GNU Linux-libre 5.19.9-gnu
[releases.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY        3
84
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88         struct Scsi_Host *host = cmd->device->host;
89         struct scsi_device *device = cmd->device;
90         struct scsi_target *starget = scsi_target(device);
91
92         /*
93          * Set the appropriate busy bit for the device/host.
94          *
95          * If the host/device isn't busy, assume that something actually
96          * completed, and that we should be able to queue a command now.
97          *
98          * Note that the prior mid-layer assumption that any host could
99          * always queue at least one command is now broken.  The mid-layer
100          * will implement a user specifiable stall (see
101          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102          * if a command is requeued with no other commands outstanding
103          * either for the device or for the host.
104          */
105         switch (reason) {
106         case SCSI_MLQUEUE_HOST_BUSY:
107                 atomic_set(&host->host_blocked, host->max_host_blocked);
108                 break;
109         case SCSI_MLQUEUE_DEVICE_BUSY:
110         case SCSI_MLQUEUE_EH_RETRY:
111                 atomic_set(&device->device_blocked,
112                            device->max_device_blocked);
113                 break;
114         case SCSI_MLQUEUE_TARGET_BUSY:
115                 atomic_set(&starget->target_blocked,
116                            starget->max_target_blocked);
117                 break;
118         }
119 }
120
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
122 {
123         struct request *rq = scsi_cmd_to_rq(cmd);
124
125         if (rq->rq_flags & RQF_DONTPREP) {
126                 rq->rq_flags &= ~RQF_DONTPREP;
127                 scsi_mq_uninit_cmd(cmd);
128         } else {
129                 WARN_ON_ONCE(true);
130         }
131
132         if (msecs) {
133                 blk_mq_requeue_request(rq, false);
134                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
135         } else
136                 blk_mq_requeue_request(rq, true);
137 }
138
139 /**
140  * __scsi_queue_insert - private queue insertion
141  * @cmd: The SCSI command being requeued
142  * @reason:  The reason for the requeue
143  * @unbusy: Whether the queue should be unbusied
144  *
145  * This is a private queue insertion.  The public interface
146  * scsi_queue_insert() always assumes the queue should be unbusied
147  * because it's always called before the completion.  This function is
148  * for a requeue after completion, which should only occur in this
149  * file.
150  */
151 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
152 {
153         struct scsi_device *device = cmd->device;
154
155         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
156                 "Inserting command %p into mlqueue\n", cmd));
157
158         scsi_set_blocked(cmd, reason);
159
160         /*
161          * Decrement the counters, since these commands are no longer
162          * active on the host/device.
163          */
164         if (unbusy)
165                 scsi_device_unbusy(device, cmd);
166
167         /*
168          * Requeue this command.  It will go before all other commands
169          * that are already in the queue. Schedule requeue work under
170          * lock such that the kblockd_schedule_work() call happens
171          * before blk_cleanup_queue() finishes.
172          */
173         cmd->result = 0;
174
175         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
176 }
177
178 /**
179  * scsi_queue_insert - Reinsert a command in the queue.
180  * @cmd:    command that we are adding to queue.
181  * @reason: why we are inserting command to queue.
182  *
183  * We do this for one of two cases. Either the host is busy and it cannot accept
184  * any more commands for the time being, or the device returned QUEUE_FULL and
185  * can accept no more commands.
186  *
187  * Context: This could be called either from an interrupt context or a normal
188  * process context.
189  */
190 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
191 {
192         __scsi_queue_insert(cmd, reason, true);
193 }
194
195
196 /**
197  * __scsi_execute - insert request and wait for the result
198  * @sdev:       scsi device
199  * @cmd:        scsi command
200  * @data_direction: data direction
201  * @buffer:     data buffer
202  * @bufflen:    len of buffer
203  * @sense:      optional sense buffer
204  * @sshdr:      optional decoded sense header
205  * @timeout:    request timeout in HZ
206  * @retries:    number of times to retry request
207  * @flags:      flags for ->cmd_flags
208  * @rq_flags:   flags for ->rq_flags
209  * @resid:      optional residual length
210  *
211  * Returns the scsi_cmnd result field if a command was executed, or a negative
212  * Linux error code if we didn't get that far.
213  */
214 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215                  int data_direction, void *buffer, unsigned bufflen,
216                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
217                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
218                  int *resid)
219 {
220         struct request *req;
221         struct scsi_cmnd *scmd;
222         int ret;
223
224         req = scsi_alloc_request(sdev->request_queue,
225                         data_direction == DMA_TO_DEVICE ?
226                         REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
227                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
228         if (IS_ERR(req))
229                 return PTR_ERR(req);
230
231         if (bufflen) {
232                 ret = blk_rq_map_kern(sdev->request_queue, req,
233                                       buffer, bufflen, GFP_NOIO);
234                 if (ret)
235                         goto out;
236         }
237         scmd = blk_mq_rq_to_pdu(req);
238         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
239         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
240         scmd->allowed = retries;
241         req->timeout = timeout;
242         req->cmd_flags |= flags;
243         req->rq_flags |= rq_flags | RQF_QUIET;
244
245         /*
246          * head injection *required* here otherwise quiesce won't work
247          */
248         blk_execute_rq(req, true);
249
250         /*
251          * Some devices (USB mass-storage in particular) may transfer
252          * garbage data together with a residue indicating that the data
253          * is invalid.  Prevent the garbage from being misinterpreted
254          * and prevent security leaks by zeroing out the excess data.
255          */
256         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
257                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
258
259         if (resid)
260                 *resid = scmd->resid_len;
261         if (sense && scmd->sense_len)
262                 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
263         if (sshdr)
264                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
265                                      sshdr);
266         ret = scmd->result;
267  out:
268         blk_mq_free_request(req);
269
270         return ret;
271 }
272 EXPORT_SYMBOL(__scsi_execute);
273
274 /*
275  * Wake up the error handler if necessary. Avoid as follows that the error
276  * handler is not woken up if host in-flight requests number ==
277  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
278  * with an RCU read lock in this function to ensure that this function in
279  * its entirety either finishes before scsi_eh_scmd_add() increases the
280  * host_failed counter or that it notices the shost state change made by
281  * scsi_eh_scmd_add().
282  */
283 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
284 {
285         unsigned long flags;
286
287         rcu_read_lock();
288         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
289         if (unlikely(scsi_host_in_recovery(shost))) {
290                 spin_lock_irqsave(shost->host_lock, flags);
291                 if (shost->host_failed || shost->host_eh_scheduled)
292                         scsi_eh_wakeup(shost);
293                 spin_unlock_irqrestore(shost->host_lock, flags);
294         }
295         rcu_read_unlock();
296 }
297
298 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
299 {
300         struct Scsi_Host *shost = sdev->host;
301         struct scsi_target *starget = scsi_target(sdev);
302
303         scsi_dec_host_busy(shost, cmd);
304
305         if (starget->can_queue > 0)
306                 atomic_dec(&starget->target_busy);
307
308         sbitmap_put(&sdev->budget_map, cmd->budget_token);
309         cmd->budget_token = -1;
310 }
311
312 static void scsi_kick_queue(struct request_queue *q)
313 {
314         blk_mq_run_hw_queues(q, false);
315 }
316
317 /*
318  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319  * and call blk_run_queue for all the scsi_devices on the target -
320  * including current_sdev first.
321  *
322  * Called with *no* scsi locks held.
323  */
324 static void scsi_single_lun_run(struct scsi_device *current_sdev)
325 {
326         struct Scsi_Host *shost = current_sdev->host;
327         struct scsi_device *sdev, *tmp;
328         struct scsi_target *starget = scsi_target(current_sdev);
329         unsigned long flags;
330
331         spin_lock_irqsave(shost->host_lock, flags);
332         starget->starget_sdev_user = NULL;
333         spin_unlock_irqrestore(shost->host_lock, flags);
334
335         /*
336          * Call blk_run_queue for all LUNs on the target, starting with
337          * current_sdev. We race with others (to set starget_sdev_user),
338          * but in most cases, we will be first. Ideally, each LU on the
339          * target would get some limited time or requests on the target.
340          */
341         scsi_kick_queue(current_sdev->request_queue);
342
343         spin_lock_irqsave(shost->host_lock, flags);
344         if (starget->starget_sdev_user)
345                 goto out;
346         list_for_each_entry_safe(sdev, tmp, &starget->devices,
347                         same_target_siblings) {
348                 if (sdev == current_sdev)
349                         continue;
350                 if (scsi_device_get(sdev))
351                         continue;
352
353                 spin_unlock_irqrestore(shost->host_lock, flags);
354                 scsi_kick_queue(sdev->request_queue);
355                 spin_lock_irqsave(shost->host_lock, flags);
356
357                 scsi_device_put(sdev);
358         }
359  out:
360         spin_unlock_irqrestore(shost->host_lock, flags);
361 }
362
363 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
364 {
365         if (scsi_device_busy(sdev) >= sdev->queue_depth)
366                 return true;
367         if (atomic_read(&sdev->device_blocked) > 0)
368                 return true;
369         return false;
370 }
371
372 static inline bool scsi_target_is_busy(struct scsi_target *starget)
373 {
374         if (starget->can_queue > 0) {
375                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
376                         return true;
377                 if (atomic_read(&starget->target_blocked) > 0)
378                         return true;
379         }
380         return false;
381 }
382
383 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
384 {
385         if (atomic_read(&shost->host_blocked) > 0)
386                 return true;
387         if (shost->host_self_blocked)
388                 return true;
389         return false;
390 }
391
392 static void scsi_starved_list_run(struct Scsi_Host *shost)
393 {
394         LIST_HEAD(starved_list);
395         struct scsi_device *sdev;
396         unsigned long flags;
397
398         spin_lock_irqsave(shost->host_lock, flags);
399         list_splice_init(&shost->starved_list, &starved_list);
400
401         while (!list_empty(&starved_list)) {
402                 struct request_queue *slq;
403
404                 /*
405                  * As long as shost is accepting commands and we have
406                  * starved queues, call blk_run_queue. scsi_request_fn
407                  * drops the queue_lock and can add us back to the
408                  * starved_list.
409                  *
410                  * host_lock protects the starved_list and starved_entry.
411                  * scsi_request_fn must get the host_lock before checking
412                  * or modifying starved_list or starved_entry.
413                  */
414                 if (scsi_host_is_busy(shost))
415                         break;
416
417                 sdev = list_entry(starved_list.next,
418                                   struct scsi_device, starved_entry);
419                 list_del_init(&sdev->starved_entry);
420                 if (scsi_target_is_busy(scsi_target(sdev))) {
421                         list_move_tail(&sdev->starved_entry,
422                                        &shost->starved_list);
423                         continue;
424                 }
425
426                 /*
427                  * Once we drop the host lock, a racing scsi_remove_device()
428                  * call may remove the sdev from the starved list and destroy
429                  * it and the queue.  Mitigate by taking a reference to the
430                  * queue and never touching the sdev again after we drop the
431                  * host lock.  Note: if __scsi_remove_device() invokes
432                  * blk_cleanup_queue() before the queue is run from this
433                  * function then blk_run_queue() will return immediately since
434                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
435                  */
436                 slq = sdev->request_queue;
437                 if (!blk_get_queue(slq))
438                         continue;
439                 spin_unlock_irqrestore(shost->host_lock, flags);
440
441                 scsi_kick_queue(slq);
442                 blk_put_queue(slq);
443
444                 spin_lock_irqsave(shost->host_lock, flags);
445         }
446         /* put any unprocessed entries back */
447         list_splice(&starved_list, &shost->starved_list);
448         spin_unlock_irqrestore(shost->host_lock, flags);
449 }
450
451 /**
452  * scsi_run_queue - Select a proper request queue to serve next.
453  * @q:  last request's queue
454  *
455  * The previous command was completely finished, start a new one if possible.
456  */
457 static void scsi_run_queue(struct request_queue *q)
458 {
459         struct scsi_device *sdev = q->queuedata;
460
461         if (scsi_target(sdev)->single_lun)
462                 scsi_single_lun_run(sdev);
463         if (!list_empty(&sdev->host->starved_list))
464                 scsi_starved_list_run(sdev->host);
465
466         blk_mq_run_hw_queues(q, false);
467 }
468
469 void scsi_requeue_run_queue(struct work_struct *work)
470 {
471         struct scsi_device *sdev;
472         struct request_queue *q;
473
474         sdev = container_of(work, struct scsi_device, requeue_work);
475         q = sdev->request_queue;
476         scsi_run_queue(q);
477 }
478
479 void scsi_run_host_queues(struct Scsi_Host *shost)
480 {
481         struct scsi_device *sdev;
482
483         shost_for_each_device(sdev, shost)
484                 scsi_run_queue(sdev->request_queue);
485 }
486
487 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
488 {
489         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
490                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
491
492                 if (drv->uninit_command)
493                         drv->uninit_command(cmd);
494         }
495 }
496
497 void scsi_free_sgtables(struct scsi_cmnd *cmd)
498 {
499         if (cmd->sdb.table.nents)
500                 sg_free_table_chained(&cmd->sdb.table,
501                                 SCSI_INLINE_SG_CNT);
502         if (scsi_prot_sg_count(cmd))
503                 sg_free_table_chained(&cmd->prot_sdb->table,
504                                 SCSI_INLINE_PROT_SG_CNT);
505 }
506 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
507
508 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510         scsi_free_sgtables(cmd);
511         scsi_uninit_cmd(cmd);
512 }
513
514 static void scsi_run_queue_async(struct scsi_device *sdev)
515 {
516         if (scsi_target(sdev)->single_lun ||
517             !list_empty(&sdev->host->starved_list)) {
518                 kblockd_schedule_work(&sdev->requeue_work);
519         } else {
520                 /*
521                  * smp_mb() present in sbitmap_queue_clear() or implied in
522                  * .end_io is for ordering writing .device_busy in
523                  * scsi_device_unbusy() and reading sdev->restarts.
524                  */
525                 int old = atomic_read(&sdev->restarts);
526
527                 /*
528                  * ->restarts has to be kept as non-zero if new budget
529                  *  contention occurs.
530                  *
531                  *  No need to run queue when either another re-run
532                  *  queue wins in updating ->restarts or a new budget
533                  *  contention occurs.
534                  */
535                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
536                         blk_mq_run_hw_queues(sdev->request_queue, true);
537         }
538 }
539
540 /* Returns false when no more bytes to process, true if there are more */
541 static bool scsi_end_request(struct request *req, blk_status_t error,
542                 unsigned int bytes)
543 {
544         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
545         struct scsi_device *sdev = cmd->device;
546         struct request_queue *q = sdev->request_queue;
547
548         if (blk_update_request(req, error, bytes))
549                 return true;
550
551         // XXX:
552         if (blk_queue_add_random(q))
553                 add_disk_randomness(req->q->disk);
554
555         if (!blk_rq_is_passthrough(req)) {
556                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
557                 cmd->flags &= ~SCMD_INITIALIZED;
558         }
559
560         /*
561          * Calling rcu_barrier() is not necessary here because the
562          * SCSI error handler guarantees that the function called by
563          * call_rcu() has been called before scsi_end_request() is
564          * called.
565          */
566         destroy_rcu_head(&cmd->rcu);
567
568         /*
569          * In the MQ case the command gets freed by __blk_mq_end_request,
570          * so we have to do all cleanup that depends on it earlier.
571          *
572          * We also can't kick the queues from irq context, so we
573          * will have to defer it to a workqueue.
574          */
575         scsi_mq_uninit_cmd(cmd);
576
577         /*
578          * queue is still alive, so grab the ref for preventing it
579          * from being cleaned up during running queue.
580          */
581         percpu_ref_get(&q->q_usage_counter);
582
583         __blk_mq_end_request(req, error);
584
585         scsi_run_queue_async(sdev);
586
587         percpu_ref_put(&q->q_usage_counter);
588         return false;
589 }
590
591 /**
592  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
593  * @cmd:        SCSI command
594  * @result:     scsi error code
595  *
596  * Translate a SCSI result code into a blk_status_t value. May reset the host
597  * byte of @cmd->result.
598  */
599 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
600 {
601         switch (host_byte(result)) {
602         case DID_OK:
603                 if (scsi_status_is_good(result))
604                         return BLK_STS_OK;
605                 return BLK_STS_IOERR;
606         case DID_TRANSPORT_FAILFAST:
607         case DID_TRANSPORT_MARGINAL:
608                 return BLK_STS_TRANSPORT;
609         case DID_TARGET_FAILURE:
610                 set_host_byte(cmd, DID_OK);
611                 return BLK_STS_TARGET;
612         case DID_NEXUS_FAILURE:
613                 set_host_byte(cmd, DID_OK);
614                 return BLK_STS_NEXUS;
615         case DID_ALLOC_FAILURE:
616                 set_host_byte(cmd, DID_OK);
617                 return BLK_STS_NOSPC;
618         case DID_MEDIUM_ERROR:
619                 set_host_byte(cmd, DID_OK);
620                 return BLK_STS_MEDIUM;
621         default:
622                 return BLK_STS_IOERR;
623         }
624 }
625
626 /**
627  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
628  * @rq: request to examine
629  *
630  * Description:
631  *     A request could be merge of IOs which require different failure
632  *     handling.  This function determines the number of bytes which
633  *     can be failed from the beginning of the request without
634  *     crossing into area which need to be retried further.
635  *
636  * Return:
637  *     The number of bytes to fail.
638  */
639 static unsigned int scsi_rq_err_bytes(const struct request *rq)
640 {
641         unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
642         unsigned int bytes = 0;
643         struct bio *bio;
644
645         if (!(rq->rq_flags & RQF_MIXED_MERGE))
646                 return blk_rq_bytes(rq);
647
648         /*
649          * Currently the only 'mixing' which can happen is between
650          * different fastfail types.  We can safely fail portions
651          * which have all the failfast bits that the first one has -
652          * the ones which are at least as eager to fail as the first
653          * one.
654          */
655         for (bio = rq->bio; bio; bio = bio->bi_next) {
656                 if ((bio->bi_opf & ff) != ff)
657                         break;
658                 bytes += bio->bi_iter.bi_size;
659         }
660
661         /* this could lead to infinite loop */
662         BUG_ON(blk_rq_bytes(rq) && !bytes);
663         return bytes;
664 }
665
666 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
667 {
668         struct request *req = scsi_cmd_to_rq(cmd);
669         unsigned long wait_for;
670
671         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
672                 return false;
673
674         wait_for = (cmd->allowed + 1) * req->timeout;
675         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
676                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
677                             wait_for/HZ);
678                 return true;
679         }
680         return false;
681 }
682
683 /*
684  * When ALUA transition state is returned, reprep the cmd to
685  * use the ALUA handler's transition timeout. Delay the reprep
686  * 1 sec to avoid aggressive retries of the target in that
687  * state.
688  */
689 #define ALUA_TRANSITION_REPREP_DELAY    1000
690
691 /* Helper for scsi_io_completion() when special action required. */
692 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
693 {
694         struct request *req = scsi_cmd_to_rq(cmd);
695         int level = 0;
696         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
697               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
698         struct scsi_sense_hdr sshdr;
699         bool sense_valid;
700         bool sense_current = true;      /* false implies "deferred sense" */
701         blk_status_t blk_stat;
702
703         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
704         if (sense_valid)
705                 sense_current = !scsi_sense_is_deferred(&sshdr);
706
707         blk_stat = scsi_result_to_blk_status(cmd, result);
708
709         if (host_byte(result) == DID_RESET) {
710                 /* Third party bus reset or reset for error recovery
711                  * reasons.  Just retry the command and see what
712                  * happens.
713                  */
714                 action = ACTION_RETRY;
715         } else if (sense_valid && sense_current) {
716                 switch (sshdr.sense_key) {
717                 case UNIT_ATTENTION:
718                         if (cmd->device->removable) {
719                                 /* Detected disc change.  Set a bit
720                                  * and quietly refuse further access.
721                                  */
722                                 cmd->device->changed = 1;
723                                 action = ACTION_FAIL;
724                         } else {
725                                 /* Must have been a power glitch, or a
726                                  * bus reset.  Could not have been a
727                                  * media change, so we just retry the
728                                  * command and see what happens.
729                                  */
730                                 action = ACTION_RETRY;
731                         }
732                         break;
733                 case ILLEGAL_REQUEST:
734                         /* If we had an ILLEGAL REQUEST returned, then
735                          * we may have performed an unsupported
736                          * command.  The only thing this should be
737                          * would be a ten byte read where only a six
738                          * byte read was supported.  Also, on a system
739                          * where READ CAPACITY failed, we may have
740                          * read past the end of the disk.
741                          */
742                         if ((cmd->device->use_10_for_rw &&
743                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
744                             (cmd->cmnd[0] == READ_10 ||
745                              cmd->cmnd[0] == WRITE_10)) {
746                                 /* This will issue a new 6-byte command. */
747                                 cmd->device->use_10_for_rw = 0;
748                                 action = ACTION_REPREP;
749                         } else if (sshdr.asc == 0x10) /* DIX */ {
750                                 action = ACTION_FAIL;
751                                 blk_stat = BLK_STS_PROTECTION;
752                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
753                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
754                                 action = ACTION_FAIL;
755                                 blk_stat = BLK_STS_TARGET;
756                         } else
757                                 action = ACTION_FAIL;
758                         break;
759                 case ABORTED_COMMAND:
760                         action = ACTION_FAIL;
761                         if (sshdr.asc == 0x10) /* DIF */
762                                 blk_stat = BLK_STS_PROTECTION;
763                         break;
764                 case NOT_READY:
765                         /* If the device is in the process of becoming
766                          * ready, or has a temporary blockage, retry.
767                          */
768                         if (sshdr.asc == 0x04) {
769                                 switch (sshdr.ascq) {
770                                 case 0x01: /* becoming ready */
771                                 case 0x04: /* format in progress */
772                                 case 0x05: /* rebuild in progress */
773                                 case 0x06: /* recalculation in progress */
774                                 case 0x07: /* operation in progress */
775                                 case 0x08: /* Long write in progress */
776                                 case 0x09: /* self test in progress */
777                                 case 0x11: /* notify (enable spinup) required */
778                                 case 0x14: /* space allocation in progress */
779                                 case 0x1a: /* start stop unit in progress */
780                                 case 0x1b: /* sanitize in progress */
781                                 case 0x1d: /* configuration in progress */
782                                 case 0x24: /* depopulation in progress */
783                                         action = ACTION_DELAYED_RETRY;
784                                         break;
785                                 case 0x0a: /* ALUA state transition */
786                                         action = ACTION_DELAYED_REPREP;
787                                         break;
788                                 default:
789                                         action = ACTION_FAIL;
790                                         break;
791                                 }
792                         } else
793                                 action = ACTION_FAIL;
794                         break;
795                 case VOLUME_OVERFLOW:
796                         /* See SSC3rXX or current. */
797                         action = ACTION_FAIL;
798                         break;
799                 case DATA_PROTECT:
800                         action = ACTION_FAIL;
801                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
802                             (sshdr.asc == 0x55 &&
803                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
804                                 /* Insufficient zone resources */
805                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
806                         }
807                         break;
808                 default:
809                         action = ACTION_FAIL;
810                         break;
811                 }
812         } else
813                 action = ACTION_FAIL;
814
815         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
816                 action = ACTION_FAIL;
817
818         switch (action) {
819         case ACTION_FAIL:
820                 /* Give up and fail the remainder of the request */
821                 if (!(req->rq_flags & RQF_QUIET)) {
822                         static DEFINE_RATELIMIT_STATE(_rs,
823                                         DEFAULT_RATELIMIT_INTERVAL,
824                                         DEFAULT_RATELIMIT_BURST);
825
826                         if (unlikely(scsi_logging_level))
827                                 level =
828                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
829                                                     SCSI_LOG_MLCOMPLETE_BITS);
830
831                         /*
832                          * if logging is enabled the failure will be printed
833                          * in scsi_log_completion(), so avoid duplicate messages
834                          */
835                         if (!level && __ratelimit(&_rs)) {
836                                 scsi_print_result(cmd, NULL, FAILED);
837                                 if (sense_valid)
838                                         scsi_print_sense(cmd);
839                                 scsi_print_command(cmd);
840                         }
841                 }
842                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
843                         return;
844                 fallthrough;
845         case ACTION_REPREP:
846                 scsi_mq_requeue_cmd(cmd, 0);
847                 break;
848         case ACTION_DELAYED_REPREP:
849                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
850                 break;
851         case ACTION_RETRY:
852                 /* Retry the same command immediately */
853                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
854                 break;
855         case ACTION_DELAYED_RETRY:
856                 /* Retry the same command after a delay */
857                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
858                 break;
859         }
860 }
861
862 /*
863  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
864  * new result that may suppress further error checking. Also modifies
865  * *blk_statp in some cases.
866  */
867 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
868                                         blk_status_t *blk_statp)
869 {
870         bool sense_valid;
871         bool sense_current = true;      /* false implies "deferred sense" */
872         struct request *req = scsi_cmd_to_rq(cmd);
873         struct scsi_sense_hdr sshdr;
874
875         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
876         if (sense_valid)
877                 sense_current = !scsi_sense_is_deferred(&sshdr);
878
879         if (blk_rq_is_passthrough(req)) {
880                 if (sense_valid) {
881                         /*
882                          * SG_IO wants current and deferred errors
883                          */
884                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
885                                              SCSI_SENSE_BUFFERSIZE);
886                 }
887                 if (sense_current)
888                         *blk_statp = scsi_result_to_blk_status(cmd, result);
889         } else if (blk_rq_bytes(req) == 0 && sense_current) {
890                 /*
891                  * Flush commands do not transfers any data, and thus cannot use
892                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
893                  * This sets *blk_statp explicitly for the problem case.
894                  */
895                 *blk_statp = scsi_result_to_blk_status(cmd, result);
896         }
897         /*
898          * Recovered errors need reporting, but they're always treated as
899          * success, so fiddle the result code here.  For passthrough requests
900          * we already took a copy of the original into sreq->result which
901          * is what gets returned to the user
902          */
903         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
904                 bool do_print = true;
905                 /*
906                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
907                  * skip print since caller wants ATA registers. Only occurs
908                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
909                  */
910                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
911                         do_print = false;
912                 else if (req->rq_flags & RQF_QUIET)
913                         do_print = false;
914                 if (do_print)
915                         scsi_print_sense(cmd);
916                 result = 0;
917                 /* for passthrough, *blk_statp may be set */
918                 *blk_statp = BLK_STS_OK;
919         }
920         /*
921          * Another corner case: the SCSI status byte is non-zero but 'good'.
922          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
923          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
924          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
925          * intermediate statuses (both obsolete in SAM-4) as good.
926          */
927         if ((result & 0xff) && scsi_status_is_good(result)) {
928                 result = 0;
929                 *blk_statp = BLK_STS_OK;
930         }
931         return result;
932 }
933
934 /**
935  * scsi_io_completion - Completion processing for SCSI commands.
936  * @cmd:        command that is finished.
937  * @good_bytes: number of processed bytes.
938  *
939  * We will finish off the specified number of sectors. If we are done, the
940  * command block will be released and the queue function will be goosed. If we
941  * are not done then we have to figure out what to do next:
942  *
943  *   a) We can call scsi_mq_requeue_cmd().  The request will be
944  *      unprepared and put back on the queue.  Then a new command will
945  *      be created for it.  This should be used if we made forward
946  *      progress, or if we want to switch from READ(10) to READ(6) for
947  *      example.
948  *
949  *   b) We can call scsi_io_completion_action().  The request will be
950  *      put back on the queue and retried using the same command as
951  *      before, possibly after a delay.
952  *
953  *   c) We can call scsi_end_request() with blk_stat other than
954  *      BLK_STS_OK, to fail the remainder of the request.
955  */
956 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
957 {
958         int result = cmd->result;
959         struct request *req = scsi_cmd_to_rq(cmd);
960         blk_status_t blk_stat = BLK_STS_OK;
961
962         if (unlikely(result))   /* a nz result may or may not be an error */
963                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
964
965         /*
966          * Next deal with any sectors which we were able to correctly
967          * handle.
968          */
969         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
970                 "%u sectors total, %d bytes done.\n",
971                 blk_rq_sectors(req), good_bytes));
972
973         /*
974          * Failed, zero length commands always need to drop down
975          * to retry code. Fast path should return in this block.
976          */
977         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
978                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
979                         return; /* no bytes remaining */
980         }
981
982         /* Kill remainder if no retries. */
983         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
984                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
985                         WARN_ONCE(true,
986                             "Bytes remaining after failed, no-retry command");
987                 return;
988         }
989
990         /*
991          * If there had been no error, but we have leftover bytes in the
992          * request just queue the command up again.
993          */
994         if (likely(result == 0))
995                 scsi_mq_requeue_cmd(cmd, 0);
996         else
997                 scsi_io_completion_action(cmd, result);
998 }
999
1000 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1001                 struct request *rq)
1002 {
1003         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1004                !op_is_write(req_op(rq)) &&
1005                sdev->host->hostt->dma_need_drain(rq);
1006 }
1007
1008 /**
1009  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1010  * @cmd: SCSI command data structure to initialize.
1011  *
1012  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1013  * for @cmd.
1014  *
1015  * Returns:
1016  * * BLK_STS_OK       - on success
1017  * * BLK_STS_RESOURCE - if the failure is retryable
1018  * * BLK_STS_IOERR    - if the failure is fatal
1019  */
1020 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1021 {
1022         struct scsi_device *sdev = cmd->device;
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1025         struct scatterlist *last_sg = NULL;
1026         blk_status_t ret;
1027         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1028         int count;
1029
1030         if (WARN_ON_ONCE(!nr_segs))
1031                 return BLK_STS_IOERR;
1032
1033         /*
1034          * Make sure there is space for the drain.  The driver must adjust
1035          * max_hw_segments to be prepared for this.
1036          */
1037         if (need_drain)
1038                 nr_segs++;
1039
1040         /*
1041          * If sg table allocation fails, requeue request later.
1042          */
1043         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1044                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1045                 return BLK_STS_RESOURCE;
1046
1047         /*
1048          * Next, walk the list, and fill in the addresses and sizes of
1049          * each segment.
1050          */
1051         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1052
1053         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1054                 unsigned int pad_len =
1055                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1056
1057                 last_sg->length += pad_len;
1058                 cmd->extra_len += pad_len;
1059         }
1060
1061         if (need_drain) {
1062                 sg_unmark_end(last_sg);
1063                 last_sg = sg_next(last_sg);
1064                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1065                 sg_mark_end(last_sg);
1066
1067                 cmd->extra_len += sdev->dma_drain_len;
1068                 count++;
1069         }
1070
1071         BUG_ON(count > cmd->sdb.table.nents);
1072         cmd->sdb.table.nents = count;
1073         cmd->sdb.length = blk_rq_payload_bytes(rq);
1074
1075         if (blk_integrity_rq(rq)) {
1076                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1077                 int ivecs;
1078
1079                 if (WARN_ON_ONCE(!prot_sdb)) {
1080                         /*
1081                          * This can happen if someone (e.g. multipath)
1082                          * queues a command to a device on an adapter
1083                          * that does not support DIX.
1084                          */
1085                         ret = BLK_STS_IOERR;
1086                         goto out_free_sgtables;
1087                 }
1088
1089                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090
1091                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092                                 prot_sdb->table.sgl,
1093                                 SCSI_INLINE_PROT_SG_CNT)) {
1094                         ret = BLK_STS_RESOURCE;
1095                         goto out_free_sgtables;
1096                 }
1097
1098                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1099                                                 prot_sdb->table.sgl);
1100                 BUG_ON(count > ivecs);
1101                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1102
1103                 cmd->prot_sdb = prot_sdb;
1104                 cmd->prot_sdb->table.nents = count;
1105         }
1106
1107         return BLK_STS_OK;
1108 out_free_sgtables:
1109         scsi_free_sgtables(cmd);
1110         return ret;
1111 }
1112 EXPORT_SYMBOL(scsi_alloc_sgtables);
1113
1114 /**
1115  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1116  * @rq: Request associated with the SCSI command to be initialized.
1117  *
1118  * This function initializes the members of struct scsi_cmnd that must be
1119  * initialized before request processing starts and that won't be
1120  * reinitialized if a SCSI command is requeued.
1121  */
1122 static void scsi_initialize_rq(struct request *rq)
1123 {
1124         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1125
1126         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1127         cmd->cmd_len = MAX_COMMAND_SIZE;
1128         cmd->sense_len = 0;
1129         init_rcu_head(&cmd->rcu);
1130         cmd->jiffies_at_alloc = jiffies;
1131         cmd->retries = 0;
1132 }
1133
1134 struct request *scsi_alloc_request(struct request_queue *q,
1135                 unsigned int op, blk_mq_req_flags_t flags)
1136 {
1137         struct request *rq;
1138
1139         rq = blk_mq_alloc_request(q, op, flags);
1140         if (!IS_ERR(rq))
1141                 scsi_initialize_rq(rq);
1142         return rq;
1143 }
1144 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1145
1146 /*
1147  * Only called when the request isn't completed by SCSI, and not freed by
1148  * SCSI
1149  */
1150 static void scsi_cleanup_rq(struct request *rq)
1151 {
1152         if (rq->rq_flags & RQF_DONTPREP) {
1153                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1154                 rq->rq_flags &= ~RQF_DONTPREP;
1155         }
1156 }
1157
1158 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1159 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1160 {
1161         struct request *rq = scsi_cmd_to_rq(cmd);
1162
1163         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1164                 cmd->flags |= SCMD_INITIALIZED;
1165                 scsi_initialize_rq(rq);
1166         }
1167
1168         cmd->device = dev;
1169         INIT_LIST_HEAD(&cmd->eh_entry);
1170         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1171 }
1172
1173 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1174                 struct request *req)
1175 {
1176         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1177
1178         /*
1179          * Passthrough requests may transfer data, in which case they must
1180          * a bio attached to them.  Or they might contain a SCSI command
1181          * that does not transfer data, in which case they may optionally
1182          * submit a request without an attached bio.
1183          */
1184         if (req->bio) {
1185                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1186                 if (unlikely(ret != BLK_STS_OK))
1187                         return ret;
1188         } else {
1189                 BUG_ON(blk_rq_bytes(req));
1190
1191                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1192         }
1193
1194         cmd->transfersize = blk_rq_bytes(req);
1195         return BLK_STS_OK;
1196 }
1197
1198 static blk_status_t
1199 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1200 {
1201         switch (sdev->sdev_state) {
1202         case SDEV_CREATED:
1203                 return BLK_STS_OK;
1204         case SDEV_OFFLINE:
1205         case SDEV_TRANSPORT_OFFLINE:
1206                 /*
1207                  * If the device is offline we refuse to process any
1208                  * commands.  The device must be brought online
1209                  * before trying any recovery commands.
1210                  */
1211                 if (!sdev->offline_already) {
1212                         sdev->offline_already = true;
1213                         sdev_printk(KERN_ERR, sdev,
1214                                     "rejecting I/O to offline device\n");
1215                 }
1216                 return BLK_STS_IOERR;
1217         case SDEV_DEL:
1218                 /*
1219                  * If the device is fully deleted, we refuse to
1220                  * process any commands as well.
1221                  */
1222                 sdev_printk(KERN_ERR, sdev,
1223                             "rejecting I/O to dead device\n");
1224                 return BLK_STS_IOERR;
1225         case SDEV_BLOCK:
1226         case SDEV_CREATED_BLOCK:
1227                 return BLK_STS_RESOURCE;
1228         case SDEV_QUIESCE:
1229                 /*
1230                  * If the device is blocked we only accept power management
1231                  * commands.
1232                  */
1233                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1234                         return BLK_STS_RESOURCE;
1235                 return BLK_STS_OK;
1236         default:
1237                 /*
1238                  * For any other not fully online state we only allow
1239                  * power management commands.
1240                  */
1241                 if (req && !(req->rq_flags & RQF_PM))
1242                         return BLK_STS_OFFLINE;
1243                 return BLK_STS_OK;
1244         }
1245 }
1246
1247 /*
1248  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1249  * and return the token else return -1.
1250  */
1251 static inline int scsi_dev_queue_ready(struct request_queue *q,
1252                                   struct scsi_device *sdev)
1253 {
1254         int token;
1255
1256         token = sbitmap_get(&sdev->budget_map);
1257         if (atomic_read(&sdev->device_blocked)) {
1258                 if (token < 0)
1259                         goto out;
1260
1261                 if (scsi_device_busy(sdev) > 1)
1262                         goto out_dec;
1263
1264                 /*
1265                  * unblock after device_blocked iterates to zero
1266                  */
1267                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1268                         goto out_dec;
1269                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1270                                    "unblocking device at zero depth\n"));
1271         }
1272
1273         return token;
1274 out_dec:
1275         if (token >= 0)
1276                 sbitmap_put(&sdev->budget_map, token);
1277 out:
1278         return -1;
1279 }
1280
1281 /*
1282  * scsi_target_queue_ready: checks if there we can send commands to target
1283  * @sdev: scsi device on starget to check.
1284  */
1285 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1286                                            struct scsi_device *sdev)
1287 {
1288         struct scsi_target *starget = scsi_target(sdev);
1289         unsigned int busy;
1290
1291         if (starget->single_lun) {
1292                 spin_lock_irq(shost->host_lock);
1293                 if (starget->starget_sdev_user &&
1294                     starget->starget_sdev_user != sdev) {
1295                         spin_unlock_irq(shost->host_lock);
1296                         return 0;
1297                 }
1298                 starget->starget_sdev_user = sdev;
1299                 spin_unlock_irq(shost->host_lock);
1300         }
1301
1302         if (starget->can_queue <= 0)
1303                 return 1;
1304
1305         busy = atomic_inc_return(&starget->target_busy) - 1;
1306         if (atomic_read(&starget->target_blocked) > 0) {
1307                 if (busy)
1308                         goto starved;
1309
1310                 /*
1311                  * unblock after target_blocked iterates to zero
1312                  */
1313                 if (atomic_dec_return(&starget->target_blocked) > 0)
1314                         goto out_dec;
1315
1316                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1317                                  "unblocking target at zero depth\n"));
1318         }
1319
1320         if (busy >= starget->can_queue)
1321                 goto starved;
1322
1323         return 1;
1324
1325 starved:
1326         spin_lock_irq(shost->host_lock);
1327         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1328         spin_unlock_irq(shost->host_lock);
1329 out_dec:
1330         if (starget->can_queue > 0)
1331                 atomic_dec(&starget->target_busy);
1332         return 0;
1333 }
1334
1335 /*
1336  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1337  * return 0. We must end up running the queue again whenever 0 is
1338  * returned, else IO can hang.
1339  */
1340 static inline int scsi_host_queue_ready(struct request_queue *q,
1341                                    struct Scsi_Host *shost,
1342                                    struct scsi_device *sdev,
1343                                    struct scsi_cmnd *cmd)
1344 {
1345         if (scsi_host_in_recovery(shost))
1346                 return 0;
1347
1348         if (atomic_read(&shost->host_blocked) > 0) {
1349                 if (scsi_host_busy(shost) > 0)
1350                         goto starved;
1351
1352                 /*
1353                  * unblock after host_blocked iterates to zero
1354                  */
1355                 if (atomic_dec_return(&shost->host_blocked) > 0)
1356                         goto out_dec;
1357
1358                 SCSI_LOG_MLQUEUE(3,
1359                         shost_printk(KERN_INFO, shost,
1360                                      "unblocking host at zero depth\n"));
1361         }
1362
1363         if (shost->host_self_blocked)
1364                 goto starved;
1365
1366         /* We're OK to process the command, so we can't be starved */
1367         if (!list_empty(&sdev->starved_entry)) {
1368                 spin_lock_irq(shost->host_lock);
1369                 if (!list_empty(&sdev->starved_entry))
1370                         list_del_init(&sdev->starved_entry);
1371                 spin_unlock_irq(shost->host_lock);
1372         }
1373
1374         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1375
1376         return 1;
1377
1378 starved:
1379         spin_lock_irq(shost->host_lock);
1380         if (list_empty(&sdev->starved_entry))
1381                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1382         spin_unlock_irq(shost->host_lock);
1383 out_dec:
1384         scsi_dec_host_busy(shost, cmd);
1385         return 0;
1386 }
1387
1388 /*
1389  * Busy state exporting function for request stacking drivers.
1390  *
1391  * For efficiency, no lock is taken to check the busy state of
1392  * shost/starget/sdev, since the returned value is not guaranteed and
1393  * may be changed after request stacking drivers call the function,
1394  * regardless of taking lock or not.
1395  *
1396  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1397  * needs to return 'not busy'. Otherwise, request stacking drivers
1398  * may hold requests forever.
1399  */
1400 static bool scsi_mq_lld_busy(struct request_queue *q)
1401 {
1402         struct scsi_device *sdev = q->queuedata;
1403         struct Scsi_Host *shost;
1404
1405         if (blk_queue_dying(q))
1406                 return false;
1407
1408         shost = sdev->host;
1409
1410         /*
1411          * Ignore host/starget busy state.
1412          * Since block layer does not have a concept of fairness across
1413          * multiple queues, congestion of host/starget needs to be handled
1414          * in SCSI layer.
1415          */
1416         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1417                 return true;
1418
1419         return false;
1420 }
1421
1422 /*
1423  * Block layer request completion callback. May be called from interrupt
1424  * context.
1425  */
1426 static void scsi_complete(struct request *rq)
1427 {
1428         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1429         enum scsi_disposition disposition;
1430
1431         INIT_LIST_HEAD(&cmd->eh_entry);
1432
1433         atomic_inc(&cmd->device->iodone_cnt);
1434         if (cmd->result)
1435                 atomic_inc(&cmd->device->ioerr_cnt);
1436
1437         disposition = scsi_decide_disposition(cmd);
1438         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1439                 disposition = SUCCESS;
1440
1441         scsi_log_completion(cmd, disposition);
1442
1443         switch (disposition) {
1444         case SUCCESS:
1445                 scsi_finish_command(cmd);
1446                 break;
1447         case NEEDS_RETRY:
1448                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1449                 break;
1450         case ADD_TO_MLQUEUE:
1451                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1452                 break;
1453         default:
1454                 scsi_eh_scmd_add(cmd);
1455                 break;
1456         }
1457 }
1458
1459 /**
1460  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1461  * @cmd: command block we are dispatching.
1462  *
1463  * Return: nonzero return request was rejected and device's queue needs to be
1464  * plugged.
1465  */
1466 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1467 {
1468         struct Scsi_Host *host = cmd->device->host;
1469         int rtn = 0;
1470
1471         atomic_inc(&cmd->device->iorequest_cnt);
1472
1473         /* check if the device is still usable */
1474         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1475                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1476                  * returns an immediate error upwards, and signals
1477                  * that the device is no longer present */
1478                 cmd->result = DID_NO_CONNECT << 16;
1479                 goto done;
1480         }
1481
1482         /* Check to see if the scsi lld made this device blocked. */
1483         if (unlikely(scsi_device_blocked(cmd->device))) {
1484                 /*
1485                  * in blocked state, the command is just put back on
1486                  * the device queue.  The suspend state has already
1487                  * blocked the queue so future requests should not
1488                  * occur until the device transitions out of the
1489                  * suspend state.
1490                  */
1491                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1492                         "queuecommand : device blocked\n"));
1493                 return SCSI_MLQUEUE_DEVICE_BUSY;
1494         }
1495
1496         /* Store the LUN value in cmnd, if needed. */
1497         if (cmd->device->lun_in_cdb)
1498                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1499                                (cmd->device->lun << 5 & 0xe0);
1500
1501         scsi_log_send(cmd);
1502
1503         /*
1504          * Before we queue this command, check if the command
1505          * length exceeds what the host adapter can handle.
1506          */
1507         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1508                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1509                                "queuecommand : command too long. "
1510                                "cdb_size=%d host->max_cmd_len=%d\n",
1511                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1512                 cmd->result = (DID_ABORT << 16);
1513                 goto done;
1514         }
1515
1516         if (unlikely(host->shost_state == SHOST_DEL)) {
1517                 cmd->result = (DID_NO_CONNECT << 16);
1518                 goto done;
1519
1520         }
1521
1522         trace_scsi_dispatch_cmd_start(cmd);
1523         rtn = host->hostt->queuecommand(host, cmd);
1524         if (rtn) {
1525                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1526                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1527                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1528                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1529
1530                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1531                         "queuecommand : request rejected\n"));
1532         }
1533
1534         return rtn;
1535  done:
1536         scsi_done(cmd);
1537         return 0;
1538 }
1539
1540 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1541 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1542 {
1543         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1544                 sizeof(struct scatterlist);
1545 }
1546
1547 static blk_status_t scsi_prepare_cmd(struct request *req)
1548 {
1549         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1550         struct scsi_device *sdev = req->q->queuedata;
1551         struct Scsi_Host *shost = sdev->host;
1552         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1553         struct scatterlist *sg;
1554
1555         scsi_init_command(sdev, cmd);
1556
1557         cmd->eh_eflags = 0;
1558         cmd->prot_type = 0;
1559         cmd->prot_flags = 0;
1560         cmd->submitter = 0;
1561         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1562         cmd->underflow = 0;
1563         cmd->transfersize = 0;
1564         cmd->host_scribble = NULL;
1565         cmd->result = 0;
1566         cmd->extra_len = 0;
1567         cmd->state = 0;
1568         if (in_flight)
1569                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1570
1571         /*
1572          * Only clear the driver-private command data if the LLD does not supply
1573          * a function to initialize that data.
1574          */
1575         if (!shost->hostt->init_cmd_priv)
1576                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1577
1578         cmd->prot_op = SCSI_PROT_NORMAL;
1579         if (blk_rq_bytes(req))
1580                 cmd->sc_data_direction = rq_dma_dir(req);
1581         else
1582                 cmd->sc_data_direction = DMA_NONE;
1583
1584         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1585         cmd->sdb.table.sgl = sg;
1586
1587         if (scsi_host_get_prot(shost)) {
1588                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1589
1590                 cmd->prot_sdb->table.sgl =
1591                         (struct scatterlist *)(cmd->prot_sdb + 1);
1592         }
1593
1594         /*
1595          * Special handling for passthrough commands, which don't go to the ULP
1596          * at all:
1597          */
1598         if (blk_rq_is_passthrough(req))
1599                 return scsi_setup_scsi_cmnd(sdev, req);
1600
1601         if (sdev->handler && sdev->handler->prep_fn) {
1602                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1603
1604                 if (ret != BLK_STS_OK)
1605                         return ret;
1606         }
1607
1608         /* Usually overridden by the ULP */
1609         cmd->allowed = 0;
1610         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1611         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1612 }
1613
1614 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1615 {
1616         struct request *req = scsi_cmd_to_rq(cmd);
1617
1618         switch (cmd->submitter) {
1619         case SUBMITTED_BY_BLOCK_LAYER:
1620                 break;
1621         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1622                 return scsi_eh_done(cmd);
1623         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1624                 return;
1625         }
1626
1627         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1628                 return;
1629         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1630                 return;
1631         trace_scsi_dispatch_cmd_done(cmd);
1632
1633         if (complete_directly)
1634                 blk_mq_complete_request_direct(req, scsi_complete);
1635         else
1636                 blk_mq_complete_request(req);
1637 }
1638
1639 void scsi_done(struct scsi_cmnd *cmd)
1640 {
1641         scsi_done_internal(cmd, false);
1642 }
1643 EXPORT_SYMBOL(scsi_done);
1644
1645 void scsi_done_direct(struct scsi_cmnd *cmd)
1646 {
1647         scsi_done_internal(cmd, true);
1648 }
1649 EXPORT_SYMBOL(scsi_done_direct);
1650
1651 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1652 {
1653         struct scsi_device *sdev = q->queuedata;
1654
1655         sbitmap_put(&sdev->budget_map, budget_token);
1656 }
1657
1658 static int scsi_mq_get_budget(struct request_queue *q)
1659 {
1660         struct scsi_device *sdev = q->queuedata;
1661         int token = scsi_dev_queue_ready(q, sdev);
1662
1663         if (token >= 0)
1664                 return token;
1665
1666         atomic_inc(&sdev->restarts);
1667
1668         /*
1669          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1670          * .restarts must be incremented before .device_busy is read because the
1671          * code in scsi_run_queue_async() depends on the order of these operations.
1672          */
1673         smp_mb__after_atomic();
1674
1675         /*
1676          * If all in-flight requests originated from this LUN are completed
1677          * before reading .device_busy, sdev->device_busy will be observed as
1678          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1679          * soon. Otherwise, completion of one of these requests will observe
1680          * the .restarts flag, and the request queue will be run for handling
1681          * this request, see scsi_end_request().
1682          */
1683         if (unlikely(scsi_device_busy(sdev) == 0 &&
1684                                 !scsi_device_blocked(sdev)))
1685                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1686         return -1;
1687 }
1688
1689 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1690 {
1691         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692
1693         cmd->budget_token = token;
1694 }
1695
1696 static int scsi_mq_get_rq_budget_token(struct request *req)
1697 {
1698         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1699
1700         return cmd->budget_token;
1701 }
1702
1703 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1704                          const struct blk_mq_queue_data *bd)
1705 {
1706         struct request *req = bd->rq;
1707         struct request_queue *q = req->q;
1708         struct scsi_device *sdev = q->queuedata;
1709         struct Scsi_Host *shost = sdev->host;
1710         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1711         blk_status_t ret;
1712         int reason;
1713
1714         WARN_ON_ONCE(cmd->budget_token < 0);
1715
1716         /*
1717          * If the device is not in running state we will reject some or all
1718          * commands.
1719          */
1720         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1721                 ret = scsi_device_state_check(sdev, req);
1722                 if (ret != BLK_STS_OK)
1723                         goto out_put_budget;
1724         }
1725
1726         ret = BLK_STS_RESOURCE;
1727         if (!scsi_target_queue_ready(shost, sdev))
1728                 goto out_put_budget;
1729         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1730                 goto out_dec_target_busy;
1731
1732         if (!(req->rq_flags & RQF_DONTPREP)) {
1733                 ret = scsi_prepare_cmd(req);
1734                 if (ret != BLK_STS_OK)
1735                         goto out_dec_host_busy;
1736                 req->rq_flags |= RQF_DONTPREP;
1737         } else {
1738                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1739         }
1740
1741         cmd->flags &= SCMD_PRESERVED_FLAGS;
1742         if (sdev->simple_tags)
1743                 cmd->flags |= SCMD_TAGGED;
1744         if (bd->last)
1745                 cmd->flags |= SCMD_LAST;
1746
1747         scsi_set_resid(cmd, 0);
1748         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1749         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1750
1751         blk_mq_start_request(req);
1752         reason = scsi_dispatch_cmd(cmd);
1753         if (reason) {
1754                 scsi_set_blocked(cmd, reason);
1755                 ret = BLK_STS_RESOURCE;
1756                 goto out_dec_host_busy;
1757         }
1758
1759         return BLK_STS_OK;
1760
1761 out_dec_host_busy:
1762         scsi_dec_host_busy(shost, cmd);
1763 out_dec_target_busy:
1764         if (scsi_target(sdev)->can_queue > 0)
1765                 atomic_dec(&scsi_target(sdev)->target_busy);
1766 out_put_budget:
1767         scsi_mq_put_budget(q, cmd->budget_token);
1768         cmd->budget_token = -1;
1769         switch (ret) {
1770         case BLK_STS_OK:
1771                 break;
1772         case BLK_STS_RESOURCE:
1773         case BLK_STS_ZONE_RESOURCE:
1774                 if (scsi_device_blocked(sdev))
1775                         ret = BLK_STS_DEV_RESOURCE;
1776                 break;
1777         case BLK_STS_AGAIN:
1778                 cmd->result = DID_BUS_BUSY << 16;
1779                 if (req->rq_flags & RQF_DONTPREP)
1780                         scsi_mq_uninit_cmd(cmd);
1781                 break;
1782         default:
1783                 if (unlikely(!scsi_device_online(sdev)))
1784                         cmd->result = DID_NO_CONNECT << 16;
1785                 else
1786                         cmd->result = DID_ERROR << 16;
1787                 /*
1788                  * Make sure to release all allocated resources when
1789                  * we hit an error, as we will never see this command
1790                  * again.
1791                  */
1792                 if (req->rq_flags & RQF_DONTPREP)
1793                         scsi_mq_uninit_cmd(cmd);
1794                 scsi_run_queue_async(sdev);
1795                 break;
1796         }
1797         return ret;
1798 }
1799
1800 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1801                 bool reserved)
1802 {
1803         if (reserved)
1804                 return BLK_EH_RESET_TIMER;
1805         return scsi_times_out(req);
1806 }
1807
1808 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1809                                 unsigned int hctx_idx, unsigned int numa_node)
1810 {
1811         struct Scsi_Host *shost = set->driver_data;
1812         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1813         struct scatterlist *sg;
1814         int ret = 0;
1815
1816         cmd->sense_buffer =
1817                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1818         if (!cmd->sense_buffer)
1819                 return -ENOMEM;
1820
1821         if (scsi_host_get_prot(shost)) {
1822                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1823                         shost->hostt->cmd_size;
1824                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1825         }
1826
1827         if (shost->hostt->init_cmd_priv) {
1828                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1829                 if (ret < 0)
1830                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1831         }
1832
1833         return ret;
1834 }
1835
1836 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1837                                  unsigned int hctx_idx)
1838 {
1839         struct Scsi_Host *shost = set->driver_data;
1840         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1841
1842         if (shost->hostt->exit_cmd_priv)
1843                 shost->hostt->exit_cmd_priv(shost, cmd);
1844         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1845 }
1846
1847
1848 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1849 {
1850         struct Scsi_Host *shost = hctx->driver_data;
1851
1852         if (shost->hostt->mq_poll)
1853                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1854
1855         return 0;
1856 }
1857
1858 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859                           unsigned int hctx_idx)
1860 {
1861         struct Scsi_Host *shost = data;
1862
1863         hctx->driver_data = shost;
1864         return 0;
1865 }
1866
1867 static int scsi_map_queues(struct blk_mq_tag_set *set)
1868 {
1869         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1870
1871         if (shost->hostt->map_queues)
1872                 return shost->hostt->map_queues(shost);
1873         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1874 }
1875
1876 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1877 {
1878         struct device *dev = shost->dma_dev;
1879
1880         /*
1881          * this limit is imposed by hardware restrictions
1882          */
1883         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1884                                         SG_MAX_SEGMENTS));
1885
1886         if (scsi_host_prot_dma(shost)) {
1887                 shost->sg_prot_tablesize =
1888                         min_not_zero(shost->sg_prot_tablesize,
1889                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1890                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1891                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1892         }
1893
1894         if (dev->dma_mask) {
1895                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1896                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1897         }
1898         blk_queue_max_hw_sectors(q, shost->max_sectors);
1899         blk_queue_segment_boundary(q, shost->dma_boundary);
1900         dma_set_seg_boundary(dev, shost->dma_boundary);
1901
1902         blk_queue_max_segment_size(q, shost->max_segment_size);
1903         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1904         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1905
1906         /*
1907          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1908          * which is a common minimum for HBAs, and the minimum DMA alignment,
1909          * which is set by the platform.
1910          *
1911          * Devices that require a bigger alignment can increase it later.
1912          */
1913         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1914 }
1915 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1916
1917 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1918         .get_budget     = scsi_mq_get_budget,
1919         .put_budget     = scsi_mq_put_budget,
1920         .queue_rq       = scsi_queue_rq,
1921         .complete       = scsi_complete,
1922         .timeout        = scsi_timeout,
1923 #ifdef CONFIG_BLK_DEBUG_FS
1924         .show_rq        = scsi_show_rq,
1925 #endif
1926         .init_request   = scsi_mq_init_request,
1927         .exit_request   = scsi_mq_exit_request,
1928         .cleanup_rq     = scsi_cleanup_rq,
1929         .busy           = scsi_mq_lld_busy,
1930         .map_queues     = scsi_map_queues,
1931         .init_hctx      = scsi_init_hctx,
1932         .poll           = scsi_mq_poll,
1933         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1934         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1935 };
1936
1937
1938 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1939 {
1940         struct Scsi_Host *shost = hctx->driver_data;
1941
1942         shost->hostt->commit_rqs(shost, hctx->queue_num);
1943 }
1944
1945 static const struct blk_mq_ops scsi_mq_ops = {
1946         .get_budget     = scsi_mq_get_budget,
1947         .put_budget     = scsi_mq_put_budget,
1948         .queue_rq       = scsi_queue_rq,
1949         .commit_rqs     = scsi_commit_rqs,
1950         .complete       = scsi_complete,
1951         .timeout        = scsi_timeout,
1952 #ifdef CONFIG_BLK_DEBUG_FS
1953         .show_rq        = scsi_show_rq,
1954 #endif
1955         .init_request   = scsi_mq_init_request,
1956         .exit_request   = scsi_mq_exit_request,
1957         .cleanup_rq     = scsi_cleanup_rq,
1958         .busy           = scsi_mq_lld_busy,
1959         .map_queues     = scsi_map_queues,
1960         .init_hctx      = scsi_init_hctx,
1961         .poll           = scsi_mq_poll,
1962         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1963         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1964 };
1965
1966 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1967 {
1968         unsigned int cmd_size, sgl_size;
1969         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1970
1971         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1972                                 scsi_mq_inline_sgl_size(shost));
1973         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1974         if (scsi_host_get_prot(shost))
1975                 cmd_size += sizeof(struct scsi_data_buffer) +
1976                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1977
1978         memset(tag_set, 0, sizeof(*tag_set));
1979         if (shost->hostt->commit_rqs)
1980                 tag_set->ops = &scsi_mq_ops;
1981         else
1982                 tag_set->ops = &scsi_mq_ops_no_commit;
1983         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1984         tag_set->nr_maps = shost->nr_maps ? : 1;
1985         tag_set->queue_depth = shost->can_queue;
1986         tag_set->cmd_size = cmd_size;
1987         tag_set->numa_node = dev_to_node(shost->dma_dev);
1988         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1989         tag_set->flags |=
1990                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1991         tag_set->driver_data = shost;
1992         if (shost->host_tagset)
1993                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1994
1995         return blk_mq_alloc_tag_set(tag_set);
1996 }
1997
1998 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1999 {
2000         blk_mq_free_tag_set(&shost->tag_set);
2001 }
2002
2003 /**
2004  * scsi_device_from_queue - return sdev associated with a request_queue
2005  * @q: The request queue to return the sdev from
2006  *
2007  * Return the sdev associated with a request queue or NULL if the
2008  * request_queue does not reference a SCSI device.
2009  */
2010 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2011 {
2012         struct scsi_device *sdev = NULL;
2013
2014         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2015             q->mq_ops == &scsi_mq_ops)
2016                 sdev = q->queuedata;
2017         if (!sdev || !get_device(&sdev->sdev_gendev))
2018                 sdev = NULL;
2019
2020         return sdev;
2021 }
2022 /*
2023  * pktcdvd should have been integrated into the SCSI layers, but for historical
2024  * reasons like the old IDE driver it isn't.  This export allows it to safely
2025  * probe if a given device is a SCSI one and only attach to that.
2026  */
2027 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2028 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2029 #endif
2030
2031 /**
2032  * scsi_block_requests - Utility function used by low-level drivers to prevent
2033  * further commands from being queued to the device.
2034  * @shost:  host in question
2035  *
2036  * There is no timer nor any other means by which the requests get unblocked
2037  * other than the low-level driver calling scsi_unblock_requests().
2038  */
2039 void scsi_block_requests(struct Scsi_Host *shost)
2040 {
2041         shost->host_self_blocked = 1;
2042 }
2043 EXPORT_SYMBOL(scsi_block_requests);
2044
2045 /**
2046  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2047  * further commands to be queued to the device.
2048  * @shost:  host in question
2049  *
2050  * There is no timer nor any other means by which the requests get unblocked
2051  * other than the low-level driver calling scsi_unblock_requests(). This is done
2052  * as an API function so that changes to the internals of the scsi mid-layer
2053  * won't require wholesale changes to drivers that use this feature.
2054  */
2055 void scsi_unblock_requests(struct Scsi_Host *shost)
2056 {
2057         shost->host_self_blocked = 0;
2058         scsi_run_host_queues(shost);
2059 }
2060 EXPORT_SYMBOL(scsi_unblock_requests);
2061
2062 void scsi_exit_queue(void)
2063 {
2064         kmem_cache_destroy(scsi_sense_cache);
2065 }
2066
2067 /**
2068  *      scsi_mode_select - issue a mode select
2069  *      @sdev:  SCSI device to be queried
2070  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2071  *      @sp:    Save page bit (0 == don't save, 1 == save)
2072  *      @buffer: request buffer (may not be smaller than eight bytes)
2073  *      @len:   length of request buffer.
2074  *      @timeout: command timeout
2075  *      @retries: number of retries before failing
2076  *      @data: returns a structure abstracting the mode header data
2077  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2078  *              must be SCSI_SENSE_BUFFERSIZE big.
2079  *
2080  *      Returns zero if successful; negative error number or scsi
2081  *      status on error
2082  *
2083  */
2084 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2085                      unsigned char *buffer, int len, int timeout, int retries,
2086                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2087 {
2088         unsigned char cmd[10];
2089         unsigned char *real_buffer;
2090         int ret;
2091
2092         memset(cmd, 0, sizeof(cmd));
2093         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2094
2095         /*
2096          * Use MODE SELECT(10) if the device asked for it or if the mode page
2097          * and the mode select header cannot fit within the maximumm 255 bytes
2098          * of the MODE SELECT(6) command.
2099          */
2100         if (sdev->use_10_for_ms ||
2101             len + 4 > 255 ||
2102             data->block_descriptor_length > 255) {
2103                 if (len > 65535 - 8)
2104                         return -EINVAL;
2105                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2106                 if (!real_buffer)
2107                         return -ENOMEM;
2108                 memcpy(real_buffer + 8, buffer, len);
2109                 len += 8;
2110                 real_buffer[0] = 0;
2111                 real_buffer[1] = 0;
2112                 real_buffer[2] = data->medium_type;
2113                 real_buffer[3] = data->device_specific;
2114                 real_buffer[4] = data->longlba ? 0x01 : 0;
2115                 real_buffer[5] = 0;
2116                 put_unaligned_be16(data->block_descriptor_length,
2117                                    &real_buffer[6]);
2118
2119                 cmd[0] = MODE_SELECT_10;
2120                 put_unaligned_be16(len, &cmd[7]);
2121         } else {
2122                 if (data->longlba)
2123                         return -EINVAL;
2124
2125                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2126                 if (!real_buffer)
2127                         return -ENOMEM;
2128                 memcpy(real_buffer + 4, buffer, len);
2129                 len += 4;
2130                 real_buffer[0] = 0;
2131                 real_buffer[1] = data->medium_type;
2132                 real_buffer[2] = data->device_specific;
2133                 real_buffer[3] = data->block_descriptor_length;
2134
2135                 cmd[0] = MODE_SELECT;
2136                 cmd[4] = len;
2137         }
2138
2139         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2140                                sshdr, timeout, retries, NULL);
2141         kfree(real_buffer);
2142         return ret;
2143 }
2144 EXPORT_SYMBOL_GPL(scsi_mode_select);
2145
2146 /**
2147  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2148  *      @sdev:  SCSI device to be queried
2149  *      @dbd:   set to prevent mode sense from returning block descriptors
2150  *      @modepage: mode page being requested
2151  *      @buffer: request buffer (may not be smaller than eight bytes)
2152  *      @len:   length of request buffer.
2153  *      @timeout: command timeout
2154  *      @retries: number of retries before failing
2155  *      @data: returns a structure abstracting the mode header data
2156  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2157  *              must be SCSI_SENSE_BUFFERSIZE big.
2158  *
2159  *      Returns zero if successful, or a negative error number on failure
2160  */
2161 int
2162 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2163                   unsigned char *buffer, int len, int timeout, int retries,
2164                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2165 {
2166         unsigned char cmd[12];
2167         int use_10_for_ms;
2168         int header_length;
2169         int result, retry_count = retries;
2170         struct scsi_sense_hdr my_sshdr;
2171
2172         memset(data, 0, sizeof(*data));
2173         memset(&cmd[0], 0, 12);
2174
2175         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2176         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2177         cmd[2] = modepage;
2178
2179         /* caller might not be interested in sense, but we need it */
2180         if (!sshdr)
2181                 sshdr = &my_sshdr;
2182
2183  retry:
2184         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2185
2186         if (use_10_for_ms) {
2187                 if (len < 8 || len > 65535)
2188                         return -EINVAL;
2189
2190                 cmd[0] = MODE_SENSE_10;
2191                 put_unaligned_be16(len, &cmd[7]);
2192                 header_length = 8;
2193         } else {
2194                 if (len < 4)
2195                         return -EINVAL;
2196
2197                 cmd[0] = MODE_SENSE;
2198                 cmd[4] = len;
2199                 header_length = 4;
2200         }
2201
2202         memset(buffer, 0, len);
2203
2204         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2205                                   sshdr, timeout, retries, NULL);
2206         if (result < 0)
2207                 return result;
2208
2209         /* This code looks awful: what it's doing is making sure an
2210          * ILLEGAL REQUEST sense return identifies the actual command
2211          * byte as the problem.  MODE_SENSE commands can return
2212          * ILLEGAL REQUEST if the code page isn't supported */
2213
2214         if (!scsi_status_is_good(result)) {
2215                 if (scsi_sense_valid(sshdr)) {
2216                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2217                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2218                                 /*
2219                                  * Invalid command operation code: retry using
2220                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2221                                  * request, except if the request mode page is
2222                                  * too large for MODE SENSE single byte
2223                                  * allocation length field.
2224                                  */
2225                                 if (use_10_for_ms) {
2226                                         if (len > 255)
2227                                                 return -EIO;
2228                                         sdev->use_10_for_ms = 0;
2229                                         goto retry;
2230                                 }
2231                         }
2232                         if (scsi_status_is_check_condition(result) &&
2233                             sshdr->sense_key == UNIT_ATTENTION &&
2234                             retry_count) {
2235                                 retry_count--;
2236                                 goto retry;
2237                         }
2238                 }
2239                 return -EIO;
2240         }
2241         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2242                      (modepage == 6 || modepage == 8))) {
2243                 /* Initio breakage? */
2244                 header_length = 0;
2245                 data->length = 13;
2246                 data->medium_type = 0;
2247                 data->device_specific = 0;
2248                 data->longlba = 0;
2249                 data->block_descriptor_length = 0;
2250         } else if (use_10_for_ms) {
2251                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2252                 data->medium_type = buffer[2];
2253                 data->device_specific = buffer[3];
2254                 data->longlba = buffer[4] & 0x01;
2255                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2256         } else {
2257                 data->length = buffer[0] + 1;
2258                 data->medium_type = buffer[1];
2259                 data->device_specific = buffer[2];
2260                 data->block_descriptor_length = buffer[3];
2261         }
2262         data->header_length = header_length;
2263
2264         return 0;
2265 }
2266 EXPORT_SYMBOL(scsi_mode_sense);
2267
2268 /**
2269  *      scsi_test_unit_ready - test if unit is ready
2270  *      @sdev:  scsi device to change the state of.
2271  *      @timeout: command timeout
2272  *      @retries: number of retries before failing
2273  *      @sshdr: outpout pointer for decoded sense information.
2274  *
2275  *      Returns zero if unsuccessful or an error if TUR failed.  For
2276  *      removable media, UNIT_ATTENTION sets ->changed flag.
2277  **/
2278 int
2279 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2280                      struct scsi_sense_hdr *sshdr)
2281 {
2282         char cmd[] = {
2283                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2284         };
2285         int result;
2286
2287         /* try to eat the UNIT_ATTENTION if there are enough retries */
2288         do {
2289                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2290                                           timeout, 1, NULL);
2291                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2292                     sshdr->sense_key == UNIT_ATTENTION)
2293                         sdev->changed = 1;
2294         } while (scsi_sense_valid(sshdr) &&
2295                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2296
2297         return result;
2298 }
2299 EXPORT_SYMBOL(scsi_test_unit_ready);
2300
2301 /**
2302  *      scsi_device_set_state - Take the given device through the device state model.
2303  *      @sdev:  scsi device to change the state of.
2304  *      @state: state to change to.
2305  *
2306  *      Returns zero if successful or an error if the requested
2307  *      transition is illegal.
2308  */
2309 int
2310 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2311 {
2312         enum scsi_device_state oldstate = sdev->sdev_state;
2313
2314         if (state == oldstate)
2315                 return 0;
2316
2317         switch (state) {
2318         case SDEV_CREATED:
2319                 switch (oldstate) {
2320                 case SDEV_CREATED_BLOCK:
2321                         break;
2322                 default:
2323                         goto illegal;
2324                 }
2325                 break;
2326
2327         case SDEV_RUNNING:
2328                 switch (oldstate) {
2329                 case SDEV_CREATED:
2330                 case SDEV_OFFLINE:
2331                 case SDEV_TRANSPORT_OFFLINE:
2332                 case SDEV_QUIESCE:
2333                 case SDEV_BLOCK:
2334                         break;
2335                 default:
2336                         goto illegal;
2337                 }
2338                 break;
2339
2340         case SDEV_QUIESCE:
2341                 switch (oldstate) {
2342                 case SDEV_RUNNING:
2343                 case SDEV_OFFLINE:
2344                 case SDEV_TRANSPORT_OFFLINE:
2345                         break;
2346                 default:
2347                         goto illegal;
2348                 }
2349                 break;
2350
2351         case SDEV_OFFLINE:
2352         case SDEV_TRANSPORT_OFFLINE:
2353                 switch (oldstate) {
2354                 case SDEV_CREATED:
2355                 case SDEV_RUNNING:
2356                 case SDEV_QUIESCE:
2357                 case SDEV_BLOCK:
2358                         break;
2359                 default:
2360                         goto illegal;
2361                 }
2362                 break;
2363
2364         case SDEV_BLOCK:
2365                 switch (oldstate) {
2366                 case SDEV_RUNNING:
2367                 case SDEV_CREATED_BLOCK:
2368                 case SDEV_QUIESCE:
2369                 case SDEV_OFFLINE:
2370                         break;
2371                 default:
2372                         goto illegal;
2373                 }
2374                 break;
2375
2376         case SDEV_CREATED_BLOCK:
2377                 switch (oldstate) {
2378                 case SDEV_CREATED:
2379                         break;
2380                 default:
2381                         goto illegal;
2382                 }
2383                 break;
2384
2385         case SDEV_CANCEL:
2386                 switch (oldstate) {
2387                 case SDEV_CREATED:
2388                 case SDEV_RUNNING:
2389                 case SDEV_QUIESCE:
2390                 case SDEV_OFFLINE:
2391                 case SDEV_TRANSPORT_OFFLINE:
2392                         break;
2393                 default:
2394                         goto illegal;
2395                 }
2396                 break;
2397
2398         case SDEV_DEL:
2399                 switch (oldstate) {
2400                 case SDEV_CREATED:
2401                 case SDEV_RUNNING:
2402                 case SDEV_OFFLINE:
2403                 case SDEV_TRANSPORT_OFFLINE:
2404                 case SDEV_CANCEL:
2405                 case SDEV_BLOCK:
2406                 case SDEV_CREATED_BLOCK:
2407                         break;
2408                 default:
2409                         goto illegal;
2410                 }
2411                 break;
2412
2413         }
2414         sdev->offline_already = false;
2415         sdev->sdev_state = state;
2416         return 0;
2417
2418  illegal:
2419         SCSI_LOG_ERROR_RECOVERY(1,
2420                                 sdev_printk(KERN_ERR, sdev,
2421                                             "Illegal state transition %s->%s",
2422                                             scsi_device_state_name(oldstate),
2423                                             scsi_device_state_name(state))
2424                                 );
2425         return -EINVAL;
2426 }
2427 EXPORT_SYMBOL(scsi_device_set_state);
2428
2429 /**
2430  *      scsi_evt_emit - emit a single SCSI device uevent
2431  *      @sdev: associated SCSI device
2432  *      @evt: event to emit
2433  *
2434  *      Send a single uevent (scsi_event) to the associated scsi_device.
2435  */
2436 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2437 {
2438         int idx = 0;
2439         char *envp[3];
2440
2441         switch (evt->evt_type) {
2442         case SDEV_EVT_MEDIA_CHANGE:
2443                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2444                 break;
2445         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2446                 scsi_rescan_device(&sdev->sdev_gendev);
2447                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2448                 break;
2449         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2450                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2451                 break;
2452         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2453                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2454                 break;
2455         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2456                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2457                 break;
2458         case SDEV_EVT_LUN_CHANGE_REPORTED:
2459                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2460                 break;
2461         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2462                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2463                 break;
2464         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2465                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2466                 break;
2467         default:
2468                 /* do nothing */
2469                 break;
2470         }
2471
2472         envp[idx++] = NULL;
2473
2474         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2475 }
2476
2477 /**
2478  *      scsi_evt_thread - send a uevent for each scsi event
2479  *      @work: work struct for scsi_device
2480  *
2481  *      Dispatch queued events to their associated scsi_device kobjects
2482  *      as uevents.
2483  */
2484 void scsi_evt_thread(struct work_struct *work)
2485 {
2486         struct scsi_device *sdev;
2487         enum scsi_device_event evt_type;
2488         LIST_HEAD(event_list);
2489
2490         sdev = container_of(work, struct scsi_device, event_work);
2491
2492         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2493                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2494                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2495
2496         while (1) {
2497                 struct scsi_event *evt;
2498                 struct list_head *this, *tmp;
2499                 unsigned long flags;
2500
2501                 spin_lock_irqsave(&sdev->list_lock, flags);
2502                 list_splice_init(&sdev->event_list, &event_list);
2503                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2504
2505                 if (list_empty(&event_list))
2506                         break;
2507
2508                 list_for_each_safe(this, tmp, &event_list) {
2509                         evt = list_entry(this, struct scsi_event, node);
2510                         list_del(&evt->node);
2511                         scsi_evt_emit(sdev, evt);
2512                         kfree(evt);
2513                 }
2514         }
2515 }
2516
2517 /**
2518  *      sdev_evt_send - send asserted event to uevent thread
2519  *      @sdev: scsi_device event occurred on
2520  *      @evt: event to send
2521  *
2522  *      Assert scsi device event asynchronously.
2523  */
2524 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2525 {
2526         unsigned long flags;
2527
2528 #if 0
2529         /* FIXME: currently this check eliminates all media change events
2530          * for polled devices.  Need to update to discriminate between AN
2531          * and polled events */
2532         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2533                 kfree(evt);
2534                 return;
2535         }
2536 #endif
2537
2538         spin_lock_irqsave(&sdev->list_lock, flags);
2539         list_add_tail(&evt->node, &sdev->event_list);
2540         schedule_work(&sdev->event_work);
2541         spin_unlock_irqrestore(&sdev->list_lock, flags);
2542 }
2543 EXPORT_SYMBOL_GPL(sdev_evt_send);
2544
2545 /**
2546  *      sdev_evt_alloc - allocate a new scsi event
2547  *      @evt_type: type of event to allocate
2548  *      @gfpflags: GFP flags for allocation
2549  *
2550  *      Allocates and returns a new scsi_event.
2551  */
2552 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2553                                   gfp_t gfpflags)
2554 {
2555         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2556         if (!evt)
2557                 return NULL;
2558
2559         evt->evt_type = evt_type;
2560         INIT_LIST_HEAD(&evt->node);
2561
2562         /* evt_type-specific initialization, if any */
2563         switch (evt_type) {
2564         case SDEV_EVT_MEDIA_CHANGE:
2565         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2566         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2567         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2568         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2569         case SDEV_EVT_LUN_CHANGE_REPORTED:
2570         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2571         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2572         default:
2573                 /* do nothing */
2574                 break;
2575         }
2576
2577         return evt;
2578 }
2579 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2580
2581 /**
2582  *      sdev_evt_send_simple - send asserted event to uevent thread
2583  *      @sdev: scsi_device event occurred on
2584  *      @evt_type: type of event to send
2585  *      @gfpflags: GFP flags for allocation
2586  *
2587  *      Assert scsi device event asynchronously, given an event type.
2588  */
2589 void sdev_evt_send_simple(struct scsi_device *sdev,
2590                           enum scsi_device_event evt_type, gfp_t gfpflags)
2591 {
2592         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2593         if (!evt) {
2594                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2595                             evt_type);
2596                 return;
2597         }
2598
2599         sdev_evt_send(sdev, evt);
2600 }
2601 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2602
2603 /**
2604  *      scsi_device_quiesce - Block all commands except power management.
2605  *      @sdev:  scsi device to quiesce.
2606  *
2607  *      This works by trying to transition to the SDEV_QUIESCE state
2608  *      (which must be a legal transition).  When the device is in this
2609  *      state, only power management requests will be accepted, all others will
2610  *      be deferred.
2611  *
2612  *      Must be called with user context, may sleep.
2613  *
2614  *      Returns zero if unsuccessful or an error if not.
2615  */
2616 int
2617 scsi_device_quiesce(struct scsi_device *sdev)
2618 {
2619         struct request_queue *q = sdev->request_queue;
2620         int err;
2621
2622         /*
2623          * It is allowed to call scsi_device_quiesce() multiple times from
2624          * the same context but concurrent scsi_device_quiesce() calls are
2625          * not allowed.
2626          */
2627         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2628
2629         if (sdev->quiesced_by == current)
2630                 return 0;
2631
2632         blk_set_pm_only(q);
2633
2634         blk_mq_freeze_queue(q);
2635         /*
2636          * Ensure that the effect of blk_set_pm_only() will be visible
2637          * for percpu_ref_tryget() callers that occur after the queue
2638          * unfreeze even if the queue was already frozen before this function
2639          * was called. See also https://lwn.net/Articles/573497/.
2640          */
2641         synchronize_rcu();
2642         blk_mq_unfreeze_queue(q);
2643
2644         mutex_lock(&sdev->state_mutex);
2645         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2646         if (err == 0)
2647                 sdev->quiesced_by = current;
2648         else
2649                 blk_clear_pm_only(q);
2650         mutex_unlock(&sdev->state_mutex);
2651
2652         return err;
2653 }
2654 EXPORT_SYMBOL(scsi_device_quiesce);
2655
2656 /**
2657  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2658  *      @sdev:  scsi device to resume.
2659  *
2660  *      Moves the device from quiesced back to running and restarts the
2661  *      queues.
2662  *
2663  *      Must be called with user context, may sleep.
2664  */
2665 void scsi_device_resume(struct scsi_device *sdev)
2666 {
2667         /* check if the device state was mutated prior to resume, and if
2668          * so assume the state is being managed elsewhere (for example
2669          * device deleted during suspend)
2670          */
2671         mutex_lock(&sdev->state_mutex);
2672         if (sdev->sdev_state == SDEV_QUIESCE)
2673                 scsi_device_set_state(sdev, SDEV_RUNNING);
2674         if (sdev->quiesced_by) {
2675                 sdev->quiesced_by = NULL;
2676                 blk_clear_pm_only(sdev->request_queue);
2677         }
2678         mutex_unlock(&sdev->state_mutex);
2679 }
2680 EXPORT_SYMBOL(scsi_device_resume);
2681
2682 static void
2683 device_quiesce_fn(struct scsi_device *sdev, void *data)
2684 {
2685         scsi_device_quiesce(sdev);
2686 }
2687
2688 void
2689 scsi_target_quiesce(struct scsi_target *starget)
2690 {
2691         starget_for_each_device(starget, NULL, device_quiesce_fn);
2692 }
2693 EXPORT_SYMBOL(scsi_target_quiesce);
2694
2695 static void
2696 device_resume_fn(struct scsi_device *sdev, void *data)
2697 {
2698         scsi_device_resume(sdev);
2699 }
2700
2701 void
2702 scsi_target_resume(struct scsi_target *starget)
2703 {
2704         starget_for_each_device(starget, NULL, device_resume_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_resume);
2707
2708 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2709 {
2710         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2711                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2712
2713         return 0;
2714 }
2715
2716 void scsi_start_queue(struct scsi_device *sdev)
2717 {
2718         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2719                 blk_mq_unquiesce_queue(sdev->request_queue);
2720 }
2721
2722 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2723 {
2724         /*
2725          * The atomic variable of ->queue_stopped covers that
2726          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2727          *
2728          * However, we still need to wait until quiesce is done
2729          * in case that queue has been stopped.
2730          */
2731         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2732                 if (nowait)
2733                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2734                 else
2735                         blk_mq_quiesce_queue(sdev->request_queue);
2736         } else {
2737                 if (!nowait)
2738                         blk_mq_wait_quiesce_done(sdev->request_queue);
2739         }
2740 }
2741
2742 /**
2743  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2744  * @sdev: device to block
2745  *
2746  * Pause SCSI command processing on the specified device. Does not sleep.
2747  *
2748  * Returns zero if successful or a negative error code upon failure.
2749  *
2750  * Notes:
2751  * This routine transitions the device to the SDEV_BLOCK state (which must be
2752  * a legal transition). When the device is in this state, command processing
2753  * is paused until the device leaves the SDEV_BLOCK state. See also
2754  * scsi_internal_device_unblock_nowait().
2755  */
2756 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2757 {
2758         int ret = __scsi_internal_device_block_nowait(sdev);
2759
2760         /*
2761          * The device has transitioned to SDEV_BLOCK.  Stop the
2762          * block layer from calling the midlayer with this device's
2763          * request queue.
2764          */
2765         if (!ret)
2766                 scsi_stop_queue(sdev, true);
2767         return ret;
2768 }
2769 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2770
2771 /**
2772  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2773  * @sdev: device to block
2774  *
2775  * Pause SCSI command processing on the specified device and wait until all
2776  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2777  *
2778  * Returns zero if successful or a negative error code upon failure.
2779  *
2780  * Note:
2781  * This routine transitions the device to the SDEV_BLOCK state (which must be
2782  * a legal transition). When the device is in this state, command processing
2783  * is paused until the device leaves the SDEV_BLOCK state. See also
2784  * scsi_internal_device_unblock().
2785  */
2786 static int scsi_internal_device_block(struct scsi_device *sdev)
2787 {
2788         int err;
2789
2790         mutex_lock(&sdev->state_mutex);
2791         err = __scsi_internal_device_block_nowait(sdev);
2792         if (err == 0)
2793                 scsi_stop_queue(sdev, false);
2794         mutex_unlock(&sdev->state_mutex);
2795
2796         return err;
2797 }
2798
2799 /**
2800  * scsi_internal_device_unblock_nowait - resume a device after a block request
2801  * @sdev:       device to resume
2802  * @new_state:  state to set the device to after unblocking
2803  *
2804  * Restart the device queue for a previously suspended SCSI device. Does not
2805  * sleep.
2806  *
2807  * Returns zero if successful or a negative error code upon failure.
2808  *
2809  * Notes:
2810  * This routine transitions the device to the SDEV_RUNNING state or to one of
2811  * the offline states (which must be a legal transition) allowing the midlayer
2812  * to goose the queue for this device.
2813  */
2814 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2815                                         enum scsi_device_state new_state)
2816 {
2817         switch (new_state) {
2818         case SDEV_RUNNING:
2819         case SDEV_TRANSPORT_OFFLINE:
2820                 break;
2821         default:
2822                 return -EINVAL;
2823         }
2824
2825         /*
2826          * Try to transition the scsi device to SDEV_RUNNING or one of the
2827          * offlined states and goose the device queue if successful.
2828          */
2829         switch (sdev->sdev_state) {
2830         case SDEV_BLOCK:
2831         case SDEV_TRANSPORT_OFFLINE:
2832                 sdev->sdev_state = new_state;
2833                 break;
2834         case SDEV_CREATED_BLOCK:
2835                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2836                     new_state == SDEV_OFFLINE)
2837                         sdev->sdev_state = new_state;
2838                 else
2839                         sdev->sdev_state = SDEV_CREATED;
2840                 break;
2841         case SDEV_CANCEL:
2842         case SDEV_OFFLINE:
2843                 break;
2844         default:
2845                 return -EINVAL;
2846         }
2847         scsi_start_queue(sdev);
2848
2849         return 0;
2850 }
2851 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2852
2853 /**
2854  * scsi_internal_device_unblock - resume a device after a block request
2855  * @sdev:       device to resume
2856  * @new_state:  state to set the device to after unblocking
2857  *
2858  * Restart the device queue for a previously suspended SCSI device. May sleep.
2859  *
2860  * Returns zero if successful or a negative error code upon failure.
2861  *
2862  * Notes:
2863  * This routine transitions the device to the SDEV_RUNNING state or to one of
2864  * the offline states (which must be a legal transition) allowing the midlayer
2865  * to goose the queue for this device.
2866  */
2867 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2868                                         enum scsi_device_state new_state)
2869 {
2870         int ret;
2871
2872         mutex_lock(&sdev->state_mutex);
2873         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2874         mutex_unlock(&sdev->state_mutex);
2875
2876         return ret;
2877 }
2878
2879 static void
2880 device_block(struct scsi_device *sdev, void *data)
2881 {
2882         int ret;
2883
2884         ret = scsi_internal_device_block(sdev);
2885
2886         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2887                   dev_name(&sdev->sdev_gendev), ret);
2888 }
2889
2890 static int
2891 target_block(struct device *dev, void *data)
2892 {
2893         if (scsi_is_target_device(dev))
2894                 starget_for_each_device(to_scsi_target(dev), NULL,
2895                                         device_block);
2896         return 0;
2897 }
2898
2899 void
2900 scsi_target_block(struct device *dev)
2901 {
2902         if (scsi_is_target_device(dev))
2903                 starget_for_each_device(to_scsi_target(dev), NULL,
2904                                         device_block);
2905         else
2906                 device_for_each_child(dev, NULL, target_block);
2907 }
2908 EXPORT_SYMBOL_GPL(scsi_target_block);
2909
2910 static void
2911 device_unblock(struct scsi_device *sdev, void *data)
2912 {
2913         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2914 }
2915
2916 static int
2917 target_unblock(struct device *dev, void *data)
2918 {
2919         if (scsi_is_target_device(dev))
2920                 starget_for_each_device(to_scsi_target(dev), data,
2921                                         device_unblock);
2922         return 0;
2923 }
2924
2925 void
2926 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2927 {
2928         if (scsi_is_target_device(dev))
2929                 starget_for_each_device(to_scsi_target(dev), &new_state,
2930                                         device_unblock);
2931         else
2932                 device_for_each_child(dev, &new_state, target_unblock);
2933 }
2934 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2935
2936 int
2937 scsi_host_block(struct Scsi_Host *shost)
2938 {
2939         struct scsi_device *sdev;
2940         int ret = 0;
2941
2942         /*
2943          * Call scsi_internal_device_block_nowait so we can avoid
2944          * calling synchronize_rcu() for each LUN.
2945          */
2946         shost_for_each_device(sdev, shost) {
2947                 mutex_lock(&sdev->state_mutex);
2948                 ret = scsi_internal_device_block_nowait(sdev);
2949                 mutex_unlock(&sdev->state_mutex);
2950                 if (ret) {
2951                         scsi_device_put(sdev);
2952                         break;
2953                 }
2954         }
2955
2956         /*
2957          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2958          * calling synchronize_rcu() once is enough.
2959          */
2960         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2961
2962         if (!ret)
2963                 synchronize_rcu();
2964
2965         return ret;
2966 }
2967 EXPORT_SYMBOL_GPL(scsi_host_block);
2968
2969 int
2970 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2971 {
2972         struct scsi_device *sdev;
2973         int ret = 0;
2974
2975         shost_for_each_device(sdev, shost) {
2976                 ret = scsi_internal_device_unblock(sdev, new_state);
2977                 if (ret) {
2978                         scsi_device_put(sdev);
2979                         break;
2980                 }
2981         }
2982         return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2985
2986 /**
2987  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2988  * @sgl:        scatter-gather list
2989  * @sg_count:   number of segments in sg
2990  * @offset:     offset in bytes into sg, on return offset into the mapped area
2991  * @len:        bytes to map, on return number of bytes mapped
2992  *
2993  * Returns virtual address of the start of the mapped page
2994  */
2995 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2996                           size_t *offset, size_t *len)
2997 {
2998         int i;
2999         size_t sg_len = 0, len_complete = 0;
3000         struct scatterlist *sg;
3001         struct page *page;
3002
3003         WARN_ON(!irqs_disabled());
3004
3005         for_each_sg(sgl, sg, sg_count, i) {
3006                 len_complete = sg_len; /* Complete sg-entries */
3007                 sg_len += sg->length;
3008                 if (sg_len > *offset)
3009                         break;
3010         }
3011
3012         if (unlikely(i == sg_count)) {
3013                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3014                         "elements %d\n",
3015                        __func__, sg_len, *offset, sg_count);
3016                 WARN_ON(1);
3017                 return NULL;
3018         }
3019
3020         /* Offset starting from the beginning of first page in this sg-entry */
3021         *offset = *offset - len_complete + sg->offset;
3022
3023         /* Assumption: contiguous pages can be accessed as "page + i" */
3024         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3025         *offset &= ~PAGE_MASK;
3026
3027         /* Bytes in this sg-entry from *offset to the end of the page */
3028         sg_len = PAGE_SIZE - *offset;
3029         if (*len > sg_len)
3030                 *len = sg_len;
3031
3032         return kmap_atomic(page);
3033 }
3034 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3035
3036 /**
3037  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3038  * @virt:       virtual address to be unmapped
3039  */
3040 void scsi_kunmap_atomic_sg(void *virt)
3041 {
3042         kunmap_atomic(virt);
3043 }
3044 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3045
3046 void sdev_disable_disk_events(struct scsi_device *sdev)
3047 {
3048         atomic_inc(&sdev->disk_events_disable_depth);
3049 }
3050 EXPORT_SYMBOL(sdev_disable_disk_events);
3051
3052 void sdev_enable_disk_events(struct scsi_device *sdev)
3053 {
3054         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3055                 return;
3056         atomic_dec(&sdev->disk_events_disable_depth);
3057 }
3058 EXPORT_SYMBOL(sdev_enable_disk_events);
3059
3060 static unsigned char designator_prio(const unsigned char *d)
3061 {
3062         if (d[1] & 0x30)
3063                 /* not associated with LUN */
3064                 return 0;
3065
3066         if (d[3] == 0)
3067                 /* invalid length */
3068                 return 0;
3069
3070         /*
3071          * Order of preference for lun descriptor:
3072          * - SCSI name string
3073          * - NAA IEEE Registered Extended
3074          * - EUI-64 based 16-byte
3075          * - EUI-64 based 12-byte
3076          * - NAA IEEE Registered
3077          * - NAA IEEE Extended
3078          * - EUI-64 based 8-byte
3079          * - SCSI name string (truncated)
3080          * - T10 Vendor ID
3081          * as longer descriptors reduce the likelyhood
3082          * of identification clashes.
3083          */
3084
3085         switch (d[1] & 0xf) {
3086         case 8:
3087                 /* SCSI name string, variable-length UTF-8 */
3088                 return 9;
3089         case 3:
3090                 switch (d[4] >> 4) {
3091                 case 6:
3092                         /* NAA registered extended */
3093                         return 8;
3094                 case 5:
3095                         /* NAA registered */
3096                         return 5;
3097                 case 4:
3098                         /* NAA extended */
3099                         return 4;
3100                 case 3:
3101                         /* NAA locally assigned */
3102                         return 1;
3103                 default:
3104                         break;
3105                 }
3106                 break;
3107         case 2:
3108                 switch (d[3]) {
3109                 case 16:
3110                         /* EUI64-based, 16 byte */
3111                         return 7;
3112                 case 12:
3113                         /* EUI64-based, 12 byte */
3114                         return 6;
3115                 case 8:
3116                         /* EUI64-based, 8 byte */
3117                         return 3;
3118                 default:
3119                         break;
3120                 }
3121                 break;
3122         case 1:
3123                 /* T10 vendor ID */
3124                 return 1;
3125         default:
3126                 break;
3127         }
3128
3129         return 0;
3130 }
3131
3132 /**
3133  * scsi_vpd_lun_id - return a unique device identification
3134  * @sdev: SCSI device
3135  * @id:   buffer for the identification
3136  * @id_len:  length of the buffer
3137  *
3138  * Copies a unique device identification into @id based
3139  * on the information in the VPD page 0x83 of the device.
3140  * The string will be formatted as a SCSI name string.
3141  *
3142  * Returns the length of the identification or error on failure.
3143  * If the identifier is longer than the supplied buffer the actual
3144  * identifier length is returned and the buffer is not zero-padded.
3145  */
3146 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3147 {
3148         u8 cur_id_prio = 0;
3149         u8 cur_id_size = 0;
3150         const unsigned char *d, *cur_id_str;
3151         const struct scsi_vpd *vpd_pg83;
3152         int id_size = -EINVAL;
3153
3154         rcu_read_lock();
3155         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3156         if (!vpd_pg83) {
3157                 rcu_read_unlock();
3158                 return -ENXIO;
3159         }
3160
3161         /* The id string must be at least 20 bytes + terminating NULL byte */
3162         if (id_len < 21) {
3163                 rcu_read_unlock();
3164                 return -EINVAL;
3165         }
3166
3167         memset(id, 0, id_len);
3168         for (d = vpd_pg83->data + 4;
3169              d < vpd_pg83->data + vpd_pg83->len;
3170              d += d[3] + 4) {
3171                 u8 prio = designator_prio(d);
3172
3173                 if (prio == 0 || cur_id_prio > prio)
3174                         continue;
3175
3176                 switch (d[1] & 0xf) {
3177                 case 0x1:
3178                         /* T10 Vendor ID */
3179                         if (cur_id_size > d[3])
3180                                 break;
3181                         cur_id_prio = prio;
3182                         cur_id_size = d[3];
3183                         if (cur_id_size + 4 > id_len)
3184                                 cur_id_size = id_len - 4;
3185                         cur_id_str = d + 4;
3186                         id_size = snprintf(id, id_len, "t10.%*pE",
3187                                            cur_id_size, cur_id_str);
3188                         break;
3189                 case 0x2:
3190                         /* EUI-64 */
3191                         cur_id_prio = prio;
3192                         cur_id_size = d[3];
3193                         cur_id_str = d + 4;
3194                         switch (cur_id_size) {
3195                         case 8:
3196                                 id_size = snprintf(id, id_len,
3197                                                    "eui.%8phN",
3198                                                    cur_id_str);
3199                                 break;
3200                         case 12:
3201                                 id_size = snprintf(id, id_len,
3202                                                    "eui.%12phN",
3203                                                    cur_id_str);
3204                                 break;
3205                         case 16:
3206                                 id_size = snprintf(id, id_len,
3207                                                    "eui.%16phN",
3208                                                    cur_id_str);
3209                                 break;
3210                         default:
3211                                 break;
3212                         }
3213                         break;
3214                 case 0x3:
3215                         /* NAA */
3216                         cur_id_prio = prio;
3217                         cur_id_size = d[3];
3218                         cur_id_str = d + 4;
3219                         switch (cur_id_size) {
3220                         case 8:
3221                                 id_size = snprintf(id, id_len,
3222                                                    "naa.%8phN",
3223                                                    cur_id_str);
3224                                 break;
3225                         case 16:
3226                                 id_size = snprintf(id, id_len,
3227                                                    "naa.%16phN",
3228                                                    cur_id_str);
3229                                 break;
3230                         default:
3231                                 break;
3232                         }
3233                         break;
3234                 case 0x8:
3235                         /* SCSI name string */
3236                         if (cur_id_size > d[3])
3237                                 break;
3238                         /* Prefer others for truncated descriptor */
3239                         if (d[3] > id_len) {
3240                                 prio = 2;
3241                                 if (cur_id_prio > prio)
3242                                         break;
3243                         }
3244                         cur_id_prio = prio;
3245                         cur_id_size = id_size = d[3];
3246                         cur_id_str = d + 4;
3247                         if (cur_id_size >= id_len)
3248                                 cur_id_size = id_len - 1;
3249                         memcpy(id, cur_id_str, cur_id_size);
3250                         break;
3251                 default:
3252                         break;
3253                 }
3254         }
3255         rcu_read_unlock();
3256
3257         return id_size;
3258 }
3259 EXPORT_SYMBOL(scsi_vpd_lun_id);
3260
3261 /*
3262  * scsi_vpd_tpg_id - return a target port group identifier
3263  * @sdev: SCSI device
3264  *
3265  * Returns the Target Port Group identifier from the information
3266  * froom VPD page 0x83 of the device.
3267  *
3268  * Returns the identifier or error on failure.
3269  */
3270 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3271 {
3272         const unsigned char *d;
3273         const struct scsi_vpd *vpd_pg83;
3274         int group_id = -EAGAIN, rel_port = -1;
3275
3276         rcu_read_lock();
3277         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3278         if (!vpd_pg83) {
3279                 rcu_read_unlock();
3280                 return -ENXIO;
3281         }
3282
3283         d = vpd_pg83->data + 4;
3284         while (d < vpd_pg83->data + vpd_pg83->len) {
3285                 switch (d[1] & 0xf) {
3286                 case 0x4:
3287                         /* Relative target port */
3288                         rel_port = get_unaligned_be16(&d[6]);
3289                         break;
3290                 case 0x5:
3291                         /* Target port group */
3292                         group_id = get_unaligned_be16(&d[6]);
3293                         break;
3294                 default:
3295                         break;
3296                 }
3297                 d += d[3] + 4;
3298         }
3299         rcu_read_unlock();
3300
3301         if (group_id >= 0 && rel_id && rel_port != -1)
3302                 *rel_id = rel_port;
3303
3304         return group_id;
3305 }
3306 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3307
3308 /**
3309  * scsi_build_sense - build sense data for a command
3310  * @scmd:       scsi command for which the sense should be formatted
3311  * @desc:       Sense format (non-zero == descriptor format,
3312  *              0 == fixed format)
3313  * @key:        Sense key
3314  * @asc:        Additional sense code
3315  * @ascq:       Additional sense code qualifier
3316  *
3317  **/
3318 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3319 {
3320         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3321         scmd->result = SAM_STAT_CHECK_CONDITION;
3322 }
3323 EXPORT_SYMBOL_GPL(scsi_build_sense);