GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / scsi / storvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36  * All wire protocol details (storage protocol between the guest and the host)
37  * are consolidated here.
38  *
39  * Begin protocol definitions.
40  */
41
42 /*
43  * Version history:
44  * V1 Beta: 0.1
45  * V1 RC < 2008/1/31: 1.0
46  * V1 RC > 2008/1/31:  2.0
47  * Win7: 4.2
48  * Win8: 5.1
49  * Win8.1: 6.0
50  * Win10: 6.2
51  */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
54                                                 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
61
62 /*  Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64         VSTOR_OPERATION_COMPLETE_IO             = 1,
65         VSTOR_OPERATION_REMOVE_DEVICE           = 2,
66         VSTOR_OPERATION_EXECUTE_SRB             = 3,
67         VSTOR_OPERATION_RESET_LUN               = 4,
68         VSTOR_OPERATION_RESET_ADAPTER           = 5,
69         VSTOR_OPERATION_RESET_BUS               = 6,
70         VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
71         VSTOR_OPERATION_END_INITIALIZATION      = 8,
72         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
73         VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
74         VSTOR_OPERATION_ENUMERATE_BUS           = 11,
75         VSTOR_OPERATION_FCHBA_DATA              = 12,
76         VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
77         VSTOR_OPERATION_MAXIMUM                 = 13
78 };
79
80 /*
81  * WWN packet for Fibre Channel HBA
82  */
83
84 struct hv_fc_wwn_packet {
85         u8      primary_active;
86         u8      reserved1[3];
87         u8      primary_port_wwn[8];
88         u8      primary_node_wwn[8];
89         u8      secondary_port_wwn[8];
90         u8      secondary_node_wwn[8];
91 };
92
93
94
95 /*
96  * SRB Flag Bits
97  */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
104 #define SRB_FLAGS_DATA_IN                       0x00000040
105 #define SRB_FLAGS_DATA_OUT                      0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
111
112 /*
113  * This flag indicates the request is part of the workflow for processing a D3.
114  */
115 #define SRB_FLAGS_D3_PROCESSING                 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE                     0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
126
127 #define SP_UNTAGGED                     ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST          0x20
129
130 /*
131  * Platform neutral description of a scsi request -
132  * this remains the same across the write regardless of 32/64 bit
133  * note: it's patterned off the SCSI_PASS_THROUGH structure
134  */
135 #define STORVSC_MAX_CMD_LEN                     0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE     0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE      0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE               0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
142
143 /*
144  * Sense buffer size changed in win8; have a run-time
145  * variable to track the size we should use.  This value will
146  * likely change during protocol negotiation but it is valid
147  * to start by assuming pre-Win8.
148  */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152  * The storage protocol version is determined during the
153  * initial exchange with the host.  It will indicate which
154  * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE    0
159 #define STORVSC_LOGGING_ERROR   1
160 #define STORVSC_LOGGING_WARN    2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165         "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
167 static inline bool do_logging(int level)
168 {
169         return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...)                       \
173 do {                                                            \
174         if (do_logging(level))                                  \
175                 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179         /*
180          * The following were added in Windows 8
181          */
182         u16 reserve;
183         u8  queue_tag;
184         u8  queue_action;
185         u32 srb_flags;
186         u32 time_out_value;
187         u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191         u16 length;
192         u8 srb_status;
193         u8 scsi_status;
194
195         u8  port_number;
196         u8  path_id;
197         u8  target_id;
198         u8  lun;
199
200         u8  cdb_length;
201         u8  sense_info_length;
202         u8  data_in;
203         u8  reserved;
204
205         u32 data_transfer_length;
206
207         union {
208                 u8 cdb[STORVSC_MAX_CMD_LEN];
209                 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210                 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211         };
212         /*
213          * The following was added in win8.
214          */
215         struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221  * The size of the vmscsi_request has changed in win8. The
222  * additional size is because of new elements added to the
223  * structure. These elements are valid only when we are talking
224  * to a win8 host.
225  * Track the correction to size we need to apply. This value
226  * will likely change during protocol negotiation but it is
227  * valid to start by assuming pre-Win8.
228  */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232  * The list of storage protocols in order of preference.
233  */
234 struct vmstor_protocol {
235         int protocol_version;
236         int sense_buffer_size;
237         int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242         {
243                 VMSTOR_PROTO_VERSION_WIN10,
244                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245                 0
246         },
247         {
248                 VMSTOR_PROTO_VERSION_WIN8_1,
249                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250                 0
251         },
252         {
253                 VMSTOR_PROTO_VERSION_WIN8,
254                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255                 0
256         },
257         {
258                 VMSTOR_PROTO_VERSION_WIN7,
259                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260                 sizeof(struct vmscsi_win8_extension),
261         },
262         {
263                 VMSTOR_PROTO_VERSION_WIN6,
264                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265                 sizeof(struct vmscsi_win8_extension),
266         }
267 };
268
269
270 /*
271  * This structure is sent during the initialization phase to get the different
272  * properties of the channel.
273  */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
276
277 struct vmstorage_channel_properties {
278         u32 reserved;
279         u16 max_channel_cnt;
280         u16 reserved1;
281
282         u32 flags;
283         u32   max_transfer_bytes;
284
285         u64  reserved2;
286 } __packed;
287
288 /*  This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290         /* Major (MSW) and minor (LSW) version numbers. */
291         u16 major_minor;
292
293         /*
294          * Revision number is auto-incremented whenever this file is changed
295          * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
296          * definitely indicate incompatibility--but it does indicate mismatched
297          * builds.
298          * This is only used on the windows side. Just set it to 0.
299          */
300         u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
306
307 struct vstor_packet {
308         /* Requested operation type */
309         enum vstor_packet_operation operation;
310
311         /*  Flags - see below for values */
312         u32 flags;
313
314         /* Status of the request returned from the server side. */
315         u32 status;
316
317         /* Data payload area */
318         union {
319                 /*
320                  * Structure used to forward SCSI commands from the
321                  * client to the server.
322                  */
323                 struct vmscsi_request vm_srb;
324
325                 /* Structure used to query channel properties. */
326                 struct vmstorage_channel_properties storage_channel_properties;
327
328                 /* Used during version negotiations. */
329                 struct vmstorage_protocol_version version;
330
331                 /* Fibre channel address packet */
332                 struct hv_fc_wwn_packet wwn_packet;
333
334                 /* Number of sub-channels to create */
335                 u16 sub_channel_count;
336
337                 /* This will be the maximum of the union members */
338                 u8  buffer[0x34];
339         };
340 } __packed;
341
342 /*
343  * Packet Flags:
344  *
345  * This flag indicates that the server should send back a completion for this
346  * packet.
347  */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353         WRITE_TYPE = 0,
354         READ_TYPE,
355         UNKNOWN_TYPE,
356 };
357
358 /*
359  * SRB status codes and masks. In the 8-bit field, the two high order bits
360  * are flags, while the remaining 6 bits are an integer status code.  The
361  * definitions here include only the subset of the integer status codes that
362  * are tested for in this driver.
363  */
364 #define SRB_STATUS_AUTOSENSE_VALID      0x80
365 #define SRB_STATUS_QUEUE_FROZEN         0x40
366
367 /* SRB status integer codes */
368 #define SRB_STATUS_SUCCESS              0x01
369 #define SRB_STATUS_ABORTED              0x02
370 #define SRB_STATUS_ERROR                0x04
371 #define SRB_STATUS_INVALID_REQUEST      0x06
372 #define SRB_STATUS_DATA_OVERRUN         0x12
373 #define SRB_STATUS_INVALID_LUN          0x20
374
375 #define SRB_STATUS(status) \
376         (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
377 /*
378  * This is the end of Protocol specific defines.
379  */
380
381 static int storvsc_ringbuffer_size = (128 * 1024);
382 static u32 max_outstanding_req_per_channel;
383 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
384
385 static int storvsc_vcpus_per_sub_channel = 4;
386
387 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
388 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
389
390 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
391 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
392
393 static int ring_avail_percent_lowater = 10;
394 module_param(ring_avail_percent_lowater, int, S_IRUGO);
395 MODULE_PARM_DESC(ring_avail_percent_lowater,
396                 "Select a channel if available ring size > this in percent");
397
398 /*
399  * Timeout in seconds for all devices managed by this driver.
400  */
401 static int storvsc_timeout = 180;
402
403 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
404 static struct scsi_transport_template *fc_transport_template;
405 #endif
406
407 static void storvsc_on_channel_callback(void *context);
408
409 #define STORVSC_MAX_LUNS_PER_TARGET                     255
410 #define STORVSC_MAX_TARGETS                             2
411 #define STORVSC_MAX_CHANNELS                            8
412
413 #define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
414 #define STORVSC_FC_MAX_TARGETS                          128
415 #define STORVSC_FC_MAX_CHANNELS                         8
416
417 #define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
418 #define STORVSC_IDE_MAX_TARGETS                         1
419 #define STORVSC_IDE_MAX_CHANNELS                        1
420
421 struct storvsc_cmd_request {
422         struct scsi_cmnd *cmd;
423
424         struct hv_device *device;
425
426         /* Synchronize the request/response if needed */
427         struct completion wait_event;
428
429         struct vmbus_channel_packet_multipage_buffer mpb;
430         struct vmbus_packet_mpb_array *payload;
431         u32 payload_sz;
432
433         struct vstor_packet vstor_packet;
434 };
435
436
437 /* A storvsc device is a device object that contains a vmbus channel */
438 struct storvsc_device {
439         struct hv_device *device;
440
441         bool     destroy;
442         bool     drain_notify;
443         atomic_t num_outstanding_req;
444         struct Scsi_Host *host;
445
446         wait_queue_head_t waiting_to_drain;
447
448         /*
449          * Each unique Port/Path/Target represents 1 channel ie scsi
450          * controller. In reality, the pathid, targetid is always 0
451          * and the port is set by us
452          */
453         unsigned int port_number;
454         unsigned char path_id;
455         unsigned char target_id;
456
457         /*
458          * Max I/O, the device can support.
459          */
460         u32   max_transfer_bytes;
461         /*
462          * Number of sub-channels we will open.
463          */
464         u16 num_sc;
465         struct vmbus_channel **stor_chns;
466         /*
467          * Mask of CPUs bound to subchannels.
468          */
469         struct cpumask alloced_cpus;
470         /*
471          * Serializes modifications of stor_chns[] from storvsc_do_io()
472          * and storvsc_change_target_cpu().
473          */
474         spinlock_t lock;
475         /* Used for vsc/vsp channel reset process */
476         struct storvsc_cmd_request init_request;
477         struct storvsc_cmd_request reset_request;
478         /*
479          * Currently active port and node names for FC devices.
480          */
481         u64 node_name;
482         u64 port_name;
483 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
484         struct fc_rport *rport;
485 #endif
486 };
487
488 struct hv_host_device {
489         struct hv_device *dev;
490         unsigned int port;
491         unsigned char path;
492         unsigned char target;
493         struct workqueue_struct *handle_error_wq;
494         struct work_struct host_scan_work;
495         struct Scsi_Host *host;
496 };
497
498 struct storvsc_scan_work {
499         struct work_struct work;
500         struct Scsi_Host *host;
501         u8 lun;
502         u8 tgt_id;
503 };
504
505 static void storvsc_device_scan(struct work_struct *work)
506 {
507         struct storvsc_scan_work *wrk;
508         struct scsi_device *sdev;
509
510         wrk = container_of(work, struct storvsc_scan_work, work);
511
512         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
513         if (!sdev)
514                 goto done;
515         scsi_rescan_device(&sdev->sdev_gendev);
516         scsi_device_put(sdev);
517
518 done:
519         kfree(wrk);
520 }
521
522 static void storvsc_host_scan(struct work_struct *work)
523 {
524         struct Scsi_Host *host;
525         struct scsi_device *sdev;
526         struct hv_host_device *host_device =
527                 container_of(work, struct hv_host_device, host_scan_work);
528
529         host = host_device->host;
530         /*
531          * Before scanning the host, first check to see if any of the
532          * currrently known devices have been hot removed. We issue a
533          * "unit ready" command against all currently known devices.
534          * This I/O will result in an error for devices that have been
535          * removed. As part of handling the I/O error, we remove the device.
536          *
537          * When a LUN is added or removed, the host sends us a signal to
538          * scan the host. Thus we are forced to discover the LUNs that
539          * may have been removed this way.
540          */
541         mutex_lock(&host->scan_mutex);
542         shost_for_each_device(sdev, host)
543                 scsi_test_unit_ready(sdev, 1, 1, NULL);
544         mutex_unlock(&host->scan_mutex);
545         /*
546          * Now scan the host to discover LUNs that may have been added.
547          */
548         scsi_scan_host(host);
549 }
550
551 static void storvsc_remove_lun(struct work_struct *work)
552 {
553         struct storvsc_scan_work *wrk;
554         struct scsi_device *sdev;
555
556         wrk = container_of(work, struct storvsc_scan_work, work);
557         if (!scsi_host_get(wrk->host))
558                 goto done;
559
560         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
561
562         if (sdev) {
563                 scsi_remove_device(sdev);
564                 scsi_device_put(sdev);
565         }
566         scsi_host_put(wrk->host);
567
568 done:
569         kfree(wrk);
570 }
571
572
573 /*
574  * We can get incoming messages from the host that are not in response to
575  * messages that we have sent out. An example of this would be messages
576  * received by the guest to notify dynamic addition/removal of LUNs. To
577  * deal with potential race conditions where the driver may be in the
578  * midst of being unloaded when we might receive an unsolicited message
579  * from the host, we have implemented a mechanism to gurantee sequential
580  * consistency:
581  *
582  * 1) Once the device is marked as being destroyed, we will fail all
583  *    outgoing messages.
584  * 2) We permit incoming messages when the device is being destroyed,
585  *    only to properly account for messages already sent out.
586  */
587
588 static inline struct storvsc_device *get_out_stor_device(
589                                         struct hv_device *device)
590 {
591         struct storvsc_device *stor_device;
592
593         stor_device = hv_get_drvdata(device);
594
595         if (stor_device && stor_device->destroy)
596                 stor_device = NULL;
597
598         return stor_device;
599 }
600
601
602 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
603 {
604         dev->drain_notify = true;
605         wait_event(dev->waiting_to_drain,
606                    atomic_read(&dev->num_outstanding_req) == 0);
607         dev->drain_notify = false;
608 }
609
610 static inline struct storvsc_device *get_in_stor_device(
611                                         struct hv_device *device)
612 {
613         struct storvsc_device *stor_device;
614
615         stor_device = hv_get_drvdata(device);
616
617         if (!stor_device)
618                 goto get_in_err;
619
620         /*
621          * If the device is being destroyed; allow incoming
622          * traffic only to cleanup outstanding requests.
623          */
624
625         if (stor_device->destroy  &&
626                 (atomic_read(&stor_device->num_outstanding_req) == 0))
627                 stor_device = NULL;
628
629 get_in_err:
630         return stor_device;
631
632 }
633
634 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
635                                       u32 new)
636 {
637         struct storvsc_device *stor_device;
638         struct vmbus_channel *cur_chn;
639         bool old_is_alloced = false;
640         struct hv_device *device;
641         unsigned long flags;
642         int cpu;
643
644         device = channel->primary_channel ?
645                         channel->primary_channel->device_obj
646                                 : channel->device_obj;
647         stor_device = get_out_stor_device(device);
648         if (!stor_device)
649                 return;
650
651         /* See storvsc_do_io() -> get_og_chn(). */
652         spin_lock_irqsave(&stor_device->lock, flags);
653
654         /*
655          * Determines if the storvsc device has other channels assigned to
656          * the "old" CPU to update the alloced_cpus mask and the stor_chns
657          * array.
658          */
659         if (device->channel != channel && device->channel->target_cpu == old) {
660                 cur_chn = device->channel;
661                 old_is_alloced = true;
662                 goto old_is_alloced;
663         }
664         list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
665                 if (cur_chn == channel)
666                         continue;
667                 if (cur_chn->target_cpu == old) {
668                         old_is_alloced = true;
669                         goto old_is_alloced;
670                 }
671         }
672
673 old_is_alloced:
674         if (old_is_alloced)
675                 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
676         else
677                 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
678
679         /* "Flush" the stor_chns array. */
680         for_each_possible_cpu(cpu) {
681                 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
682                                         cpu, &stor_device->alloced_cpus))
683                         WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
684         }
685
686         WRITE_ONCE(stor_device->stor_chns[new], channel);
687         cpumask_set_cpu(new, &stor_device->alloced_cpus);
688
689         spin_unlock_irqrestore(&stor_device->lock, flags);
690 }
691
692 static void handle_sc_creation(struct vmbus_channel *new_sc)
693 {
694         struct hv_device *device = new_sc->primary_channel->device_obj;
695         struct device *dev = &device->device;
696         struct storvsc_device *stor_device;
697         struct vmstorage_channel_properties props;
698         int ret;
699
700         stor_device = get_out_stor_device(device);
701         if (!stor_device)
702                 return;
703
704         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
705
706         ret = vmbus_open(new_sc,
707                          storvsc_ringbuffer_size,
708                          storvsc_ringbuffer_size,
709                          (void *)&props,
710                          sizeof(struct vmstorage_channel_properties),
711                          storvsc_on_channel_callback, new_sc);
712
713         /* In case vmbus_open() fails, we don't use the sub-channel. */
714         if (ret != 0) {
715                 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
716                 return;
717         }
718
719         new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
720
721         /* Add the sub-channel to the array of available channels. */
722         stor_device->stor_chns[new_sc->target_cpu] = new_sc;
723         cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
724 }
725
726 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
727 {
728         struct device *dev = &device->device;
729         struct storvsc_device *stor_device;
730         int num_sc;
731         struct storvsc_cmd_request *request;
732         struct vstor_packet *vstor_packet;
733         int ret, t;
734
735         /*
736          * If the number of CPUs is artificially restricted, such as
737          * with maxcpus=1 on the kernel boot line, Hyper-V could offer
738          * sub-channels >= the number of CPUs. These sub-channels
739          * should not be created. The primary channel is already created
740          * and assigned to one CPU, so check against # CPUs - 1.
741          */
742         num_sc = min((int)(num_online_cpus() - 1), max_chns);
743         if (!num_sc)
744                 return;
745
746         stor_device = get_out_stor_device(device);
747         if (!stor_device)
748                 return;
749
750         stor_device->num_sc = num_sc;
751         request = &stor_device->init_request;
752         vstor_packet = &request->vstor_packet;
753
754         /*
755          * Establish a handler for dealing with subchannels.
756          */
757         vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
758
759         /*
760          * Request the host to create sub-channels.
761          */
762         memset(request, 0, sizeof(struct storvsc_cmd_request));
763         init_completion(&request->wait_event);
764         vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
765         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
766         vstor_packet->sub_channel_count = num_sc;
767
768         ret = vmbus_sendpacket(device->channel, vstor_packet,
769                                (sizeof(struct vstor_packet) -
770                                vmscsi_size_delta),
771                                (unsigned long)request,
772                                VM_PKT_DATA_INBAND,
773                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
774
775         if (ret != 0) {
776                 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
777                 return;
778         }
779
780         t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
781         if (t == 0) {
782                 dev_err(dev, "Failed to create sub-channel: timed out\n");
783                 return;
784         }
785
786         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
787             vstor_packet->status != 0) {
788                 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
789                         vstor_packet->operation, vstor_packet->status);
790                 return;
791         }
792
793         /*
794          * We need to do nothing here, because vmbus_process_offer()
795          * invokes channel->sc_creation_callback, which will open and use
796          * the sub-channel(s).
797          */
798 }
799
800 static void cache_wwn(struct storvsc_device *stor_device,
801                       struct vstor_packet *vstor_packet)
802 {
803         /*
804          * Cache the currently active port and node ww names.
805          */
806         if (vstor_packet->wwn_packet.primary_active) {
807                 stor_device->node_name =
808                         wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
809                 stor_device->port_name =
810                         wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
811         } else {
812                 stor_device->node_name =
813                         wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
814                 stor_device->port_name =
815                         wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
816         }
817 }
818
819
820 static int storvsc_execute_vstor_op(struct hv_device *device,
821                                     struct storvsc_cmd_request *request,
822                                     bool status_check)
823 {
824         struct vstor_packet *vstor_packet;
825         int ret, t;
826
827         vstor_packet = &request->vstor_packet;
828
829         init_completion(&request->wait_event);
830         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
831
832         ret = vmbus_sendpacket(device->channel, vstor_packet,
833                                (sizeof(struct vstor_packet) -
834                                vmscsi_size_delta),
835                                (unsigned long)request,
836                                VM_PKT_DATA_INBAND,
837                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
838         if (ret != 0)
839                 return ret;
840
841         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
842         if (t == 0)
843                 return -ETIMEDOUT;
844
845         if (!status_check)
846                 return ret;
847
848         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
849             vstor_packet->status != 0)
850                 return -EINVAL;
851
852         return ret;
853 }
854
855 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
856 {
857         struct storvsc_device *stor_device;
858         struct storvsc_cmd_request *request;
859         struct vstor_packet *vstor_packet;
860         int ret, i;
861         int max_chns;
862         bool process_sub_channels = false;
863
864         stor_device = get_out_stor_device(device);
865         if (!stor_device)
866                 return -ENODEV;
867
868         request = &stor_device->init_request;
869         vstor_packet = &request->vstor_packet;
870
871         /*
872          * Now, initiate the vsc/vsp initialization protocol on the open
873          * channel
874          */
875         memset(request, 0, sizeof(struct storvsc_cmd_request));
876         vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
877         ret = storvsc_execute_vstor_op(device, request, true);
878         if (ret)
879                 return ret;
880         /*
881          * Query host supported protocol version.
882          */
883
884         for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
885                 /* reuse the packet for version range supported */
886                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
887                 vstor_packet->operation =
888                         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
889
890                 vstor_packet->version.major_minor =
891                         vmstor_protocols[i].protocol_version;
892
893                 /*
894                  * The revision number is only used in Windows; set it to 0.
895                  */
896                 vstor_packet->version.revision = 0;
897                 ret = storvsc_execute_vstor_op(device, request, false);
898                 if (ret != 0)
899                         return ret;
900
901                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
902                         return -EINVAL;
903
904                 if (vstor_packet->status == 0) {
905                         vmstor_proto_version =
906                                 vmstor_protocols[i].protocol_version;
907
908                         sense_buffer_size =
909                                 vmstor_protocols[i].sense_buffer_size;
910
911                         vmscsi_size_delta =
912                                 vmstor_protocols[i].vmscsi_size_delta;
913
914                         break;
915                 }
916         }
917
918         if (vstor_packet->status != 0)
919                 return -EINVAL;
920
921
922         memset(vstor_packet, 0, sizeof(struct vstor_packet));
923         vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
924         ret = storvsc_execute_vstor_op(device, request, true);
925         if (ret != 0)
926                 return ret;
927
928         /*
929          * Check to see if multi-channel support is there.
930          * Hosts that implement protocol version of 5.1 and above
931          * support multi-channel.
932          */
933         max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
934
935         /*
936          * Allocate state to manage the sub-channels.
937          * We allocate an array based on the numbers of possible CPUs
938          * (Hyper-V does not support cpu online/offline).
939          * This Array will be sparseley populated with unique
940          * channels - primary + sub-channels.
941          * We will however populate all the slots to evenly distribute
942          * the load.
943          */
944         stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
945                                          GFP_KERNEL);
946         if (stor_device->stor_chns == NULL)
947                 return -ENOMEM;
948
949         device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
950
951         stor_device->stor_chns[device->channel->target_cpu] = device->channel;
952         cpumask_set_cpu(device->channel->target_cpu,
953                         &stor_device->alloced_cpus);
954
955         if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
956                 if (vstor_packet->storage_channel_properties.flags &
957                     STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
958                         process_sub_channels = true;
959         }
960         stor_device->max_transfer_bytes =
961                 vstor_packet->storage_channel_properties.max_transfer_bytes;
962
963         if (!is_fc)
964                 goto done;
965
966         /*
967          * For FC devices retrieve FC HBA data.
968          */
969         memset(vstor_packet, 0, sizeof(struct vstor_packet));
970         vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
971         ret = storvsc_execute_vstor_op(device, request, true);
972         if (ret != 0)
973                 return ret;
974
975         /*
976          * Cache the currently active port and node ww names.
977          */
978         cache_wwn(stor_device, vstor_packet);
979
980 done:
981
982         memset(vstor_packet, 0, sizeof(struct vstor_packet));
983         vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
984         ret = storvsc_execute_vstor_op(device, request, true);
985         if (ret != 0)
986                 return ret;
987
988         if (process_sub_channels)
989                 handle_multichannel_storage(device, max_chns);
990
991         return ret;
992 }
993
994 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
995                                 struct scsi_cmnd *scmnd,
996                                 struct Scsi_Host *host,
997                                 u8 asc, u8 ascq)
998 {
999         struct storvsc_scan_work *wrk;
1000         void (*process_err_fn)(struct work_struct *work);
1001         struct hv_host_device *host_dev = shost_priv(host);
1002
1003         switch (SRB_STATUS(vm_srb->srb_status)) {
1004         case SRB_STATUS_ERROR:
1005         case SRB_STATUS_ABORTED:
1006         case SRB_STATUS_INVALID_REQUEST:
1007                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
1008                         /* Check for capacity change */
1009                         if ((asc == 0x2a) && (ascq == 0x9)) {
1010                                 process_err_fn = storvsc_device_scan;
1011                                 /* Retry the I/O that triggered this. */
1012                                 set_host_byte(scmnd, DID_REQUEUE);
1013                                 goto do_work;
1014                         }
1015
1016                         /*
1017                          * Check for "Operating parameters have changed"
1018                          * due to Hyper-V changing the VHD/VHDX BlockSize
1019                          * when adding/removing a differencing disk. This
1020                          * causes discard_granularity to change, so do a
1021                          * rescan to pick up the new granularity. We don't
1022                          * want scsi_report_sense() to output a message
1023                          * that a sysadmin wouldn't know what to do with.
1024                          */
1025                         if ((asc == 0x3f) && (ascq != 0x03) &&
1026                                         (ascq != 0x0e)) {
1027                                 process_err_fn = storvsc_device_scan;
1028                                 set_host_byte(scmnd, DID_REQUEUE);
1029                                 goto do_work;
1030                         }
1031
1032                         /*
1033                          * Otherwise, let upper layer deal with the
1034                          * error when sense message is present
1035                          */
1036                         return;
1037                 }
1038
1039                 /*
1040                  * If there is an error; offline the device since all
1041                  * error recovery strategies would have already been
1042                  * deployed on the host side. However, if the command
1043                  * were a pass-through command deal with it appropriately.
1044                  */
1045                 switch (scmnd->cmnd[0]) {
1046                 case ATA_16:
1047                 case ATA_12:
1048                         set_host_byte(scmnd, DID_PASSTHROUGH);
1049                         break;
1050                 /*
1051                  * On some Hyper-V hosts TEST_UNIT_READY command can
1052                  * return SRB_STATUS_ERROR. Let the upper level code
1053                  * deal with it based on the sense information.
1054                  */
1055                 case TEST_UNIT_READY:
1056                         break;
1057                 default:
1058                         set_host_byte(scmnd, DID_ERROR);
1059                 }
1060                 return;
1061
1062         case SRB_STATUS_INVALID_LUN:
1063                 set_host_byte(scmnd, DID_NO_CONNECT);
1064                 process_err_fn = storvsc_remove_lun;
1065                 goto do_work;
1066
1067         }
1068         return;
1069
1070 do_work:
1071         /*
1072          * We need to schedule work to process this error; schedule it.
1073          */
1074         wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1075         if (!wrk) {
1076                 set_host_byte(scmnd, DID_TARGET_FAILURE);
1077                 return;
1078         }
1079
1080         wrk->host = host;
1081         wrk->lun = vm_srb->lun;
1082         wrk->tgt_id = vm_srb->target_id;
1083         INIT_WORK(&wrk->work, process_err_fn);
1084         queue_work(host_dev->handle_error_wq, &wrk->work);
1085 }
1086
1087
1088 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1089                                        struct storvsc_device *stor_dev)
1090 {
1091         struct scsi_cmnd *scmnd = cmd_request->cmd;
1092         struct scsi_sense_hdr sense_hdr;
1093         struct vmscsi_request *vm_srb;
1094         u32 data_transfer_length;
1095         struct Scsi_Host *host;
1096         u32 payload_sz = cmd_request->payload_sz;
1097         void *payload = cmd_request->payload;
1098
1099         host = stor_dev->host;
1100
1101         vm_srb = &cmd_request->vstor_packet.vm_srb;
1102         data_transfer_length = vm_srb->data_transfer_length;
1103
1104         scmnd->result = vm_srb->scsi_status;
1105
1106         if (scmnd->result) {
1107                 if (scsi_normalize_sense(scmnd->sense_buffer,
1108                                 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1109                     !(sense_hdr.sense_key == NOT_READY &&
1110                                  sense_hdr.asc == 0x03A) &&
1111                     do_logging(STORVSC_LOGGING_ERROR))
1112                         scsi_print_sense_hdr(scmnd->device, "storvsc",
1113                                              &sense_hdr);
1114         }
1115
1116         if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1117                 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1118                                          sense_hdr.ascq);
1119                 /*
1120                  * The Windows driver set data_transfer_length on
1121                  * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1122                  * is untouched.  In these cases we set it to 0.
1123                  */
1124                 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1125                         data_transfer_length = 0;
1126         }
1127
1128         /* Validate data_transfer_length (from Hyper-V) */
1129         if (data_transfer_length > cmd_request->payload->range.len)
1130                 data_transfer_length = cmd_request->payload->range.len;
1131
1132         scsi_set_resid(scmnd,
1133                 cmd_request->payload->range.len - data_transfer_length);
1134
1135         scmnd->scsi_done(scmnd);
1136
1137         if (payload_sz >
1138                 sizeof(struct vmbus_channel_packet_multipage_buffer))
1139                 kfree(payload);
1140 }
1141
1142 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1143                                   struct vstor_packet *vstor_packet,
1144                                   struct storvsc_cmd_request *request)
1145 {
1146         struct vstor_packet *stor_pkt;
1147         struct hv_device *device = stor_device->device;
1148
1149         stor_pkt = &request->vstor_packet;
1150
1151         /*
1152          * The current SCSI handling on the host side does
1153          * not correctly handle:
1154          * INQUIRY command with page code parameter set to 0x80
1155          * MODE_SENSE command with cmd[2] == 0x1c
1156          *
1157          * Setup srb and scsi status so this won't be fatal.
1158          * We do this so we can distinguish truly fatal failues
1159          * (srb status == 0x4) and off-line the device in that case.
1160          */
1161
1162         if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1163            (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1164                 vstor_packet->vm_srb.scsi_status = 0;
1165                 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1166         }
1167
1168
1169         /* Copy over the status...etc */
1170         stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1171         stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1172
1173         /* Validate sense_info_length (from Hyper-V) */
1174         if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size)
1175                 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1176
1177         stor_pkt->vm_srb.sense_info_length =
1178         vstor_packet->vm_srb.sense_info_length;
1179
1180         if (vstor_packet->vm_srb.scsi_status != 0 ||
1181             vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1182                 storvsc_log(device, STORVSC_LOGGING_WARN,
1183                         "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1184                         stor_pkt->vm_srb.cdb[0],
1185                         vstor_packet->vm_srb.scsi_status,
1186                         vstor_packet->vm_srb.srb_status);
1187
1188         if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1189                 /* CHECK_CONDITION */
1190                 if (vstor_packet->vm_srb.srb_status &
1191                         SRB_STATUS_AUTOSENSE_VALID) {
1192                         /* autosense data available */
1193
1194                         storvsc_log(device, STORVSC_LOGGING_WARN,
1195                                 "stor pkt %p autosense data valid - len %d\n",
1196                                 request, vstor_packet->vm_srb.sense_info_length);
1197
1198                         memcpy(request->cmd->sense_buffer,
1199                                vstor_packet->vm_srb.sense_data,
1200                                vstor_packet->vm_srb.sense_info_length);
1201
1202                 }
1203         }
1204
1205         stor_pkt->vm_srb.data_transfer_length =
1206         vstor_packet->vm_srb.data_transfer_length;
1207
1208         storvsc_command_completion(request, stor_device);
1209
1210         if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1211                 stor_device->drain_notify)
1212                 wake_up(&stor_device->waiting_to_drain);
1213
1214
1215 }
1216
1217 static void storvsc_on_receive(struct storvsc_device *stor_device,
1218                              struct vstor_packet *vstor_packet,
1219                              struct storvsc_cmd_request *request)
1220 {
1221         struct hv_host_device *host_dev;
1222         switch (vstor_packet->operation) {
1223         case VSTOR_OPERATION_COMPLETE_IO:
1224                 storvsc_on_io_completion(stor_device, vstor_packet, request);
1225                 break;
1226
1227         case VSTOR_OPERATION_REMOVE_DEVICE:
1228         case VSTOR_OPERATION_ENUMERATE_BUS:
1229                 host_dev = shost_priv(stor_device->host);
1230                 queue_work(
1231                         host_dev->handle_error_wq, &host_dev->host_scan_work);
1232                 break;
1233
1234         case VSTOR_OPERATION_FCHBA_DATA:
1235                 cache_wwn(stor_device, vstor_packet);
1236 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1237                 fc_host_node_name(stor_device->host) = stor_device->node_name;
1238                 fc_host_port_name(stor_device->host) = stor_device->port_name;
1239 #endif
1240                 break;
1241         default:
1242                 break;
1243         }
1244 }
1245
1246 static void storvsc_on_channel_callback(void *context)
1247 {
1248         struct vmbus_channel *channel = (struct vmbus_channel *)context;
1249         const struct vmpacket_descriptor *desc;
1250         struct hv_device *device;
1251         struct storvsc_device *stor_device;
1252
1253         if (channel->primary_channel != NULL)
1254                 device = channel->primary_channel->device_obj;
1255         else
1256                 device = channel->device_obj;
1257
1258         stor_device = get_in_stor_device(device);
1259         if (!stor_device)
1260                 return;
1261
1262         foreach_vmbus_pkt(desc, channel) {
1263                 void *packet = hv_pkt_data(desc);
1264                 struct storvsc_cmd_request *request;
1265
1266                 request = (struct storvsc_cmd_request *)
1267                         ((unsigned long)desc->trans_id);
1268
1269                 if (request == &stor_device->init_request ||
1270                     request == &stor_device->reset_request) {
1271                         memcpy(&request->vstor_packet, packet,
1272                                (sizeof(struct vstor_packet) - vmscsi_size_delta));
1273                         complete(&request->wait_event);
1274                 } else {
1275                         storvsc_on_receive(stor_device, packet, request);
1276                 }
1277         }
1278 }
1279
1280 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1281                                   bool is_fc)
1282 {
1283         struct vmstorage_channel_properties props;
1284         int ret;
1285
1286         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1287
1288         ret = vmbus_open(device->channel,
1289                          ring_size,
1290                          ring_size,
1291                          (void *)&props,
1292                          sizeof(struct vmstorage_channel_properties),
1293                          storvsc_on_channel_callback, device->channel);
1294
1295         if (ret != 0)
1296                 return ret;
1297
1298         ret = storvsc_channel_init(device, is_fc);
1299
1300         return ret;
1301 }
1302
1303 static int storvsc_dev_remove(struct hv_device *device)
1304 {
1305         struct storvsc_device *stor_device;
1306
1307         stor_device = hv_get_drvdata(device);
1308
1309         stor_device->destroy = true;
1310
1311         /* Make sure flag is set before waiting */
1312         wmb();
1313
1314         /*
1315          * At this point, all outbound traffic should be disable. We
1316          * only allow inbound traffic (responses) to proceed so that
1317          * outstanding requests can be completed.
1318          */
1319
1320         storvsc_wait_to_drain(stor_device);
1321
1322         /*
1323          * Since we have already drained, we don't need to busy wait
1324          * as was done in final_release_stor_device()
1325          * Note that we cannot set the ext pointer to NULL until
1326          * we have drained - to drain the outgoing packets, we need to
1327          * allow incoming packets.
1328          */
1329         hv_set_drvdata(device, NULL);
1330
1331         /* Close the channel */
1332         vmbus_close(device->channel);
1333
1334         kfree(stor_device->stor_chns);
1335         kfree(stor_device);
1336         return 0;
1337 }
1338
1339 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1340                                         u16 q_num)
1341 {
1342         u16 slot = 0;
1343         u16 hash_qnum;
1344         const struct cpumask *node_mask;
1345         int num_channels, tgt_cpu;
1346
1347         if (stor_device->num_sc == 0) {
1348                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1349                 return stor_device->device->channel;
1350         }
1351
1352         /*
1353          * Our channel array is sparsley populated and we
1354          * initiated I/O on a processor/hw-q that does not
1355          * currently have a designated channel. Fix this.
1356          * The strategy is simple:
1357          * I. Ensure NUMA locality
1358          * II. Distribute evenly (best effort)
1359          */
1360
1361         node_mask = cpumask_of_node(cpu_to_node(q_num));
1362
1363         num_channels = 0;
1364         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1365                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1366                         num_channels++;
1367         }
1368         if (num_channels == 0) {
1369                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1370                 return stor_device->device->channel;
1371         }
1372
1373         hash_qnum = q_num;
1374         while (hash_qnum >= num_channels)
1375                 hash_qnum -= num_channels;
1376
1377         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1378                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1379                         continue;
1380                 if (slot == hash_qnum)
1381                         break;
1382                 slot++;
1383         }
1384
1385         stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1386
1387         return stor_device->stor_chns[q_num];
1388 }
1389
1390
1391 static int storvsc_do_io(struct hv_device *device,
1392                          struct storvsc_cmd_request *request, u16 q_num)
1393 {
1394         struct storvsc_device *stor_device;
1395         struct vstor_packet *vstor_packet;
1396         struct vmbus_channel *outgoing_channel, *channel;
1397         unsigned long flags;
1398         int ret = 0;
1399         const struct cpumask *node_mask;
1400         int tgt_cpu;
1401
1402         vstor_packet = &request->vstor_packet;
1403         stor_device = get_out_stor_device(device);
1404
1405         if (!stor_device)
1406                 return -ENODEV;
1407
1408
1409         request->device  = device;
1410         /*
1411          * Select an appropriate channel to send the request out.
1412          */
1413         /* See storvsc_change_target_cpu(). */
1414         outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1415         if (outgoing_channel != NULL) {
1416                 if (outgoing_channel->target_cpu == q_num) {
1417                         /*
1418                          * Ideally, we want to pick a different channel if
1419                          * available on the same NUMA node.
1420                          */
1421                         node_mask = cpumask_of_node(cpu_to_node(q_num));
1422                         for_each_cpu_wrap(tgt_cpu,
1423                                  &stor_device->alloced_cpus, q_num + 1) {
1424                                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1425                                         continue;
1426                                 if (tgt_cpu == q_num)
1427                                         continue;
1428                                 channel = READ_ONCE(
1429                                         stor_device->stor_chns[tgt_cpu]);
1430                                 if (channel == NULL)
1431                                         continue;
1432                                 if (hv_get_avail_to_write_percent(
1433                                                         &channel->outbound)
1434                                                 > ring_avail_percent_lowater) {
1435                                         outgoing_channel = channel;
1436                                         goto found_channel;
1437                                 }
1438                         }
1439
1440                         /*
1441                          * All the other channels on the same NUMA node are
1442                          * busy. Try to use the channel on the current CPU
1443                          */
1444                         if (hv_get_avail_to_write_percent(
1445                                                 &outgoing_channel->outbound)
1446                                         > ring_avail_percent_lowater)
1447                                 goto found_channel;
1448
1449                         /*
1450                          * If we reach here, all the channels on the current
1451                          * NUMA node are busy. Try to find a channel in
1452                          * other NUMA nodes
1453                          */
1454                         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1455                                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1456                                         continue;
1457                                 channel = READ_ONCE(
1458                                         stor_device->stor_chns[tgt_cpu]);
1459                                 if (channel == NULL)
1460                                         continue;
1461                                 if (hv_get_avail_to_write_percent(
1462                                                         &channel->outbound)
1463                                                 > ring_avail_percent_lowater) {
1464                                         outgoing_channel = channel;
1465                                         goto found_channel;
1466                                 }
1467                         }
1468                 }
1469         } else {
1470                 spin_lock_irqsave(&stor_device->lock, flags);
1471                 outgoing_channel = stor_device->stor_chns[q_num];
1472                 if (outgoing_channel != NULL) {
1473                         spin_unlock_irqrestore(&stor_device->lock, flags);
1474                         goto found_channel;
1475                 }
1476                 outgoing_channel = get_og_chn(stor_device, q_num);
1477                 spin_unlock_irqrestore(&stor_device->lock, flags);
1478         }
1479
1480 found_channel:
1481         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1482
1483         vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1484                                         vmscsi_size_delta);
1485
1486
1487         vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1488
1489
1490         vstor_packet->vm_srb.data_transfer_length =
1491         request->payload->range.len;
1492
1493         vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1494
1495         if (request->payload->range.len) {
1496
1497                 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1498                                 request->payload, request->payload_sz,
1499                                 vstor_packet,
1500                                 (sizeof(struct vstor_packet) -
1501                                 vmscsi_size_delta),
1502                                 (unsigned long)request);
1503         } else {
1504                 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1505                                (sizeof(struct vstor_packet) -
1506                                 vmscsi_size_delta),
1507                                (unsigned long)request,
1508                                VM_PKT_DATA_INBAND,
1509                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1510         }
1511
1512         if (ret != 0)
1513                 return ret;
1514
1515         atomic_inc(&stor_device->num_outstanding_req);
1516
1517         return ret;
1518 }
1519
1520 static int storvsc_device_alloc(struct scsi_device *sdevice)
1521 {
1522         /*
1523          * Set blist flag to permit the reading of the VPD pages even when
1524          * the target may claim SPC-2 compliance. MSFT targets currently
1525          * claim SPC-2 compliance while they implement post SPC-2 features.
1526          * With this flag we can correctly handle WRITE_SAME_16 issues.
1527          *
1528          * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1529          * still supports REPORT LUN.
1530          */
1531         sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1532
1533         return 0;
1534 }
1535
1536 static int storvsc_device_configure(struct scsi_device *sdevice)
1537 {
1538         blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1539
1540         /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */
1541         sdevice->no_report_opcodes = 1;
1542         sdevice->no_write_same = 1;
1543
1544         /*
1545          * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1546          * if the device is a MSFT virtual device.  If the host is
1547          * WIN10 or newer, allow write_same.
1548          */
1549         if (!strncmp(sdevice->vendor, "Msft", 4)) {
1550                 switch (vmstor_proto_version) {
1551                 case VMSTOR_PROTO_VERSION_WIN8:
1552                 case VMSTOR_PROTO_VERSION_WIN8_1:
1553                         sdevice->scsi_level = SCSI_SPC_3;
1554                         break;
1555                 }
1556
1557                 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1558                         sdevice->no_write_same = 0;
1559         }
1560
1561         return 0;
1562 }
1563
1564 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1565                            sector_t capacity, int *info)
1566 {
1567         sector_t nsect = capacity;
1568         sector_t cylinders = nsect;
1569         int heads, sectors_pt;
1570
1571         /*
1572          * We are making up these values; let us keep it simple.
1573          */
1574         heads = 0xff;
1575         sectors_pt = 0x3f;      /* Sectors per track */
1576         sector_div(cylinders, heads * sectors_pt);
1577         if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1578                 cylinders = 0xffff;
1579
1580         info[0] = heads;
1581         info[1] = sectors_pt;
1582         info[2] = (int)cylinders;
1583
1584         return 0;
1585 }
1586
1587 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1588 {
1589         struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1590         struct hv_device *device = host_dev->dev;
1591
1592         struct storvsc_device *stor_device;
1593         struct storvsc_cmd_request *request;
1594         struct vstor_packet *vstor_packet;
1595         int ret, t;
1596
1597
1598         stor_device = get_out_stor_device(device);
1599         if (!stor_device)
1600                 return FAILED;
1601
1602         request = &stor_device->reset_request;
1603         vstor_packet = &request->vstor_packet;
1604         memset(vstor_packet, 0, sizeof(struct vstor_packet));
1605
1606         init_completion(&request->wait_event);
1607
1608         vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1609         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1610         vstor_packet->vm_srb.path_id = stor_device->path_id;
1611
1612         ret = vmbus_sendpacket(device->channel, vstor_packet,
1613                                (sizeof(struct vstor_packet) -
1614                                 vmscsi_size_delta),
1615                                (unsigned long)&stor_device->reset_request,
1616                                VM_PKT_DATA_INBAND,
1617                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1618         if (ret != 0)
1619                 return FAILED;
1620
1621         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1622         if (t == 0)
1623                 return TIMEOUT_ERROR;
1624
1625
1626         /*
1627          * At this point, all outstanding requests in the adapter
1628          * should have been flushed out and return to us
1629          * There is a potential race here where the host may be in
1630          * the process of responding when we return from here.
1631          * Just wait for all in-transit packets to be accounted for
1632          * before we return from here.
1633          */
1634         storvsc_wait_to_drain(stor_device);
1635
1636         return SUCCESS;
1637 }
1638
1639 /*
1640  * The host guarantees to respond to each command, although I/O latencies might
1641  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1642  * chance to perform EH.
1643  */
1644 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1645 {
1646         return BLK_EH_RESET_TIMER;
1647 }
1648
1649 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1650 {
1651         bool allowed = true;
1652         u8 scsi_op = scmnd->cmnd[0];
1653
1654         switch (scsi_op) {
1655         /* the host does not handle WRITE_SAME, log accident usage */
1656         case WRITE_SAME:
1657         /*
1658          * smartd sends this command and the host does not handle
1659          * this. So, don't send it.
1660          */
1661         case SET_WINDOW:
1662                 scmnd->result = ILLEGAL_REQUEST << 16;
1663                 allowed = false;
1664                 break;
1665         default:
1666                 break;
1667         }
1668         return allowed;
1669 }
1670
1671 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1672 {
1673         int ret;
1674         struct hv_host_device *host_dev = shost_priv(host);
1675         struct hv_device *dev = host_dev->dev;
1676         struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1677         int i;
1678         struct scatterlist *sgl;
1679         unsigned int sg_count = 0;
1680         struct vmscsi_request *vm_srb;
1681         struct scatterlist *cur_sgl;
1682         struct vmbus_packet_mpb_array  *payload;
1683         u32 payload_sz;
1684         u32 length;
1685
1686         if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1687                 /*
1688                  * On legacy hosts filter unimplemented commands.
1689                  * Future hosts are expected to correctly handle
1690                  * unsupported commands. Furthermore, it is
1691                  * possible that some of the currently
1692                  * unsupported commands maybe supported in
1693                  * future versions of the host.
1694                  */
1695                 if (!storvsc_scsi_cmd_ok(scmnd)) {
1696                         scmnd->scsi_done(scmnd);
1697                         return 0;
1698                 }
1699         }
1700
1701         /* Setup the cmd request */
1702         cmd_request->cmd = scmnd;
1703
1704         memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1705         vm_srb = &cmd_request->vstor_packet.vm_srb;
1706         vm_srb->win8_extension.time_out_value = 60;
1707
1708         vm_srb->win8_extension.srb_flags |=
1709                 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1710
1711         if (scmnd->device->tagged_supported) {
1712                 vm_srb->win8_extension.srb_flags |=
1713                 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1714                 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1715                 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1716         }
1717
1718         /* Build the SRB */
1719         switch (scmnd->sc_data_direction) {
1720         case DMA_TO_DEVICE:
1721                 vm_srb->data_in = WRITE_TYPE;
1722                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1723                 break;
1724         case DMA_FROM_DEVICE:
1725                 vm_srb->data_in = READ_TYPE;
1726                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1727                 break;
1728         case DMA_NONE:
1729                 vm_srb->data_in = UNKNOWN_TYPE;
1730                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1731                 break;
1732         default:
1733                 /*
1734                  * This is DMA_BIDIRECTIONAL or something else we are never
1735                  * supposed to see here.
1736                  */
1737                 WARN(1, "Unexpected data direction: %d\n",
1738                      scmnd->sc_data_direction);
1739                 return -EINVAL;
1740         }
1741
1742
1743         vm_srb->port_number = host_dev->port;
1744         vm_srb->path_id = scmnd->device->channel;
1745         vm_srb->target_id = scmnd->device->id;
1746         vm_srb->lun = scmnd->device->lun;
1747
1748         vm_srb->cdb_length = scmnd->cmd_len;
1749
1750         memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1751
1752         sgl = (struct scatterlist *)scsi_sglist(scmnd);
1753         sg_count = scsi_sg_count(scmnd);
1754
1755         length = scsi_bufflen(scmnd);
1756         payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1757         payload_sz = 0;
1758
1759         if (sg_count) {
1760                 unsigned int hvpgoff = 0;
1761                 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK;
1762                 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1763                 u64 hvpfn;
1764
1765                 payload_sz = (hvpg_count * sizeof(u64) +
1766                               sizeof(struct vmbus_packet_mpb_array));
1767
1768                 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1769                         payload = kzalloc(payload_sz, GFP_ATOMIC);
1770                         if (!payload)
1771                                 return SCSI_MLQUEUE_DEVICE_BUSY;
1772                 }
1773
1774                 /*
1775                  * sgl is a list of PAGEs, and payload->range.pfn_array
1776                  * expects the page number in the unit of HV_HYP_PAGE_SIZE (the
1777                  * page size that Hyper-V uses, so here we need to divide PAGEs
1778                  * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE.
1779                  * Besides, payload->range.offset should be the offset in one
1780                  * HV_HYP_PAGE.
1781                  */
1782                 payload->range.len = length;
1783                 payload->range.offset = offset_in_hvpg;
1784                 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT;
1785
1786                 cur_sgl = sgl;
1787                 for (i = 0; i < hvpg_count; i++) {
1788                         /*
1789                          * 'i' is the index of hv pages in the payload and
1790                          * 'hvpgoff' is the offset (in hv pages) of the first
1791                          * hv page in the the first page. The relationship
1792                          * between the sum of 'i' and 'hvpgoff' and the offset
1793                          * (in hv pages) in a payload page ('hvpgoff_in_page')
1794                          * is as follow:
1795                          *
1796                          * |------------------ PAGE -------------------|
1797                          * |   NR_HV_HYP_PAGES_IN_PAGE hvpgs in total  |
1798                          * |hvpg|hvpg| ...              |hvpg|... |hvpg|
1799                          * ^         ^                                 ^                 ^
1800                          * +-hvpgoff-+                                 +-hvpgoff_in_page-+
1801                          *           ^                                                   |
1802                          *           +--------------------- i ---------------------------+
1803                          */
1804                         unsigned int hvpgoff_in_page =
1805                                 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE;
1806
1807                         /*
1808                          * Two cases that we need to fetch a page:
1809                          * 1) i == 0, the first step or
1810                          * 2) hvpgoff_in_page == 0, when we reach the boundary
1811                          *    of a page.
1812                          */
1813                         if (hvpgoff_in_page == 0 || i == 0) {
1814                                 hvpfn = page_to_hvpfn(sg_page(cur_sgl));
1815                                 cur_sgl = sg_next(cur_sgl);
1816                         }
1817
1818                         payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page;
1819                 }
1820         }
1821
1822         cmd_request->payload = payload;
1823         cmd_request->payload_sz = payload_sz;
1824
1825         /* Invokes the vsc to start an IO */
1826         ret = storvsc_do_io(dev, cmd_request, get_cpu());
1827         put_cpu();
1828
1829         if (ret == -EAGAIN) {
1830                 if (payload_sz > sizeof(cmd_request->mpb))
1831                         kfree(payload);
1832                 /* no more space */
1833                 return SCSI_MLQUEUE_DEVICE_BUSY;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static struct scsi_host_template scsi_driver = {
1840         .module =               THIS_MODULE,
1841         .name =                 "storvsc_host_t",
1842         .cmd_size =             sizeof(struct storvsc_cmd_request),
1843         .bios_param =           storvsc_get_chs,
1844         .queuecommand =         storvsc_queuecommand,
1845         .eh_host_reset_handler =        storvsc_host_reset_handler,
1846         .proc_name =            "storvsc_host",
1847         .eh_timed_out =         storvsc_eh_timed_out,
1848         .slave_alloc =          storvsc_device_alloc,
1849         .slave_configure =      storvsc_device_configure,
1850         .cmd_per_lun =          2048,
1851         .this_id =              -1,
1852         /* Make sure we dont get a sg segment crosses a page boundary */
1853         .dma_boundary =         PAGE_SIZE-1,
1854         /* Ensure there are no gaps in presented sgls */
1855         .virt_boundary_mask =   PAGE_SIZE-1,
1856         .no_write_same =        1,
1857         .track_queue_depth =    1,
1858         .change_queue_depth =   storvsc_change_queue_depth,
1859 };
1860
1861 enum {
1862         SCSI_GUID,
1863         IDE_GUID,
1864         SFC_GUID,
1865 };
1866
1867 static const struct hv_vmbus_device_id id_table[] = {
1868         /* SCSI guid */
1869         { HV_SCSI_GUID,
1870           .driver_data = SCSI_GUID
1871         },
1872         /* IDE guid */
1873         { HV_IDE_GUID,
1874           .driver_data = IDE_GUID
1875         },
1876         /* Fibre Channel GUID */
1877         {
1878           HV_SYNTHFC_GUID,
1879           .driver_data = SFC_GUID
1880         },
1881         { },
1882 };
1883
1884 MODULE_DEVICE_TABLE(vmbus, id_table);
1885
1886 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1887
1888 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1889 {
1890         return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1891 }
1892
1893 static int storvsc_probe(struct hv_device *device,
1894                         const struct hv_vmbus_device_id *dev_id)
1895 {
1896         int ret;
1897         int num_cpus = num_online_cpus();
1898         struct Scsi_Host *host;
1899         struct hv_host_device *host_dev;
1900         bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1901         bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1902         int target = 0;
1903         struct storvsc_device *stor_device;
1904         int max_luns_per_target;
1905         int max_targets;
1906         int max_channels;
1907         int max_sub_channels = 0;
1908
1909         /*
1910          * Based on the windows host we are running on,
1911          * set state to properly communicate with the host.
1912          */
1913
1914         if (vmbus_proto_version < VERSION_WIN8) {
1915                 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1916                 max_targets = STORVSC_IDE_MAX_TARGETS;
1917                 max_channels = STORVSC_IDE_MAX_CHANNELS;
1918         } else {
1919                 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1920                 max_targets = STORVSC_MAX_TARGETS;
1921                 max_channels = STORVSC_MAX_CHANNELS;
1922                 /*
1923                  * On Windows8 and above, we support sub-channels for storage
1924                  * on SCSI and FC controllers.
1925                  * The number of sub-channels offerred is based on the number of
1926                  * VCPUs in the guest.
1927                  */
1928                 if (!dev_is_ide)
1929                         max_sub_channels =
1930                                 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1931         }
1932
1933         scsi_driver.can_queue = max_outstanding_req_per_channel *
1934                                 (max_sub_channels + 1) *
1935                                 (100 - ring_avail_percent_lowater) / 100;
1936
1937         host = scsi_host_alloc(&scsi_driver,
1938                                sizeof(struct hv_host_device));
1939         if (!host)
1940                 return -ENOMEM;
1941
1942         host_dev = shost_priv(host);
1943         memset(host_dev, 0, sizeof(struct hv_host_device));
1944
1945         host_dev->port = host->host_no;
1946         host_dev->dev = device;
1947         host_dev->host = host;
1948
1949
1950         stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1951         if (!stor_device) {
1952                 ret = -ENOMEM;
1953                 goto err_out0;
1954         }
1955
1956         stor_device->destroy = false;
1957         init_waitqueue_head(&stor_device->waiting_to_drain);
1958         stor_device->device = device;
1959         stor_device->host = host;
1960         spin_lock_init(&stor_device->lock);
1961         hv_set_drvdata(device, stor_device);
1962
1963         stor_device->port_number = host->host_no;
1964         ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1965         if (ret)
1966                 goto err_out1;
1967
1968         host_dev->path = stor_device->path_id;
1969         host_dev->target = stor_device->target_id;
1970
1971         switch (dev_id->driver_data) {
1972         case SFC_GUID:
1973                 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1974                 host->max_id = STORVSC_FC_MAX_TARGETS;
1975                 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1976 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1977                 host->transportt = fc_transport_template;
1978 #endif
1979                 break;
1980
1981         case SCSI_GUID:
1982                 host->max_lun = max_luns_per_target;
1983                 host->max_id = max_targets;
1984                 host->max_channel = max_channels - 1;
1985                 break;
1986
1987         default:
1988                 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1989                 host->max_id = STORVSC_IDE_MAX_TARGETS;
1990                 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1991                 break;
1992         }
1993         /* max cmd length */
1994         host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1995
1996         /*
1997          * set the table size based on the info we got
1998          * from the host.
1999          */
2000         host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
2001         /*
2002          * For non-IDE disks, the host supports multiple channels.
2003          * Set the number of HW queues we are supporting.
2004          */
2005         if (!dev_is_ide)
2006                 host->nr_hw_queues = num_present_cpus();
2007
2008         /*
2009          * Set the error handler work queue.
2010          */
2011         host_dev->handle_error_wq =
2012                         alloc_ordered_workqueue("storvsc_error_wq_%d",
2013                                                 0,
2014                                                 host->host_no);
2015         if (!host_dev->handle_error_wq) {
2016                 ret = -ENOMEM;
2017                 goto err_out2;
2018         }
2019         INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2020         /* Register the HBA and start the scsi bus scan */
2021         ret = scsi_add_host(host, &device->device);
2022         if (ret != 0)
2023                 goto err_out3;
2024
2025         if (!dev_is_ide) {
2026                 scsi_scan_host(host);
2027         } else {
2028                 target = (device->dev_instance.b[5] << 8 |
2029                          device->dev_instance.b[4]);
2030                 ret = scsi_add_device(host, 0, target, 0);
2031                 if (ret)
2032                         goto err_out4;
2033         }
2034 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2035         if (host->transportt == fc_transport_template) {
2036                 struct fc_rport_identifiers ids = {
2037                         .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2038                 };
2039
2040                 fc_host_node_name(host) = stor_device->node_name;
2041                 fc_host_port_name(host) = stor_device->port_name;
2042                 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2043                 if (!stor_device->rport) {
2044                         ret = -ENOMEM;
2045                         goto err_out4;
2046                 }
2047         }
2048 #endif
2049         return 0;
2050
2051 err_out4:
2052         scsi_remove_host(host);
2053
2054 err_out3:
2055         destroy_workqueue(host_dev->handle_error_wq);
2056
2057 err_out2:
2058         /*
2059          * Once we have connected with the host, we would need to
2060          * to invoke storvsc_dev_remove() to rollback this state and
2061          * this call also frees up the stor_device; hence the jump around
2062          * err_out1 label.
2063          */
2064         storvsc_dev_remove(device);
2065         goto err_out0;
2066
2067 err_out1:
2068         kfree(stor_device->stor_chns);
2069         kfree(stor_device);
2070
2071 err_out0:
2072         scsi_host_put(host);
2073         return ret;
2074 }
2075
2076 /* Change a scsi target's queue depth */
2077 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2078 {
2079         if (queue_depth > scsi_driver.can_queue)
2080                 queue_depth = scsi_driver.can_queue;
2081
2082         return scsi_change_queue_depth(sdev, queue_depth);
2083 }
2084
2085 static int storvsc_remove(struct hv_device *dev)
2086 {
2087         struct storvsc_device *stor_device = hv_get_drvdata(dev);
2088         struct Scsi_Host *host = stor_device->host;
2089         struct hv_host_device *host_dev = shost_priv(host);
2090
2091 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2092         if (host->transportt == fc_transport_template) {
2093                 fc_remote_port_delete(stor_device->rport);
2094                 fc_remove_host(host);
2095         }
2096 #endif
2097         destroy_workqueue(host_dev->handle_error_wq);
2098         scsi_remove_host(host);
2099         storvsc_dev_remove(dev);
2100         scsi_host_put(host);
2101
2102         return 0;
2103 }
2104
2105 static int storvsc_suspend(struct hv_device *hv_dev)
2106 {
2107         struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2108         struct Scsi_Host *host = stor_device->host;
2109         struct hv_host_device *host_dev = shost_priv(host);
2110
2111         storvsc_wait_to_drain(stor_device);
2112
2113         drain_workqueue(host_dev->handle_error_wq);
2114
2115         vmbus_close(hv_dev->channel);
2116
2117         kfree(stor_device->stor_chns);
2118         stor_device->stor_chns = NULL;
2119
2120         cpumask_clear(&stor_device->alloced_cpus);
2121
2122         return 0;
2123 }
2124
2125 static int storvsc_resume(struct hv_device *hv_dev)
2126 {
2127         int ret;
2128
2129         ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2130                                      hv_dev_is_fc(hv_dev));
2131         return ret;
2132 }
2133
2134 static struct hv_driver storvsc_drv = {
2135         .name = KBUILD_MODNAME,
2136         .id_table = id_table,
2137         .probe = storvsc_probe,
2138         .remove = storvsc_remove,
2139         .suspend = storvsc_suspend,
2140         .resume = storvsc_resume,
2141         .driver = {
2142                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2143         },
2144 };
2145
2146 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2147 static struct fc_function_template fc_transport_functions = {
2148         .show_host_node_name = 1,
2149         .show_host_port_name = 1,
2150 };
2151 #endif
2152
2153 static int __init storvsc_drv_init(void)
2154 {
2155         int ret;
2156
2157         /*
2158          * Divide the ring buffer data size (which is 1 page less
2159          * than the ring buffer size since that page is reserved for
2160          * the ring buffer indices) by the max request size (which is
2161          * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2162          */
2163         max_outstanding_req_per_channel =
2164                 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2165                 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2166                 sizeof(struct vstor_packet) + sizeof(u64) -
2167                 vmscsi_size_delta,
2168                 sizeof(u64)));
2169
2170 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2171         fc_transport_template = fc_attach_transport(&fc_transport_functions);
2172         if (!fc_transport_template)
2173                 return -ENODEV;
2174 #endif
2175
2176         ret = vmbus_driver_register(&storvsc_drv);
2177
2178 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2179         if (ret)
2180                 fc_release_transport(fc_transport_template);
2181 #endif
2182
2183         return ret;
2184 }
2185
2186 static void __exit storvsc_drv_exit(void)
2187 {
2188         vmbus_driver_unregister(&storvsc_drv);
2189 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2190         fc_release_transport(fc_transport_template);
2191 #endif
2192 }
2193
2194 MODULE_LICENSE("GPL");
2195 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2196 module_init(storvsc_drv_init);
2197 module_exit(storvsc_drv_exit);