(kdev->dev, pool);
868         return ERR_PTR(ret);
869 }
870 EXPORT_SYMBOL_GPL(knav_pool_create);
871
872 /**
873  * knav_pool_destroy()  - Free a pool of descriptors
874  * @pool                - pool handle
875  */
876 void knav_pool_destroy(void *ph)
877 {
878         struct knav_pool *pool = ph;
879
880         if (!pool)
881                 return;
882
883         if (!pool->region)
884                 return;
885
886         kdesc_empty_pool(pool);
887         mutex_lock(&knav_dev_lock);
888
889         pool->region->used_desc -= pool->num_desc;
890         list_del(&pool->region_inst);
891         list_del(&pool->list);
892
893         mutex_unlock(&knav_dev_lock);
894         kfree(pool->name);
895         devm_kfree(kdev->dev, pool);
896 }
897 EXPORT_SYMBOL_GPL(knav_pool_destroy);
898
899
900 /**
901  * knav_pool_desc_get() - Get a descriptor from the pool
902  * @pool                        - pool handle
903  *
904  * Returns descriptor from the pool.
905  */
906 void *knav_pool_desc_get(void *ph)
907 {
908         struct knav_pool *pool = ph;
909         dma_addr_t dma;
910         unsigned size;
911         void *data;
912
913         dma = knav_queue_pop(pool->queue, &size);
914         if (unlikely(!dma))
915                 return ERR_PTR(-ENOMEM);
916         data = knav_pool_desc_dma_to_virt(pool, dma);
917         return data;
918 }
919 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
920
921 /**
922  * knav_pool_desc_put() - return a descriptor to the pool
923  * @pool                        - pool handle
924  */
925 void knav_pool_desc_put(void *ph, void *desc)
926 {
927         struct knav_pool *pool = ph;
928         dma_addr_t dma;
929         dma = knav_pool_desc_virt_to_dma(pool, desc);
930         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
931 }
932 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
933
934 /**
935  * knav_pool_desc_map() - Map descriptor for DMA transfer
936  * @pool                        - pool handle
937  * @desc                        - address of descriptor to map
938  * @size                        - size of descriptor to map
939  * @dma                         - DMA address return pointer
940  * @dma_sz                      - adjusted return pointer
941  *
942  * Returns 0 on success, errno otherwise.
943  */
944 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
945                                         dma_addr_t *dma, unsigned *dma_sz)
946 {
947         struct knav_pool *pool = ph;
948         *dma = knav_pool_desc_virt_to_dma(pool, desc);
949         size = min(size, pool->region->desc_size);
950         size = ALIGN(size, SMP_CACHE_BYTES);
951         *dma_sz = size;
952         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
953
954         /* Ensure the descriptor reaches to the memory */
955         __iowmb();
956
957         return 0;
958 }
959 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
960
961 /**
962  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
963  * @pool                        - pool handle
964  * @dma                         - DMA address of descriptor to unmap
965  * @dma_sz                      - size of descriptor to unmap
966  *
967  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
968  * error values on return.
969  */
970 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
971 {
972         struct knav_pool *pool = ph;
973         unsigned desc_sz;
974         void *desc;
975
976         desc_sz = min(dma_sz, pool->region->desc_size);
977         desc = knav_pool_desc_dma_to_virt(pool, dma);
978         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
979         prefetch(desc);
980         return desc;
981 }
982 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
983
984 /**
985  * knav_pool_count()    - Get the number of descriptors in pool.
986  * @pool                - pool handle
987  * Returns number of elements in the pool.
988  */
989 int knav_pool_count(void *ph)
990 {
991         struct knav_pool *pool = ph;
992         return knav_queue_get_count(pool->queue);
993 }
994 EXPORT_SYMBOL_GPL(knav_pool_count);
995
996 static void knav_queue_setup_region(struct knav_device *kdev,
997                                         struct knav_region *region)
998 {
999         unsigned hw_num_desc, hw_desc_size, size;
1000         struct knav_reg_region __iomem  *regs;
1001         struct knav_qmgr_info *qmgr;
1002         struct knav_pool *pool;
1003         int id = region->id;
1004         struct page *page;
1005
1006         /* unused region? */
1007         if (!region->num_desc) {
1008                 dev_warn(kdev->dev, "unused region %s\n", region->name);
1009                 return;
1010         }
1011
1012         /* get hardware descriptor value */
1013         hw_num_desc = ilog2(region->num_desc - 1) + 1;
1014
1015         /* did we force fit ourselves into nothingness? */
1016         if (region->num_desc < 32) {
1017                 region->num_desc = 0;
1018                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1019                          region->name);
1020                 return;
1021         }
1022
1023         size = region->num_desc * region->desc_size;
1024         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1025                                                 GFP_DMA32);
1026         if (!region->virt_start) {
1027                 region->num_desc = 0;
1028                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1029                         region->name);
1030                 return;
1031         }
1032         region->virt_end = region->virt_start + size;
1033         page = virt_to_page(region->virt_start);
1034
1035         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1036                                          DMA_BIDIRECTIONAL);
1037         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1038                 dev_err(kdev->dev, "dma map failed for region %s\n",
1039                         region->name);
1040                 goto fail;
1041         }
1042         region->dma_end = region->dma_start + size;
1043
1044         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1045         if (!pool) {
1046                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1047                 goto fail;
1048         }
1049         pool->num_desc = 0;
1050         pool->region_offset = region->num_desc;
1051         list_add(&pool->region_inst, &region->pools);
1052
1053         dev_dbg(kdev->dev,
1054                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1055                 region->name, id, region->desc_size, region->num_desc,
1056                 region->link_index, &region->dma_start, &region->dma_end,
1057                 region->virt_start, region->virt_end);
1058
1059         hw_desc_size = (region->desc_size / 16) - 1;
1060         hw_num_desc -= 5;
1061
1062         for_each_qmgr(kdev, qmgr) {
1063                 regs = qmgr->reg_region + id;
1064                 writel_relaxed((u32)region->dma_start, &regs->base);
1065                 writel_relaxed(region->link_index, &regs->start_index);
1066                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1067                                &regs->size_count);
1068         }
1069         return;
1070
1071 fail:
1072         if (region->dma_start)
1073                 dma_unmap_page(kdev->dev, region->dma_start, size,
1074                                 DMA_BIDIRECTIONAL);
1075         if (region->virt_start)
1076                 free_pages_exact(region->virt_start, size);
1077         region->num_desc = 0;
1078         return;
1079 }
1080
1081 static const char *knav_queue_find_name(struct device_node *node)
1082 {
1083         const char *name;
1084
1085         if (of_property_read_string(node, "label", &name) < 0)
1086                 name = node->name;
1087         if (!name)
1088                 name = "unknown";
1089         return name;
1090 }
1091
1092 static int knav_queue_setup_regions(struct knav_device *kdev,
1093                                         struct device_node *regions)
1094 {
1095         struct device *dev = kdev->dev;
1096         struct knav_region *region;
1097         struct device_node *child;
1098         u32 temp[2];
1099         int ret;
1100
1101         for_each_child_of_node(regions, child) {
1102                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1103                 if (!region) {
1104                         dev_err(dev, "out of memory allocating region\n");
1105                         return -ENOMEM;
1106                 }
1107
1108                 region->name = knav_queue_find_name(child);
1109                 of_property_read_u32(child, "id", &region->id);
1110                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1111                 if (!ret) {
1112                         region->num_desc  = temp[0];
1113                         region->desc_size = temp[1];
1114                 } else {
1115                         dev_err(dev, "invalid region info %s\n", region->name);
1116                         devm_kfree(dev, region);
1117                         continue;
1118                 }
1119
1120                 if (!of_get_property(child, "link-index", NULL)) {
1121                         dev_err(dev, "No link info for %s\n", region->name);
1122                         devm_kfree(dev, region);
1123                         continue;
1124                 }
1125                 ret = of_property_read_u32(child, "link-index",
1126                                            &region->link_index);
1127                 if (ret) {
1128                         dev_err(dev, "link index not found for %s\n",
1129                                 region->name);
1130                         devm_kfree(dev, region);
1131                         continue;
1132                 }
1133
1134                 INIT_LIST_HEAD(&region->pools);
1135                 list_add_tail(&region->list, &kdev->regions);
1136         }
1137         if (list_empty(&kdev->regions)) {
1138                 dev_err(dev, "no valid region information found\n");
1139                 return -ENODEV;
1140         }
1141
1142         /* Next, we run through the regions and set things up */
1143         for_each_region(kdev, region)
1144                 knav_queue_setup_region(kdev, region);
1145
1146         return 0;
1147 }
1148
1149 static int knav_get_link_ram(struct knav_device *kdev,
1150                                        const char *name,
1151                                        struct knav_link_ram_block *block)
1152 {
1153         struct platform_device *pdev = to_platform_device(kdev->dev);
1154         struct device_node *node = pdev->dev.of_node;
1155         u32 temp[2];
1156
1157         /*
1158          * Note: link ram resources are specified in "entry" sized units. In
1159          * reality, although entries are ~40bits in hardware, we treat them as
1160          * 64-bit entities here.
1161          *
1162          * For example, to specify the internal link ram for Keystone-I class
1163          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1164          *
1165          * This gets a bit weird when other link rams are used.  For example,
1166          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1167          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1168          * which accounts for 64-bits per entry, for 16K entries.
1169          */
1170         if (!of_property_read_u32_array(node, name , temp, 2)) {
1171                 if (temp[0]) {
1172                         /*
1173                          * queue_base specified => using internal or onchip
1174                          * link ram WARNING - we do not "reserve" this block
1175                          */
1176                         block->dma = (dma_addr_t)temp[0];
1177                         block->virt = NULL;
1178                         block->size = temp[1];
1179                 } else {
1180                         block->size = temp[1];
1181                         /* queue_base not specific => allocate requested size */
1182                         block->virt = dmam_alloc_coherent(kdev->dev,
1183                                                   8 * block->size, &block->dma,
1184                                                   GFP_KERNEL);
1185                         if (!block->virt) {
1186                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1187                                 return -ENOMEM;
1188                         }
1189                 }
1190         } else {
1191                 return -ENODEV;
1192         }
1193         return 0;
1194 }
1195
1196 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1197 {
1198         struct knav_link_ram_block *block;
1199         struct knav_qmgr_info *qmgr;
1200
1201         for_each_qmgr(kdev, qmgr) {
1202                 block = &kdev->link_rams[0];
1203                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1204                         &block->dma, block->virt, block->size);
1205                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1206                 if (kdev->version == QMSS_66AK2G)
1207                         writel_relaxed(block->size,
1208                                        &qmgr->reg_config->link_ram_size0);
1209                 else
1210                         writel_relaxed(block->size - 1,
1211                                        &qmgr->reg_config->link_ram_size0);
1212                 block++;
1213                 if (!block->size)
1214                         continue;
1215
1216                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1217                         &block->dma, block->virt, block->size);
1218                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1219         }
1220
1221         return 0;
1222 }
1223
1224 static int knav_setup_queue_range(struct knav_device *kdev,
1225                                         struct device_node *node)
1226 {
1227         struct device *dev = kdev->dev;
1228         struct knav_range_info *range;
1229         struct knav_qmgr_info *qmgr;
1230         u32 temp[2], start, end, id, index;
1231         int ret, i;
1232
1233         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1234         if (!range) {
1235                 dev_err(dev, "out of memory allocating range\n");
1236                 return -ENOMEM;
1237         }
1238
1239         range->kdev = kdev;
1240         range->name = knav_queue_find_name(node);
1241         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1242         if (!ret) {
1243                 range->queue_base = temp[0] - kdev->base_id;
1244                 range->num_queues = temp[1];
1245         } else {
1246                 dev_err(dev, "invalid queue range %s\n", range->name);
1247                 devm_kfree(dev, range);
1248                 return -EINVAL;
1249         }
1250
1251         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1252                 struct of_phandle_args oirq;
1253
1254                 if (of_irq_parse_one(node, i, &oirq))
1255                         break;
1256
1257                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1258                 if (range->irqs[i].irq == IRQ_NONE)
1259                         break;
1260
1261                 range->num_irqs++;
1262
1263                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1264                         unsigned long mask;
1265                         int bit;
1266
1267                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1268                                                                cpumask_size(), GFP_KERNEL);
1269                         if (!range->irqs[i].cpu_mask)
1270                                 return -ENOMEM;
1271
1272                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1273                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1274                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1275                 }
1276         }
1277
1278         range->num_irqs = min(range->num_irqs, range->num_queues);
1279         if (range->num_irqs)
1280                 range->flags |= RANGE_HAS_IRQ;
1281
1282         if (of_get_property(node, "qalloc-by-id", NULL))
1283                 range->flags |= RANGE_RESERVED;
1284
1285         if (of_get_property(node, "accumulator", NULL)) {
1286                 ret = knav_init_acc_range(kdev, node, range);
1287                 if (ret < 0) {
1288                         devm_kfree(dev, range);
1289                         return ret;
1290                 }
1291         } else {
1292                 range->ops = &knav_gp_range_ops;
1293         }
1294
1295         /* set threshold to 1, and flush out the queues */
1296         for_each_qmgr(kdev, qmgr) {
1297                 start = max(qmgr->start_queue, range->queue_base);
1298                 end   = min(qmgr->start_queue + qmgr->num_queues,
1299                             range->queue_base + range->num_queues);
1300                 for (id = start; id < end; id++) {
1301                         index = id - qmgr->start_queue;
1302                         writel_relaxed(THRESH_GTE | 1,
1303                                        &qmgr->reg_peek[index].ptr_size_thresh);
1304                         writel_relaxed(0,
1305                                        &qmgr->reg_push[index].ptr_size_thresh);
1306                 }
1307         }
1308
1309         list_add_tail(&range->list, &kdev->queue_ranges);
1310         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1311                 range->name, range->queue_base,
1312                 range->queue_base + range->num_queues - 1,
1313                 range->num_irqs,
1314                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1315                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1316                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1317         kdev->num_queues_in_use += range->num_queues;
1318         return 0;
1319 }
1320
1321 static int knav_setup_queue_pools(struct knav_device *kdev,
1322                                    struct device_node *queue_pools)
1323 {
1324         struct device_node *type, *range;
1325         int ret;
1326
1327         for_each_child_of_node(queue_pools, type) {
1328                 for_each_child_of_node(type, range) {
1329                         ret = knav_setup_queue_range(kdev, range);
1330                         /* return value ignored, we init the rest... */
1331                 }
1332         }
1333
1334         /* ... and barf if they all failed! */
1335         if (list_empty(&kdev->queue_ranges)) {
1336                 dev_err(kdev->dev, "no valid queue range found\n");
1337                 return -ENODEV;
1338         }
1339         return 0;
1340 }
1341
1342 static void knav_free_queue_range(struct knav_device *kdev,
1343                                   struct knav_range_info *range)
1344 {
1345         if (range->ops && range->ops->free_range)
1346                 range->ops->free_range(range);
1347         list_del(&range->list);
1348         devm_kfree(kdev->dev, range);
1349 }
1350
1351 static void knav_free_queue_ranges(struct knav_device *kdev)
1352 {
1353         struct knav_range_info *range;
1354
1355         for (;;) {
1356                 range = first_queue_range(kdev);
1357                 if (!range)
1358                         break;
1359                 knav_free_queue_range(kdev, range);
1360         }
1361 }
1362
1363 static void knav_queue_free_regions(struct knav_device *kdev)
1364 {
1365         struct knav_region *region;
1366         struct knav_pool *pool, *tmp;
1367         unsigned size;
1368
1369         for (;;) {
1370                 region = first_region(kdev);
1371                 if (!region)
1372                         break;
1373                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1374                         knav_pool_destroy(pool);
1375
1376                 size = region->virt_end - region->virt_start;
1377                 if (size)
1378                         free_pages_exact(region->virt_start, size);
1379                 list_del(&region->list);
1380                 devm_kfree(kdev->dev, region);
1381         }
1382 }
1383
1384 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1385                                         struct device_node *node, int index)
1386 {
1387         struct resource res;
1388         void __iomem *regs;
1389         int ret;
1390
1391         ret = of_address_to_resource(node, index, &res);
1392         if (ret) {
1393                 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1394                         node->name, index);
1395                 return ERR_PTR(ret);
1396         }
1397
1398         regs = devm_ioremap_resource(kdev->dev, &res);
1399         if (IS_ERR(regs))
1400                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1401                         index, node->name);
1402         return regs;
1403 }
1404
1405 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1406                                         struct device_node *qmgrs)
1407 {
1408         struct device *dev = kdev->dev;
1409         struct knav_qmgr_info *qmgr;
1410         struct device_node *child;
1411         u32 temp[2];
1412         int ret;
1413
1414         for_each_child_of_node(qmgrs, child) {
1415                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1416                 if (!qmgr) {
1417                         dev_err(dev, "out of memory allocating qmgr\n");
1418                         return -ENOMEM;
1419                 }
1420
1421                 ret = of_property_read_u32_array(child, "managed-queues",
1422                                                  temp, 2);
1423                 if (!ret) {
1424                         qmgr->start_queue = temp[0];
1425                         qmgr->num_queues = temp[1];
1426                 } else {
1427                         dev_err(dev, "invalid qmgr queue range\n");
1428                         devm_kfree(dev, qmgr);
1429                         continue;
1430                 }
1431
1432                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1433                          qmgr->start_queue, qmgr->num_queues);
1434
1435                 qmgr->reg_peek =
1436                         knav_queue_map_reg(kdev, child,
1437                                            KNAV_QUEUE_PEEK_REG_INDEX);
1438
1439                 if (kdev->version == QMSS) {
1440                         qmgr->reg_status =
1441                                 knav_queue_map_reg(kdev, child,
1442                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1443                 }
1444
1445                 qmgr->reg_config =
1446                         knav_queue_map_reg(kdev, child,
1447                                            (kdev->version == QMSS_66AK2G) ?
1448                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1449                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1450                 qmgr->reg_region =
1451                         knav_queue_map_reg(kdev, child,
1452                                            (kdev->version == QMSS_66AK2G) ?
1453                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1454                                            KNAV_QUEUE_REGION_REG_INDEX);
1455
1456                 qmgr->reg_push =
1457                         knav_queue_map_reg(kdev, child,
1458                                            (kdev->version == QMSS_66AK2G) ?
1459                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1460                                             KNAV_QUEUE_PUSH_REG_INDEX);
1461
1462                 if (kdev->version == QMSS) {
1463                         qmgr->reg_pop =
1464                                 knav_queue_map_reg(kdev, child,
1465                                                    KNAV_QUEUE_POP_REG_INDEX);
1466                 }
1467
1468                 if (IS_ERR(qmgr->reg_peek) ||
1469                     ((kdev->version == QMSS) &&
1470                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1471                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1472                     IS_ERR(qmgr->reg_push)) {
1473                         dev_err(dev, "failed to map qmgr regs\n");
1474                         if (kdev->version == QMSS) {
1475                                 if (!IS_ERR(qmgr->reg_status))
1476                                         devm_iounmap(dev, qmgr->reg_status);
1477                                 if (!IS_ERR(qmgr->reg_pop))
1478                                         devm_iounmap(dev, qmgr->reg_pop);
1479                         }
1480                         if (!IS_ERR(qmgr->reg_peek))
1481                                 devm_iounmap(dev, qmgr->reg_peek);
1482                         if (!IS_ERR(qmgr->reg_config))
1483                                 devm_iounmap(dev, qmgr->reg_config);
1484                         if (!IS_ERR(qmgr->reg_region))
1485                                 devm_iounmap(dev, qmgr->reg_region);
1486                         if (!IS_ERR(qmgr->reg_push))
1487                                 devm_iounmap(dev, qmgr->reg_push);
1488                         devm_kfree(dev, qmgr);
1489                         continue;
1490                 }
1491
1492                 /* Use same push register for pop as well */
1493                 if (kdev->version == QMSS_66AK2G)
1494                         qmgr->reg_pop = qmgr->reg_push;
1495
1496                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1497                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1498                          qmgr->start_queue, qmgr->num_queues,
1499                          qmgr->reg_peek, qmgr->reg_status,
1500                          qmgr->reg_config, qmgr->reg_region,
1501                          qmgr->reg_push, qmgr->reg_pop);
1502         }
1503         return 0;
1504 }
1505
1506 static int knav_queue_init_pdsps(struct knav_device *kdev,
1507                                         struct device_node *pdsps)
1508 {
1509         struct device *dev = kdev->dev;
1510         struct knav_pdsp_info *pdsp;
1511         struct device_node *child;
1512
1513         for_each_child_of_node(pdsps, child) {
1514                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1515                 if (!pdsp) {
1516                         dev_err(dev, "out of memory allocating pdsp\n");
1517                         return -ENOMEM;
1518                 }
1519                 pdsp->name = knav_queue_find_name(child);
1520                 pdsp->iram =
1521                         knav_queue_map_reg(kdev, child,
1522                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1523                 pdsp->regs =
1524                         knav_queue_map_reg(kdev, child,
1525                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1526                 pdsp->intd =
1527                         knav_queue_map_reg(kdev, child,
1528                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1529                 pdsp->command =
1530                         knav_queue_map_reg(kdev, child,
1531                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1532
1533                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1534                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1535                         dev_err(dev, "failed to map pdsp %s regs\n",
1536                                 pdsp->name);
1537                         if (!IS_ERR(pdsp->command))
1538                                 devm_iounmap(dev, pdsp->command);
1539                         if (!IS_ERR(pdsp->iram))
1540                                 devm_iounmap(dev, pdsp->iram);
1541                         if (!IS_ERR(pdsp->regs))
1542                                 devm_iounmap(dev, pdsp->regs);
1543                         if (!IS_ERR(pdsp->intd))
1544                                 devm_iounmap(dev, pdsp->intd);
1545                         devm_kfree(dev, pdsp);
1546                         continue;
1547                 }
1548                 of_property_read_u32(child, "id", &pdsp->id);
1549                 list_add_tail(&pdsp->list, &kdev->pdsps);
1550                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1551                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1552                         pdsp->intd);
1553         }
1554         return 0;
1555 }
1556
1557 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1558                           struct knav_pdsp_info *pdsp)
1559 {
1560         u32 val, timeout = 1000;
1561         int ret;
1562
1563         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1564         writel_relaxed(val, &pdsp->regs->control);
1565         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1566                                         PDSP_CTRL_RUNNING);
1567         if (ret < 0) {
1568                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1569                 return ret;
1570         }
1571         pdsp->loaded = false;
1572         pdsp->started = false;
1573         return 0;
1574 }
1575
1576 static int knav_queue_load_pdsp(struct knav_device *kdev,
1577                           struct knav_pdsp_info *pdsp)
1578 {
1579         int i, ret, fwlen;
1580         const struct firmware *fw;
1581         bool found = false;
1582         u32 *fwdata;
1583
1584         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1585                 if (knav_acc_firmwares[i]) {
1586                         ret = reject_firmware_direct(&fw,
1587                                                       knav_acc_firmwares[i],
1588                                                       kdev->dev);
1589                         if (!ret) {
1590                                 found = true;
1591                                 break;
1592                         }
1593                 }
1594         }
1595
1596         if (!found) {
1597                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1598                 return -ENODEV;
1599         }
1600
1601         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1602                  knav_acc_firmwares[i]);
1603
1604         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1605         /* download the firmware */
1606         fwdata = (u32 *)fw->data;
1607         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1608         for (i = 0; i < fwlen; i++)
1609                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1610
1611         release_firmware(fw);
1612         return 0;
1613 }
1614
1615 static int knav_queue_start_pdsp(struct knav_device *kdev,
1616                            struct knav_pdsp_info *pdsp)
1617 {
1618         u32 val, timeout = 1000;
1619         int ret;
1620
1621         /* write a command for sync */
1622         writel_relaxed(0xffffffff, pdsp->command);
1623         while (readl_relaxed(pdsp->command) != 0xffffffff)
1624                 cpu_relax();
1625
1626         /* soft reset the PDSP */
1627         val  = readl_relaxed(&pdsp->regs->control);
1628         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1629         writel_relaxed(val, &pdsp->regs->control);
1630
1631         /* enable pdsp */
1632         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1633         writel_relaxed(val, &pdsp->regs->control);
1634
1635         /* wait for command register to clear */
1636         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1637         if (ret < 0) {
1638                 dev_err(kdev->dev,
1639                         "timed out on pdsp %s command register wait\n",
1640                         pdsp->name);
1641                 return ret;
1642         }
1643         return 0;
1644 }
1645
1646 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1647 {
1648         struct knav_pdsp_info *pdsp;
1649
1650         /* disable all pdsps */
1651         for_each_pdsp(kdev, pdsp)
1652                 knav_queue_stop_pdsp(kdev, pdsp);
1653 }
1654
1655 static int knav_queue_start_pdsps(struct knav_device *kdev)
1656 {
1657         struct knav_pdsp_info *pdsp;
1658         int ret;
1659
1660         knav_queue_stop_pdsps(kdev);
1661         /* now load them all. We return success even if pdsp
1662          * is not loaded as acc channels are optional on having
1663          * firmware availability in the system. We set the loaded
1664          * and stated flag and when initialize the acc range, check
1665          * it and init the range only if pdsp is started.
1666          */
1667         for_each_pdsp(kdev, pdsp) {
1668                 ret = knav_queue_load_pdsp(kdev, pdsp);
1669                 if (!ret)
1670                         pdsp->loaded = true;
1671         }
1672
1673         for_each_pdsp(kdev, pdsp) {
1674                 if (pdsp->loaded) {
1675                         ret = knav_queue_start_pdsp(kdev, pdsp);
1676                         if (!ret)
1677                                 pdsp->started = true;
1678                 }
1679         }
1680         return 0;
1681 }
1682
1683 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1684 {
1685         struct knav_qmgr_info *qmgr;
1686
1687         for_each_qmgr(kdev, qmgr) {
1688                 if ((id >= qmgr->start_queue) &&
1689                     (id < qmgr->start_queue + qmgr->num_queues))
1690                         return qmgr;
1691         }
1692         return NULL;
1693 }
1694
1695 static int knav_queue_init_queue(struct knav_device *kdev,
1696                                         struct knav_range_info *range,
1697                                         struct knav_queue_inst *inst,
1698                                         unsigned id)
1699 {
1700         char irq_name[KNAV_NAME_SIZE];
1701         inst->qmgr = knav_find_qmgr(id);
1702         if (!inst->qmgr)
1703                 return -1;
1704
1705         INIT_LIST_HEAD(&inst->handles);
1706         inst->kdev = kdev;
1707         inst->range = range;
1708         inst->irq_num = -1;
1709         inst->id = id;
1710         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1711         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1712
1713         if (range->ops && range->ops->init_queue)
1714                 return range->ops->init_queue(range, inst);
1715         else
1716                 return 0;
1717 }
1718
1719 static int knav_queue_init_queues(struct knav_device *kdev)
1720 {
1721         struct knav_range_info *range;
1722         int size, id, base_idx;
1723         int idx = 0, ret = 0;
1724
1725         /* how much do we need for instance data? */
1726         size = sizeof(struct knav_queue_inst);
1727
1728         /* round this up to a power of 2, keep the index to instance
1729          * arithmetic fast.
1730          * */
1731         kdev->inst_shift = order_base_2(size);
1732         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1733         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1734         if (!kdev->instances)
1735                 return -ENOMEM;
1736
1737         for_each_queue_range(kdev, range) {
1738                 if (range->ops && range->ops->init_range)
1739                         range->ops->init_range(range);
1740                 base_idx = idx;
1741                 for (id = range->queue_base;
1742                      id < range->queue_base + range->num_queues; id++, idx++) {
1743                         ret = knav_queue_init_queue(kdev, range,
1744                                         knav_queue_idx_to_inst(kdev, idx), id);
1745                         if (ret < 0)
1746                                 return ret;
1747                 }
1748                 range->queue_base_inst =
1749                         knav_queue_idx_to_inst(kdev, base_idx);
1750         }
1751         return 0;
1752 }
1753
1754 /* Match table for of_platform binding */
1755 static const struct of_device_id keystone_qmss_of_match[] = {
1756         {
1757                 .compatible = "ti,keystone-navigator-qmss",
1758         },
1759         {
1760                 .compatible = "ti,66ak2g-navss-qm",
1761                 .data   = (void *)QMSS_66AK2G,
1762         },
1763         {},
1764 };
1765 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1766
1767 static int knav_queue_probe(struct platform_device *pdev)
1768 {
1769         struct device_node *node = pdev->dev.of_node;
1770         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1771         const struct of_device_id *match;
1772         struct device *dev = &pdev->dev;
1773         u32 temp[2];
1774         int ret;
1775
1776         if (!node) {
1777                 dev_err(dev, "device tree info unavailable\n");
1778                 return -ENODEV;
1779         }
1780
1781         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1782         if (!kdev) {
1783                 dev_err(dev, "memory allocation failed\n");
1784                 return -ENOMEM;
1785         }
1786
1787         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1788         if (match && match->data)
1789                 kdev->version = QMSS_66AK2G;
1790
1791         platform_set_drvdata(pdev, kdev);
1792         kdev->dev = dev;
1793         INIT_LIST_HEAD(&kdev->queue_ranges);
1794         INIT_LIST_HEAD(&kdev->qmgrs);
1795         INIT_LIST_HEAD(&kdev->pools);
1796         INIT_LIST_HEAD(&kdev->regions);
1797         INIT_LIST_HEAD(&kdev->pdsps);
1798
1799         pm_runtime_enable(&pdev->dev);
1800         ret = pm_runtime_get_sync(&pdev->dev);
1801         if (ret < 0) {
1802                 pm_runtime_put_noidle(&pdev->dev);
1803                 dev_err(dev, "Failed to enable QMSS\n");
1804                 return ret;
1805         }
1806
1807         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1808                 dev_err(dev, "queue-range not specified\n");
1809                 ret = -ENODEV;
1810                 goto err;
1811         }
1812         kdev->base_id    = temp[0];
1813         kdev->num_queues = temp[1];
1814
1815         /* Initialize queue managers using device tree configuration */
1816         qmgrs =  of_get_child_by_name(node, "qmgrs");
1817         if (!qmgrs) {
1818                 dev_err(dev, "queue manager info not specified\n");
1819                 ret = -ENODEV;
1820                 goto err;
1821         }
1822         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1823         of_node_put(qmgrs);
1824         if (ret)
1825                 goto err;
1826
1827         /* get pdsp configuration values from device tree */
1828         pdsps =  of_get_child_by_name(node, "pdsps");
1829         if (pdsps) {
1830                 ret = knav_queue_init_pdsps(kdev, pdsps);
1831                 if (ret)
1832                         goto err;
1833
1834                 ret = knav_queue_start_pdsps(kdev);
1835                 if (ret)
1836                         goto err;
1837         }
1838         of_node_put(pdsps);
1839
1840         /* get usable queue range values from device tree */
1841         queue_pools = of_get_child_by_name(node, "queue-pools");
1842         if (!queue_pools) {
1843                 dev_err(dev, "queue-pools not specified\n");
1844                 ret = -ENODEV;
1845                 goto err;
1846         }
1847         ret = knav_setup_queue_pools(kdev, queue_pools);
1848         of_node_put(queue_pools);
1849         if (ret)
1850                 goto err;
1851
1852         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1853         if (ret) {
1854                 dev_err(kdev->dev, "could not setup linking ram\n");
1855                 goto err;
1856         }
1857
1858         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1859         if (ret) {
1860                 /*
1861                  * nothing really, we have one linking ram already, so we just
1862                  * live within our means
1863                  */
1864         }
1865
1866         ret = knav_queue_setup_link_ram(kdev);
1867         if (ret)
1868                 goto err;
1869
1870         regions = of_get_child_by_name(node, "descriptor-regions");
1871         if (!regions) {
1872                 dev_err(dev, "descriptor-regions not specified\n");
1873                 ret = -ENODEV;
1874                 goto err;
1875         }
1876         ret = knav_queue_setup_regions(kdev, regions);
1877         of_node_put(regions);
1878         if (ret)
1879                 goto err;
1880
1881         ret = knav_queue_init_queues(kdev);
1882         if (ret < 0) {
1883                 dev_err(dev, "hwqueue initialization failed\n");
1884                 goto err;
1885         }
1886
1887         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1888                             &knav_queue_debug_ops);
1889         device_ready = true;
1890         return 0;
1891
1892 err:
1893         knav_queue_stop_pdsps(kdev);
1894         knav_queue_free_regions(kdev);
1895         knav_free_queue_ranges(kdev);
1896         pm_runtime_put_sync(&pdev->dev);
1897         pm_runtime_disable(&pdev->dev);
1898         return ret;
1899 }
1900
1901 static int knav_queue_remove(struct platform_device *pdev)
1902 {
1903         /* TODO: Free resources */
1904         pm_runtime_put_sync(&pdev->dev);
1905         pm_runtime_disable(&pdev->dev);
1906         return 0;
1907 }
1908
1909 static struct platform_driver keystone_qmss_driver = {
1910         .probe          = knav_queue_probe,
1911         .remove         = knav_queue_remove,
1912         .driver         = {
1913                 .name   = "keystone-navigator-qmss",
1914                 .of_match_table = keystone_qmss_of_match,
1915         },
1916 };
1917 module_platform_driver(keystone_qmss_driver);
1918
1919 MODULE_LICENSE("GPL v2");
1920 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1921 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1922 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");