GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / soc / fsl / dpio / qbman-portal.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016-2019 NXP
5  *
6  */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13
14 #include "qbman-portal.h"
15
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE       0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI      0x800
25 #define QBMAN_CINH_SWP_EQCR_CI      0x840
26 #define QBMAN_CINH_SWP_EQAR    0x8c0
27 #define QBMAN_CINH_SWP_CR_RT        0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31 #define QBMAN_CINH_SWP_DQPI    0xa00
32 #define QBMAN_CINH_SWP_DQRR_ITR     0xa80
33 #define QBMAN_CINH_SWP_DCAP    0xac0
34 #define QBMAN_CINH_SWP_SDQCR   0xb00
35 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
36 #define QBMAN_CINH_SWP_RCR_PI       0xc00
37 #define QBMAN_CINH_SWP_RAR     0xcc0
38 #define QBMAN_CINH_SWP_ISR     0xe00
39 #define QBMAN_CINH_SWP_IER     0xe40
40 #define QBMAN_CINH_SWP_ISDR    0xe80
41 #define QBMAN_CINH_SWP_IIR     0xec0
42 #define QBMAN_CINH_SWP_ITPR    0xf40
43
44 /* CENA register offsets */
45 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
47 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
48 #define QBMAN_CENA_SWP_CR      0x600
49 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
50 #define QBMAN_CENA_SWP_VDQCR   0x780
51 #define QBMAN_CENA_SWP_EQCR_CI 0x840
52 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
53
54 /* CENA register offsets in memory-backed mode */
55 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
56 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
57 #define QBMAN_CENA_SWP_CR_MEM       0x1600
58 #define QBMAN_CENA_SWP_RR_MEM       0x1680
59 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
60
61 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
62 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
63
64 /* Define token used to determine if response written to memory is valid */
65 #define QMAN_DQ_TOKEN_VALID 1
66
67 /* SDQCR attribute codes */
68 #define QB_SDQCR_FC_SHIFT   29
69 #define QB_SDQCR_FC_MASK    0x1
70 #define QB_SDQCR_DCT_SHIFT  24
71 #define QB_SDQCR_DCT_MASK   0x3
72 #define QB_SDQCR_TOK_SHIFT  16
73 #define QB_SDQCR_TOK_MASK   0xff
74 #define QB_SDQCR_SRC_SHIFT  0
75 #define QB_SDQCR_SRC_MASK   0xffff
76
77 /* opaque token for static dequeues */
78 #define QMAN_SDQCR_TOKEN    0xbb
79
80 #define QBMAN_EQCR_DCA_IDXMASK          0x0f
81 #define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
82
83 #define EQ_DESC_SIZE_WITHOUT_FD 29
84 #define EQ_DESC_SIZE_FD_START 32
85
86 enum qbman_sdqcr_dct {
87         qbman_sdqcr_dct_null = 0,
88         qbman_sdqcr_dct_prio_ics,
89         qbman_sdqcr_dct_active_ics,
90         qbman_sdqcr_dct_active
91 };
92
93 enum qbman_sdqcr_fc {
94         qbman_sdqcr_fc_one = 0,
95         qbman_sdqcr_fc_up_to_3 = 1
96 };
97
98 /* Internal Function declaration */
99 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
100                                     const struct qbman_eq_desc *d,
101                                     const struct dpaa2_fd *fd);
102 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
103                                       const struct qbman_eq_desc *d,
104                                       const struct dpaa2_fd *fd);
105 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
106                                              const struct qbman_eq_desc *d,
107                                              const struct dpaa2_fd *fd,
108                                              uint32_t *flags,
109                                              int num_frames);
110 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
111                                                const struct qbman_eq_desc *d,
112                                                const struct dpaa2_fd *fd,
113                                                uint32_t *flags,
114                                                int num_frames);
115 static int
116 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
117                                        const struct qbman_eq_desc *d,
118                                        const struct dpaa2_fd *fd,
119                                        int num_frames);
120 static
121 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
122                                              const struct qbman_eq_desc *d,
123                                              const struct dpaa2_fd *fd,
124                                              int num_frames);
125 static int qbman_swp_pull_direct(struct qbman_swp *s,
126                                  struct qbman_pull_desc *d);
127 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
128                                    struct qbman_pull_desc *d);
129
130 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
131 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
132
133 static int qbman_swp_release_direct(struct qbman_swp *s,
134                                     const struct qbman_release_desc *d,
135                                     const u64 *buffers,
136                                     unsigned int num_buffers);
137 static int qbman_swp_release_mem_back(struct qbman_swp *s,
138                                       const struct qbman_release_desc *d,
139                                       const u64 *buffers,
140                                       unsigned int num_buffers);
141
142 /* Function pointers */
143 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
144                              const struct qbman_eq_desc *d,
145                              const struct dpaa2_fd *fd)
146         = qbman_swp_enqueue_direct;
147
148 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
149                                       const struct qbman_eq_desc *d,
150                                       const struct dpaa2_fd *fd,
151                                       uint32_t *flags,
152                                              int num_frames)
153         = qbman_swp_enqueue_multiple_direct;
154
155 int
156 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
157                                        const struct qbman_eq_desc *d,
158                                        const struct dpaa2_fd *fd,
159                                        int num_frames)
160         = qbman_swp_enqueue_multiple_desc_direct;
161
162 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
163                         = qbman_swp_pull_direct;
164
165 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
166                         = qbman_swp_dqrr_next_direct;
167
168 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
169                              const struct qbman_release_desc *d,
170                              const u64 *buffers,
171                              unsigned int num_buffers)
172                         = qbman_swp_release_direct;
173
174 /* Portal Access */
175
176 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
177 {
178         return readl_relaxed(p->addr_cinh + offset);
179 }
180
181 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
182                                         u32 value)
183 {
184         writel_relaxed(value, p->addr_cinh + offset);
185 }
186
187 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
188 {
189         return p->addr_cena + offset;
190 }
191
192 #define QBMAN_CINH_SWP_CFG   0xd00
193
194 #define SWP_CFG_DQRR_MF_SHIFT 20
195 #define SWP_CFG_EST_SHIFT     16
196 #define SWP_CFG_CPBS_SHIFT    15
197 #define SWP_CFG_WN_SHIFT      14
198 #define SWP_CFG_RPM_SHIFT     12
199 #define SWP_CFG_DCM_SHIFT     10
200 #define SWP_CFG_EPM_SHIFT     8
201 #define SWP_CFG_VPM_SHIFT     7
202 #define SWP_CFG_CPM_SHIFT     6
203 #define SWP_CFG_SD_SHIFT      5
204 #define SWP_CFG_SP_SHIFT      4
205 #define SWP_CFG_SE_SHIFT      3
206 #define SWP_CFG_DP_SHIFT      2
207 #define SWP_CFG_DE_SHIFT      1
208 #define SWP_CFG_EP_SHIFT      0
209
210 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
211                                     u8 epm, int sd, int sp, int se,
212                                     int dp, int de, int ep)
213 {
214         return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
215                 est << SWP_CFG_EST_SHIFT |
216                 wn << SWP_CFG_WN_SHIFT |
217                 rpm << SWP_CFG_RPM_SHIFT |
218                 dcm << SWP_CFG_DCM_SHIFT |
219                 epm << SWP_CFG_EPM_SHIFT |
220                 sd << SWP_CFG_SD_SHIFT |
221                 sp << SWP_CFG_SP_SHIFT |
222                 se << SWP_CFG_SE_SHIFT |
223                 dp << SWP_CFG_DP_SHIFT |
224                 de << SWP_CFG_DE_SHIFT |
225                 ep << SWP_CFG_EP_SHIFT);
226 }
227
228 #define QMAN_RT_MODE       0x00000100
229
230 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
231 {
232         /* 'first' is included, 'last' is excluded */
233         if (first <= last)
234                 return last - first;
235         else
236                 return (2 * ringsize) - (first - last);
237 }
238
239 /**
240  * qbman_swp_init() - Create a functional object representing the given
241  *                    QBMan portal descriptor.
242  * @d: the given qbman swp descriptor
243  *
244  * Return qbman_swp portal for success, NULL if the object cannot
245  * be created.
246  */
247 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
248 {
249         struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
250         u32 reg;
251         u32 mask_size;
252         u32 eqcr_pi;
253
254         if (!p)
255                 return NULL;
256
257         spin_lock_init(&p->access_spinlock);
258
259         p->desc = d;
260         p->mc.valid_bit = QB_VALID_BIT;
261         p->sdq = 0;
262         p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
263         p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
264         p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
265         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
266                 p->mr.valid_bit = QB_VALID_BIT;
267
268         atomic_set(&p->vdq.available, 1);
269         p->vdq.valid_bit = QB_VALID_BIT;
270         p->dqrr.next_idx = 0;
271         p->dqrr.valid_bit = QB_VALID_BIT;
272
273         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
274                 p->dqrr.dqrr_size = 4;
275                 p->dqrr.reset_bug = 1;
276         } else {
277                 p->dqrr.dqrr_size = 8;
278                 p->dqrr.reset_bug = 0;
279         }
280
281         p->addr_cena = d->cena_bar;
282         p->addr_cinh = d->cinh_bar;
283
284         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
285
286                 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
287                         1, /* Writes Non-cacheable */
288                         0, /* EQCR_CI stashing threshold */
289                         3, /* RPM: RCR in array mode */
290                         2, /* DCM: Discrete consumption ack */
291                         2, /* EPM: EQCR in ring mode */
292                         1, /* mem stashing drop enable enable */
293                         1, /* mem stashing priority enable */
294                         1, /* mem stashing enable */
295                         1, /* dequeue stashing priority enable */
296                         0, /* dequeue stashing enable enable */
297                         0); /* EQCR_CI stashing priority enable */
298         } else {
299                 memset(p->addr_cena, 0, 64 * 1024);
300                 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
301                         1, /* Writes Non-cacheable */
302                         1, /* EQCR_CI stashing threshold */
303                         3, /* RPM: RCR in array mode */
304                         2, /* DCM: Discrete consumption ack */
305                         0, /* EPM: EQCR in ring mode */
306                         1, /* mem stashing drop enable */
307                         1, /* mem stashing priority enable */
308                         1, /* mem stashing enable */
309                         1, /* dequeue stashing priority enable */
310                         0, /* dequeue stashing enable */
311                         0); /* EQCR_CI stashing priority enable */
312                 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
313                        1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
314                        1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
315         }
316
317         qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
318         reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
319         if (!reg) {
320                 pr_err("qbman: the portal is not enabled!\n");
321                 kfree(p);
322                 return NULL;
323         }
324
325         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
326                 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
327                 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
328         }
329         /*
330          * SDQCR needs to be initialized to 0 when no channels are
331          * being dequeued from or else the QMan HW will indicate an
332          * error.  The values that were calculated above will be
333          * applied when dequeues from a specific channel are enabled.
334          */
335         qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
336
337         p->eqcr.pi_ring_size = 8;
338         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
339                 p->eqcr.pi_ring_size = 32;
340                 qbman_swp_enqueue_ptr =
341                         qbman_swp_enqueue_mem_back;
342                 qbman_swp_enqueue_multiple_ptr =
343                         qbman_swp_enqueue_multiple_mem_back;
344                 qbman_swp_enqueue_multiple_desc_ptr =
345                         qbman_swp_enqueue_multiple_desc_mem_back;
346                 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
347                 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
348                 qbman_swp_release_ptr = qbman_swp_release_mem_back;
349         }
350
351         for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
352                 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
353         eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
354         p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
355         p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
356         p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
357                         & p->eqcr.pi_ci_mask;
358         p->eqcr.available = p->eqcr.pi_ring_size;
359
360         /* Initialize the software portal with a irq timeout period of 0us */
361         qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
362
363         return p;
364 }
365
366 /**
367  * qbman_swp_finish() - Create and destroy a functional object representing
368  *                      the given QBMan portal descriptor.
369  * @p: the qbman_swp object to be destroyed
370  */
371 void qbman_swp_finish(struct qbman_swp *p)
372 {
373         kfree(p);
374 }
375
376 /**
377  * qbman_swp_interrupt_read_status()
378  * @p: the given software portal
379  *
380  * Return the value in the SWP_ISR register.
381  */
382 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
383 {
384         return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
385 }
386
387 /**
388  * qbman_swp_interrupt_clear_status()
389  * @p: the given software portal
390  * @mask: The mask to clear in SWP_ISR register
391  */
392 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
393 {
394         qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
395 }
396
397 /**
398  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
399  * @p: the given software portal
400  *
401  * Return the value in the SWP_IER register.
402  */
403 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
404 {
405         return qbman_read_register(p, QBMAN_CINH_SWP_IER);
406 }
407
408 /**
409  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
410  * @p: the given software portal
411  * @mask: The mask of bits to enable in SWP_IER
412  */
413 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
414 {
415         qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
416 }
417
418 /**
419  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
420  * @p: the given software portal object
421  *
422  * Return the value in the SWP_IIR register.
423  */
424 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
425 {
426         return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
427 }
428
429 /**
430  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
431  * @p: the given software portal object
432  * @inhibit: whether to inhibit the IRQs
433  */
434 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
435 {
436         qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
437 }
438
439 /*
440  * Different management commands all use this common base layer of code to issue
441  * commands and poll for results.
442  */
443
444 /*
445  * Returns a pointer to where the caller should fill in their management command
446  * (caller should ignore the verb byte)
447  */
448 void *qbman_swp_mc_start(struct qbman_swp *p)
449 {
450         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
451                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
452         else
453                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
454 }
455
456 /*
457  * Commits merges in the caller-supplied command verb (which should not include
458  * the valid-bit) and submits the command to hardware
459  */
460 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
461 {
462         u8 *v = cmd;
463
464         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
465                 dma_wmb();
466                 *v = cmd_verb | p->mc.valid_bit;
467         } else {
468                 *v = cmd_verb | p->mc.valid_bit;
469                 dma_wmb();
470                 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
471         }
472 }
473
474 /*
475  * Checks for a completed response (returns non-NULL if only if the response
476  * is complete).
477  */
478 void *qbman_swp_mc_result(struct qbman_swp *p)
479 {
480         u32 *ret, verb;
481
482         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
483                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
484                 /* Remove the valid-bit - command completed if the rest
485                  * is non-zero.
486                  */
487                 verb = ret[0] & ~QB_VALID_BIT;
488                 if (!verb)
489                         return NULL;
490                 p->mc.valid_bit ^= QB_VALID_BIT;
491         } else {
492                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
493                 /* Command completed if the valid bit is toggled */
494                 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
495                         return NULL;
496                 /* Command completed if the rest is non-zero */
497                 verb = ret[0] & ~QB_VALID_BIT;
498                 if (!verb)
499                         return NULL;
500                 p->mr.valid_bit ^= QB_VALID_BIT;
501         }
502
503         return ret;
504 }
505
506 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
507 enum qb_enqueue_commands {
508         enqueue_empty = 0,
509         enqueue_response_always = 1,
510         enqueue_rejects_to_fq = 2
511 };
512
513 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
514 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
515 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
516 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
517
518 /*
519  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
520  *                         default/starting state.
521  */
522 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
523 {
524         memset(d, 0, sizeof(*d));
525 }
526
527 /**
528  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
529  * @d:                the enqueue descriptor.
530  * @respond_success:  1 = enqueue with response always; 0 = enqueue with
531  *                    rejections returned on a FQ.
532  */
533 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
534 {
535         d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
536         if (respond_success)
537                 d->verb |= enqueue_response_always;
538         else
539                 d->verb |= enqueue_rejects_to_fq;
540 }
541
542 /*
543  * Exactly one of the following descriptor "targets" should be set. (Calling any
544  * one of these will replace the effect of any prior call to one of these.)
545  *   -enqueue to a frame queue
546  *   -enqueue to a queuing destination
547  */
548
549 /**
550  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
551  * @d:    the enqueue descriptor
552  * @fqid: the id of the frame queue to be enqueued
553  */
554 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
555 {
556         d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
557         d->tgtid = cpu_to_le32(fqid);
558 }
559
560 /**
561  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
562  * @d:       the enqueue descriptor
563  * @qdid:    the id of the queuing destination to be enqueued
564  * @qd_bin:  the queuing destination bin
565  * @qd_prio: the queuing destination priority
566  */
567 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
568                           u32 qd_bin, u32 qd_prio)
569 {
570         d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
571         d->tgtid = cpu_to_le32(qdid);
572         d->qdbin = cpu_to_le16(qd_bin);
573         d->qpri = qd_prio;
574 }
575
576 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
577 #define EQAR_VB(eqar)      ((eqar) & 0x80)
578 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
579
580 #define QB_RT_BIT ((u32)0x100)
581 /**
582  * qbman_swp_enqueue_direct() - Issue an enqueue command
583  * @s:  the software portal used for enqueue
584  * @d:  the enqueue descriptor
585  * @fd: the frame descriptor to be enqueued
586  *
587  * Please note that 'fd' should only be NULL if the "action" of the
588  * descriptor is "orp_hole" or "orp_nesn".
589  *
590  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
591  */
592 static
593 int qbman_swp_enqueue_direct(struct qbman_swp *s,
594                              const struct qbman_eq_desc *d,
595                              const struct dpaa2_fd *fd)
596 {
597         int flags = 0;
598         int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
599
600         if (ret >= 0)
601                 ret = 0;
602         else
603                 ret = -EBUSY;
604         return  ret;
605 }
606
607 /**
608  * qbman_swp_enqueue_mem_back() - Issue an enqueue command
609  * @s:  the software portal used for enqueue
610  * @d:  the enqueue descriptor
611  * @fd: the frame descriptor to be enqueued
612  *
613  * Please note that 'fd' should only be NULL if the "action" of the
614  * descriptor is "orp_hole" or "orp_nesn".
615  *
616  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
617  */
618 static
619 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
620                                const struct qbman_eq_desc *d,
621                                const struct dpaa2_fd *fd)
622 {
623         int flags = 0;
624         int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
625
626         if (ret >= 0)
627                 ret = 0;
628         else
629                 ret = -EBUSY;
630         return  ret;
631 }
632
633 /**
634  * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
635  * using one enqueue descriptor
636  * @s:  the software portal used for enqueue
637  * @d:  the enqueue descriptor
638  * @fd: table pointer of frame descriptor table to be enqueued
639  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
640  * @num_frames: number of fd to be enqueued
641  *
642  * Return the number of fd enqueued, or a negative error number.
643  */
644 static
645 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
646                                       const struct qbman_eq_desc *d,
647                                       const struct dpaa2_fd *fd,
648                                       uint32_t *flags,
649                                       int num_frames)
650 {
651         uint32_t *p = NULL;
652         const uint32_t *cl = (uint32_t *)d;
653         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
654         int i, num_enqueued = 0;
655
656         spin_lock(&s->access_spinlock);
657         half_mask = (s->eqcr.pi_ci_mask>>1);
658         full_mask = s->eqcr.pi_ci_mask;
659
660         if (!s->eqcr.available) {
661                 eqcr_ci = s->eqcr.ci;
662                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
663                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
664                 s->eqcr.ci &= full_mask;
665
666                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
667                                         eqcr_ci, s->eqcr.ci);
668                 if (!s->eqcr.available) {
669                         spin_unlock(&s->access_spinlock);
670                         return 0;
671                 }
672         }
673
674         eqcr_pi = s->eqcr.pi;
675         num_enqueued = (s->eqcr.available < num_frames) ?
676                         s->eqcr.available : num_frames;
677         s->eqcr.available -= num_enqueued;
678         /* Fill in the EQCR ring */
679         for (i = 0; i < num_enqueued; i++) {
680                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
681                 /* Skip copying the verb */
682                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
683                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
684                        &fd[i], sizeof(*fd));
685                 eqcr_pi++;
686         }
687
688         dma_wmb();
689
690         /* Set the verb byte, have to substitute in the valid-bit */
691         eqcr_pi = s->eqcr.pi;
692         for (i = 0; i < num_enqueued; i++) {
693                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
694                 p[0] = cl[0] | s->eqcr.pi_vb;
695                 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
696                         struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
697
698                         eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
699                                 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
700                 }
701                 eqcr_pi++;
702                 if (!(eqcr_pi & half_mask))
703                         s->eqcr.pi_vb ^= QB_VALID_BIT;
704         }
705
706         /* Flush all the cacheline without load/store in between */
707         eqcr_pi = s->eqcr.pi;
708         for (i = 0; i < num_enqueued; i++)
709                 eqcr_pi++;
710         s->eqcr.pi = eqcr_pi & full_mask;
711         spin_unlock(&s->access_spinlock);
712
713         return num_enqueued;
714 }
715
716 /**
717  * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
718  * using one enqueue descriptor
719  * @s:  the software portal used for enqueue
720  * @d:  the enqueue descriptor
721  * @fd: table pointer of frame descriptor table to be enqueued
722  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
723  * @num_frames: number of fd to be enqueued
724  *
725  * Return the number of fd enqueued, or a negative error number.
726  */
727 static
728 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
729                                         const struct qbman_eq_desc *d,
730                                         const struct dpaa2_fd *fd,
731                                         uint32_t *flags,
732                                         int num_frames)
733 {
734         uint32_t *p = NULL;
735         const uint32_t *cl = (uint32_t *)(d);
736         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
737         int i, num_enqueued = 0;
738         unsigned long irq_flags;
739
740         spin_lock_irqsave(&s->access_spinlock, irq_flags);
741
742         half_mask = (s->eqcr.pi_ci_mask>>1);
743         full_mask = s->eqcr.pi_ci_mask;
744         if (!s->eqcr.available) {
745                 eqcr_ci = s->eqcr.ci;
746                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
747                 s->eqcr.ci &= full_mask;
748                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
749                                         eqcr_ci, s->eqcr.ci);
750                 if (!s->eqcr.available) {
751                         spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
752                         return 0;
753                 }
754         }
755
756         eqcr_pi = s->eqcr.pi;
757         num_enqueued = (s->eqcr.available < num_frames) ?
758                         s->eqcr.available : num_frames;
759         s->eqcr.available -= num_enqueued;
760         /* Fill in the EQCR ring */
761         for (i = 0; i < num_enqueued; i++) {
762                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
763                 /* Skip copying the verb */
764                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
765                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
766                        &fd[i], sizeof(*fd));
767                 eqcr_pi++;
768         }
769
770         /* Set the verb byte, have to substitute in the valid-bit */
771         eqcr_pi = s->eqcr.pi;
772         for (i = 0; i < num_enqueued; i++) {
773                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
774                 p[0] = cl[0] | s->eqcr.pi_vb;
775                 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
776                         struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
777
778                         eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
779                                 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
780                 }
781                 eqcr_pi++;
782                 if (!(eqcr_pi & half_mask))
783                         s->eqcr.pi_vb ^= QB_VALID_BIT;
784         }
785         s->eqcr.pi = eqcr_pi & full_mask;
786
787         dma_wmb();
788         qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
789                                 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
790         spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
791
792         return num_enqueued;
793 }
794
795 /**
796  * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
797  * using multiple enqueue descriptor
798  * @s:  the software portal used for enqueue
799  * @d:  table of minimal enqueue descriptor
800  * @fd: table pointer of frame descriptor table to be enqueued
801  * @num_frames: number of fd to be enqueued
802  *
803  * Return the number of fd enqueued, or a negative error number.
804  */
805 static
806 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
807                                            const struct qbman_eq_desc *d,
808                                            const struct dpaa2_fd *fd,
809                                            int num_frames)
810 {
811         uint32_t *p;
812         const uint32_t *cl;
813         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
814         int i, num_enqueued = 0;
815
816         half_mask = (s->eqcr.pi_ci_mask>>1);
817         full_mask = s->eqcr.pi_ci_mask;
818         if (!s->eqcr.available) {
819                 eqcr_ci = s->eqcr.ci;
820                 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
821                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
822                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
823                                         eqcr_ci, s->eqcr.ci);
824                 if (!s->eqcr.available)
825                         return 0;
826         }
827
828         eqcr_pi = s->eqcr.pi;
829         num_enqueued = (s->eqcr.available < num_frames) ?
830                         s->eqcr.available : num_frames;
831         s->eqcr.available -= num_enqueued;
832         /* Fill in the EQCR ring */
833         for (i = 0; i < num_enqueued; i++) {
834                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
835                 cl = (uint32_t *)(&d[i]);
836                 /* Skip copying the verb */
837                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
838                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
839                        &fd[i], sizeof(*fd));
840                 eqcr_pi++;
841         }
842
843         dma_wmb();
844
845         /* Set the verb byte, have to substitute in the valid-bit */
846         eqcr_pi = s->eqcr.pi;
847         for (i = 0; i < num_enqueued; i++) {
848                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
849                 cl = (uint32_t *)(&d[i]);
850                 p[0] = cl[0] | s->eqcr.pi_vb;
851                 eqcr_pi++;
852                 if (!(eqcr_pi & half_mask))
853                         s->eqcr.pi_vb ^= QB_VALID_BIT;
854         }
855
856         /* Flush all the cacheline without load/store in between */
857         eqcr_pi = s->eqcr.pi;
858         for (i = 0; i < num_enqueued; i++)
859                 eqcr_pi++;
860         s->eqcr.pi = eqcr_pi & full_mask;
861
862         return num_enqueued;
863 }
864
865 /**
866  * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
867  * using multiple enqueue descriptor
868  * @s:  the software portal used for enqueue
869  * @d:  table of minimal enqueue descriptor
870  * @fd: table pointer of frame descriptor table to be enqueued
871  * @num_frames: number of fd to be enqueued
872  *
873  * Return the number of fd enqueued, or a negative error number.
874  */
875 static
876 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
877                                            const struct qbman_eq_desc *d,
878                                            const struct dpaa2_fd *fd,
879                                            int num_frames)
880 {
881         uint32_t *p;
882         const uint32_t *cl;
883         uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
884         int i, num_enqueued = 0;
885
886         half_mask = (s->eqcr.pi_ci_mask>>1);
887         full_mask = s->eqcr.pi_ci_mask;
888         if (!s->eqcr.available) {
889                 eqcr_ci = s->eqcr.ci;
890                 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
891                 s->eqcr.ci &= full_mask;
892                 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
893                                         eqcr_ci, s->eqcr.ci);
894                 if (!s->eqcr.available)
895                         return 0;
896         }
897
898         eqcr_pi = s->eqcr.pi;
899         num_enqueued = (s->eqcr.available < num_frames) ?
900                         s->eqcr.available : num_frames;
901         s->eqcr.available -= num_enqueued;
902         /* Fill in the EQCR ring */
903         for (i = 0; i < num_enqueued; i++) {
904                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
905                 cl = (uint32_t *)(&d[i]);
906                 /* Skip copying the verb */
907                 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
908                 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
909                        &fd[i], sizeof(*fd));
910                 eqcr_pi++;
911         }
912
913         /* Set the verb byte, have to substitute in the valid-bit */
914         eqcr_pi = s->eqcr.pi;
915         for (i = 0; i < num_enqueued; i++) {
916                 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
917                 cl = (uint32_t *)(&d[i]);
918                 p[0] = cl[0] | s->eqcr.pi_vb;
919                 eqcr_pi++;
920                 if (!(eqcr_pi & half_mask))
921                         s->eqcr.pi_vb ^= QB_VALID_BIT;
922         }
923
924         s->eqcr.pi = eqcr_pi & full_mask;
925
926         dma_wmb();
927         qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
928                                 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
929
930         return num_enqueued;
931 }
932
933 /* Static (push) dequeue */
934
935 /**
936  * qbman_swp_push_get() - Get the push dequeue setup
937  * @s:           the software portal object
938  * @channel_idx: the channel index to query
939  * @enabled:     returned boolean to show whether the push dequeue is enabled
940  *               for the given channel
941  */
942 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
943 {
944         u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
945
946         WARN_ON(channel_idx > 15);
947         *enabled = src | (1 << channel_idx);
948 }
949
950 /**
951  * qbman_swp_push_set() - Enable or disable push dequeue
952  * @s:           the software portal object
953  * @channel_idx: the channel index (0 to 15)
954  * @enable:      enable or disable push dequeue
955  */
956 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
957 {
958         u16 dqsrc;
959
960         WARN_ON(channel_idx > 15);
961         if (enable)
962                 s->sdq |= 1 << channel_idx;
963         else
964                 s->sdq &= ~(1 << channel_idx);
965
966         /* Read make the complete src map.  If no channels are enabled
967          * the SDQCR must be 0 or else QMan will assert errors
968          */
969         dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
970         if (dqsrc != 0)
971                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
972         else
973                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
974 }
975
976 #define QB_VDQCR_VERB_DCT_SHIFT    0
977 #define QB_VDQCR_VERB_DT_SHIFT     2
978 #define QB_VDQCR_VERB_RLS_SHIFT    4
979 #define QB_VDQCR_VERB_WAE_SHIFT    5
980
981 enum qb_pull_dt_e {
982         qb_pull_dt_channel,
983         qb_pull_dt_workqueue,
984         qb_pull_dt_framequeue
985 };
986
987 /**
988  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
989  *                           default/starting state
990  * @d: the pull dequeue descriptor to be cleared
991  */
992 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
993 {
994         memset(d, 0, sizeof(*d));
995 }
996
997 /**
998  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
999  * @d:            the pull dequeue descriptor to be set
1000  * @storage:      the pointer of the memory to store the dequeue result
1001  * @storage_phys: the physical address of the storage memory
1002  * @stash:        to indicate whether write allocate is enabled
1003  *
1004  * If not called, or if called with 'storage' as NULL, the result pull dequeues
1005  * will produce results to DQRR. If 'storage' is non-NULL, then results are
1006  * produced to the given memory location (using the DMA address which
1007  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1008  * those writes to main-memory express a cache-warming attribute.
1009  */
1010 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1011                                  struct dpaa2_dq *storage,
1012                                  dma_addr_t storage_phys,
1013                                  int stash)
1014 {
1015         /* save the virtual address */
1016         d->rsp_addr_virt = (u64)(uintptr_t)storage;
1017
1018         if (!storage) {
1019                 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1020                 return;
1021         }
1022         d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1023         if (stash)
1024                 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1025         else
1026                 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1027
1028         d->rsp_addr = cpu_to_le64(storage_phys);
1029 }
1030
1031 /**
1032  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1033  * @d:         the pull dequeue descriptor to be set
1034  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1035  */
1036 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1037 {
1038         d->numf = numframes - 1;
1039 }
1040
1041 /*
1042  * Exactly one of the following descriptor "actions" should be set. (Calling any
1043  * one of these will replace the effect of any prior call to one of these.)
1044  * - pull dequeue from the given frame queue (FQ)
1045  * - pull dequeue from any FQ in the given work queue (WQ)
1046  * - pull dequeue from any FQ in any WQ in the given channel
1047  */
1048
1049 /**
1050  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1051  * @d:    the pull dequeue descriptor to be set
1052  * @fqid: the frame queue index of the given FQ
1053  */
1054 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1055 {
1056         d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1057         d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1058         d->dq_src = cpu_to_le32(fqid);
1059 }
1060
1061 /**
1062  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1063  * @d:    the pull dequeue descriptor to be set
1064  * @wqid: composed of channel id and wqid within the channel
1065  * @dct:  the dequeue command type
1066  */
1067 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1068                             enum qbman_pull_type_e dct)
1069 {
1070         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1071         d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1072         d->dq_src = cpu_to_le32(wqid);
1073 }
1074
1075 /**
1076  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1077  *                                 dequeues
1078  * @d:    the pull dequeue descriptor to be set
1079  * @chid: the channel id to be dequeued
1080  * @dct:  the dequeue command type
1081  */
1082 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1083                                  enum qbman_pull_type_e dct)
1084 {
1085         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1086         d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1087         d->dq_src = cpu_to_le32(chid);
1088 }
1089
1090 /**
1091  * qbman_swp_pull_direct() - Issue the pull dequeue command
1092  * @s: the software portal object
1093  * @d: the software portal descriptor which has been configured with
1094  *     the set of qbman_pull_desc_set_*() calls
1095  *
1096  * Return 0 for success, and -EBUSY if the software portal is not ready
1097  * to do pull dequeue.
1098  */
1099 static
1100 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1101 {
1102         struct qbman_pull_desc *p;
1103
1104         if (!atomic_dec_and_test(&s->vdq.available)) {
1105                 atomic_inc(&s->vdq.available);
1106                 return -EBUSY;
1107         }
1108         s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1109         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1110                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1111         else
1112                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1113         p->numf = d->numf;
1114         p->tok = QMAN_DQ_TOKEN_VALID;
1115         p->dq_src = d->dq_src;
1116         p->rsp_addr = d->rsp_addr;
1117         p->rsp_addr_virt = d->rsp_addr_virt;
1118         dma_wmb();
1119         /* Set the verb byte, have to substitute in the valid-bit */
1120         p->verb = d->verb | s->vdq.valid_bit;
1121         s->vdq.valid_bit ^= QB_VALID_BIT;
1122
1123         return 0;
1124 }
1125
1126 /**
1127  * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1128  * @s: the software portal object
1129  * @d: the software portal descriptor which has been configured with
1130  *     the set of qbman_pull_desc_set_*() calls
1131  *
1132  * Return 0 for success, and -EBUSY if the software portal is not ready
1133  * to do pull dequeue.
1134  */
1135 static
1136 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1137 {
1138         struct qbman_pull_desc *p;
1139
1140         if (!atomic_dec_and_test(&s->vdq.available)) {
1141                 atomic_inc(&s->vdq.available);
1142                 return -EBUSY;
1143         }
1144         s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1145         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1146                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1147         else
1148                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1149         p->numf = d->numf;
1150         p->tok = QMAN_DQ_TOKEN_VALID;
1151         p->dq_src = d->dq_src;
1152         p->rsp_addr = d->rsp_addr;
1153         p->rsp_addr_virt = d->rsp_addr_virt;
1154
1155         /* Set the verb byte, have to substitute in the valid-bit */
1156         p->verb = d->verb | s->vdq.valid_bit;
1157         s->vdq.valid_bit ^= QB_VALID_BIT;
1158         dma_wmb();
1159         qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1160
1161         return 0;
1162 }
1163
1164 #define QMAN_DQRR_PI_MASK   0xf
1165
1166 /**
1167  * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1168  * @s: the software portal object
1169  *
1170  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1171  * only once, so repeated calls can return a sequence of DQRR entries, without
1172  * requiring they be consumed immediately or in any particular order.
1173  */
1174 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1175 {
1176         u32 verb;
1177         u32 response_verb;
1178         u32 flags;
1179         struct dpaa2_dq *p;
1180
1181         /* Before using valid-bit to detect if something is there, we have to
1182          * handle the case of the DQRR reset bug...
1183          */
1184         if (unlikely(s->dqrr.reset_bug)) {
1185                 /*
1186                  * We pick up new entries by cache-inhibited producer index,
1187                  * which means that a non-coherent mapping would require us to
1188                  * invalidate and read *only* once that PI has indicated that
1189                  * there's an entry here. The first trip around the DQRR ring
1190                  * will be much less efficient than all subsequent trips around
1191                  * it...
1192                  */
1193                 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1194                         QMAN_DQRR_PI_MASK;
1195
1196                 /* there are new entries if pi != next_idx */
1197                 if (pi == s->dqrr.next_idx)
1198                         return NULL;
1199
1200                 /*
1201                  * if next_idx is/was the last ring index, and 'pi' is
1202                  * different, we can disable the workaround as all the ring
1203                  * entries have now been DMA'd to so valid-bit checking is
1204                  * repaired. Note: this logic needs to be based on next_idx
1205                  * (which increments one at a time), rather than on pi (which
1206                  * can burst and wrap-around between our snapshots of it).
1207                  */
1208                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1209                         pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1210                                  s->dqrr.next_idx, pi);
1211                         s->dqrr.reset_bug = 0;
1212                 }
1213                 prefetch(qbman_get_cmd(s,
1214                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1215         }
1216
1217         p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1218         verb = p->dq.verb;
1219
1220         /*
1221          * If the valid-bit isn't of the expected polarity, nothing there. Note,
1222          * in the DQRR reset bug workaround, we shouldn't need to skip these
1223          * check, because we've already determined that a new entry is available
1224          * and we've invalidated the cacheline before reading it, so the
1225          * valid-bit behaviour is repaired and should tell us what we already
1226          * knew from reading PI.
1227          */
1228         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1229                 prefetch(qbman_get_cmd(s,
1230                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1231                 return NULL;
1232         }
1233         /*
1234          * There's something there. Move "next_idx" attention to the next ring
1235          * entry (and prefetch it) before returning what we found.
1236          */
1237         s->dqrr.next_idx++;
1238         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1239         if (!s->dqrr.next_idx)
1240                 s->dqrr.valid_bit ^= QB_VALID_BIT;
1241
1242         /*
1243          * If this is the final response to a volatile dequeue command
1244          * indicate that the vdq is available
1245          */
1246         flags = p->dq.stat;
1247         response_verb = verb & QBMAN_RESULT_MASK;
1248         if ((response_verb == QBMAN_RESULT_DQ) &&
1249             (flags & DPAA2_DQ_STAT_VOLATILE) &&
1250             (flags & DPAA2_DQ_STAT_EXPIRED))
1251                 atomic_inc(&s->vdq.available);
1252
1253         prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1254
1255         return p;
1256 }
1257
1258 /**
1259  * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1260  * @s: the software portal object
1261  *
1262  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1263  * only once, so repeated calls can return a sequence of DQRR entries, without
1264  * requiring they be consumed immediately or in any particular order.
1265  */
1266 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1267 {
1268         u32 verb;
1269         u32 response_verb;
1270         u32 flags;
1271         struct dpaa2_dq *p;
1272
1273         /* Before using valid-bit to detect if something is there, we have to
1274          * handle the case of the DQRR reset bug...
1275          */
1276         if (unlikely(s->dqrr.reset_bug)) {
1277                 /*
1278                  * We pick up new entries by cache-inhibited producer index,
1279                  * which means that a non-coherent mapping would require us to
1280                  * invalidate and read *only* once that PI has indicated that
1281                  * there's an entry here. The first trip around the DQRR ring
1282                  * will be much less efficient than all subsequent trips around
1283                  * it...
1284                  */
1285                 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1286                         QMAN_DQRR_PI_MASK;
1287
1288                 /* there are new entries if pi != next_idx */
1289                 if (pi == s->dqrr.next_idx)
1290                         return NULL;
1291
1292                 /*
1293                  * if next_idx is/was the last ring index, and 'pi' is
1294                  * different, we can disable the workaround as all the ring
1295                  * entries have now been DMA'd to so valid-bit checking is
1296                  * repaired. Note: this logic needs to be based on next_idx
1297                  * (which increments one at a time), rather than on pi (which
1298                  * can burst and wrap-around between our snapshots of it).
1299                  */
1300                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1301                         pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1302                                  s->dqrr.next_idx, pi);
1303                         s->dqrr.reset_bug = 0;
1304                 }
1305                 prefetch(qbman_get_cmd(s,
1306                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1307         }
1308
1309         p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1310         verb = p->dq.verb;
1311
1312         /*
1313          * If the valid-bit isn't of the expected polarity, nothing there. Note,
1314          * in the DQRR reset bug workaround, we shouldn't need to skip these
1315          * check, because we've already determined that a new entry is available
1316          * and we've invalidated the cacheline before reading it, so the
1317          * valid-bit behaviour is repaired and should tell us what we already
1318          * knew from reading PI.
1319          */
1320         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1321                 prefetch(qbman_get_cmd(s,
1322                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1323                 return NULL;
1324         }
1325         /*
1326          * There's something there. Move "next_idx" attention to the next ring
1327          * entry (and prefetch it) before returning what we found.
1328          */
1329         s->dqrr.next_idx++;
1330         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1331         if (!s->dqrr.next_idx)
1332                 s->dqrr.valid_bit ^= QB_VALID_BIT;
1333
1334         /*
1335          * If this is the final response to a volatile dequeue command
1336          * indicate that the vdq is available
1337          */
1338         flags = p->dq.stat;
1339         response_verb = verb & QBMAN_RESULT_MASK;
1340         if ((response_verb == QBMAN_RESULT_DQ) &&
1341             (flags & DPAA2_DQ_STAT_VOLATILE) &&
1342             (flags & DPAA2_DQ_STAT_EXPIRED))
1343                 atomic_inc(&s->vdq.available);
1344
1345         prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1346
1347         return p;
1348 }
1349
1350 /**
1351  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1352  *                             qbman_swp_dqrr_next().
1353  * @s: the software portal object
1354  * @dq: the DQRR entry to be consumed
1355  */
1356 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1357 {
1358         qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1359 }
1360
1361 /**
1362  * qbman_result_has_new_result() - Check and get the dequeue response from the
1363  *                                 dq storage memory set in pull dequeue command
1364  * @s: the software portal object
1365  * @dq: the dequeue result read from the memory
1366  *
1367  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1368  * dequeue result.
1369  *
1370  * Only used for user-provided storage of dequeue results, not DQRR. For
1371  * efficiency purposes, the driver will perform any required endianness
1372  * conversion to ensure that the user's dequeue result storage is in host-endian
1373  * format. As such, once the user has called qbman_result_has_new_result() and
1374  * been returned a valid dequeue result, they should not call it again on
1375  * the same memory location (except of course if another dequeue command has
1376  * been executed to produce a new result to that location).
1377  */
1378 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1379 {
1380         if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1381                 return 0;
1382
1383         /*
1384          * Set token to be 0 so we will detect change back to 1
1385          * next time the looping is traversed. Const is cast away here
1386          * as we want users to treat the dequeue responses as read only.
1387          */
1388         ((struct dpaa2_dq *)dq)->dq.tok = 0;
1389
1390         /*
1391          * Determine whether VDQCR is available based on whether the
1392          * current result is sitting in the first storage location of
1393          * the busy command.
1394          */
1395         if (s->vdq.storage == dq) {
1396                 s->vdq.storage = NULL;
1397                 atomic_inc(&s->vdq.available);
1398         }
1399
1400         return 1;
1401 }
1402
1403 /**
1404  * qbman_release_desc_clear() - Clear the contents of a descriptor to
1405  *                              default/starting state.
1406  * @d: the pull dequeue descriptor to be cleared
1407  */
1408 void qbman_release_desc_clear(struct qbman_release_desc *d)
1409 {
1410         memset(d, 0, sizeof(*d));
1411         d->verb = 1 << 5; /* Release Command Valid */
1412 }
1413
1414 /**
1415  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1416  * @d:    the pull dequeue descriptor to be set
1417  * @bpid: the bpid value to be set
1418  */
1419 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1420 {
1421         d->bpid = cpu_to_le16(bpid);
1422 }
1423
1424 /**
1425  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1426  * interrupt source should be asserted after the release command is completed.
1427  * @d:      the pull dequeue descriptor to be set
1428  * @enable: enable (1) or disable (0) value
1429  */
1430 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1431 {
1432         if (enable)
1433                 d->verb |= 1 << 6;
1434         else
1435                 d->verb &= ~(1 << 6);
1436 }
1437
1438 #define RAR_IDX(rar)     ((rar) & 0x7)
1439 #define RAR_VB(rar)      ((rar) & 0x80)
1440 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1441
1442 /**
1443  * qbman_swp_release_direct() - Issue a buffer release command
1444  * @s:           the software portal object
1445  * @d:           the release descriptor
1446  * @buffers:     a pointer pointing to the buffer address to be released
1447  * @num_buffers: number of buffers to be released,  must be less than 8
1448  *
1449  * Return 0 for success, -EBUSY if the release command ring is not ready.
1450  */
1451 int qbman_swp_release_direct(struct qbman_swp *s,
1452                              const struct qbman_release_desc *d,
1453                              const u64 *buffers, unsigned int num_buffers)
1454 {
1455         int i;
1456         struct qbman_release_desc *p;
1457         u32 rar;
1458
1459         if (!num_buffers || (num_buffers > 7))
1460                 return -EINVAL;
1461
1462         rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1463         if (!RAR_SUCCESS(rar))
1464                 return -EBUSY;
1465
1466         /* Start the release command */
1467         p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1468
1469         /* Copy the caller's buffer pointers to the command */
1470         for (i = 0; i < num_buffers; i++)
1471                 p->buf[i] = cpu_to_le64(buffers[i]);
1472         p->bpid = d->bpid;
1473
1474         /*
1475          * Set the verb byte, have to substitute in the valid-bit
1476          * and the number of buffers.
1477          */
1478         dma_wmb();
1479         p->verb = d->verb | RAR_VB(rar) | num_buffers;
1480
1481         return 0;
1482 }
1483
1484 /**
1485  * qbman_swp_release_mem_back() - Issue a buffer release command
1486  * @s:           the software portal object
1487  * @d:           the release descriptor
1488  * @buffers:     a pointer pointing to the buffer address to be released
1489  * @num_buffers: number of buffers to be released,  must be less than 8
1490  *
1491  * Return 0 for success, -EBUSY if the release command ring is not ready.
1492  */
1493 int qbman_swp_release_mem_back(struct qbman_swp *s,
1494                                const struct qbman_release_desc *d,
1495                                const u64 *buffers, unsigned int num_buffers)
1496 {
1497         int i;
1498         struct qbman_release_desc *p;
1499         u32 rar;
1500
1501         if (!num_buffers || (num_buffers > 7))
1502                 return -EINVAL;
1503
1504         rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1505         if (!RAR_SUCCESS(rar))
1506                 return -EBUSY;
1507
1508         /* Start the release command */
1509         p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1510
1511         /* Copy the caller's buffer pointers to the command */
1512         for (i = 0; i < num_buffers; i++)
1513                 p->buf[i] = cpu_to_le64(buffers[i]);
1514         p->bpid = d->bpid;
1515
1516         p->verb = d->verb | RAR_VB(rar) | num_buffers;
1517         dma_wmb();
1518         qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1519                              RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1520
1521         return 0;
1522 }
1523
1524 struct qbman_acquire_desc {
1525         u8 verb;
1526         u8 reserved;
1527         __le16 bpid;
1528         u8 num;
1529         u8 reserved2[59];
1530 };
1531
1532 struct qbman_acquire_rslt {
1533         u8 verb;
1534         u8 rslt;
1535         __le16 reserved;
1536         u8 num;
1537         u8 reserved2[3];
1538         __le64 buf[7];
1539 };
1540
1541 /**
1542  * qbman_swp_acquire() - Issue a buffer acquire command
1543  * @s:           the software portal object
1544  * @bpid:        the buffer pool index
1545  * @buffers:     a pointer pointing to the acquired buffer addresses
1546  * @num_buffers: number of buffers to be acquired, must be less than 8
1547  *
1548  * Return 0 for success, or negative error code if the acquire command
1549  * fails.
1550  */
1551 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1552                       unsigned int num_buffers)
1553 {
1554         struct qbman_acquire_desc *p;
1555         struct qbman_acquire_rslt *r;
1556         int i;
1557
1558         if (!num_buffers || (num_buffers > 7))
1559                 return -EINVAL;
1560
1561         /* Start the management command */
1562         p = qbman_swp_mc_start(s);
1563
1564         if (!p)
1565                 return -EBUSY;
1566
1567         /* Encode the caller-provided attributes */
1568         p->bpid = cpu_to_le16(bpid);
1569         p->num = num_buffers;
1570
1571         /* Complete the management command */
1572         r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1573         if (unlikely(!r)) {
1574                 pr_err("qbman: acquire from BPID %d failed, no response\n",
1575                        bpid);
1576                 return -EIO;
1577         }
1578
1579         /* Decode the outcome */
1580         WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1581
1582         /* Determine success or failure */
1583         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1584                 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1585                        bpid, r->rslt);
1586                 return -EIO;
1587         }
1588
1589         WARN_ON(r->num > num_buffers);
1590
1591         /* Copy the acquired buffers to the caller's array */
1592         for (i = 0; i < r->num; i++)
1593                 buffers[i] = le64_to_cpu(r->buf[i]);
1594
1595         return (int)r->num;
1596 }
1597
1598 struct qbman_alt_fq_state_desc {
1599         u8 verb;
1600         u8 reserved[3];
1601         __le32 fqid;
1602         u8 reserved2[56];
1603 };
1604
1605 struct qbman_alt_fq_state_rslt {
1606         u8 verb;
1607         u8 rslt;
1608         u8 reserved[62];
1609 };
1610
1611 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1612
1613 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1614                            u8 alt_fq_verb)
1615 {
1616         struct qbman_alt_fq_state_desc *p;
1617         struct qbman_alt_fq_state_rslt *r;
1618
1619         /* Start the management command */
1620         p = qbman_swp_mc_start(s);
1621         if (!p)
1622                 return -EBUSY;
1623
1624         p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1625
1626         /* Complete the management command */
1627         r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1628         if (unlikely(!r)) {
1629                 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1630                        alt_fq_verb);
1631                 return -EIO;
1632         }
1633
1634         /* Decode the outcome */
1635         WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1636
1637         /* Determine success or failure */
1638         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1639                 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1640                        fqid, r->verb, r->rslt);
1641                 return -EIO;
1642         }
1643
1644         return 0;
1645 }
1646
1647 struct qbman_cdan_ctrl_desc {
1648         u8 verb;
1649         u8 reserved;
1650         __le16 ch;
1651         u8 we;
1652         u8 ctrl;
1653         __le16 reserved2;
1654         __le64 cdan_ctx;
1655         u8 reserved3[48];
1656
1657 };
1658
1659 struct qbman_cdan_ctrl_rslt {
1660         u8 verb;
1661         u8 rslt;
1662         __le16 ch;
1663         u8 reserved[60];
1664 };
1665
1666 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1667                        u8 we_mask, u8 cdan_en,
1668                        u64 ctx)
1669 {
1670         struct qbman_cdan_ctrl_desc *p = NULL;
1671         struct qbman_cdan_ctrl_rslt *r = NULL;
1672
1673         /* Start the management command */
1674         p = qbman_swp_mc_start(s);
1675         if (!p)
1676                 return -EBUSY;
1677
1678         /* Encode the caller-provided attributes */
1679         p->ch = cpu_to_le16(channelid);
1680         p->we = we_mask;
1681         if (cdan_en)
1682                 p->ctrl = 1;
1683         else
1684                 p->ctrl = 0;
1685         p->cdan_ctx = cpu_to_le64(ctx);
1686
1687         /* Complete the management command */
1688         r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1689         if (unlikely(!r)) {
1690                 pr_err("qbman: wqchan config failed, no response\n");
1691                 return -EIO;
1692         }
1693
1694         WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1695
1696         /* Determine success or failure */
1697         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1698                 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1699                        channelid, r->rslt);
1700                 return -EIO;
1701         }
1702
1703         return 0;
1704 }
1705
1706 #define QBMAN_RESPONSE_VERB_MASK        0x7f
1707 #define QBMAN_FQ_QUERY_NP               0x45
1708 #define QBMAN_BP_QUERY                  0x32
1709
1710 struct qbman_fq_query_desc {
1711         u8 verb;
1712         u8 reserved[3];
1713         __le32 fqid;
1714         u8 reserved2[56];
1715 };
1716
1717 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1718                          struct qbman_fq_query_np_rslt *r)
1719 {
1720         struct qbman_fq_query_desc *p;
1721         void *resp;
1722
1723         p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1724         if (!p)
1725                 return -EBUSY;
1726
1727         /* FQID is a 24 bit value */
1728         p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1729         resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1730         if (!resp) {
1731                 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1732                        fqid);
1733                 return -EIO;
1734         }
1735         *r = *(struct qbman_fq_query_np_rslt *)resp;
1736         /* Decode the outcome */
1737         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1738
1739         /* Determine success or failure */
1740         if (r->rslt != QBMAN_MC_RSLT_OK) {
1741                 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1742                        p->fqid, r->rslt);
1743                 return -EIO;
1744         }
1745
1746         return 0;
1747 }
1748
1749 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1750 {
1751         return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1752 }
1753
1754 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1755 {
1756         return le32_to_cpu(r->byte_cnt);
1757 }
1758
1759 struct qbman_bp_query_desc {
1760         u8 verb;
1761         u8 reserved;
1762         __le16 bpid;
1763         u8 reserved2[60];
1764 };
1765
1766 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1767                    struct qbman_bp_query_rslt *r)
1768 {
1769         struct qbman_bp_query_desc *p;
1770         void *resp;
1771
1772         p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1773         if (!p)
1774                 return -EBUSY;
1775
1776         p->bpid = cpu_to_le16(bpid);
1777         resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1778         if (!resp) {
1779                 pr_err("qbman: Query BPID %d fields failed, no response\n",
1780                        bpid);
1781                 return -EIO;
1782         }
1783         *r = *(struct qbman_bp_query_rslt *)resp;
1784         /* Decode the outcome */
1785         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1786
1787         /* Determine success or failure */
1788         if (r->rslt != QBMAN_MC_RSLT_OK) {
1789                 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1790                        bpid, r->rslt);
1791                 return -EIO;
1792         }
1793
1794         return 0;
1795 }
1796
1797 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1798 {
1799         return le32_to_cpu(a->fill);
1800 }
1801
1802 /**
1803  * qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
1804  * @p: the software portal object
1805  * @irq_threshold: interrupt threshold
1806  * @irq_holdoff: interrupt holdoff (timeout) period in us
1807  *
1808  * Return 0 for success, or negative error code on error.
1809  */
1810 int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
1811                                  u32 irq_holdoff)
1812 {
1813         u32 itp, max_holdoff;
1814
1815         /* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
1816          * increments. This depends on the QBMAN internal frequency.
1817          */
1818         itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
1819         if (itp > 4096) {
1820                 max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
1821                 pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
1822                 return -EINVAL;
1823         }
1824
1825         if (irq_threshold >= p->dqrr.dqrr_size) {
1826                 pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
1827                 return -EINVAL;
1828         }
1829
1830         p->irq_threshold = irq_threshold;
1831         p->irq_holdoff = irq_holdoff;
1832
1833         qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
1834         qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
1835
1836         return 0;
1837 }
1838
1839 /**
1840  * qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
1841  * @p: the software portal object
1842  * @irq_threshold: interrupt threshold (an IRQ is generated when there are more
1843  * DQRR entries in the portal than the threshold)
1844  * @irq_holdoff: interrupt holdoff (timeout) period in us
1845  */
1846 void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
1847                                   u32 *irq_holdoff)
1848 {
1849         if (irq_threshold)
1850                 *irq_threshold = p->irq_threshold;
1851         if (irq_holdoff)
1852                 *irq_holdoff = p->irq_holdoff;
1853 }