GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / soc / fsl / dpio / qbman-portal.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016-2019 NXP
5  *
6  */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13
14 #include "qbman-portal.h"
15
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE       0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI      0x800
25 #define QBMAN_CINH_SWP_EQCR_CI      0x840
26 #define QBMAN_CINH_SWP_EQAR    0x8c0
27 #define QBMAN_CINH_SWP_CR_RT        0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31 #define QBMAN_CINH_SWP_DQPI    0xa00
32 #define QBMAN_CINH_SWP_DCAP    0xac0
33 #define QBMAN_CINH_SWP_SDQCR   0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
35 #define QBMAN_CINH_SWP_RCR_PI       0xc00
36 #define QBMAN_CINH_SWP_RAR     0xcc0
37 #define QBMAN_CINH_SWP_ISR     0xe00
38 #define QBMAN_CINH_SWP_IER     0xe40
39 #define QBMAN_CINH_SWP_ISDR    0xe80
40 #define QBMAN_CINH_SWP_IIR     0xec0
41
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR      0x600
47 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR   0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM       0x1600
56 #define QBMAN_CENA_SWP_RR_MEM       0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
58
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
64
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT   29
67 #define QB_SDQCR_FC_MASK    0x1
68 #define QB_SDQCR_DCT_SHIFT  24
69 #define QB_SDQCR_DCT_MASK   0x3
70 #define QB_SDQCR_TOK_SHIFT  16
71 #define QB_SDQCR_TOK_MASK   0xff
72 #define QB_SDQCR_SRC_SHIFT  0
73 #define QB_SDQCR_SRC_MASK   0xffff
74
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN    0xbb
77
78 #define QBMAN_EQCR_DCA_IDXMASK          0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
80
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
83
84 enum qbman_sdqcr_dct {
85         qbman_sdqcr_dct_null = 0,
86         qbman_sdqcr_dct_prio_ics,
87         qbman_sdqcr_dct_active_ics,
88         qbman_sdqcr_dct_active
89 };
90
91 enum qbman_sdqcr_fc {
92         qbman_sdqcr_fc_one = 0,
93         qbman_sdqcr_fc_up_to_3 = 1
94 };
95
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98                                     const struct qbman_eq_desc *d,
99                                     const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101                                       const struct qbman_eq_desc *d,
102                                       const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104                                              const struct qbman_eq_desc *d,
105                                              const struct dpaa2_fd *fd,
106                                              uint32_t *flags,
107                                              int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109                                                const struct qbman_eq_desc *d,
110                                                const struct dpaa2_fd *fd,
111                                                uint32_t *flags,
112                                                int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115                                        const struct qbman_eq_desc *d,
116                                        const struct dpaa2_fd *fd,
117                                        int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120                                              const struct qbman_eq_desc *d,
121                                              const struct dpaa2_fd *fd,
122                                              int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124                                  struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126                                    struct qbman_pull_desc *d);
127
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132                                     const struct qbman_release_desc *d,
133                                     const u64 *buffers,
134                                     unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136                                       const struct qbman_release_desc *d,
137                                       const u64 *buffers,
138                                       unsigned int num_buffers);
139
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142                              const struct qbman_eq_desc *d,
143                              const struct dpaa2_fd *fd)
144         = qbman_swp_enqueue_direct;
145
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147                                       const struct qbman_eq_desc *d,
148                                       const struct dpaa2_fd *fd,
149                                       uint32_t *flags,
150                                              int num_frames)
151         = qbman_swp_enqueue_multiple_direct;
152
153 int
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155                                        const struct qbman_eq_desc *d,
156                                        const struct dpaa2_fd *fd,
157                                        int num_frames)
158         = qbman_swp_enqueue_multiple_desc_direct;
159
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161                         = qbman_swp_pull_direct;
162
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164                         = qbman_swp_dqrr_next_direct;
165
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167                              const struct qbman_release_desc *d,
168                              const u64 *buffers,
169                              unsigned int num_buffers)
170                         = qbman_swp_release_direct;
171
172 /* Portal Access */
173
174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175 {
176         return readl_relaxed(p->addr_cinh + offset);
177 }
178
179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180                                         u32 value)
181 {
182         writel_relaxed(value, p->addr_cinh + offset);
183 }
184
185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186 {
187         return p->addr_cena + offset;
188 }
189
190 #define QBMAN_CINH_SWP_CFG   0xd00
191
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT     16
194 #define SWP_CFG_CPBS_SHIFT    15
195 #define SWP_CFG_WN_SHIFT      14
196 #define SWP_CFG_RPM_SHIFT     12
197 #define SWP_CFG_DCM_SHIFT     10
198 #define SWP_CFG_EPM_SHIFT     8
199 #define SWP_CFG_VPM_SHIFT     7
200 #define SWP_CFG_CPM_SHIFT     6
201 #define SWP_CFG_SD_SHIFT      5
202 #define SWP_CFG_SP_SHIFT      4
203 #define SWP_CFG_SE_SHIFT      3
204 #define SWP_CFG_DP_SHIFT      2
205 #define SWP_CFG_DE_SHIFT      1
206 #define SWP_CFG_EP_SHIFT      0
207
208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
209                                     u8 epm, int sd, int sp, int se,
210                                     int dp, int de, int ep)
211 {
212         return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213                 est << SWP_CFG_EST_SHIFT |
214                 wn << SWP_CFG_WN_SHIFT |
215                 rpm << SWP_CFG_RPM_SHIFT |
216                 dcm << SWP_CFG_DCM_SHIFT |
217                 epm << SWP_CFG_EPM_SHIFT |
218                 sd << SWP_CFG_SD_SHIFT |
219                 sp << SWP_CFG_SP_SHIFT |
220                 se << SWP_CFG_SE_SHIFT |
221                 dp << SWP_CFG_DP_SHIFT |
222                 de << SWP_CFG_DE_SHIFT |
223                 ep << SWP_CFG_EP_SHIFT);
224 }
225
226 #define QMAN_RT_MODE       0x00000100
227
228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229 {
230         /* 'first' is included, 'last' is excluded */
231         if (first <= last)
232                 return last - first;
233         else
234                 return (2 * ringsize) - (first - last);
235 }
236
237 /**
238  * qbman_swp_init() - Create a functional object representing the given
239  *                    QBMan portal descriptor.
240  * @d: the given qbman swp descriptor
241  *
242  * Return qbman_swp portal for success, NULL if the object cannot
243  * be created.
244  */
245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246 {
247         struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248         u32 reg;
249         u32 mask_size;
250         u32 eqcr_pi;
251
252         if (!p)
253                 return NULL;
254
255         spin_lock_init(&p->access_spinlock);
256
257         p->desc = d;
258         p->mc.valid_bit = QB_VALID_BIT;
259         p->sdq = 0;
260         p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261         p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262         p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264                 p->mr.valid_bit = QB_VALID_BIT;
265
266         atomic_set(&p->vdq.available, 1);
267         p->vdq.valid_bit = QB_VALID_BIT;
268         p->dqrr.next_idx = 0;
269         p->dqrr.valid_bit = QB_VALID_BIT;
270
271         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272                 p->dqrr.dqrr_size = 4;
273                 p->dqrr.reset_bug = 1;
274         } else {
275                 p->dqrr.dqrr_size = 8;
276                 p->dqrr.reset_bug = 0;
277         }
278
279         p->addr_cena = d->cena_bar;
280         p->addr_cinh = d->cinh_bar;
281
282         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283
284                 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285                         1, /* Writes Non-cacheable */
286                         0, /* EQCR_CI stashing threshold */
287                         3, /* RPM: RCR in array mode */
288                         2, /* DCM: Discrete consumption ack */
289                         2, /* EPM: EQCR in ring mode */
290                         1, /* mem stashing drop enable enable */
291                         1, /* mem stashing priority enable */
292                         1, /* mem stashing enable */
293                         1, /* dequeue stashing priority enable */
294                         0, /* dequeue stashing enable enable */
295                         0); /* EQCR_CI stashing priority enable */
296         } else {
297                 memset(p->addr_cena, 0, 64 * 1024);
298                 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299                         1, /* Writes Non-cacheable */
300                         1, /* EQCR_CI stashing threshold */
301                         3, /* RPM: RCR in array mode */
302                         2, /* DCM: Discrete consumption ack */
303                         0, /* EPM: EQCR in ring mode */
304                         1, /* mem stashing drop enable */
305                         1, /* mem stashing priority enable */
306                         1, /* mem stashing enable */
307                         1, /* dequeue stashing priority enable */
308                         0, /* dequeue stashing enable */
309                         0); /* EQCR_CI stashing priority enable */
310                 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311                        1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
312                        1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
313         }
314
315         qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316         reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317         if (!reg) {
318                 pr_err("qbman: the portal is not enabled!\n");
319                 kfree(p);
320                 return NULL;
321         }
322
323         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324                 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325                 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326         }
327         /*
328          * SDQCR needs to be initialized to 0 when no channels are
329          * being dequeued from or else the QMan HW will indicate an
330          * error.  The values that were calculated above will be
331          * applied when dequeues from a specific channel are enabled.
332          */
333         qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334
335         p->eqcr.pi_ring_size = 8;
336         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337                 p->eqcr.pi_ring_size = 32;
338                 qbman_swp_enqueue_ptr =
339                         qbman_swp_enqueue_mem_back;
340                 qbman_swp_enqueue_multiple_ptr =
341                         qbman_swp_enqueue_multiple_mem_back;
342                 qbman_swp_enqueue_multiple_desc_ptr =
343                         qbman_swp_enqueue_multiple_desc_mem_back;
344                 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345                 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346                 qbman_swp_release_ptr = qbman_swp_release_mem_back;
347         }
348
349         for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350                 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351         eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352         p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353         p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354         p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355                         & p->eqcr.pi_ci_mask;
356         p->eqcr.available = p->eqcr.pi_ring_size;
357
358         return p;
359 }
360
361 /**
362  * qbman_swp_finish() - Create and destroy a functional object representing
363  *                      the given QBMan portal descriptor.
364  * @p: the qbman_swp object to be destroyed
365  */
366 void qbman_swp_finish(struct qbman_swp *p)
367 {
368         kfree(p);
369 }
370
371 /**
372  * qbman_swp_interrupt_read_status()
373  * @p: the given software portal
374  *
375  * Return the value in the SWP_ISR register.
376  */
377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378 {
379         return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380 }
381
382 /**
383  * qbman_swp_interrupt_clear_status()
384  * @p: the given software portal
385  * @mask: The mask to clear in SWP_ISR register
386  */
387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388 {
389         qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390 }
391
392 /**
393  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394  * @p: the given software portal
395  *
396  * Return the value in the SWP_IER register.
397  */
398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399 {
400         return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401 }
402
403 /**
404  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405  * @p: the given software portal
406  * @mask: The mask of bits to enable in SWP_IER
407  */
408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409 {
410         qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411 }
412
413 /**
414  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415  * @p: the given software portal object
416  *
417  * Return the value in the SWP_IIR register.
418  */
419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420 {
421         return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422 }
423
424 /**
425  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426  * @p: the given software portal object
427  * @mask: The mask to set in SWP_IIR register
428  */
429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430 {
431         qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432 }
433
434 /*
435  * Different management commands all use this common base layer of code to issue
436  * commands and poll for results.
437  */
438
439 /*
440  * Returns a pointer to where the caller should fill in their management command
441  * (caller should ignore the verb byte)
442  */
443 void *qbman_swp_mc_start(struct qbman_swp *p)
444 {
445         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447         else
448                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449 }
450
451 /*
452  * Commits merges in the caller-supplied command verb (which should not include
453  * the valid-bit) and submits the command to hardware
454  */
455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456 {
457         u8 *v = cmd;
458
459         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460                 dma_wmb();
461                 *v = cmd_verb | p->mc.valid_bit;
462         } else {
463                 *v = cmd_verb | p->mc.valid_bit;
464                 dma_wmb();
465                 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466         }
467 }
468
469 /*
470  * Checks for a completed response (returns non-NULL if only if the response
471  * is complete).
472  */
473 void *qbman_swp_mc_result(struct qbman_swp *p)
474 {
475         u32 *ret, verb;
476
477         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479                 /* Remove the valid-bit - command completed if the rest
480                  * is non-zero.
481                  */
482                 verb = ret[0] & ~QB_VALID_BIT;
483                 if (!verb)
484                         return NULL;
485                 p->mc.valid_bit ^= QB_VALID_BIT;
486         } else {
487                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488                 /* Command completed if the valid bit is toggled */
489                 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490                         return NULL;
491                 /* Command completed if the rest is non-zero */
492                 verb = ret[0] & ~QB_VALID_BIT;
493                 if (!verb)
494                         return NULL;
495                 p->mr.valid_bit ^= QB_VALID_BIT;
496         }
497
498         return ret;
499 }
500
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
502 enum qb_enqueue_commands {
503         enqueue_empty = 0,
504         enqueue_response_always = 1,
505         enqueue_rejects_to_fq = 2
506 };
507
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
512
513 /**
514  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515  *                         default/starting state.
516  */
517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518 {
519         memset(d, 0, sizeof(*d));
520 }
521
522 /**
523  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524  * @d:                the enqueue descriptor.
525  * @response_success: 1 = enqueue with response always; 0 = enqueue with
526  *                    rejections returned on a FQ.
527  */
528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529 {
530         d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531         if (respond_success)
532                 d->verb |= enqueue_response_always;
533         else
534                 d->verb |= enqueue_rejects_to_fq;
535 }
536
537 /*
538  * Exactly one of the following descriptor "targets" should be set. (Calling any
539  * one of these will replace the effect of any prior call to one of these.)
540  *   -enqueue to a frame queue
541  *   -enqueue to a queuing destination
542  */
543
544 /**
545  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546  * @d:    the enqueue descriptor
547  * @fqid: the id of the frame queue to be enqueued
548  */
549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550 {
551         d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552         d->tgtid = cpu_to_le32(fqid);
553 }
554
555 /**
556  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557  * @d:       the enqueue descriptor
558  * @qdid:    the id of the queuing destination to be enqueued
559  * @qd_bin:  the queuing destination bin
560  * @qd_prio: the queuing destination priority
561  */
562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563                           u32 qd_bin, u32 qd_prio)
564 {
565         d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566         d->tgtid = cpu_to_le32(qdid);
567         d->qdbin = cpu_to_le16(qd_bin);
568         d->qpri = qd_prio;
569 }
570
571 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
572 #define EQAR_VB(eqar)      ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574
575 #define QB_RT_BIT ((u32)0x100)
576 /**
577  * qbman_swp_enqueue_direct() - Issue an enqueue command
578  * @s:  the software portal used for enqueue
579  * @d:  the enqueue descriptor
580  * @fd: the frame descriptor to be enqueued
581  *
582  * Please note that 'fd' should only be NULL if the "action" of the
583  * descriptor is "orp_hole" or "orp_nesn".
584  *
585  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
586  */
587 static
588 int qbman_swp_enqueue_direct(struct qbman_swp *s,
589                              const struct qbman_eq_desc *d,
590                              const struct dpaa2_fd *fd)
591 {
592         int flags = 0;
593         int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
594
595         if (ret >= 0)
596                 ret = 0;
597         else
598                 ret = -EBUSY;
599         return  ret;
600 }
601
602 /**
603  * qbman_swp_enqueue_mem_back() - Issue an enqueue command
604  * @s:  the software portal used for enqueue
605  * @d:  the enqueue descriptor
606  * @fd: the frame descriptor to be enqueued
607  *
608  * Please note that 'fd' should only be NULL if the "action" of the
609  * descriptor is "orp_hole" or "orp_nesn".
610  *
611  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
612  */
613 static
614 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
615                                const struct qbman_eq_desc *d,
616                                const struct dpaa2_fd *fd)
617 {
618         int flags = 0;
619         int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
620
621         if (ret >= 0)
622                 ret = 0;
623         else
624                 ret = -EBUSY;
625         return  ret;
626 }
627
628 /**
629  * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
630  * using one enqueue descriptor
631  * @s:  the software portal used for enqueue
632  * @d:  the enqueue descriptor
633  * @fd: table pointer of frame descriptor table to be enqueued
634  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
635  * @num_frames: number of fd to be enqueued
636  *
637  * Return the number of fd enqueued, or a negative error number.
638  */
639 static
640 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
641                                       const struct qbman_eq_desc *d,
642                                       const struct dpaa2_fd *fd,
643                                       uint32_t *flags,
644                                       int num_frames)
645 {
646         uint32_t *p = NULL;
647         const uint32_t *cl = (uint32_t *)d;
648         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
649         int i, num_enqueued = 0;
650
651         spin_lock(&s->access_spinlock);
652         half_mask = (s->eqcr.pi_ci_mask>>1);
653         full_mask = s->eqcr.pi_ci_mask;
654
655         if (!s->eqcr.available) {
656                 eqcr_ci = s->eqcr.ci;
657                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
658                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
659                 s->eqcr.ci &= full_mask;
660
661                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
662                                         eqcr_ci, s->eqcr.ci);
663                 if (!s->eqcr.available) {
664                         spin_unlock(&s->access_spinlock);
665                         return 0;
666                 }
667         }
668
669         eqcr_pi = s->eqcr.pi;
670         num_enqueued = (s->eqcr.available < num_frames) ?
671                         s->eqcr.available : num_frames;
672         s->eqcr.available -= num_enqueued;
673         /* Fill in the EQCR ring */
674         for (i = 0; i < num_enqueued; i++) {
675                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
676                 /* Skip copying the verb */
677                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
678                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
679                        &fd[i], sizeof(*fd));
680                 eqcr_pi++;
681         }
682
683         dma_wmb();
684
685         /* Set the verb byte, have to substitute in the valid-bit */
686         eqcr_pi = s->eqcr.pi;
687         for (i = 0; i < num_enqueued; i++) {
688                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
689                 p[0] = cl[0] | s->eqcr.pi_vb;
690                 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
691                         struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
692
693                         d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
694                                 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
695                 }
696                 eqcr_pi++;
697                 if (!(eqcr_pi & half_mask))
698                         s->eqcr.pi_vb ^= QB_VALID_BIT;
699         }
700
701         /* Flush all the cacheline without load/store in between */
702         eqcr_pi = s->eqcr.pi;
703         for (i = 0; i < num_enqueued; i++)
704                 eqcr_pi++;
705         s->eqcr.pi = eqcr_pi & full_mask;
706         spin_unlock(&s->access_spinlock);
707
708         return num_enqueued;
709 }
710
711 /**
712  * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
713  * using one enqueue descriptor
714  * @s:  the software portal used for enqueue
715  * @d:  the enqueue descriptor
716  * @fd: table pointer of frame descriptor table to be enqueued
717  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
718  * @num_frames: number of fd to be enqueued
719  *
720  * Return the number of fd enqueued, or a negative error number.
721  */
722 static
723 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
724                                         const struct qbman_eq_desc *d,
725                                         const struct dpaa2_fd *fd,
726                                         uint32_t *flags,
727                                         int num_frames)
728 {
729         uint32_t *p = NULL;
730         const uint32_t *cl = (uint32_t *)(d);
731         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
732         int i, num_enqueued = 0;
733         unsigned long irq_flags;
734
735         spin_lock_irqsave(&s->access_spinlock, irq_flags);
736
737         half_mask = (s->eqcr.pi_ci_mask>>1);
738         full_mask = s->eqcr.pi_ci_mask;
739         if (!s->eqcr.available) {
740                 eqcr_ci = s->eqcr.ci;
741                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
742                 s->eqcr.ci = *p & full_mask;
743                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
744                                         eqcr_ci, s->eqcr.ci);
745                 if (!s->eqcr.available) {
746                         spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
747                         return 0;
748                 }
749         }
750
751         eqcr_pi = s->eqcr.pi;
752         num_enqueued = (s->eqcr.available < num_frames) ?
753                         s->eqcr.available : num_frames;
754         s->eqcr.available -= num_enqueued;
755         /* Fill in the EQCR ring */
756         for (i = 0; i < num_enqueued; i++) {
757                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
758                 /* Skip copying the verb */
759                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
760                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
761                        &fd[i], sizeof(*fd));
762                 eqcr_pi++;
763         }
764
765         /* Set the verb byte, have to substitute in the valid-bit */
766         eqcr_pi = s->eqcr.pi;
767         for (i = 0; i < num_enqueued; i++) {
768                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
769                 p[0] = cl[0] | s->eqcr.pi_vb;
770                 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
771                         struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
772
773                         d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
774                                 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
775                 }
776                 eqcr_pi++;
777                 if (!(eqcr_pi & half_mask))
778                         s->eqcr.pi_vb ^= QB_VALID_BIT;
779         }
780         s->eqcr.pi = eqcr_pi & full_mask;
781
782         dma_wmb();
783         qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
784                                 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
785         spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
786
787         return num_enqueued;
788 }
789
790 /**
791  * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
792  * using multiple enqueue descriptor
793  * @s:  the software portal used for enqueue
794  * @d:  table of minimal enqueue descriptor
795  * @fd: table pointer of frame descriptor table to be enqueued
796  * @num_frames: number of fd to be enqueued
797  *
798  * Return the number of fd enqueued, or a negative error number.
799  */
800 static
801 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
802                                            const struct qbman_eq_desc *d,
803                                            const struct dpaa2_fd *fd,
804                                            int num_frames)
805 {
806         uint32_t *p;
807         const uint32_t *cl;
808         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
809         int i, num_enqueued = 0;
810
811         half_mask = (s->eqcr.pi_ci_mask>>1);
812         full_mask = s->eqcr.pi_ci_mask;
813         if (!s->eqcr.available) {
814                 eqcr_ci = s->eqcr.ci;
815                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
816                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
817                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
818                                         eqcr_ci, s->eqcr.ci);
819                 if (!s->eqcr.available)
820                         return 0;
821         }
822
823         eqcr_pi = s->eqcr.pi;
824         num_enqueued = (s->eqcr.available < num_frames) ?
825                         s->eqcr.available : num_frames;
826         s->eqcr.available -= num_enqueued;
827         /* Fill in the EQCR ring */
828         for (i = 0; i < num_enqueued; i++) {
829                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
830                 cl = (uint32_t *)(&d[i]);
831                 /* Skip copying the verb */
832                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
833                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
834                        &fd[i], sizeof(*fd));
835                 eqcr_pi++;
836         }
837
838         dma_wmb();
839
840         /* Set the verb byte, have to substitute in the valid-bit */
841         eqcr_pi = s->eqcr.pi;
842         for (i = 0; i < num_enqueued; i++) {
843                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
844                 cl = (uint32_t *)(&d[i]);
845                 p[0] = cl[0] | s->eqcr.pi_vb;
846                 eqcr_pi++;
847                 if (!(eqcr_pi & half_mask))
848                         s->eqcr.pi_vb ^= QB_VALID_BIT;
849         }
850
851         /* Flush all the cacheline without load/store in between */
852         eqcr_pi = s->eqcr.pi;
853         for (i = 0; i < num_enqueued; i++)
854                 eqcr_pi++;
855         s->eqcr.pi = eqcr_pi & full_mask;
856
857         return num_enqueued;
858 }
859
860 /**
861  * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
862  * using multiple enqueue descriptor
863  * @s:  the software portal used for enqueue
864  * @d:  table of minimal enqueue descriptor
865  * @fd: table pointer of frame descriptor table to be enqueued
866  * @num_frames: number of fd to be enqueued
867  *
868  * Return the number of fd enqueued, or a negative error number.
869  */
870 static
871 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
872                                            const struct qbman_eq_desc *d,
873                                            const struct dpaa2_fd *fd,
874                                            int num_frames)
875 {
876         uint32_t *p;
877         const uint32_t *cl;
878         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
879         int i, num_enqueued = 0;
880
881         half_mask = (s->eqcr.pi_ci_mask>>1);
882         full_mask = s->eqcr.pi_ci_mask;
883         if (!s->eqcr.available) {
884                 eqcr_ci = s->eqcr.ci;
885                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
886                 s->eqcr.ci = *p & full_mask;
887                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
888                                         eqcr_ci, s->eqcr.ci);
889                 if (!s->eqcr.available)
890                         return 0;
891         }
892
893         eqcr_pi = s->eqcr.pi;
894         num_enqueued = (s->eqcr.available < num_frames) ?
895                         s->eqcr.available : num_frames;
896         s->eqcr.available -= num_enqueued;
897         /* Fill in the EQCR ring */
898         for (i = 0; i < num_enqueued; i++) {
899                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
900                 cl = (uint32_t *)(&d[i]);
901                 /* Skip copying the verb */
902                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
903                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
904                        &fd[i], sizeof(*fd));
905                 eqcr_pi++;
906         }
907
908         /* Set the verb byte, have to substitute in the valid-bit */
909         eqcr_pi = s->eqcr.pi;
910         for (i = 0; i < num_enqueued; i++) {
911                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
912                 cl = (uint32_t *)(&d[i]);
913                 p[0] = cl[0] | s->eqcr.pi_vb;
914                 eqcr_pi++;
915                 if (!(eqcr_pi & half_mask))
916                         s->eqcr.pi_vb ^= QB_VALID_BIT;
917         }
918
919         s->eqcr.pi = eqcr_pi & full_mask;
920
921         dma_wmb();
922         qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
923                                 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
924
925         return num_enqueued;
926 }
927
928 /* Static (push) dequeue */
929
930 /**
931  * qbman_swp_push_get() - Get the push dequeue setup
932  * @p:           the software portal object
933  * @channel_idx: the channel index to query
934  * @enabled:     returned boolean to show whether the push dequeue is enabled
935  *               for the given channel
936  */
937 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
938 {
939         u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
940
941         WARN_ON(channel_idx > 15);
942         *enabled = src | (1 << channel_idx);
943 }
944
945 /**
946  * qbman_swp_push_set() - Enable or disable push dequeue
947  * @p:           the software portal object
948  * @channel_idx: the channel index (0 to 15)
949  * @enable:      enable or disable push dequeue
950  */
951 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
952 {
953         u16 dqsrc;
954
955         WARN_ON(channel_idx > 15);
956         if (enable)
957                 s->sdq |= 1 << channel_idx;
958         else
959                 s->sdq &= ~(1 << channel_idx);
960
961         /* Read make the complete src map.  If no channels are enabled
962          * the SDQCR must be 0 or else QMan will assert errors
963          */
964         dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
965         if (dqsrc != 0)
966                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
967         else
968                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
969 }
970
971 #define QB_VDQCR_VERB_DCT_SHIFT    0
972 #define QB_VDQCR_VERB_DT_SHIFT     2
973 #define QB_VDQCR_VERB_RLS_SHIFT    4
974 #define QB_VDQCR_VERB_WAE_SHIFT    5
975
976 enum qb_pull_dt_e {
977         qb_pull_dt_channel,
978         qb_pull_dt_workqueue,
979         qb_pull_dt_framequeue
980 };
981
982 /**
983  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
984  *                           default/starting state
985  * @d: the pull dequeue descriptor to be cleared
986  */
987 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
988 {
989         memset(d, 0, sizeof(*d));
990 }
991
992 /**
993  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
994  * @d:            the pull dequeue descriptor to be set
995  * @storage:      the pointer of the memory to store the dequeue result
996  * @storage_phys: the physical address of the storage memory
997  * @stash:        to indicate whether write allocate is enabled
998  *
999  * If not called, or if called with 'storage' as NULL, the result pull dequeues
1000  * will produce results to DQRR. If 'storage' is non-NULL, then results are
1001  * produced to the given memory location (using the DMA address which
1002  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1003  * those writes to main-memory express a cache-warming attribute.
1004  */
1005 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1006                                  struct dpaa2_dq *storage,
1007                                  dma_addr_t storage_phys,
1008                                  int stash)
1009 {
1010         /* save the virtual address */
1011         d->rsp_addr_virt = (u64)(uintptr_t)storage;
1012
1013         if (!storage) {
1014                 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1015                 return;
1016         }
1017         d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1018         if (stash)
1019                 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1020         else
1021                 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1022
1023         d->rsp_addr = cpu_to_le64(storage_phys);
1024 }
1025
1026 /**
1027  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1028  * @d:         the pull dequeue descriptor to be set
1029  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1030  */
1031 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1032 {
1033         d->numf = numframes - 1;
1034 }
1035
1036 /*
1037  * Exactly one of the following descriptor "actions" should be set. (Calling any
1038  * one of these will replace the effect of any prior call to one of these.)
1039  * - pull dequeue from the given frame queue (FQ)
1040  * - pull dequeue from any FQ in the given work queue (WQ)
1041  * - pull dequeue from any FQ in any WQ in the given channel
1042  */
1043
1044 /**
1045  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1046  * @fqid: the frame queue index of the given FQ
1047  */
1048 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1049 {
1050         d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1051         d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1052         d->dq_src = cpu_to_le32(fqid);
1053 }
1054
1055 /**
1056  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1057  * @wqid: composed of channel id and wqid within the channel
1058  * @dct:  the dequeue command type
1059  */
1060 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1061                             enum qbman_pull_type_e dct)
1062 {
1063         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1064         d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1065         d->dq_src = cpu_to_le32(wqid);
1066 }
1067
1068 /**
1069  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1070  *                                 dequeues
1071  * @chid: the channel id to be dequeued
1072  * @dct:  the dequeue command type
1073  */
1074 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1075                                  enum qbman_pull_type_e dct)
1076 {
1077         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1078         d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1079         d->dq_src = cpu_to_le32(chid);
1080 }
1081
1082 /**
1083  * qbman_swp_pull_direct() - Issue the pull dequeue command
1084  * @s: the software portal object
1085  * @d: the software portal descriptor which has been configured with
1086  *     the set of qbman_pull_desc_set_*() calls
1087  *
1088  * Return 0 for success, and -EBUSY if the software portal is not ready
1089  * to do pull dequeue.
1090  */
1091 static
1092 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1093 {
1094         struct qbman_pull_desc *p;
1095
1096         if (!atomic_dec_and_test(&s->vdq.available)) {
1097                 atomic_inc(&s->vdq.available);
1098                 return -EBUSY;
1099         }
1100         s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1101         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1102                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1103         else
1104                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1105         p->numf = d->numf;
1106         p->tok = QMAN_DQ_TOKEN_VALID;
1107         p->dq_src = d->dq_src;
1108         p->rsp_addr = d->rsp_addr;
1109         p->rsp_addr_virt = d->rsp_addr_virt;
1110         dma_wmb();
1111         /* Set the verb byte, have to substitute in the valid-bit */
1112         p->verb = d->verb | s->vdq.valid_bit;
1113         s->vdq.valid_bit ^= QB_VALID_BIT;
1114
1115         return 0;
1116 }
1117
1118 /**
1119  * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1120  * @s: the software portal object
1121  * @d: the software portal descriptor which has been configured with
1122  *     the set of qbman_pull_desc_set_*() calls
1123  *
1124  * Return 0 for success, and -EBUSY if the software portal is not ready
1125  * to do pull dequeue.
1126  */
1127 static
1128 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1129 {
1130         struct qbman_pull_desc *p;
1131
1132         if (!atomic_dec_and_test(&s->vdq.available)) {
1133                 atomic_inc(&s->vdq.available);
1134                 return -EBUSY;
1135         }
1136         s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1137         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1138                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1139         else
1140                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1141         p->numf = d->numf;
1142         p->tok = QMAN_DQ_TOKEN_VALID;
1143         p->dq_src = d->dq_src;
1144         p->rsp_addr = d->rsp_addr;
1145         p->rsp_addr_virt = d->rsp_addr_virt;
1146
1147         /* Set the verb byte, have to substitute in the valid-bit */
1148         p->verb = d->verb | s->vdq.valid_bit;
1149         s->vdq.valid_bit ^= QB_VALID_BIT;
1150         dma_wmb();
1151         qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1152
1153         return 0;
1154 }
1155
1156 #define QMAN_DQRR_PI_MASK   0xf
1157
1158 /**
1159  * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1160  * @s: the software portal object
1161  *
1162  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1163  * only once, so repeated calls can return a sequence of DQRR entries, without
1164  * requiring they be consumed immediately or in any particular order.
1165  */
1166 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1167 {
1168         u32 verb;
1169         u32 response_verb;
1170         u32 flags;
1171         struct dpaa2_dq *p;
1172
1173         /* Before using valid-bit to detect if something is there, we have to
1174          * handle the case of the DQRR reset bug...
1175          */
1176         if (unlikely(s->dqrr.reset_bug)) {
1177                 /*
1178                  * We pick up new entries by cache-inhibited producer index,
1179                  * which means that a non-coherent mapping would require us to
1180                  * invalidate and read *only* once that PI has indicated that
1181                  * there's an entry here. The first trip around the DQRR ring
1182                  * will be much less efficient than all subsequent trips around
1183                  * it...
1184                  */
1185                 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1186                         QMAN_DQRR_PI_MASK;
1187
1188                 /* there are new entries if pi != next_idx */
1189                 if (pi == s->dqrr.next_idx)
1190                         return NULL;
1191
1192                 /*
1193                  * if next_idx is/was the last ring index, and 'pi' is
1194                  * different, we can disable the workaround as all the ring
1195                  * entries have now been DMA'd to so valid-bit checking is
1196                  * repaired. Note: this logic needs to be based on next_idx
1197                  * (which increments one at a time), rather than on pi (which
1198                  * can burst and wrap-around between our snapshots of it).
1199                  */
1200                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1201                         pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1202                                  s->dqrr.next_idx, pi);
1203                         s->dqrr.reset_bug = 0;
1204                 }
1205                 prefetch(qbman_get_cmd(s,
1206                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1207         }
1208
1209         p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1210         verb = p->dq.verb;
1211
1212         /*
1213          * If the valid-bit isn't of the expected polarity, nothing there. Note,
1214          * in the DQRR reset bug workaround, we shouldn't need to skip these
1215          * check, because we've already determined that a new entry is available
1216          * and we've invalidated the cacheline before reading it, so the
1217          * valid-bit behaviour is repaired and should tell us what we already
1218          * knew from reading PI.
1219          */
1220         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1221                 prefetch(qbman_get_cmd(s,
1222                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1223                 return NULL;
1224         }
1225         /*
1226          * There's something there. Move "next_idx" attention to the next ring
1227          * entry (and prefetch it) before returning what we found.
1228          */
1229         s->dqrr.next_idx++;
1230         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1231         if (!s->dqrr.next_idx)
1232                 s->dqrr.valid_bit ^= QB_VALID_BIT;
1233
1234         /*
1235          * If this is the final response to a volatile dequeue command
1236          * indicate that the vdq is available
1237          */
1238         flags = p->dq.stat;
1239         response_verb = verb & QBMAN_RESULT_MASK;
1240         if ((response_verb == QBMAN_RESULT_DQ) &&
1241             (flags & DPAA2_DQ_STAT_VOLATILE) &&
1242             (flags & DPAA2_DQ_STAT_EXPIRED))
1243                 atomic_inc(&s->vdq.available);
1244
1245         prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1246
1247         return p;
1248 }
1249
1250 /**
1251  * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1252  * @s: the software portal object
1253  *
1254  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1255  * only once, so repeated calls can return a sequence of DQRR entries, without
1256  * requiring they be consumed immediately or in any particular order.
1257  */
1258 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1259 {
1260         u32 verb;
1261         u32 response_verb;
1262         u32 flags;
1263         struct dpaa2_dq *p;
1264
1265         /* Before using valid-bit to detect if something is there, we have to
1266          * handle the case of the DQRR reset bug...
1267          */
1268         if (unlikely(s->dqrr.reset_bug)) {
1269                 /*
1270                  * We pick up new entries by cache-inhibited producer index,
1271                  * which means that a non-coherent mapping would require us to
1272                  * invalidate and read *only* once that PI has indicated that
1273                  * there's an entry here. The first trip around the DQRR ring
1274                  * will be much less efficient than all subsequent trips around
1275                  * it...
1276                  */
1277                 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1278                         QMAN_DQRR_PI_MASK;
1279
1280                 /* there are new entries if pi != next_idx */
1281                 if (pi == s->dqrr.next_idx)
1282                         return NULL;
1283
1284                 /*
1285                  * if next_idx is/was the last ring index, and 'pi' is
1286                  * different, we can disable the workaround as all the ring
1287                  * entries have now been DMA'd to so valid-bit checking is
1288                  * repaired. Note: this logic needs to be based on next_idx
1289                  * (which increments one at a time), rather than on pi (which
1290                  * can burst and wrap-around between our snapshots of it).
1291                  */
1292                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1293                         pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1294                                  s->dqrr.next_idx, pi);
1295                         s->dqrr.reset_bug = 0;
1296                 }
1297                 prefetch(qbman_get_cmd(s,
1298                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1299         }
1300
1301         p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1302         verb = p->dq.verb;
1303
1304         /*
1305          * If the valid-bit isn't of the expected polarity, nothing there. Note,
1306          * in the DQRR reset bug workaround, we shouldn't need to skip these
1307          * check, because we've already determined that a new entry is available
1308          * and we've invalidated the cacheline before reading it, so the
1309          * valid-bit behaviour is repaired and should tell us what we already
1310          * knew from reading PI.
1311          */
1312         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1313                 prefetch(qbman_get_cmd(s,
1314                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1315                 return NULL;
1316         }
1317         /*
1318          * There's something there. Move "next_idx" attention to the next ring
1319          * entry (and prefetch it) before returning what we found.
1320          */
1321         s->dqrr.next_idx++;
1322         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1323         if (!s->dqrr.next_idx)
1324                 s->dqrr.valid_bit ^= QB_VALID_BIT;
1325
1326         /*
1327          * If this is the final response to a volatile dequeue command
1328          * indicate that the vdq is available
1329          */
1330         flags = p->dq.stat;
1331         response_verb = verb & QBMAN_RESULT_MASK;
1332         if ((response_verb == QBMAN_RESULT_DQ) &&
1333             (flags & DPAA2_DQ_STAT_VOLATILE) &&
1334             (flags & DPAA2_DQ_STAT_EXPIRED))
1335                 atomic_inc(&s->vdq.available);
1336
1337         prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1338
1339         return p;
1340 }
1341
1342 /**
1343  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1344  *                             qbman_swp_dqrr_next().
1345  * @s: the software portal object
1346  * @dq: the DQRR entry to be consumed
1347  */
1348 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1349 {
1350         qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1351 }
1352
1353 /**
1354  * qbman_result_has_new_result() - Check and get the dequeue response from the
1355  *                                 dq storage memory set in pull dequeue command
1356  * @s: the software portal object
1357  * @dq: the dequeue result read from the memory
1358  *
1359  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1360  * dequeue result.
1361  *
1362  * Only used for user-provided storage of dequeue results, not DQRR. For
1363  * efficiency purposes, the driver will perform any required endianness
1364  * conversion to ensure that the user's dequeue result storage is in host-endian
1365  * format. As such, once the user has called qbman_result_has_new_result() and
1366  * been returned a valid dequeue result, they should not call it again on
1367  * the same memory location (except of course if another dequeue command has
1368  * been executed to produce a new result to that location).
1369  */
1370 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1371 {
1372         if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1373                 return 0;
1374
1375         /*
1376          * Set token to be 0 so we will detect change back to 1
1377          * next time the looping is traversed. Const is cast away here
1378          * as we want users to treat the dequeue responses as read only.
1379          */
1380         ((struct dpaa2_dq *)dq)->dq.tok = 0;
1381
1382         /*
1383          * Determine whether VDQCR is available based on whether the
1384          * current result is sitting in the first storage location of
1385          * the busy command.
1386          */
1387         if (s->vdq.storage == dq) {
1388                 s->vdq.storage = NULL;
1389                 atomic_inc(&s->vdq.available);
1390         }
1391
1392         return 1;
1393 }
1394
1395 /**
1396  * qbman_release_desc_clear() - Clear the contents of a descriptor to
1397  *                              default/starting state.
1398  */
1399 void qbman_release_desc_clear(struct qbman_release_desc *d)
1400 {
1401         memset(d, 0, sizeof(*d));
1402         d->verb = 1 << 5; /* Release Command Valid */
1403 }
1404
1405 /**
1406  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1407  */
1408 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1409 {
1410         d->bpid = cpu_to_le16(bpid);
1411 }
1412
1413 /**
1414  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1415  * interrupt source should be asserted after the release command is completed.
1416  */
1417 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1418 {
1419         if (enable)
1420                 d->verb |= 1 << 6;
1421         else
1422                 d->verb &= ~(1 << 6);
1423 }
1424
1425 #define RAR_IDX(rar)     ((rar) & 0x7)
1426 #define RAR_VB(rar)      ((rar) & 0x80)
1427 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1428
1429 /**
1430  * qbman_swp_release_direct() - Issue a buffer release command
1431  * @s:           the software portal object
1432  * @d:           the release descriptor
1433  * @buffers:     a pointer pointing to the buffer address to be released
1434  * @num_buffers: number of buffers to be released,  must be less than 8
1435  *
1436  * Return 0 for success, -EBUSY if the release command ring is not ready.
1437  */
1438 int qbman_swp_release_direct(struct qbman_swp *s,
1439                              const struct qbman_release_desc *d,
1440                              const u64 *buffers, unsigned int num_buffers)
1441 {
1442         int i;
1443         struct qbman_release_desc *p;
1444         u32 rar;
1445
1446         if (!num_buffers || (num_buffers > 7))
1447                 return -EINVAL;
1448
1449         rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1450         if (!RAR_SUCCESS(rar))
1451                 return -EBUSY;
1452
1453         /* Start the release command */
1454         p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1455
1456         /* Copy the caller's buffer pointers to the command */
1457         for (i = 0; i < num_buffers; i++)
1458                 p->buf[i] = cpu_to_le64(buffers[i]);
1459         p->bpid = d->bpid;
1460
1461         /*
1462          * Set the verb byte, have to substitute in the valid-bit
1463          * and the number of buffers.
1464          */
1465         dma_wmb();
1466         p->verb = d->verb | RAR_VB(rar) | num_buffers;
1467
1468         return 0;
1469 }
1470
1471 /**
1472  * qbman_swp_release_mem_back() - Issue a buffer release command
1473  * @s:           the software portal object
1474  * @d:           the release descriptor
1475  * @buffers:     a pointer pointing to the buffer address to be released
1476  * @num_buffers: number of buffers to be released,  must be less than 8
1477  *
1478  * Return 0 for success, -EBUSY if the release command ring is not ready.
1479  */
1480 int qbman_swp_release_mem_back(struct qbman_swp *s,
1481                                const struct qbman_release_desc *d,
1482                                const u64 *buffers, unsigned int num_buffers)
1483 {
1484         int i;
1485         struct qbman_release_desc *p;
1486         u32 rar;
1487
1488         if (!num_buffers || (num_buffers > 7))
1489                 return -EINVAL;
1490
1491         rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1492         if (!RAR_SUCCESS(rar))
1493                 return -EBUSY;
1494
1495         /* Start the release command */
1496         p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1497
1498         /* Copy the caller's buffer pointers to the command */
1499         for (i = 0; i < num_buffers; i++)
1500                 p->buf[i] = cpu_to_le64(buffers[i]);
1501         p->bpid = d->bpid;
1502
1503         p->verb = d->verb | RAR_VB(rar) | num_buffers;
1504         dma_wmb();
1505         qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1506                              RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1507
1508         return 0;
1509 }
1510
1511 struct qbman_acquire_desc {
1512         u8 verb;
1513         u8 reserved;
1514         __le16 bpid;
1515         u8 num;
1516         u8 reserved2[59];
1517 };
1518
1519 struct qbman_acquire_rslt {
1520         u8 verb;
1521         u8 rslt;
1522         __le16 reserved;
1523         u8 num;
1524         u8 reserved2[3];
1525         __le64 buf[7];
1526 };
1527
1528 /**
1529  * qbman_swp_acquire() - Issue a buffer acquire command
1530  * @s:           the software portal object
1531  * @bpid:        the buffer pool index
1532  * @buffers:     a pointer pointing to the acquired buffer addresses
1533  * @num_buffers: number of buffers to be acquired, must be less than 8
1534  *
1535  * Return 0 for success, or negative error code if the acquire command
1536  * fails.
1537  */
1538 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1539                       unsigned int num_buffers)
1540 {
1541         struct qbman_acquire_desc *p;
1542         struct qbman_acquire_rslt *r;
1543         int i;
1544
1545         if (!num_buffers || (num_buffers > 7))
1546                 return -EINVAL;
1547
1548         /* Start the management command */
1549         p = qbman_swp_mc_start(s);
1550
1551         if (!p)
1552                 return -EBUSY;
1553
1554         /* Encode the caller-provided attributes */
1555         p->bpid = cpu_to_le16(bpid);
1556         p->num = num_buffers;
1557
1558         /* Complete the management command */
1559         r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1560         if (unlikely(!r)) {
1561                 pr_err("qbman: acquire from BPID %d failed, no response\n",
1562                        bpid);
1563                 return -EIO;
1564         }
1565
1566         /* Decode the outcome */
1567         WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1568
1569         /* Determine success or failure */
1570         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1571                 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1572                        bpid, r->rslt);
1573                 return -EIO;
1574         }
1575
1576         WARN_ON(r->num > num_buffers);
1577
1578         /* Copy the acquired buffers to the caller's array */
1579         for (i = 0; i < r->num; i++)
1580                 buffers[i] = le64_to_cpu(r->buf[i]);
1581
1582         return (int)r->num;
1583 }
1584
1585 struct qbman_alt_fq_state_desc {
1586         u8 verb;
1587         u8 reserved[3];
1588         __le32 fqid;
1589         u8 reserved2[56];
1590 };
1591
1592 struct qbman_alt_fq_state_rslt {
1593         u8 verb;
1594         u8 rslt;
1595         u8 reserved[62];
1596 };
1597
1598 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1599
1600 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1601                            u8 alt_fq_verb)
1602 {
1603         struct qbman_alt_fq_state_desc *p;
1604         struct qbman_alt_fq_state_rslt *r;
1605
1606         /* Start the management command */
1607         p = qbman_swp_mc_start(s);
1608         if (!p)
1609                 return -EBUSY;
1610
1611         p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1612
1613         /* Complete the management command */
1614         r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1615         if (unlikely(!r)) {
1616                 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1617                        alt_fq_verb);
1618                 return -EIO;
1619         }
1620
1621         /* Decode the outcome */
1622         WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1623
1624         /* Determine success or failure */
1625         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1626                 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1627                        fqid, r->verb, r->rslt);
1628                 return -EIO;
1629         }
1630
1631         return 0;
1632 }
1633
1634 struct qbman_cdan_ctrl_desc {
1635         u8 verb;
1636         u8 reserved;
1637         __le16 ch;
1638         u8 we;
1639         u8 ctrl;
1640         __le16 reserved2;
1641         __le64 cdan_ctx;
1642         u8 reserved3[48];
1643
1644 };
1645
1646 struct qbman_cdan_ctrl_rslt {
1647         u8 verb;
1648         u8 rslt;
1649         __le16 ch;
1650         u8 reserved[60];
1651 };
1652
1653 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1654                        u8 we_mask, u8 cdan_en,
1655                        u64 ctx)
1656 {
1657         struct qbman_cdan_ctrl_desc *p = NULL;
1658         struct qbman_cdan_ctrl_rslt *r = NULL;
1659
1660         /* Start the management command */
1661         p = qbman_swp_mc_start(s);
1662         if (!p)
1663                 return -EBUSY;
1664
1665         /* Encode the caller-provided attributes */
1666         p->ch = cpu_to_le16(channelid);
1667         p->we = we_mask;
1668         if (cdan_en)
1669                 p->ctrl = 1;
1670         else
1671                 p->ctrl = 0;
1672         p->cdan_ctx = cpu_to_le64(ctx);
1673
1674         /* Complete the management command */
1675         r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1676         if (unlikely(!r)) {
1677                 pr_err("qbman: wqchan config failed, no response\n");
1678                 return -EIO;
1679         }
1680
1681         WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1682
1683         /* Determine success or failure */
1684         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1685                 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1686                        channelid, r->rslt);
1687                 return -EIO;
1688         }
1689
1690         return 0;
1691 }
1692
1693 #define QBMAN_RESPONSE_VERB_MASK        0x7f
1694 #define QBMAN_FQ_QUERY_NP               0x45
1695 #define QBMAN_BP_QUERY                  0x32
1696
1697 struct qbman_fq_query_desc {
1698         u8 verb;
1699         u8 reserved[3];
1700         __le32 fqid;
1701         u8 reserved2[56];
1702 };
1703
1704 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1705                          struct qbman_fq_query_np_rslt *r)
1706 {
1707         struct qbman_fq_query_desc *p;
1708         void *resp;
1709
1710         p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1711         if (!p)
1712                 return -EBUSY;
1713
1714         /* FQID is a 24 bit value */
1715         p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1716         resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1717         if (!resp) {
1718                 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1719                        fqid);
1720                 return -EIO;
1721         }
1722         *r = *(struct qbman_fq_query_np_rslt *)resp;
1723         /* Decode the outcome */
1724         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1725
1726         /* Determine success or failure */
1727         if (r->rslt != QBMAN_MC_RSLT_OK) {
1728                 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1729                        p->fqid, r->rslt);
1730                 return -EIO;
1731         }
1732
1733         return 0;
1734 }
1735
1736 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1737 {
1738         return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1739 }
1740
1741 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1742 {
1743         return le32_to_cpu(r->byte_cnt);
1744 }
1745
1746 struct qbman_bp_query_desc {
1747         u8 verb;
1748         u8 reserved;
1749         __le16 bpid;
1750         u8 reserved2[60];
1751 };
1752
1753 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1754                    struct qbman_bp_query_rslt *r)
1755 {
1756         struct qbman_bp_query_desc *p;
1757         void *resp;
1758
1759         p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1760         if (!p)
1761                 return -EBUSY;
1762
1763         p->bpid = cpu_to_le16(bpid);
1764         resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1765         if (!resp) {
1766                 pr_err("qbman: Query BPID %d fields failed, no response\n",
1767                        bpid);
1768                 return -EIO;
1769         }
1770         *r = *(struct qbman_bp_query_rslt *)resp;
1771         /* Decode the outcome */
1772         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1773
1774         /* Determine success or failure */
1775         if (r->rslt != QBMAN_MC_RSLT_OK) {
1776                 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1777                        bpid, r->rslt);
1778                 return -EIO;
1779         }
1780
1781         return 0;
1782 }
1783
1784 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1785 {
1786         return le32_to_cpu(a->fill);
1787 }