GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / scsi / storvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36  * All wire protocol details (storage protocol between the guest and the host)
37  * are consolidated here.
38  *
39  * Begin protocol definitions.
40  */
41
42 /*
43  * Version history:
44  * V1 Beta: 0.1
45  * V1 RC < 2008/1/31: 1.0
46  * V1 RC > 2008/1/31:  2.0
47  * Win7: 4.2
48  * Win8: 5.1
49  * Win8.1: 6.0
50  * Win10: 6.2
51  */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
54                                                 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
61
62 /*  Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64         VSTOR_OPERATION_COMPLETE_IO             = 1,
65         VSTOR_OPERATION_REMOVE_DEVICE           = 2,
66         VSTOR_OPERATION_EXECUTE_SRB             = 3,
67         VSTOR_OPERATION_RESET_LUN               = 4,
68         VSTOR_OPERATION_RESET_ADAPTER           = 5,
69         VSTOR_OPERATION_RESET_BUS               = 6,
70         VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
71         VSTOR_OPERATION_END_INITIALIZATION      = 8,
72         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
73         VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
74         VSTOR_OPERATION_ENUMERATE_BUS           = 11,
75         VSTOR_OPERATION_FCHBA_DATA              = 12,
76         VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
77         VSTOR_OPERATION_MAXIMUM                 = 13
78 };
79
80 /*
81  * WWN packet for Fibre Channel HBA
82  */
83
84 struct hv_fc_wwn_packet {
85         u8      primary_active;
86         u8      reserved1[3];
87         u8      primary_port_wwn[8];
88         u8      primary_node_wwn[8];
89         u8      secondary_port_wwn[8];
90         u8      secondary_node_wwn[8];
91 };
92
93
94
95 /*
96  * SRB Flag Bits
97  */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
104 #define SRB_FLAGS_DATA_IN                       0x00000040
105 #define SRB_FLAGS_DATA_OUT                      0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
111
112 /*
113  * This flag indicates the request is part of the workflow for processing a D3.
114  */
115 #define SRB_FLAGS_D3_PROCESSING                 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE                     0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
126
127 #define SP_UNTAGGED                     ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST          0x20
129
130 /*
131  * Platform neutral description of a scsi request -
132  * this remains the same across the write regardless of 32/64 bit
133  * note: it's patterned off the SCSI_PASS_THROUGH structure
134  */
135 #define STORVSC_MAX_CMD_LEN                     0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE     0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE      0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE               0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
142
143 /*
144  * Sense buffer size changed in win8; have a run-time
145  * variable to track the size we should use.  This value will
146  * likely change during protocol negotiation but it is valid
147  * to start by assuming pre-Win8.
148  */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152  * The storage protocol version is determined during the
153  * initial exchange with the host.  It will indicate which
154  * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE    0
159 #define STORVSC_LOGGING_ERROR   1
160 #define STORVSC_LOGGING_WARN    2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165         "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
167 static inline bool do_logging(int level)
168 {
169         return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...)                       \
173 do {                                                            \
174         if (do_logging(level))                                  \
175                 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179         /*
180          * The following were added in Windows 8
181          */
182         u16 reserve;
183         u8  queue_tag;
184         u8  queue_action;
185         u32 srb_flags;
186         u32 time_out_value;
187         u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191         u16 length;
192         u8 srb_status;
193         u8 scsi_status;
194
195         u8  port_number;
196         u8  path_id;
197         u8  target_id;
198         u8  lun;
199
200         u8  cdb_length;
201         u8  sense_info_length;
202         u8  data_in;
203         u8  reserved;
204
205         u32 data_transfer_length;
206
207         union {
208                 u8 cdb[STORVSC_MAX_CMD_LEN];
209                 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210                 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211         };
212         /*
213          * The following was added in win8.
214          */
215         struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221  * The size of the vmscsi_request has changed in win8. The
222  * additional size is because of new elements added to the
223  * structure. These elements are valid only when we are talking
224  * to a win8 host.
225  * Track the correction to size we need to apply. This value
226  * will likely change during protocol negotiation but it is
227  * valid to start by assuming pre-Win8.
228  */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232  * The list of storage protocols in order of preference.
233  */
234 struct vmstor_protocol {
235         int protocol_version;
236         int sense_buffer_size;
237         int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242         {
243                 VMSTOR_PROTO_VERSION_WIN10,
244                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245                 0
246         },
247         {
248                 VMSTOR_PROTO_VERSION_WIN8_1,
249                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250                 0
251         },
252         {
253                 VMSTOR_PROTO_VERSION_WIN8,
254                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255                 0
256         },
257         {
258                 VMSTOR_PROTO_VERSION_WIN7,
259                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260                 sizeof(struct vmscsi_win8_extension),
261         },
262         {
263                 VMSTOR_PROTO_VERSION_WIN6,
264                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265                 sizeof(struct vmscsi_win8_extension),
266         }
267 };
268
269
270 /*
271  * This structure is sent during the initialization phase to get the different
272  * properties of the channel.
273  */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
276
277 struct vmstorage_channel_properties {
278         u32 reserved;
279         u16 max_channel_cnt;
280         u16 reserved1;
281
282         u32 flags;
283         u32   max_transfer_bytes;
284
285         u64  reserved2;
286 } __packed;
287
288 /*  This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290         /* Major (MSW) and minor (LSW) version numbers. */
291         u16 major_minor;
292
293         /*
294          * Revision number is auto-incremented whenever this file is changed
295          * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
296          * definitely indicate incompatibility--but it does indicate mismatched
297          * builds.
298          * This is only used on the windows side. Just set it to 0.
299          */
300         u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
306
307 struct vstor_packet {
308         /* Requested operation type */
309         enum vstor_packet_operation operation;
310
311         /*  Flags - see below for values */
312         u32 flags;
313
314         /* Status of the request returned from the server side. */
315         u32 status;
316
317         /* Data payload area */
318         union {
319                 /*
320                  * Structure used to forward SCSI commands from the
321                  * client to the server.
322                  */
323                 struct vmscsi_request vm_srb;
324
325                 /* Structure used to query channel properties. */
326                 struct vmstorage_channel_properties storage_channel_properties;
327
328                 /* Used during version negotiations. */
329                 struct vmstorage_protocol_version version;
330
331                 /* Fibre channel address packet */
332                 struct hv_fc_wwn_packet wwn_packet;
333
334                 /* Number of sub-channels to create */
335                 u16 sub_channel_count;
336
337                 /* This will be the maximum of the union members */
338                 u8  buffer[0x34];
339         };
340 } __packed;
341
342 /*
343  * Packet Flags:
344  *
345  * This flag indicates that the server should send back a completion for this
346  * packet.
347  */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353         WRITE_TYPE = 0,
354         READ_TYPE,
355         UNKNOWN_TYPE,
356 };
357
358 /*
359  * SRB status codes and masks; a subset of the codes used here.
360  */
361
362 #define SRB_STATUS_AUTOSENSE_VALID      0x80
363 #define SRB_STATUS_QUEUE_FROZEN         0x40
364 #define SRB_STATUS_INVALID_LUN  0x20
365 #define SRB_STATUS_SUCCESS      0x01
366 #define SRB_STATUS_ABORTED      0x02
367 #define SRB_STATUS_ERROR        0x04
368 #define SRB_STATUS_DATA_OVERRUN 0x12
369
370 #define SRB_STATUS(status) \
371         (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
372 /*
373  * This is the end of Protocol specific defines.
374  */
375
376 static int storvsc_ringbuffer_size = (128 * 1024);
377 static u32 max_outstanding_req_per_channel;
378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
379
380 static int storvsc_vcpus_per_sub_channel = 4;
381
382 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
384
385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
387
388 static int ring_avail_percent_lowater = 10;
389 module_param(ring_avail_percent_lowater, int, S_IRUGO);
390 MODULE_PARM_DESC(ring_avail_percent_lowater,
391                 "Select a channel if available ring size > this in percent");
392
393 /*
394  * Timeout in seconds for all devices managed by this driver.
395  */
396 static int storvsc_timeout = 180;
397
398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
399 static struct scsi_transport_template *fc_transport_template;
400 #endif
401
402 static void storvsc_on_channel_callback(void *context);
403
404 #define STORVSC_MAX_LUNS_PER_TARGET                     255
405 #define STORVSC_MAX_TARGETS                             2
406 #define STORVSC_MAX_CHANNELS                            8
407
408 #define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
409 #define STORVSC_FC_MAX_TARGETS                          128
410 #define STORVSC_FC_MAX_CHANNELS                         8
411
412 #define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
413 #define STORVSC_IDE_MAX_TARGETS                         1
414 #define STORVSC_IDE_MAX_CHANNELS                        1
415
416 struct storvsc_cmd_request {
417         struct scsi_cmnd *cmd;
418
419         struct hv_device *device;
420
421         /* Synchronize the request/response if needed */
422         struct completion wait_event;
423
424         struct vmbus_channel_packet_multipage_buffer mpb;
425         struct vmbus_packet_mpb_array *payload;
426         u32 payload_sz;
427
428         struct vstor_packet vstor_packet;
429 };
430
431
432 /* A storvsc device is a device object that contains a vmbus channel */
433 struct storvsc_device {
434         struct hv_device *device;
435
436         bool     destroy;
437         bool     drain_notify;
438         atomic_t num_outstanding_req;
439         struct Scsi_Host *host;
440
441         wait_queue_head_t waiting_to_drain;
442
443         /*
444          * Each unique Port/Path/Target represents 1 channel ie scsi
445          * controller. In reality, the pathid, targetid is always 0
446          * and the port is set by us
447          */
448         unsigned int port_number;
449         unsigned char path_id;
450         unsigned char target_id;
451
452         /*
453          * Max I/O, the device can support.
454          */
455         u32   max_transfer_bytes;
456         /*
457          * Number of sub-channels we will open.
458          */
459         u16 num_sc;
460         struct vmbus_channel **stor_chns;
461         /*
462          * Mask of CPUs bound to subchannels.
463          */
464         struct cpumask alloced_cpus;
465         /*
466          * Serializes modifications of stor_chns[] from storvsc_do_io()
467          * and storvsc_change_target_cpu().
468          */
469         spinlock_t lock;
470         /* Used for vsc/vsp channel reset process */
471         struct storvsc_cmd_request init_request;
472         struct storvsc_cmd_request reset_request;
473         /*
474          * Currently active port and node names for FC devices.
475          */
476         u64 node_name;
477         u64 port_name;
478 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
479         struct fc_rport *rport;
480 #endif
481 };
482
483 struct hv_host_device {
484         struct hv_device *dev;
485         unsigned int port;
486         unsigned char path;
487         unsigned char target;
488         struct workqueue_struct *handle_error_wq;
489         struct work_struct host_scan_work;
490         struct Scsi_Host *host;
491 };
492
493 struct storvsc_scan_work {
494         struct work_struct work;
495         struct Scsi_Host *host;
496         u8 lun;
497         u8 tgt_id;
498 };
499
500 static void storvsc_device_scan(struct work_struct *work)
501 {
502         struct storvsc_scan_work *wrk;
503         struct scsi_device *sdev;
504
505         wrk = container_of(work, struct storvsc_scan_work, work);
506
507         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
508         if (!sdev)
509                 goto done;
510         scsi_rescan_device(&sdev->sdev_gendev);
511         scsi_device_put(sdev);
512
513 done:
514         kfree(wrk);
515 }
516
517 static void storvsc_host_scan(struct work_struct *work)
518 {
519         struct Scsi_Host *host;
520         struct scsi_device *sdev;
521         struct hv_host_device *host_device =
522                 container_of(work, struct hv_host_device, host_scan_work);
523
524         host = host_device->host;
525         /*
526          * Before scanning the host, first check to see if any of the
527          * currrently known devices have been hot removed. We issue a
528          * "unit ready" command against all currently known devices.
529          * This I/O will result in an error for devices that have been
530          * removed. As part of handling the I/O error, we remove the device.
531          *
532          * When a LUN is added or removed, the host sends us a signal to
533          * scan the host. Thus we are forced to discover the LUNs that
534          * may have been removed this way.
535          */
536         mutex_lock(&host->scan_mutex);
537         shost_for_each_device(sdev, host)
538                 scsi_test_unit_ready(sdev, 1, 1, NULL);
539         mutex_unlock(&host->scan_mutex);
540         /*
541          * Now scan the host to discover LUNs that may have been added.
542          */
543         scsi_scan_host(host);
544 }
545
546 static void storvsc_remove_lun(struct work_struct *work)
547 {
548         struct storvsc_scan_work *wrk;
549         struct scsi_device *sdev;
550
551         wrk = container_of(work, struct storvsc_scan_work, work);
552         if (!scsi_host_get(wrk->host))
553                 goto done;
554
555         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
556
557         if (sdev) {
558                 scsi_remove_device(sdev);
559                 scsi_device_put(sdev);
560         }
561         scsi_host_put(wrk->host);
562
563 done:
564         kfree(wrk);
565 }
566
567
568 /*
569  * We can get incoming messages from the host that are not in response to
570  * messages that we have sent out. An example of this would be messages
571  * received by the guest to notify dynamic addition/removal of LUNs. To
572  * deal with potential race conditions where the driver may be in the
573  * midst of being unloaded when we might receive an unsolicited message
574  * from the host, we have implemented a mechanism to gurantee sequential
575  * consistency:
576  *
577  * 1) Once the device is marked as being destroyed, we will fail all
578  *    outgoing messages.
579  * 2) We permit incoming messages when the device is being destroyed,
580  *    only to properly account for messages already sent out.
581  */
582
583 static inline struct storvsc_device *get_out_stor_device(
584                                         struct hv_device *device)
585 {
586         struct storvsc_device *stor_device;
587
588         stor_device = hv_get_drvdata(device);
589
590         if (stor_device && stor_device->destroy)
591                 stor_device = NULL;
592
593         return stor_device;
594 }
595
596
597 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
598 {
599         dev->drain_notify = true;
600         wait_event(dev->waiting_to_drain,
601                    atomic_read(&dev->num_outstanding_req) == 0);
602         dev->drain_notify = false;
603 }
604
605 static inline struct storvsc_device *get_in_stor_device(
606                                         struct hv_device *device)
607 {
608         struct storvsc_device *stor_device;
609
610         stor_device = hv_get_drvdata(device);
611
612         if (!stor_device)
613                 goto get_in_err;
614
615         /*
616          * If the device is being destroyed; allow incoming
617          * traffic only to cleanup outstanding requests.
618          */
619
620         if (stor_device->destroy  &&
621                 (atomic_read(&stor_device->num_outstanding_req) == 0))
622                 stor_device = NULL;
623
624 get_in_err:
625         return stor_device;
626
627 }
628
629 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
630                                       u32 new)
631 {
632         struct storvsc_device *stor_device;
633         struct vmbus_channel *cur_chn;
634         bool old_is_alloced = false;
635         struct hv_device *device;
636         unsigned long flags;
637         int cpu;
638
639         device = channel->primary_channel ?
640                         channel->primary_channel->device_obj
641                                 : channel->device_obj;
642         stor_device = get_out_stor_device(device);
643         if (!stor_device)
644                 return;
645
646         /* See storvsc_do_io() -> get_og_chn(). */
647         spin_lock_irqsave(&stor_device->lock, flags);
648
649         /*
650          * Determines if the storvsc device has other channels assigned to
651          * the "old" CPU to update the alloced_cpus mask and the stor_chns
652          * array.
653          */
654         if (device->channel != channel && device->channel->target_cpu == old) {
655                 cur_chn = device->channel;
656                 old_is_alloced = true;
657                 goto old_is_alloced;
658         }
659         list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
660                 if (cur_chn == channel)
661                         continue;
662                 if (cur_chn->target_cpu == old) {
663                         old_is_alloced = true;
664                         goto old_is_alloced;
665                 }
666         }
667
668 old_is_alloced:
669         if (old_is_alloced)
670                 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
671         else
672                 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
673
674         /* "Flush" the stor_chns array. */
675         for_each_possible_cpu(cpu) {
676                 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
677                                         cpu, &stor_device->alloced_cpus))
678                         WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
679         }
680
681         WRITE_ONCE(stor_device->stor_chns[new], channel);
682         cpumask_set_cpu(new, &stor_device->alloced_cpus);
683
684         spin_unlock_irqrestore(&stor_device->lock, flags);
685 }
686
687 static void handle_sc_creation(struct vmbus_channel *new_sc)
688 {
689         struct hv_device *device = new_sc->primary_channel->device_obj;
690         struct device *dev = &device->device;
691         struct storvsc_device *stor_device;
692         struct vmstorage_channel_properties props;
693         int ret;
694
695         stor_device = get_out_stor_device(device);
696         if (!stor_device)
697                 return;
698
699         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
700
701         ret = vmbus_open(new_sc,
702                          storvsc_ringbuffer_size,
703                          storvsc_ringbuffer_size,
704                          (void *)&props,
705                          sizeof(struct vmstorage_channel_properties),
706                          storvsc_on_channel_callback, new_sc);
707
708         /* In case vmbus_open() fails, we don't use the sub-channel. */
709         if (ret != 0) {
710                 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
711                 return;
712         }
713
714         new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
715
716         /* Add the sub-channel to the array of available channels. */
717         stor_device->stor_chns[new_sc->target_cpu] = new_sc;
718         cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
719 }
720
721 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
722 {
723         struct device *dev = &device->device;
724         struct storvsc_device *stor_device;
725         int num_sc;
726         struct storvsc_cmd_request *request;
727         struct vstor_packet *vstor_packet;
728         int ret, t;
729
730         /*
731          * If the number of CPUs is artificially restricted, such as
732          * with maxcpus=1 on the kernel boot line, Hyper-V could offer
733          * sub-channels >= the number of CPUs. These sub-channels
734          * should not be created. The primary channel is already created
735          * and assigned to one CPU, so check against # CPUs - 1.
736          */
737         num_sc = min((int)(num_online_cpus() - 1), max_chns);
738         if (!num_sc)
739                 return;
740
741         stor_device = get_out_stor_device(device);
742         if (!stor_device)
743                 return;
744
745         stor_device->num_sc = num_sc;
746         request = &stor_device->init_request;
747         vstor_packet = &request->vstor_packet;
748
749         /*
750          * Establish a handler for dealing with subchannels.
751          */
752         vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
753
754         /*
755          * Request the host to create sub-channels.
756          */
757         memset(request, 0, sizeof(struct storvsc_cmd_request));
758         init_completion(&request->wait_event);
759         vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
760         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
761         vstor_packet->sub_channel_count = num_sc;
762
763         ret = vmbus_sendpacket(device->channel, vstor_packet,
764                                (sizeof(struct vstor_packet) -
765                                vmscsi_size_delta),
766                                (unsigned long)request,
767                                VM_PKT_DATA_INBAND,
768                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
769
770         if (ret != 0) {
771                 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
772                 return;
773         }
774
775         t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
776         if (t == 0) {
777                 dev_err(dev, "Failed to create sub-channel: timed out\n");
778                 return;
779         }
780
781         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
782             vstor_packet->status != 0) {
783                 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
784                         vstor_packet->operation, vstor_packet->status);
785                 return;
786         }
787
788         /*
789          * We need to do nothing here, because vmbus_process_offer()
790          * invokes channel->sc_creation_callback, which will open and use
791          * the sub-channel(s).
792          */
793 }
794
795 static void cache_wwn(struct storvsc_device *stor_device,
796                       struct vstor_packet *vstor_packet)
797 {
798         /*
799          * Cache the currently active port and node ww names.
800          */
801         if (vstor_packet->wwn_packet.primary_active) {
802                 stor_device->node_name =
803                         wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
804                 stor_device->port_name =
805                         wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
806         } else {
807                 stor_device->node_name =
808                         wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
809                 stor_device->port_name =
810                         wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
811         }
812 }
813
814
815 static int storvsc_execute_vstor_op(struct hv_device *device,
816                                     struct storvsc_cmd_request *request,
817                                     bool status_check)
818 {
819         struct vstor_packet *vstor_packet;
820         int ret, t;
821
822         vstor_packet = &request->vstor_packet;
823
824         init_completion(&request->wait_event);
825         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
826
827         ret = vmbus_sendpacket(device->channel, vstor_packet,
828                                (sizeof(struct vstor_packet) -
829                                vmscsi_size_delta),
830                                (unsigned long)request,
831                                VM_PKT_DATA_INBAND,
832                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
833         if (ret != 0)
834                 return ret;
835
836         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
837         if (t == 0)
838                 return -ETIMEDOUT;
839
840         if (!status_check)
841                 return ret;
842
843         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
844             vstor_packet->status != 0)
845                 return -EINVAL;
846
847         return ret;
848 }
849
850 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
851 {
852         struct storvsc_device *stor_device;
853         struct storvsc_cmd_request *request;
854         struct vstor_packet *vstor_packet;
855         int ret, i;
856         int max_chns;
857         bool process_sub_channels = false;
858
859         stor_device = get_out_stor_device(device);
860         if (!stor_device)
861                 return -ENODEV;
862
863         request = &stor_device->init_request;
864         vstor_packet = &request->vstor_packet;
865
866         /*
867          * Now, initiate the vsc/vsp initialization protocol on the open
868          * channel
869          */
870         memset(request, 0, sizeof(struct storvsc_cmd_request));
871         vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
872         ret = storvsc_execute_vstor_op(device, request, true);
873         if (ret)
874                 return ret;
875         /*
876          * Query host supported protocol version.
877          */
878
879         for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
880                 /* reuse the packet for version range supported */
881                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
882                 vstor_packet->operation =
883                         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
884
885                 vstor_packet->version.major_minor =
886                         vmstor_protocols[i].protocol_version;
887
888                 /*
889                  * The revision number is only used in Windows; set it to 0.
890                  */
891                 vstor_packet->version.revision = 0;
892                 ret = storvsc_execute_vstor_op(device, request, false);
893                 if (ret != 0)
894                         return ret;
895
896                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
897                         return -EINVAL;
898
899                 if (vstor_packet->status == 0) {
900                         vmstor_proto_version =
901                                 vmstor_protocols[i].protocol_version;
902
903                         sense_buffer_size =
904                                 vmstor_protocols[i].sense_buffer_size;
905
906                         vmscsi_size_delta =
907                                 vmstor_protocols[i].vmscsi_size_delta;
908
909                         break;
910                 }
911         }
912
913         if (vstor_packet->status != 0)
914                 return -EINVAL;
915
916
917         memset(vstor_packet, 0, sizeof(struct vstor_packet));
918         vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
919         ret = storvsc_execute_vstor_op(device, request, true);
920         if (ret != 0)
921                 return ret;
922
923         /*
924          * Check to see if multi-channel support is there.
925          * Hosts that implement protocol version of 5.1 and above
926          * support multi-channel.
927          */
928         max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
929
930         /*
931          * Allocate state to manage the sub-channels.
932          * We allocate an array based on the numbers of possible CPUs
933          * (Hyper-V does not support cpu online/offline).
934          * This Array will be sparseley populated with unique
935          * channels - primary + sub-channels.
936          * We will however populate all the slots to evenly distribute
937          * the load.
938          */
939         stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
940                                          GFP_KERNEL);
941         if (stor_device->stor_chns == NULL)
942                 return -ENOMEM;
943
944         device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
945
946         stor_device->stor_chns[device->channel->target_cpu] = device->channel;
947         cpumask_set_cpu(device->channel->target_cpu,
948                         &stor_device->alloced_cpus);
949
950         if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
951                 if (vstor_packet->storage_channel_properties.flags &
952                     STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
953                         process_sub_channels = true;
954         }
955         stor_device->max_transfer_bytes =
956                 vstor_packet->storage_channel_properties.max_transfer_bytes;
957
958         if (!is_fc)
959                 goto done;
960
961         /*
962          * For FC devices retrieve FC HBA data.
963          */
964         memset(vstor_packet, 0, sizeof(struct vstor_packet));
965         vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
966         ret = storvsc_execute_vstor_op(device, request, true);
967         if (ret != 0)
968                 return ret;
969
970         /*
971          * Cache the currently active port and node ww names.
972          */
973         cache_wwn(stor_device, vstor_packet);
974
975 done:
976
977         memset(vstor_packet, 0, sizeof(struct vstor_packet));
978         vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
979         ret = storvsc_execute_vstor_op(device, request, true);
980         if (ret != 0)
981                 return ret;
982
983         if (process_sub_channels)
984                 handle_multichannel_storage(device, max_chns);
985
986         return ret;
987 }
988
989 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
990                                 struct scsi_cmnd *scmnd,
991                                 struct Scsi_Host *host,
992                                 u8 asc, u8 ascq)
993 {
994         struct storvsc_scan_work *wrk;
995         void (*process_err_fn)(struct work_struct *work);
996         struct hv_host_device *host_dev = shost_priv(host);
997
998         /*
999          * In some situations, Hyper-V sets multiple bits in the
1000          * srb_status, such as ABORTED and ERROR. So process them
1001          * individually, with the most specific bits first.
1002          */
1003
1004         if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) {
1005                 set_host_byte(scmnd, DID_NO_CONNECT);
1006                 process_err_fn = storvsc_remove_lun;
1007                 goto do_work;
1008         }
1009
1010         if (vm_srb->srb_status & SRB_STATUS_ABORTED) {
1011                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
1012                     /* Capacity data has changed */
1013                     (asc == 0x2a) && (ascq == 0x9)) {
1014                         process_err_fn = storvsc_device_scan;
1015                         /*
1016                          * Retry the I/O that triggered this.
1017                          */
1018                         set_host_byte(scmnd, DID_REQUEUE);
1019                         goto do_work;
1020                 }
1021         }
1022
1023         if (vm_srb->srb_status & SRB_STATUS_ERROR) {
1024                 /*
1025                  * Let upper layer deal with error when
1026                  * sense message is present.
1027                  */
1028                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1029                         return;
1030
1031                 /*
1032                  * If there is an error; offline the device since all
1033                  * error recovery strategies would have already been
1034                  * deployed on the host side. However, if the command
1035                  * were a pass-through command deal with it appropriately.
1036                  */
1037                 switch (scmnd->cmnd[0]) {
1038                 case ATA_16:
1039                 case ATA_12:
1040                         set_host_byte(scmnd, DID_PASSTHROUGH);
1041                         break;
1042                 /*
1043                  * On some Hyper-V hosts TEST_UNIT_READY command can
1044                  * return SRB_STATUS_ERROR. Let the upper level code
1045                  * deal with it based on the sense information.
1046                  */
1047                 case TEST_UNIT_READY:
1048                         break;
1049                 default:
1050                         set_host_byte(scmnd, DID_ERROR);
1051                 }
1052         }
1053         return;
1054
1055 do_work:
1056         /*
1057          * We need to schedule work to process this error; schedule it.
1058          */
1059         wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1060         if (!wrk) {
1061                 set_host_byte(scmnd, DID_TARGET_FAILURE);
1062                 return;
1063         }
1064
1065         wrk->host = host;
1066         wrk->lun = vm_srb->lun;
1067         wrk->tgt_id = vm_srb->target_id;
1068         INIT_WORK(&wrk->work, process_err_fn);
1069         queue_work(host_dev->handle_error_wq, &wrk->work);
1070 }
1071
1072
1073 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1074                                        struct storvsc_device *stor_dev)
1075 {
1076         struct scsi_cmnd *scmnd = cmd_request->cmd;
1077         struct scsi_sense_hdr sense_hdr;
1078         struct vmscsi_request *vm_srb;
1079         u32 data_transfer_length;
1080         struct Scsi_Host *host;
1081         u32 payload_sz = cmd_request->payload_sz;
1082         void *payload = cmd_request->payload;
1083
1084         host = stor_dev->host;
1085
1086         vm_srb = &cmd_request->vstor_packet.vm_srb;
1087         data_transfer_length = vm_srb->data_transfer_length;
1088
1089         scmnd->result = vm_srb->scsi_status;
1090
1091         if (scmnd->result) {
1092                 if (scsi_normalize_sense(scmnd->sense_buffer,
1093                                 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1094                     !(sense_hdr.sense_key == NOT_READY &&
1095                                  sense_hdr.asc == 0x03A) &&
1096                     do_logging(STORVSC_LOGGING_ERROR))
1097                         scsi_print_sense_hdr(scmnd->device, "storvsc",
1098                                              &sense_hdr);
1099         }
1100
1101         if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1102                 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1103                                          sense_hdr.ascq);
1104                 /*
1105                  * The Windows driver set data_transfer_length on
1106                  * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1107                  * is untouched.  In these cases we set it to 0.
1108                  */
1109                 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1110                         data_transfer_length = 0;
1111         }
1112
1113         /* Validate data_transfer_length (from Hyper-V) */
1114         if (data_transfer_length > cmd_request->payload->range.len)
1115                 data_transfer_length = cmd_request->payload->range.len;
1116
1117         scsi_set_resid(scmnd,
1118                 cmd_request->payload->range.len - data_transfer_length);
1119
1120         scmnd->scsi_done(scmnd);
1121
1122         if (payload_sz >
1123                 sizeof(struct vmbus_channel_packet_multipage_buffer))
1124                 kfree(payload);
1125 }
1126
1127 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1128                                   struct vstor_packet *vstor_packet,
1129                                   struct storvsc_cmd_request *request)
1130 {
1131         struct vstor_packet *stor_pkt;
1132         struct hv_device *device = stor_device->device;
1133
1134         stor_pkt = &request->vstor_packet;
1135
1136         /*
1137          * The current SCSI handling on the host side does
1138          * not correctly handle:
1139          * INQUIRY command with page code parameter set to 0x80
1140          * MODE_SENSE command with cmd[2] == 0x1c
1141          *
1142          * Setup srb and scsi status so this won't be fatal.
1143          * We do this so we can distinguish truly fatal failues
1144          * (srb status == 0x4) and off-line the device in that case.
1145          */
1146
1147         if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1148            (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1149                 vstor_packet->vm_srb.scsi_status = 0;
1150                 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1151         }
1152
1153
1154         /* Copy over the status...etc */
1155         stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1156         stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1157
1158         /* Validate sense_info_length (from Hyper-V) */
1159         if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size)
1160                 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1161
1162         stor_pkt->vm_srb.sense_info_length =
1163         vstor_packet->vm_srb.sense_info_length;
1164
1165         if (vstor_packet->vm_srb.scsi_status != 0 ||
1166             vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1167                 storvsc_log(device, STORVSC_LOGGING_WARN,
1168                         "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1169                         stor_pkt->vm_srb.cdb[0],
1170                         vstor_packet->vm_srb.scsi_status,
1171                         vstor_packet->vm_srb.srb_status);
1172
1173         if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1174                 /* CHECK_CONDITION */
1175                 if (vstor_packet->vm_srb.srb_status &
1176                         SRB_STATUS_AUTOSENSE_VALID) {
1177                         /* autosense data available */
1178
1179                         storvsc_log(device, STORVSC_LOGGING_WARN,
1180                                 "stor pkt %p autosense data valid - len %d\n",
1181                                 request, vstor_packet->vm_srb.sense_info_length);
1182
1183                         memcpy(request->cmd->sense_buffer,
1184                                vstor_packet->vm_srb.sense_data,
1185                                vstor_packet->vm_srb.sense_info_length);
1186
1187                 }
1188         }
1189
1190         stor_pkt->vm_srb.data_transfer_length =
1191         vstor_packet->vm_srb.data_transfer_length;
1192
1193         storvsc_command_completion(request, stor_device);
1194
1195         if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1196                 stor_device->drain_notify)
1197                 wake_up(&stor_device->waiting_to_drain);
1198
1199
1200 }
1201
1202 static void storvsc_on_receive(struct storvsc_device *stor_device,
1203                              struct vstor_packet *vstor_packet,
1204                              struct storvsc_cmd_request *request)
1205 {
1206         struct hv_host_device *host_dev;
1207         switch (vstor_packet->operation) {
1208         case VSTOR_OPERATION_COMPLETE_IO:
1209                 storvsc_on_io_completion(stor_device, vstor_packet, request);
1210                 break;
1211
1212         case VSTOR_OPERATION_REMOVE_DEVICE:
1213         case VSTOR_OPERATION_ENUMERATE_BUS:
1214                 host_dev = shost_priv(stor_device->host);
1215                 queue_work(
1216                         host_dev->handle_error_wq, &host_dev->host_scan_work);
1217                 break;
1218
1219         case VSTOR_OPERATION_FCHBA_DATA:
1220                 cache_wwn(stor_device, vstor_packet);
1221 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1222                 fc_host_node_name(stor_device->host) = stor_device->node_name;
1223                 fc_host_port_name(stor_device->host) = stor_device->port_name;
1224 #endif
1225                 break;
1226         default:
1227                 break;
1228         }
1229 }
1230
1231 static void storvsc_on_channel_callback(void *context)
1232 {
1233         struct vmbus_channel *channel = (struct vmbus_channel *)context;
1234         const struct vmpacket_descriptor *desc;
1235         struct hv_device *device;
1236         struct storvsc_device *stor_device;
1237
1238         if (channel->primary_channel != NULL)
1239                 device = channel->primary_channel->device_obj;
1240         else
1241                 device = channel->device_obj;
1242
1243         stor_device = get_in_stor_device(device);
1244         if (!stor_device)
1245                 return;
1246
1247         foreach_vmbus_pkt(desc, channel) {
1248                 void *packet = hv_pkt_data(desc);
1249                 struct storvsc_cmd_request *request;
1250
1251                 request = (struct storvsc_cmd_request *)
1252                         ((unsigned long)desc->trans_id);
1253
1254                 if (request == &stor_device->init_request ||
1255                     request == &stor_device->reset_request) {
1256                         memcpy(&request->vstor_packet, packet,
1257                                (sizeof(struct vstor_packet) - vmscsi_size_delta));
1258                         complete(&request->wait_event);
1259                 } else {
1260                         storvsc_on_receive(stor_device, packet, request);
1261                 }
1262         }
1263 }
1264
1265 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1266                                   bool is_fc)
1267 {
1268         struct vmstorage_channel_properties props;
1269         int ret;
1270
1271         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1272
1273         ret = vmbus_open(device->channel,
1274                          ring_size,
1275                          ring_size,
1276                          (void *)&props,
1277                          sizeof(struct vmstorage_channel_properties),
1278                          storvsc_on_channel_callback, device->channel);
1279
1280         if (ret != 0)
1281                 return ret;
1282
1283         ret = storvsc_channel_init(device, is_fc);
1284
1285         return ret;
1286 }
1287
1288 static int storvsc_dev_remove(struct hv_device *device)
1289 {
1290         struct storvsc_device *stor_device;
1291
1292         stor_device = hv_get_drvdata(device);
1293
1294         stor_device->destroy = true;
1295
1296         /* Make sure flag is set before waiting */
1297         wmb();
1298
1299         /*
1300          * At this point, all outbound traffic should be disable. We
1301          * only allow inbound traffic (responses) to proceed so that
1302          * outstanding requests can be completed.
1303          */
1304
1305         storvsc_wait_to_drain(stor_device);
1306
1307         /*
1308          * Since we have already drained, we don't need to busy wait
1309          * as was done in final_release_stor_device()
1310          * Note that we cannot set the ext pointer to NULL until
1311          * we have drained - to drain the outgoing packets, we need to
1312          * allow incoming packets.
1313          */
1314         hv_set_drvdata(device, NULL);
1315
1316         /* Close the channel */
1317         vmbus_close(device->channel);
1318
1319         kfree(stor_device->stor_chns);
1320         kfree(stor_device);
1321         return 0;
1322 }
1323
1324 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1325                                         u16 q_num)
1326 {
1327         u16 slot = 0;
1328         u16 hash_qnum;
1329         const struct cpumask *node_mask;
1330         int num_channels, tgt_cpu;
1331
1332         if (stor_device->num_sc == 0) {
1333                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1334                 return stor_device->device->channel;
1335         }
1336
1337         /*
1338          * Our channel array is sparsley populated and we
1339          * initiated I/O on a processor/hw-q that does not
1340          * currently have a designated channel. Fix this.
1341          * The strategy is simple:
1342          * I. Ensure NUMA locality
1343          * II. Distribute evenly (best effort)
1344          */
1345
1346         node_mask = cpumask_of_node(cpu_to_node(q_num));
1347
1348         num_channels = 0;
1349         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1350                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1351                         num_channels++;
1352         }
1353         if (num_channels == 0) {
1354                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1355                 return stor_device->device->channel;
1356         }
1357
1358         hash_qnum = q_num;
1359         while (hash_qnum >= num_channels)
1360                 hash_qnum -= num_channels;
1361
1362         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1363                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1364                         continue;
1365                 if (slot == hash_qnum)
1366                         break;
1367                 slot++;
1368         }
1369
1370         stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1371
1372         return stor_device->stor_chns[q_num];
1373 }
1374
1375
1376 static int storvsc_do_io(struct hv_device *device,
1377                          struct storvsc_cmd_request *request, u16 q_num)
1378 {
1379         struct storvsc_device *stor_device;
1380         struct vstor_packet *vstor_packet;
1381         struct vmbus_channel *outgoing_channel, *channel;
1382         unsigned long flags;
1383         int ret = 0;
1384         const struct cpumask *node_mask;
1385         int tgt_cpu;
1386
1387         vstor_packet = &request->vstor_packet;
1388         stor_device = get_out_stor_device(device);
1389
1390         if (!stor_device)
1391                 return -ENODEV;
1392
1393
1394         request->device  = device;
1395         /*
1396          * Select an appropriate channel to send the request out.
1397          */
1398         /* See storvsc_change_target_cpu(). */
1399         outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1400         if (outgoing_channel != NULL) {
1401                 if (outgoing_channel->target_cpu == q_num) {
1402                         /*
1403                          * Ideally, we want to pick a different channel if
1404                          * available on the same NUMA node.
1405                          */
1406                         node_mask = cpumask_of_node(cpu_to_node(q_num));
1407                         for_each_cpu_wrap(tgt_cpu,
1408                                  &stor_device->alloced_cpus, q_num + 1) {
1409                                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1410                                         continue;
1411                                 if (tgt_cpu == q_num)
1412                                         continue;
1413                                 channel = READ_ONCE(
1414                                         stor_device->stor_chns[tgt_cpu]);
1415                                 if (channel == NULL)
1416                                         continue;
1417                                 if (hv_get_avail_to_write_percent(
1418                                                         &channel->outbound)
1419                                                 > ring_avail_percent_lowater) {
1420                                         outgoing_channel = channel;
1421                                         goto found_channel;
1422                                 }
1423                         }
1424
1425                         /*
1426                          * All the other channels on the same NUMA node are
1427                          * busy. Try to use the channel on the current CPU
1428                          */
1429                         if (hv_get_avail_to_write_percent(
1430                                                 &outgoing_channel->outbound)
1431                                         > ring_avail_percent_lowater)
1432                                 goto found_channel;
1433
1434                         /*
1435                          * If we reach here, all the channels on the current
1436                          * NUMA node are busy. Try to find a channel in
1437                          * other NUMA nodes
1438                          */
1439                         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1440                                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1441                                         continue;
1442                                 channel = READ_ONCE(
1443                                         stor_device->stor_chns[tgt_cpu]);
1444                                 if (channel == NULL)
1445                                         continue;
1446                                 if (hv_get_avail_to_write_percent(
1447                                                         &channel->outbound)
1448                                                 > ring_avail_percent_lowater) {
1449                                         outgoing_channel = channel;
1450                                         goto found_channel;
1451                                 }
1452                         }
1453                 }
1454         } else {
1455                 spin_lock_irqsave(&stor_device->lock, flags);
1456                 outgoing_channel = stor_device->stor_chns[q_num];
1457                 if (outgoing_channel != NULL) {
1458                         spin_unlock_irqrestore(&stor_device->lock, flags);
1459                         goto found_channel;
1460                 }
1461                 outgoing_channel = get_og_chn(stor_device, q_num);
1462                 spin_unlock_irqrestore(&stor_device->lock, flags);
1463         }
1464
1465 found_channel:
1466         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1467
1468         vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1469                                         vmscsi_size_delta);
1470
1471
1472         vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1473
1474
1475         vstor_packet->vm_srb.data_transfer_length =
1476         request->payload->range.len;
1477
1478         vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1479
1480         if (request->payload->range.len) {
1481
1482                 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1483                                 request->payload, request->payload_sz,
1484                                 vstor_packet,
1485                                 (sizeof(struct vstor_packet) -
1486                                 vmscsi_size_delta),
1487                                 (unsigned long)request);
1488         } else {
1489                 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1490                                (sizeof(struct vstor_packet) -
1491                                 vmscsi_size_delta),
1492                                (unsigned long)request,
1493                                VM_PKT_DATA_INBAND,
1494                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1495         }
1496
1497         if (ret != 0)
1498                 return ret;
1499
1500         atomic_inc(&stor_device->num_outstanding_req);
1501
1502         return ret;
1503 }
1504
1505 static int storvsc_device_alloc(struct scsi_device *sdevice)
1506 {
1507         /*
1508          * Set blist flag to permit the reading of the VPD pages even when
1509          * the target may claim SPC-2 compliance. MSFT targets currently
1510          * claim SPC-2 compliance while they implement post SPC-2 features.
1511          * With this flag we can correctly handle WRITE_SAME_16 issues.
1512          *
1513          * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1514          * still supports REPORT LUN.
1515          */
1516         sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1517
1518         return 0;
1519 }
1520
1521 static int storvsc_device_configure(struct scsi_device *sdevice)
1522 {
1523         blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1524
1525         sdevice->no_write_same = 1;
1526
1527         /*
1528          * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1529          * if the device is a MSFT virtual device.  If the host is
1530          * WIN10 or newer, allow write_same.
1531          */
1532         if (!strncmp(sdevice->vendor, "Msft", 4)) {
1533                 switch (vmstor_proto_version) {
1534                 case VMSTOR_PROTO_VERSION_WIN8:
1535                 case VMSTOR_PROTO_VERSION_WIN8_1:
1536                         sdevice->scsi_level = SCSI_SPC_3;
1537                         break;
1538                 }
1539
1540                 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1541                         sdevice->no_write_same = 0;
1542         }
1543
1544         return 0;
1545 }
1546
1547 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1548                            sector_t capacity, int *info)
1549 {
1550         sector_t nsect = capacity;
1551         sector_t cylinders = nsect;
1552         int heads, sectors_pt;
1553
1554         /*
1555          * We are making up these values; let us keep it simple.
1556          */
1557         heads = 0xff;
1558         sectors_pt = 0x3f;      /* Sectors per track */
1559         sector_div(cylinders, heads * sectors_pt);
1560         if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1561                 cylinders = 0xffff;
1562
1563         info[0] = heads;
1564         info[1] = sectors_pt;
1565         info[2] = (int)cylinders;
1566
1567         return 0;
1568 }
1569
1570 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1571 {
1572         struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1573         struct hv_device *device = host_dev->dev;
1574
1575         struct storvsc_device *stor_device;
1576         struct storvsc_cmd_request *request;
1577         struct vstor_packet *vstor_packet;
1578         int ret, t;
1579
1580
1581         stor_device = get_out_stor_device(device);
1582         if (!stor_device)
1583                 return FAILED;
1584
1585         request = &stor_device->reset_request;
1586         vstor_packet = &request->vstor_packet;
1587         memset(vstor_packet, 0, sizeof(struct vstor_packet));
1588
1589         init_completion(&request->wait_event);
1590
1591         vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1592         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1593         vstor_packet->vm_srb.path_id = stor_device->path_id;
1594
1595         ret = vmbus_sendpacket(device->channel, vstor_packet,
1596                                (sizeof(struct vstor_packet) -
1597                                 vmscsi_size_delta),
1598                                (unsigned long)&stor_device->reset_request,
1599                                VM_PKT_DATA_INBAND,
1600                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1601         if (ret != 0)
1602                 return FAILED;
1603
1604         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1605         if (t == 0)
1606                 return TIMEOUT_ERROR;
1607
1608
1609         /*
1610          * At this point, all outstanding requests in the adapter
1611          * should have been flushed out and return to us
1612          * There is a potential race here where the host may be in
1613          * the process of responding when we return from here.
1614          * Just wait for all in-transit packets to be accounted for
1615          * before we return from here.
1616          */
1617         storvsc_wait_to_drain(stor_device);
1618
1619         return SUCCESS;
1620 }
1621
1622 /*
1623  * The host guarantees to respond to each command, although I/O latencies might
1624  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1625  * chance to perform EH.
1626  */
1627 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1628 {
1629 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1630         if (scmnd->device->host->transportt == fc_transport_template)
1631                 return fc_eh_timed_out(scmnd);
1632 #endif
1633         return BLK_EH_RESET_TIMER;
1634 }
1635
1636 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1637 {
1638         bool allowed = true;
1639         u8 scsi_op = scmnd->cmnd[0];
1640
1641         switch (scsi_op) {
1642         /* the host does not handle WRITE_SAME, log accident usage */
1643         case WRITE_SAME:
1644         /*
1645          * smartd sends this command and the host does not handle
1646          * this. So, don't send it.
1647          */
1648         case SET_WINDOW:
1649                 scmnd->result = ILLEGAL_REQUEST << 16;
1650                 allowed = false;
1651                 break;
1652         default:
1653                 break;
1654         }
1655         return allowed;
1656 }
1657
1658 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1659 {
1660         int ret;
1661         struct hv_host_device *host_dev = shost_priv(host);
1662         struct hv_device *dev = host_dev->dev;
1663         struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1664         int i;
1665         struct scatterlist *sgl;
1666         unsigned int sg_count = 0;
1667         struct vmscsi_request *vm_srb;
1668         struct scatterlist *cur_sgl;
1669         struct vmbus_packet_mpb_array  *payload;
1670         u32 payload_sz;
1671         u32 length;
1672
1673         if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1674                 /*
1675                  * On legacy hosts filter unimplemented commands.
1676                  * Future hosts are expected to correctly handle
1677                  * unsupported commands. Furthermore, it is
1678                  * possible that some of the currently
1679                  * unsupported commands maybe supported in
1680                  * future versions of the host.
1681                  */
1682                 if (!storvsc_scsi_cmd_ok(scmnd)) {
1683                         scmnd->scsi_done(scmnd);
1684                         return 0;
1685                 }
1686         }
1687
1688         /* Setup the cmd request */
1689         cmd_request->cmd = scmnd;
1690
1691         memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1692         vm_srb = &cmd_request->vstor_packet.vm_srb;
1693         vm_srb->win8_extension.time_out_value = 60;
1694
1695         vm_srb->win8_extension.srb_flags |=
1696                 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1697
1698         if (scmnd->device->tagged_supported) {
1699                 vm_srb->win8_extension.srb_flags |=
1700                 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1701                 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1702                 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1703         }
1704
1705         /* Build the SRB */
1706         switch (scmnd->sc_data_direction) {
1707         case DMA_TO_DEVICE:
1708                 vm_srb->data_in = WRITE_TYPE;
1709                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1710                 break;
1711         case DMA_FROM_DEVICE:
1712                 vm_srb->data_in = READ_TYPE;
1713                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1714                 break;
1715         case DMA_NONE:
1716                 vm_srb->data_in = UNKNOWN_TYPE;
1717                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1718                 break;
1719         default:
1720                 /*
1721                  * This is DMA_BIDIRECTIONAL or something else we are never
1722                  * supposed to see here.
1723                  */
1724                 WARN(1, "Unexpected data direction: %d\n",
1725                      scmnd->sc_data_direction);
1726                 return -EINVAL;
1727         }
1728
1729
1730         vm_srb->port_number = host_dev->port;
1731         vm_srb->path_id = scmnd->device->channel;
1732         vm_srb->target_id = scmnd->device->id;
1733         vm_srb->lun = scmnd->device->lun;
1734
1735         vm_srb->cdb_length = scmnd->cmd_len;
1736
1737         memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1738
1739         sgl = (struct scatterlist *)scsi_sglist(scmnd);
1740         sg_count = scsi_sg_count(scmnd);
1741
1742         length = scsi_bufflen(scmnd);
1743         payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1744         payload_sz = sizeof(cmd_request->mpb);
1745
1746         if (sg_count) {
1747                 unsigned int hvpgoff = 0;
1748                 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK;
1749                 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1750                 u64 hvpfn;
1751
1752                 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1753
1754                         payload_sz = (hvpg_count * sizeof(u64) +
1755                                       sizeof(struct vmbus_packet_mpb_array));
1756                         payload = kzalloc(payload_sz, GFP_ATOMIC);
1757                         if (!payload)
1758                                 return SCSI_MLQUEUE_DEVICE_BUSY;
1759                 }
1760
1761                 /*
1762                  * sgl is a list of PAGEs, and payload->range.pfn_array
1763                  * expects the page number in the unit of HV_HYP_PAGE_SIZE (the
1764                  * page size that Hyper-V uses, so here we need to divide PAGEs
1765                  * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE.
1766                  * Besides, payload->range.offset should be the offset in one
1767                  * HV_HYP_PAGE.
1768                  */
1769                 payload->range.len = length;
1770                 payload->range.offset = offset_in_hvpg;
1771                 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT;
1772
1773                 cur_sgl = sgl;
1774                 for (i = 0; i < hvpg_count; i++) {
1775                         /*
1776                          * 'i' is the index of hv pages in the payload and
1777                          * 'hvpgoff' is the offset (in hv pages) of the first
1778                          * hv page in the the first page. The relationship
1779                          * between the sum of 'i' and 'hvpgoff' and the offset
1780                          * (in hv pages) in a payload page ('hvpgoff_in_page')
1781                          * is as follow:
1782                          *
1783                          * |------------------ PAGE -------------------|
1784                          * |   NR_HV_HYP_PAGES_IN_PAGE hvpgs in total  |
1785                          * |hvpg|hvpg| ...              |hvpg|... |hvpg|
1786                          * ^         ^                                 ^                 ^
1787                          * +-hvpgoff-+                                 +-hvpgoff_in_page-+
1788                          *           ^                                                   |
1789                          *           +--------------------- i ---------------------------+
1790                          */
1791                         unsigned int hvpgoff_in_page =
1792                                 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE;
1793
1794                         /*
1795                          * Two cases that we need to fetch a page:
1796                          * 1) i == 0, the first step or
1797                          * 2) hvpgoff_in_page == 0, when we reach the boundary
1798                          *    of a page.
1799                          */
1800                         if (hvpgoff_in_page == 0 || i == 0) {
1801                                 hvpfn = page_to_hvpfn(sg_page(cur_sgl));
1802                                 cur_sgl = sg_next(cur_sgl);
1803                         }
1804
1805                         payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page;
1806                 }
1807         }
1808
1809         cmd_request->payload = payload;
1810         cmd_request->payload_sz = payload_sz;
1811
1812         /* Invokes the vsc to start an IO */
1813         ret = storvsc_do_io(dev, cmd_request, get_cpu());
1814         put_cpu();
1815
1816         if (ret == -EAGAIN) {
1817                 if (payload_sz > sizeof(cmd_request->mpb))
1818                         kfree(payload);
1819                 /* no more space */
1820                 return SCSI_MLQUEUE_DEVICE_BUSY;
1821         }
1822
1823         return 0;
1824 }
1825
1826 static struct scsi_host_template scsi_driver = {
1827         .module =               THIS_MODULE,
1828         .name =                 "storvsc_host_t",
1829         .cmd_size =             sizeof(struct storvsc_cmd_request),
1830         .bios_param =           storvsc_get_chs,
1831         .queuecommand =         storvsc_queuecommand,
1832         .eh_host_reset_handler =        storvsc_host_reset_handler,
1833         .proc_name =            "storvsc_host",
1834         .eh_timed_out =         storvsc_eh_timed_out,
1835         .slave_alloc =          storvsc_device_alloc,
1836         .slave_configure =      storvsc_device_configure,
1837         .cmd_per_lun =          2048,
1838         .this_id =              -1,
1839         /* Make sure we dont get a sg segment crosses a page boundary */
1840         .dma_boundary =         PAGE_SIZE-1,
1841         /* Ensure there are no gaps in presented sgls */
1842         .virt_boundary_mask =   PAGE_SIZE-1,
1843         .no_write_same =        1,
1844         .track_queue_depth =    1,
1845         .change_queue_depth =   storvsc_change_queue_depth,
1846 };
1847
1848 enum {
1849         SCSI_GUID,
1850         IDE_GUID,
1851         SFC_GUID,
1852 };
1853
1854 static const struct hv_vmbus_device_id id_table[] = {
1855         /* SCSI guid */
1856         { HV_SCSI_GUID,
1857           .driver_data = SCSI_GUID
1858         },
1859         /* IDE guid */
1860         { HV_IDE_GUID,
1861           .driver_data = IDE_GUID
1862         },
1863         /* Fibre Channel GUID */
1864         {
1865           HV_SYNTHFC_GUID,
1866           .driver_data = SFC_GUID
1867         },
1868         { },
1869 };
1870
1871 MODULE_DEVICE_TABLE(vmbus, id_table);
1872
1873 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1874
1875 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1876 {
1877         return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1878 }
1879
1880 static int storvsc_probe(struct hv_device *device,
1881                         const struct hv_vmbus_device_id *dev_id)
1882 {
1883         int ret;
1884         int num_cpus = num_online_cpus();
1885         struct Scsi_Host *host;
1886         struct hv_host_device *host_dev;
1887         bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1888         bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1889         int target = 0;
1890         struct storvsc_device *stor_device;
1891         int max_luns_per_target;
1892         int max_targets;
1893         int max_channels;
1894         int max_sub_channels = 0;
1895
1896         /*
1897          * Based on the windows host we are running on,
1898          * set state to properly communicate with the host.
1899          */
1900
1901         if (vmbus_proto_version < VERSION_WIN8) {
1902                 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1903                 max_targets = STORVSC_IDE_MAX_TARGETS;
1904                 max_channels = STORVSC_IDE_MAX_CHANNELS;
1905         } else {
1906                 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1907                 max_targets = STORVSC_MAX_TARGETS;
1908                 max_channels = STORVSC_MAX_CHANNELS;
1909                 /*
1910                  * On Windows8 and above, we support sub-channels for storage
1911                  * on SCSI and FC controllers.
1912                  * The number of sub-channels offerred is based on the number of
1913                  * VCPUs in the guest.
1914                  */
1915                 if (!dev_is_ide)
1916                         max_sub_channels =
1917                                 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1918         }
1919
1920         scsi_driver.can_queue = max_outstanding_req_per_channel *
1921                                 (max_sub_channels + 1) *
1922                                 (100 - ring_avail_percent_lowater) / 100;
1923
1924         host = scsi_host_alloc(&scsi_driver,
1925                                sizeof(struct hv_host_device));
1926         if (!host)
1927                 return -ENOMEM;
1928
1929         host_dev = shost_priv(host);
1930         memset(host_dev, 0, sizeof(struct hv_host_device));
1931
1932         host_dev->port = host->host_no;
1933         host_dev->dev = device;
1934         host_dev->host = host;
1935
1936
1937         stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1938         if (!stor_device) {
1939                 ret = -ENOMEM;
1940                 goto err_out0;
1941         }
1942
1943         stor_device->destroy = false;
1944         init_waitqueue_head(&stor_device->waiting_to_drain);
1945         stor_device->device = device;
1946         stor_device->host = host;
1947         spin_lock_init(&stor_device->lock);
1948         hv_set_drvdata(device, stor_device);
1949
1950         stor_device->port_number = host->host_no;
1951         ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1952         if (ret)
1953                 goto err_out1;
1954
1955         host_dev->path = stor_device->path_id;
1956         host_dev->target = stor_device->target_id;
1957
1958         switch (dev_id->driver_data) {
1959         case SFC_GUID:
1960                 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1961                 host->max_id = STORVSC_FC_MAX_TARGETS;
1962                 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1963 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1964                 host->transportt = fc_transport_template;
1965 #endif
1966                 break;
1967
1968         case SCSI_GUID:
1969                 host->max_lun = max_luns_per_target;
1970                 host->max_id = max_targets;
1971                 host->max_channel = max_channels - 1;
1972                 break;
1973
1974         default:
1975                 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1976                 host->max_id = STORVSC_IDE_MAX_TARGETS;
1977                 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1978                 break;
1979         }
1980         /* max cmd length */
1981         host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1982
1983         /*
1984          * set the table size based on the info we got
1985          * from the host.
1986          */
1987         host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1988         /*
1989          * For non-IDE disks, the host supports multiple channels.
1990          * Set the number of HW queues we are supporting.
1991          */
1992         if (!dev_is_ide)
1993                 host->nr_hw_queues = num_present_cpus();
1994
1995         /*
1996          * Set the error handler work queue.
1997          */
1998         host_dev->handle_error_wq =
1999                         alloc_ordered_workqueue("storvsc_error_wq_%d",
2000                                                 0,
2001                                                 host->host_no);
2002         if (!host_dev->handle_error_wq) {
2003                 ret = -ENOMEM;
2004                 goto err_out2;
2005         }
2006         INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2007         /* Register the HBA and start the scsi bus scan */
2008         ret = scsi_add_host(host, &device->device);
2009         if (ret != 0)
2010                 goto err_out3;
2011
2012         if (!dev_is_ide) {
2013                 scsi_scan_host(host);
2014         } else {
2015                 target = (device->dev_instance.b[5] << 8 |
2016                          device->dev_instance.b[4]);
2017                 ret = scsi_add_device(host, 0, target, 0);
2018                 if (ret)
2019                         goto err_out4;
2020         }
2021 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2022         if (host->transportt == fc_transport_template) {
2023                 struct fc_rport_identifiers ids = {
2024                         .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2025                 };
2026
2027                 fc_host_node_name(host) = stor_device->node_name;
2028                 fc_host_port_name(host) = stor_device->port_name;
2029                 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2030                 if (!stor_device->rport) {
2031                         ret = -ENOMEM;
2032                         goto err_out4;
2033                 }
2034         }
2035 #endif
2036         return 0;
2037
2038 err_out4:
2039         scsi_remove_host(host);
2040
2041 err_out3:
2042         destroy_workqueue(host_dev->handle_error_wq);
2043
2044 err_out2:
2045         /*
2046          * Once we have connected with the host, we would need to
2047          * to invoke storvsc_dev_remove() to rollback this state and
2048          * this call also frees up the stor_device; hence the jump around
2049          * err_out1 label.
2050          */
2051         storvsc_dev_remove(device);
2052         goto err_out0;
2053
2054 err_out1:
2055         kfree(stor_device->stor_chns);
2056         kfree(stor_device);
2057
2058 err_out0:
2059         scsi_host_put(host);
2060         return ret;
2061 }
2062
2063 /* Change a scsi target's queue depth */
2064 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2065 {
2066         if (queue_depth > scsi_driver.can_queue)
2067                 queue_depth = scsi_driver.can_queue;
2068
2069         return scsi_change_queue_depth(sdev, queue_depth);
2070 }
2071
2072 static int storvsc_remove(struct hv_device *dev)
2073 {
2074         struct storvsc_device *stor_device = hv_get_drvdata(dev);
2075         struct Scsi_Host *host = stor_device->host;
2076         struct hv_host_device *host_dev = shost_priv(host);
2077
2078 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2079         if (host->transportt == fc_transport_template) {
2080                 fc_remote_port_delete(stor_device->rport);
2081                 fc_remove_host(host);
2082         }
2083 #endif
2084         destroy_workqueue(host_dev->handle_error_wq);
2085         scsi_remove_host(host);
2086         storvsc_dev_remove(dev);
2087         scsi_host_put(host);
2088
2089         return 0;
2090 }
2091
2092 static int storvsc_suspend(struct hv_device *hv_dev)
2093 {
2094         struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2095         struct Scsi_Host *host = stor_device->host;
2096         struct hv_host_device *host_dev = shost_priv(host);
2097
2098         storvsc_wait_to_drain(stor_device);
2099
2100         drain_workqueue(host_dev->handle_error_wq);
2101
2102         vmbus_close(hv_dev->channel);
2103
2104         kfree(stor_device->stor_chns);
2105         stor_device->stor_chns = NULL;
2106
2107         cpumask_clear(&stor_device->alloced_cpus);
2108
2109         return 0;
2110 }
2111
2112 static int storvsc_resume(struct hv_device *hv_dev)
2113 {
2114         int ret;
2115
2116         ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2117                                      hv_dev_is_fc(hv_dev));
2118         return ret;
2119 }
2120
2121 static struct hv_driver storvsc_drv = {
2122         .name = KBUILD_MODNAME,
2123         .id_table = id_table,
2124         .probe = storvsc_probe,
2125         .remove = storvsc_remove,
2126         .suspend = storvsc_suspend,
2127         .resume = storvsc_resume,
2128         .driver = {
2129                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2130         },
2131 };
2132
2133 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2134 static struct fc_function_template fc_transport_functions = {
2135         .show_host_node_name = 1,
2136         .show_host_port_name = 1,
2137 };
2138 #endif
2139
2140 static int __init storvsc_drv_init(void)
2141 {
2142         int ret;
2143
2144         /*
2145          * Divide the ring buffer data size (which is 1 page less
2146          * than the ring buffer size since that page is reserved for
2147          * the ring buffer indices) by the max request size (which is
2148          * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2149          */
2150         max_outstanding_req_per_channel =
2151                 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2152                 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2153                 sizeof(struct vstor_packet) + sizeof(u64) -
2154                 vmscsi_size_delta,
2155                 sizeof(u64)));
2156
2157 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2158         fc_transport_template = fc_attach_transport(&fc_transport_functions);
2159         if (!fc_transport_template)
2160                 return -ENODEV;
2161 #endif
2162
2163         ret = vmbus_driver_register(&storvsc_drv);
2164
2165 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2166         if (ret)
2167                 fc_release_transport(fc_transport_template);
2168 #endif
2169
2170         return ret;
2171 }
2172
2173 static void __exit storvsc_drv_exit(void)
2174 {
2175         vmbus_driver_unregister(&storvsc_drv);
2176 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2177         fc_release_transport(fc_transport_template);
2178 #endif
2179 }
2180
2181 MODULE_LICENSE("GPL");
2182 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2183 module_init(storvsc_drv_init);
2184 module_exit(storvsc_drv_exit);