GNU Linux-libre 4.4.295-gnu1
[releases.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41
42 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE         2
44
45 struct scsi_host_sg_pool {
46         size_t          size;
47         char            *name;
48         struct kmem_cache       *slab;
49         mempool_t       *pool;
50 };
51
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57         SP(8),
58         SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60         SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62         SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64         SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71         SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74
75 struct kmem_cache *scsi_sdb_cache;
76
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY        3
83
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87         struct Scsi_Host *host = cmd->device->host;
88         struct scsi_device *device = cmd->device;
89         struct scsi_target *starget = scsi_target(device);
90
91         /*
92          * Set the appropriate busy bit for the device/host.
93          *
94          * If the host/device isn't busy, assume that something actually
95          * completed, and that we should be able to queue a command now.
96          *
97          * Note that the prior mid-layer assumption that any host could
98          * always queue at least one command is now broken.  The mid-layer
99          * will implement a user specifiable stall (see
100          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101          * if a command is requeued with no other commands outstanding
102          * either for the device or for the host.
103          */
104         switch (reason) {
105         case SCSI_MLQUEUE_HOST_BUSY:
106                 atomic_set(&host->host_blocked, host->max_host_blocked);
107                 break;
108         case SCSI_MLQUEUE_DEVICE_BUSY:
109         case SCSI_MLQUEUE_EH_RETRY:
110                 atomic_set(&device->device_blocked,
111                            device->max_device_blocked);
112                 break;
113         case SCSI_MLQUEUE_TARGET_BUSY:
114                 atomic_set(&starget->target_blocked,
115                            starget->max_target_blocked);
116                 break;
117         }
118 }
119
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122         struct scsi_device *sdev = cmd->device;
123         struct request_queue *q = cmd->request->q;
124
125         blk_mq_requeue_request(cmd->request);
126         blk_mq_kick_requeue_list(q);
127         put_device(&sdev->sdev_gendev);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145         struct request_queue *q = device->request_queue;
146         unsigned long flags;
147
148         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149                 "Inserting command %p into mlqueue\n", cmd));
150
151         scsi_set_blocked(cmd, reason);
152
153         /*
154          * Decrement the counters, since these commands are no longer
155          * active on the host/device.
156          */
157         if (unbusy)
158                 scsi_device_unbusy(device);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue. Schedule requeue work under
163          * lock such that the kblockd_schedule_work() call happens
164          * before blk_cleanup_queue() finishes.
165          */
166         cmd->result = 0;
167         if (q->mq_ops) {
168                 scsi_mq_requeue_cmd(cmd);
169                 return;
170         }
171         spin_lock_irqsave(q->queue_lock, flags);
172         blk_requeue_request(q, cmd->request);
173         kblockd_schedule_work(&device->requeue_work);
174         spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176
177 /*
178  * Function:    scsi_queue_insert()
179  *
180  * Purpose:     Insert a command in the midlevel queue.
181  *
182  * Arguments:   cmd    - command that we are adding to queue.
183  *              reason - why we are inserting command to queue.
184  *
185  * Lock status: Assumed that lock is not held upon entry.
186  *
187  * Returns:     Nothing.
188  *
189  * Notes:       We do this for one of two cases.  Either the host is busy
190  *              and it cannot accept any more commands for the time being,
191  *              or the device returned QUEUE_FULL and can accept no more
192  *              commands.
193  * Notes:       This could be called either from an interrupt context or a
194  *              normal process context.
195  */
196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198         __scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201  * scsi_execute - insert request and wait for the result
202  * @sdev:       scsi device
203  * @cmd:        scsi command
204  * @data_direction: data direction
205  * @buffer:     data buffer
206  * @bufflen:    len of buffer
207  * @sense:      optional sense buffer
208  * @timeout:    request timeout in seconds
209  * @retries:    number of times to retry request
210  * @flags:      or into request flags;
211  * @resid:      optional residual length
212  *
213  * returns the req->errors value which is the scsi_cmnd result
214  * field.
215  */
216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217                  int data_direction, void *buffer, unsigned bufflen,
218                  unsigned char *sense, int timeout, int retries, u64 flags,
219                  int *resid)
220 {
221         struct request *req;
222         int write = (data_direction == DMA_TO_DEVICE);
223         int ret = DRIVER_ERROR << 24;
224
225         req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
226         if (IS_ERR(req))
227                 return ret;
228         blk_rq_set_block_pc(req);
229
230         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
231                                         buffer, bufflen, __GFP_RECLAIM))
232                 goto out;
233
234         req->cmd_len = COMMAND_SIZE(cmd[0]);
235         memcpy(req->cmd, cmd, req->cmd_len);
236         req->sense = sense;
237         req->sense_len = 0;
238         req->retries = retries;
239         req->timeout = timeout;
240         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241
242         /*
243          * head injection *required* here otherwise quiesce won't work
244          */
245         blk_execute_rq(req->q, NULL, req, 1);
246
247         /*
248          * Some devices (USB mass-storage in particular) may transfer
249          * garbage data together with a residue indicating that the data
250          * is invalid.  Prevent the garbage from being misinterpreted
251          * and prevent security leaks by zeroing out the excess data.
252          */
253         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255
256         if (resid)
257                 *resid = req->resid_len;
258         ret = req->errors;
259  out:
260         blk_put_request(req);
261
262         return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265
266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267                      int data_direction, void *buffer, unsigned bufflen,
268                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
269                      int *resid, u64 flags)
270 {
271         char *sense = NULL;
272         int result;
273         
274         if (sshdr) {
275                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276                 if (!sense)
277                         return DRIVER_ERROR << 24;
278         }
279         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280                               sense, timeout, retries, flags, resid);
281         if (sshdr)
282                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283
284         kfree(sense);
285         return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288
289 /*
290  * Function:    scsi_init_cmd_errh()
291  *
292  * Purpose:     Initialize cmd fields related to error handling.
293  *
294  * Arguments:   cmd     - command that is ready to be queued.
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302         cmd->serial_number = 0;
303         scsi_set_resid(cmd, 0);
304         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305         if (cmd->cmd_len == 0)
306                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308
309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311         struct Scsi_Host *shost = sdev->host;
312         struct scsi_target *starget = scsi_target(sdev);
313         unsigned long flags;
314
315         atomic_dec(&shost->host_busy);
316         if (starget->can_queue > 0)
317                 atomic_dec(&starget->target_busy);
318
319         if (unlikely(scsi_host_in_recovery(shost) &&
320                      (shost->host_failed || shost->host_eh_scheduled))) {
321                 spin_lock_irqsave(shost->host_lock, flags);
322                 scsi_eh_wakeup(shost);
323                 spin_unlock_irqrestore(shost->host_lock, flags);
324         }
325
326         atomic_dec(&sdev->device_busy);
327 }
328
329 static void scsi_kick_queue(struct request_queue *q)
330 {
331         if (q->mq_ops)
332                 blk_mq_start_hw_queues(q);
333         else
334                 blk_run_queue(q);
335 }
336
337 /*
338  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339  * and call blk_run_queue for all the scsi_devices on the target -
340  * including current_sdev first.
341  *
342  * Called with *no* scsi locks held.
343  */
344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346         struct Scsi_Host *shost = current_sdev->host;
347         struct scsi_device *sdev, *tmp;
348         struct scsi_target *starget = scsi_target(current_sdev);
349         unsigned long flags;
350
351         spin_lock_irqsave(shost->host_lock, flags);
352         starget->starget_sdev_user = NULL;
353         spin_unlock_irqrestore(shost->host_lock, flags);
354
355         /*
356          * Call blk_run_queue for all LUNs on the target, starting with
357          * current_sdev. We race with others (to set starget_sdev_user),
358          * but in most cases, we will be first. Ideally, each LU on the
359          * target would get some limited time or requests on the target.
360          */
361         scsi_kick_queue(current_sdev->request_queue);
362
363         spin_lock_irqsave(shost->host_lock, flags);
364         if (starget->starget_sdev_user)
365                 goto out;
366         list_for_each_entry_safe(sdev, tmp, &starget->devices,
367                         same_target_siblings) {
368                 if (sdev == current_sdev)
369                         continue;
370                 if (scsi_device_get(sdev))
371                         continue;
372
373                 spin_unlock_irqrestore(shost->host_lock, flags);
374                 scsi_kick_queue(sdev->request_queue);
375                 spin_lock_irqsave(shost->host_lock, flags);
376         
377                 scsi_device_put(sdev);
378         }
379  out:
380         spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382
383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386                 return true;
387         if (atomic_read(&sdev->device_blocked) > 0)
388                 return true;
389         return false;
390 }
391
392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394         if (starget->can_queue > 0) {
395                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396                         return true;
397                 if (atomic_read(&starget->target_blocked) > 0)
398                         return true;
399         }
400         return false;
401 }
402
403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405         if (shost->can_queue > 0 &&
406             atomic_read(&shost->host_busy) >= shost->can_queue)
407                 return true;
408         if (atomic_read(&shost->host_blocked) > 0)
409                 return true;
410         if (shost->host_self_blocked)
411                 return true;
412         return false;
413 }
414
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417         LIST_HEAD(starved_list);
418         struct scsi_device *sdev;
419         unsigned long flags;
420
421         spin_lock_irqsave(shost->host_lock, flags);
422         list_splice_init(&shost->starved_list, &starved_list);
423
424         while (!list_empty(&starved_list)) {
425                 struct request_queue *slq;
426
427                 /*
428                  * As long as shost is accepting commands and we have
429                  * starved queues, call blk_run_queue. scsi_request_fn
430                  * drops the queue_lock and can add us back to the
431                  * starved_list.
432                  *
433                  * host_lock protects the starved_list and starved_entry.
434                  * scsi_request_fn must get the host_lock before checking
435                  * or modifying starved_list or starved_entry.
436                  */
437                 if (scsi_host_is_busy(shost))
438                         break;
439
440                 sdev = list_entry(starved_list.next,
441                                   struct scsi_device, starved_entry);
442                 list_del_init(&sdev->starved_entry);
443                 if (scsi_target_is_busy(scsi_target(sdev))) {
444                         list_move_tail(&sdev->starved_entry,
445                                        &shost->starved_list);
446                         continue;
447                 }
448
449                 /*
450                  * Once we drop the host lock, a racing scsi_remove_device()
451                  * call may remove the sdev from the starved list and destroy
452                  * it and the queue.  Mitigate by taking a reference to the
453                  * queue and never touching the sdev again after we drop the
454                  * host lock.  Note: if __scsi_remove_device() invokes
455                  * blk_cleanup_queue() before the queue is run from this
456                  * function then blk_run_queue() will return immediately since
457                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458                  */
459                 slq = sdev->request_queue;
460                 if (!blk_get_queue(slq))
461                         continue;
462                 spin_unlock_irqrestore(shost->host_lock, flags);
463
464                 scsi_kick_queue(slq);
465                 blk_put_queue(slq);
466
467                 spin_lock_irqsave(shost->host_lock, flags);
468         }
469         /* put any unprocessed entries back */
470         list_splice(&starved_list, &shost->starved_list);
471         spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /*
475  * Function:   scsi_run_queue()
476  *
477  * Purpose:    Select a proper request queue to serve next
478  *
479  * Arguments:  q       - last request's queue
480  *
481  * Returns:     Nothing
482  *
483  * Notes:      The previous command was completely finished, start
484  *             a new one if possible.
485  */
486 static void scsi_run_queue(struct request_queue *q)
487 {
488         struct scsi_device *sdev = q->queuedata;
489
490         if (scsi_target(sdev)->single_lun)
491                 scsi_single_lun_run(sdev);
492         if (!list_empty(&sdev->host->starved_list))
493                 scsi_starved_list_run(sdev->host);
494
495         if (q->mq_ops)
496                 blk_mq_start_stopped_hw_queues(q, false);
497         else
498                 blk_run_queue(q);
499 }
500
501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503         struct scsi_device *sdev;
504         struct request_queue *q;
505
506         sdev = container_of(work, struct scsi_device, requeue_work);
507         q = sdev->request_queue;
508         scsi_run_queue(q);
509 }
510
511 /*
512  * Function:    scsi_requeue_command()
513  *
514  * Purpose:     Handle post-processing of completed commands.
515  *
516  * Arguments:   q       - queue to operate on
517  *              cmd     - command that may need to be requeued.
518  *
519  * Returns:     Nothing
520  *
521  * Notes:       After command completion, there may be blocks left
522  *              over which weren't finished by the previous command
523  *              this can be for a number of reasons - the main one is
524  *              I/O errors in the middle of the request, in which case
525  *              we need to request the blocks that come after the bad
526  *              sector.
527  * Notes:       Upon return, cmd is a stale pointer.
528  */
529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531         struct scsi_device *sdev = cmd->device;
532         struct request *req = cmd->request;
533         unsigned long flags;
534
535         spin_lock_irqsave(q->queue_lock, flags);
536         blk_unprep_request(req);
537         req->special = NULL;
538         scsi_put_command(cmd);
539         blk_requeue_request(q, req);
540         spin_unlock_irqrestore(q->queue_lock, flags);
541
542         scsi_run_queue(q);
543
544         put_device(&sdev->sdev_gendev);
545 }
546
547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549         struct scsi_device *sdev;
550
551         shost_for_each_device(sdev, shost)
552                 scsi_run_queue(sdev->request_queue);
553 }
554
555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557         unsigned int index;
558
559         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560
561         if (nents <= 8)
562                 index = 0;
563         else
564                 index = get_count_order(nents) - 3;
565
566         return index;
567 }
568
569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571         struct scsi_host_sg_pool *sgp;
572
573         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574         mempool_free(sgl, sgp->pool);
575 }
576
577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579         struct scsi_host_sg_pool *sgp;
580
581         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582         return mempool_alloc(sgp->pool, gfp_mask);
583 }
584
585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587         if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588                 return;
589         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591
592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594         struct scatterlist *first_chunk = NULL;
595         int ret;
596
597         BUG_ON(!nents);
598
599         if (mq) {
600                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601                         sdb->table.nents = sdb->table.orig_nents = nents;
602                         sg_init_table(sdb->table.sgl, nents);
603                         return 0;
604                 }
605                 first_chunk = sdb->table.sgl;
606         }
607
608         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609                                first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610         if (unlikely(ret))
611                 scsi_free_sgtable(sdb, mq);
612         return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617         if (cmd->request->cmd_type == REQ_TYPE_FS) {
618                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620                 if (drv->uninit_command)
621                         drv->uninit_command(cmd);
622         }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627         if (cmd->sdb.table.nents)
628                 scsi_free_sgtable(&cmd->sdb, true);
629         if (cmd->request->next_rq && cmd->request->next_rq->special)
630                 scsi_free_sgtable(cmd->request->next_rq->special, true);
631         if (scsi_prot_sg_count(cmd))
632                 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637         struct scsi_device *sdev = cmd->device;
638         struct Scsi_Host *shost = sdev->host;
639         unsigned long flags;
640
641         scsi_mq_free_sgtables(cmd);
642         scsi_uninit_cmd(cmd);
643
644         if (shost->use_cmd_list) {
645                 BUG_ON(list_empty(&cmd->list));
646                 spin_lock_irqsave(&sdev->list_lock, flags);
647                 list_del_init(&cmd->list);
648                 spin_unlock_irqrestore(&sdev->list_lock, flags);
649         }
650 }
651
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Free resources allocate for a scsi_command.
656  *
657  * Arguments:   cmd     - command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *              command, we must release resources allocated during
665  *              the __init_io() function.  Primarily this would involve
666  *              the scatter-gather table.
667  */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670         if (cmd->sdb.table.nents)
671                 scsi_free_sgtable(&cmd->sdb, false);
672
673         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675         if (scsi_prot_sg_count(cmd))
676                 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683         scsi_free_sgtable(bidi_sdb, false);
684         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685         cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689                 unsigned int bytes, unsigned int bidi_bytes)
690 {
691         struct scsi_cmnd *cmd = req->special;
692         struct scsi_device *sdev = cmd->device;
693         struct request_queue *q = sdev->request_queue;
694
695         if (blk_update_request(req, error, bytes))
696                 return true;
697
698         /* Bidi request must be completed as a whole */
699         if (unlikely(bidi_bytes) &&
700             blk_update_request(req->next_rq, error, bidi_bytes))
701                 return true;
702
703         if (blk_queue_add_random(q))
704                 add_disk_randomness(req->rq_disk);
705
706         if (req->mq_ctx) {
707                 /*
708                  * In the MQ case the command gets freed by __blk_mq_end_request,
709                  * so we have to do all cleanup that depends on it earlier.
710                  *
711                  * We also can't kick the queues from irq context, so we
712                  * will have to defer it to a workqueue.
713                  */
714                 scsi_mq_uninit_cmd(cmd);
715
716                 __blk_mq_end_request(req, error);
717
718                 if (scsi_target(sdev)->single_lun ||
719                     !list_empty(&sdev->host->starved_list))
720                         kblockd_schedule_work(&sdev->requeue_work);
721                 else
722                         blk_mq_start_stopped_hw_queues(q, true);
723         } else {
724                 unsigned long flags;
725
726                 if (bidi_bytes)
727                         scsi_release_bidi_buffers(cmd);
728
729                 spin_lock_irqsave(q->queue_lock, flags);
730                 blk_finish_request(req, error);
731                 spin_unlock_irqrestore(q->queue_lock, flags);
732
733                 scsi_release_buffers(cmd);
734
735                 scsi_put_command(cmd);
736                 scsi_run_queue(q);
737         }
738
739         put_device(&sdev->sdev_gendev);
740         return false;
741 }
742
743 /**
744  * __scsi_error_from_host_byte - translate SCSI error code into errno
745  * @cmd:        SCSI command (unused)
746  * @result:     scsi error code
747  *
748  * Translate SCSI error code into standard UNIX errno.
749  * Return values:
750  * -ENOLINK     temporary transport failure
751  * -EREMOTEIO   permanent target failure, do not retry
752  * -EBADE       permanent nexus failure, retry on other path
753  * -ENOSPC      No write space available
754  * -ENODATA     Medium error
755  * -EIO         unspecified I/O error
756  */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759         int error = 0;
760
761         switch(host_byte(result)) {
762         case DID_TRANSPORT_FAILFAST:
763                 error = -ENOLINK;
764                 break;
765         case DID_TARGET_FAILURE:
766                 set_host_byte(cmd, DID_OK);
767                 error = -EREMOTEIO;
768                 break;
769         case DID_NEXUS_FAILURE:
770                 set_host_byte(cmd, DID_OK);
771                 error = -EBADE;
772                 break;
773         case DID_ALLOC_FAILURE:
774                 set_host_byte(cmd, DID_OK);
775                 error = -ENOSPC;
776                 break;
777         case DID_MEDIUM_ERROR:
778                 set_host_byte(cmd, DID_OK);
779                 error = -ENODATA;
780                 break;
781         default:
782                 error = -EIO;
783                 break;
784         }
785
786         return error;
787 }
788
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       We will finish off the specified number of sectors.  If we
801  *              are done, the command block will be released and the queue
802  *              function will be goosed.  If we are not done then we have to
803  *              figure out what to do next:
804  *
805  *              a) We can call scsi_requeue_command().  The request
806  *                 will be unprepared and put back on the queue.  Then
807  *                 a new command will be created for it.  This should
808  *                 be used if we made forward progress, or if we want
809  *                 to switch from READ(10) to READ(6) for example.
810  *
811  *              b) We can call __scsi_queue_insert().  The request will
812  *                 be put back on the queue and retried using the same
813  *                 command as before, possibly after a delay.
814  *
815  *              c) We can call scsi_end_request() with -EIO to fail
816  *                 the remainder of the request.
817  */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820         int result = cmd->result;
821         struct request_queue *q = cmd->device->request_queue;
822         struct request *req = cmd->request;
823         int error = 0;
824         struct scsi_sense_hdr sshdr;
825         bool sense_valid = false;
826         int sense_deferred = 0, level = 0;
827         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828               ACTION_DELAYED_RETRY} action;
829         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831         if (result) {
832                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833                 if (sense_valid)
834                         sense_deferred = scsi_sense_is_deferred(&sshdr);
835         }
836
837         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838                 if (result) {
839                         if (sense_valid && req->sense) {
840                                 /*
841                                  * SG_IO wants current and deferred errors
842                                  */
843                                 int len = 8 + cmd->sense_buffer[7];
844
845                                 if (len > SCSI_SENSE_BUFFERSIZE)
846                                         len = SCSI_SENSE_BUFFERSIZE;
847                                 memcpy(req->sense, cmd->sense_buffer,  len);
848                                 req->sense_len = len;
849                         }
850                         if (!sense_deferred)
851                                 error = __scsi_error_from_host_byte(cmd, result);
852                 }
853                 /*
854                  * __scsi_error_from_host_byte may have reset the host_byte
855                  */
856                 req->errors = cmd->result;
857
858                 req->resid_len = scsi_get_resid(cmd);
859
860                 if (scsi_bidi_cmnd(cmd)) {
861                         /*
862                          * Bidi commands Must be complete as a whole,
863                          * both sides at once.
864                          */
865                         req->next_rq->resid_len = scsi_in(cmd)->resid;
866                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
867                                         blk_rq_bytes(req->next_rq)))
868                                 BUG();
869                         return;
870                 }
871         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872                 /*
873                  * Certain non BLOCK_PC requests are commands that don't
874                  * actually transfer anything (FLUSH), so cannot use
875                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
876                  * This sets the error explicitly for the problem case.
877                  */
878                 error = __scsi_error_from_host_byte(cmd, result);
879         }
880
881         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882         BUG_ON(blk_bidi_rq(req));
883
884         /*
885          * Next deal with any sectors which we were able to correctly
886          * handle.
887          */
888         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889                 "%u sectors total, %d bytes done.\n",
890                 blk_rq_sectors(req), good_bytes));
891
892         /*
893          * Recovered errors need reporting, but they're always treated
894          * as success, so fiddle the result code here.  For BLOCK_PC
895          * we already took a copy of the original into rq->errors which
896          * is what gets returned to the user
897          */
898         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900                  * print since caller wants ATA registers. Only occurs on
901                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
902                  */
903                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904                         ;
905                 else if (!(req->cmd_flags & REQ_QUIET))
906                         scsi_print_sense(cmd);
907                 result = 0;
908                 /* BLOCK_PC may have set error */
909                 error = 0;
910         }
911
912         /*
913          * special case: failed zero length commands always need to
914          * drop down into the retry code. Otherwise, if we finished
915          * all bytes in the request we are done now.
916          */
917         if (!(blk_rq_bytes(req) == 0 && error) &&
918             !scsi_end_request(req, error, good_bytes, 0))
919                 return;
920
921         /*
922          * Kill remainder if no retrys.
923          */
924         if (error && scsi_noretry_cmd(cmd)) {
925                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
926                         BUG();
927                 return;
928         }
929
930         /*
931          * If there had been no error, but we have leftover bytes in the
932          * requeues just queue the command up again.
933          */
934         if (result == 0)
935                 goto requeue;
936
937         error = __scsi_error_from_host_byte(cmd, result);
938
939         if (host_byte(result) == DID_RESET) {
940                 /* Third party bus reset or reset for error recovery
941                  * reasons.  Just retry the command and see what
942                  * happens.
943                  */
944                 action = ACTION_RETRY;
945         } else if (sense_valid && !sense_deferred) {
946                 switch (sshdr.sense_key) {
947                 case UNIT_ATTENTION:
948                         if (cmd->device->removable) {
949                                 /* Detected disc change.  Set a bit
950                                  * and quietly refuse further access.
951                                  */
952                                 cmd->device->changed = 1;
953                                 action = ACTION_FAIL;
954                         } else {
955                                 /* Must have been a power glitch, or a
956                                  * bus reset.  Could not have been a
957                                  * media change, so we just retry the
958                                  * command and see what happens.
959                                  */
960                                 action = ACTION_RETRY;
961                         }
962                         break;
963                 case ILLEGAL_REQUEST:
964                         /* If we had an ILLEGAL REQUEST returned, then
965                          * we may have performed an unsupported
966                          * command.  The only thing this should be
967                          * would be a ten byte read where only a six
968                          * byte read was supported.  Also, on a system
969                          * where READ CAPACITY failed, we may have
970                          * read past the end of the disk.
971                          */
972                         if ((cmd->device->use_10_for_rw &&
973                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974                             (cmd->cmnd[0] == READ_10 ||
975                              cmd->cmnd[0] == WRITE_10)) {
976                                 /* This will issue a new 6-byte command. */
977                                 cmd->device->use_10_for_rw = 0;
978                                 action = ACTION_REPREP;
979                         } else if (sshdr.asc == 0x10) /* DIX */ {
980                                 action = ACTION_FAIL;
981                                 error = -EILSEQ;
982                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
984                                 action = ACTION_FAIL;
985                                 error = -EREMOTEIO;
986                         } else
987                                 action = ACTION_FAIL;
988                         break;
989                 case ABORTED_COMMAND:
990                         action = ACTION_FAIL;
991                         if (sshdr.asc == 0x10) /* DIF */
992                                 error = -EILSEQ;
993                         break;
994                 case NOT_READY:
995                         /* If the device is in the process of becoming
996                          * ready, or has a temporary blockage, retry.
997                          */
998                         if (sshdr.asc == 0x04) {
999                                 switch (sshdr.ascq) {
1000                                 case 0x01: /* becoming ready */
1001                                 case 0x04: /* format in progress */
1002                                 case 0x05: /* rebuild in progress */
1003                                 case 0x06: /* recalculation in progress */
1004                                 case 0x07: /* operation in progress */
1005                                 case 0x08: /* Long write in progress */
1006                                 case 0x09: /* self test in progress */
1007                                 case 0x11: /* notify (enable spinup) required */
1008                                 case 0x14: /* space allocation in progress */
1009                                         action = ACTION_DELAYED_RETRY;
1010                                         break;
1011                                 default:
1012                                         action = ACTION_FAIL;
1013                                         break;
1014                                 }
1015                         } else
1016                                 action = ACTION_FAIL;
1017                         break;
1018                 case VOLUME_OVERFLOW:
1019                         /* See SSC3rXX or current. */
1020                         action = ACTION_FAIL;
1021                         break;
1022                 default:
1023                         action = ACTION_FAIL;
1024                         break;
1025                 }
1026         } else
1027                 action = ACTION_FAIL;
1028
1029         if (action != ACTION_FAIL &&
1030             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1031                 action = ACTION_FAIL;
1032
1033         switch (action) {
1034         case ACTION_FAIL:
1035                 /* Give up and fail the remainder of the request */
1036                 if (!(req->cmd_flags & REQ_QUIET)) {
1037                         static DEFINE_RATELIMIT_STATE(_rs,
1038                                         DEFAULT_RATELIMIT_INTERVAL,
1039                                         DEFAULT_RATELIMIT_BURST);
1040
1041                         if (unlikely(scsi_logging_level))
1042                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1043                                                        SCSI_LOG_MLCOMPLETE_BITS);
1044
1045                         /*
1046                          * if logging is enabled the failure will be printed
1047                          * in scsi_log_completion(), so avoid duplicate messages
1048                          */
1049                         if (!level && __ratelimit(&_rs)) {
1050                                 scsi_print_result(cmd, NULL, FAILED);
1051                                 if (driver_byte(result) & DRIVER_SENSE)
1052                                         scsi_print_sense(cmd);
1053                                 scsi_print_command(cmd);
1054                         }
1055                 }
1056                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1057                         return;
1058                 /*FALLTHRU*/
1059         case ACTION_REPREP:
1060         requeue:
1061                 /* Unprep the request and put it back at the head of the queue.
1062                  * A new command will be prepared and issued.
1063                  */
1064                 if (q->mq_ops) {
1065                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1066                         scsi_mq_uninit_cmd(cmd);
1067                         scsi_mq_requeue_cmd(cmd);
1068                 } else {
1069                         scsi_release_buffers(cmd);
1070                         scsi_requeue_command(q, cmd);
1071                 }
1072                 break;
1073         case ACTION_RETRY:
1074                 /* Retry the same command immediately */
1075                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1076                 break;
1077         case ACTION_DELAYED_RETRY:
1078                 /* Retry the same command after a delay */
1079                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1080                 break;
1081         }
1082 }
1083
1084 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1085 {
1086         int count;
1087
1088         /*
1089          * If sg table allocation fails, requeue request later.
1090          */
1091         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1092                                         req->mq_ctx != NULL)))
1093                 return BLKPREP_DEFER;
1094
1095         /* 
1096          * Next, walk the list, and fill in the addresses and sizes of
1097          * each segment.
1098          */
1099         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1100         BUG_ON(count > sdb->table.nents);
1101         sdb->table.nents = count;
1102         sdb->length = blk_rq_bytes(req);
1103         return BLKPREP_OK;
1104 }
1105
1106 /*
1107  * Function:    scsi_init_io()
1108  *
1109  * Purpose:     SCSI I/O initialize function.
1110  *
1111  * Arguments:   cmd   - Command descriptor we wish to initialize
1112  *
1113  * Returns:     0 on success
1114  *              BLKPREP_DEFER if the failure is retryable
1115  *              BLKPREP_KILL if the failure is fatal
1116  */
1117 int scsi_init_io(struct scsi_cmnd *cmd)
1118 {
1119         struct scsi_device *sdev = cmd->device;
1120         struct request *rq = cmd->request;
1121         bool is_mq = (rq->mq_ctx != NULL);
1122         int error = BLKPREP_KILL;
1123
1124         if (WARN_ON_ONCE(!rq->nr_phys_segments))
1125                 goto err_exit;
1126
1127         error = scsi_init_sgtable(rq, &cmd->sdb);
1128         if (error)
1129                 goto err_exit;
1130
1131         if (blk_bidi_rq(rq)) {
1132                 if (!rq->q->mq_ops) {
1133                         struct scsi_data_buffer *bidi_sdb =
1134                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1135                         if (!bidi_sdb) {
1136                                 error = BLKPREP_DEFER;
1137                                 goto err_exit;
1138                         }
1139
1140                         rq->next_rq->special = bidi_sdb;
1141                 }
1142
1143                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1144                 if (error)
1145                         goto err_exit;
1146         }
1147
1148         if (blk_integrity_rq(rq)) {
1149                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1150                 int ivecs, count;
1151
1152                 if (prot_sdb == NULL) {
1153                         /*
1154                          * This can happen if someone (e.g. multipath)
1155                          * queues a command to a device on an adapter
1156                          * that does not support DIX.
1157                          */
1158                         WARN_ON_ONCE(1);
1159                         error = BLKPREP_KILL;
1160                         goto err_exit;
1161                 }
1162
1163                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1164
1165                 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1166                         error = BLKPREP_DEFER;
1167                         goto err_exit;
1168                 }
1169
1170                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1171                                                 prot_sdb->table.sgl);
1172                 BUG_ON(unlikely(count > ivecs));
1173                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1174
1175                 cmd->prot_sdb = prot_sdb;
1176                 cmd->prot_sdb->table.nents = count;
1177         }
1178
1179         return BLKPREP_OK;
1180 err_exit:
1181         if (is_mq) {
1182                 scsi_mq_free_sgtables(cmd);
1183         } else {
1184                 scsi_release_buffers(cmd);
1185                 cmd->request->special = NULL;
1186                 scsi_put_command(cmd);
1187                 put_device(&sdev->sdev_gendev);
1188         }
1189         return error;
1190 }
1191 EXPORT_SYMBOL(scsi_init_io);
1192
1193 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1194                 struct request *req)
1195 {
1196         struct scsi_cmnd *cmd;
1197
1198         if (!req->special) {
1199                 /* Bail if we can't get a reference to the device */
1200                 if (!get_device(&sdev->sdev_gendev))
1201                         return NULL;
1202
1203                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1204                 if (unlikely(!cmd)) {
1205                         put_device(&sdev->sdev_gendev);
1206                         return NULL;
1207                 }
1208                 req->special = cmd;
1209         } else {
1210                 cmd = req->special;
1211         }
1212
1213         /* pull a tag out of the request if we have one */
1214         cmd->tag = req->tag;
1215         cmd->request = req;
1216
1217         cmd->cmnd = req->cmd;
1218         cmd->prot_op = SCSI_PROT_NORMAL;
1219
1220         return cmd;
1221 }
1222
1223 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1224 {
1225         struct scsi_cmnd *cmd = req->special;
1226
1227         /*
1228          * BLOCK_PC requests may transfer data, in which case they must
1229          * a bio attached to them.  Or they might contain a SCSI command
1230          * that does not transfer data, in which case they may optionally
1231          * submit a request without an attached bio.
1232          */
1233         if (req->bio) {
1234                 int ret = scsi_init_io(cmd);
1235                 if (unlikely(ret))
1236                         return ret;
1237         } else {
1238                 BUG_ON(blk_rq_bytes(req));
1239
1240                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1241         }
1242
1243         cmd->cmd_len = req->cmd_len;
1244         cmd->transfersize = blk_rq_bytes(req);
1245         cmd->allowed = req->retries;
1246         return BLKPREP_OK;
1247 }
1248
1249 /*
1250  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1251  * that still need to be translated to SCSI CDBs from the ULD.
1252  */
1253 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255         struct scsi_cmnd *cmd = req->special;
1256
1257         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1258                 int ret = sdev->handler->prep_fn(sdev, req);
1259                 if (ret != BLKPREP_OK)
1260                         return ret;
1261         }
1262
1263         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1264         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1265 }
1266
1267 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1268 {
1269         struct scsi_cmnd *cmd = req->special;
1270
1271         if (!blk_rq_bytes(req))
1272                 cmd->sc_data_direction = DMA_NONE;
1273         else if (rq_data_dir(req) == WRITE)
1274                 cmd->sc_data_direction = DMA_TO_DEVICE;
1275         else
1276                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1277
1278         switch (req->cmd_type) {
1279         case REQ_TYPE_FS:
1280                 return scsi_setup_fs_cmnd(sdev, req);
1281         case REQ_TYPE_BLOCK_PC:
1282                 return scsi_setup_blk_pc_cmnd(sdev, req);
1283         default:
1284                 return BLKPREP_KILL;
1285         }
1286 }
1287
1288 static int
1289 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1290 {
1291         int ret = BLKPREP_OK;
1292
1293         /*
1294          * If the device is not in running state we will reject some
1295          * or all commands.
1296          */
1297         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1298                 switch (sdev->sdev_state) {
1299                 case SDEV_OFFLINE:
1300                 case SDEV_TRANSPORT_OFFLINE:
1301                         /*
1302                          * If the device is offline we refuse to process any
1303                          * commands.  The device must be brought online
1304                          * before trying any recovery commands.
1305                          */
1306                         sdev_printk(KERN_ERR, sdev,
1307                                     "rejecting I/O to offline device\n");
1308                         ret = BLKPREP_KILL;
1309                         break;
1310                 case SDEV_DEL:
1311                         /*
1312                          * If the device is fully deleted, we refuse to
1313                          * process any commands as well.
1314                          */
1315                         sdev_printk(KERN_ERR, sdev,
1316                                     "rejecting I/O to dead device\n");
1317                         ret = BLKPREP_KILL;
1318                         break;
1319                 case SDEV_BLOCK:
1320                 case SDEV_CREATED_BLOCK:
1321                         ret = BLKPREP_DEFER;
1322                         break;
1323                 case SDEV_QUIESCE:
1324                         /*
1325                          * If the devices is blocked we defer normal commands.
1326                          */
1327                         if (!(req->cmd_flags & REQ_PREEMPT))
1328                                 ret = BLKPREP_DEFER;
1329                         break;
1330                 default:
1331                         /*
1332                          * For any other not fully online state we only allow
1333                          * special commands.  In particular any user initiated
1334                          * command is not allowed.
1335                          */
1336                         if (!(req->cmd_flags & REQ_PREEMPT))
1337                                 ret = BLKPREP_KILL;
1338                         break;
1339                 }
1340         }
1341         return ret;
1342 }
1343
1344 static int
1345 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1346 {
1347         struct scsi_device *sdev = q->queuedata;
1348
1349         switch (ret) {
1350         case BLKPREP_KILL:
1351                 req->errors = DID_NO_CONNECT << 16;
1352                 /* release the command and kill it */
1353                 if (req->special) {
1354                         struct scsi_cmnd *cmd = req->special;
1355                         scsi_release_buffers(cmd);
1356                         scsi_put_command(cmd);
1357                         put_device(&sdev->sdev_gendev);
1358                         req->special = NULL;
1359                 }
1360                 break;
1361         case BLKPREP_DEFER:
1362                 /*
1363                  * If we defer, the blk_peek_request() returns NULL, but the
1364                  * queue must be restarted, so we schedule a callback to happen
1365                  * shortly.
1366                  */
1367                 if (atomic_read(&sdev->device_busy) == 0)
1368                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1369                 break;
1370         default:
1371                 req->cmd_flags |= REQ_DONTPREP;
1372         }
1373
1374         return ret;
1375 }
1376
1377 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1378 {
1379         struct scsi_device *sdev = q->queuedata;
1380         struct scsi_cmnd *cmd;
1381         int ret;
1382
1383         ret = scsi_prep_state_check(sdev, req);
1384         if (ret != BLKPREP_OK)
1385                 goto out;
1386
1387         cmd = scsi_get_cmd_from_req(sdev, req);
1388         if (unlikely(!cmd)) {
1389                 ret = BLKPREP_DEFER;
1390                 goto out;
1391         }
1392
1393         ret = scsi_setup_cmnd(sdev, req);
1394 out:
1395         return scsi_prep_return(q, req, ret);
1396 }
1397
1398 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1399 {
1400         scsi_uninit_cmd(req->special);
1401 }
1402
1403 /*
1404  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1405  * return 0.
1406  *
1407  * Called with the queue_lock held.
1408  */
1409 static inline int scsi_dev_queue_ready(struct request_queue *q,
1410                                   struct scsi_device *sdev)
1411 {
1412         unsigned int busy;
1413
1414         busy = atomic_inc_return(&sdev->device_busy) - 1;
1415         if (atomic_read(&sdev->device_blocked)) {
1416                 if (busy)
1417                         goto out_dec;
1418
1419                 /*
1420                  * unblock after device_blocked iterates to zero
1421                  */
1422                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1423                         /*
1424                          * For the MQ case we take care of this in the caller.
1425                          */
1426                         if (!q->mq_ops)
1427                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1428                         goto out_dec;
1429                 }
1430                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1431                                    "unblocking device at zero depth\n"));
1432         }
1433
1434         if (busy >= sdev->queue_depth)
1435                 goto out_dec;
1436
1437         return 1;
1438 out_dec:
1439         atomic_dec(&sdev->device_busy);
1440         return 0;
1441 }
1442
1443 /*
1444  * scsi_target_queue_ready: checks if there we can send commands to target
1445  * @sdev: scsi device on starget to check.
1446  */
1447 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1448                                            struct scsi_device *sdev)
1449 {
1450         struct scsi_target *starget = scsi_target(sdev);
1451         unsigned int busy;
1452
1453         if (starget->single_lun) {
1454                 spin_lock_irq(shost->host_lock);
1455                 if (starget->starget_sdev_user &&
1456                     starget->starget_sdev_user != sdev) {
1457                         spin_unlock_irq(shost->host_lock);
1458                         return 0;
1459                 }
1460                 starget->starget_sdev_user = sdev;
1461                 spin_unlock_irq(shost->host_lock);
1462         }
1463
1464         if (starget->can_queue <= 0)
1465                 return 1;
1466
1467         busy = atomic_inc_return(&starget->target_busy) - 1;
1468         if (atomic_read(&starget->target_blocked) > 0) {
1469                 if (busy)
1470                         goto starved;
1471
1472                 /*
1473                  * unblock after target_blocked iterates to zero
1474                  */
1475                 if (atomic_dec_return(&starget->target_blocked) > 0)
1476                         goto out_dec;
1477
1478                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1479                                  "unblocking target at zero depth\n"));
1480         }
1481
1482         if (busy >= starget->can_queue)
1483                 goto starved;
1484
1485         return 1;
1486
1487 starved:
1488         spin_lock_irq(shost->host_lock);
1489         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1490         spin_unlock_irq(shost->host_lock);
1491 out_dec:
1492         if (starget->can_queue > 0)
1493                 atomic_dec(&starget->target_busy);
1494         return 0;
1495 }
1496
1497 /*
1498  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1499  * return 0. We must end up running the queue again whenever 0 is
1500  * returned, else IO can hang.
1501  */
1502 static inline int scsi_host_queue_ready(struct request_queue *q,
1503                                    struct Scsi_Host *shost,
1504                                    struct scsi_device *sdev)
1505 {
1506         unsigned int busy;
1507
1508         if (scsi_host_in_recovery(shost))
1509                 return 0;
1510
1511         busy = atomic_inc_return(&shost->host_busy) - 1;
1512         if (atomic_read(&shost->host_blocked) > 0) {
1513                 if (busy)
1514                         goto starved;
1515
1516                 /*
1517                  * unblock after host_blocked iterates to zero
1518                  */
1519                 if (atomic_dec_return(&shost->host_blocked) > 0)
1520                         goto out_dec;
1521
1522                 SCSI_LOG_MLQUEUE(3,
1523                         shost_printk(KERN_INFO, shost,
1524                                      "unblocking host at zero depth\n"));
1525         }
1526
1527         if (shost->can_queue > 0 && busy >= shost->can_queue)
1528                 goto starved;
1529         if (shost->host_self_blocked)
1530                 goto starved;
1531
1532         /* We're OK to process the command, so we can't be starved */
1533         if (!list_empty(&sdev->starved_entry)) {
1534                 spin_lock_irq(shost->host_lock);
1535                 if (!list_empty(&sdev->starved_entry))
1536                         list_del_init(&sdev->starved_entry);
1537                 spin_unlock_irq(shost->host_lock);
1538         }
1539
1540         return 1;
1541
1542 starved:
1543         spin_lock_irq(shost->host_lock);
1544         if (list_empty(&sdev->starved_entry))
1545                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1546         spin_unlock_irq(shost->host_lock);
1547 out_dec:
1548         atomic_dec(&shost->host_busy);
1549         return 0;
1550 }
1551
1552 /*
1553  * Busy state exporting function for request stacking drivers.
1554  *
1555  * For efficiency, no lock is taken to check the busy state of
1556  * shost/starget/sdev, since the returned value is not guaranteed and
1557  * may be changed after request stacking drivers call the function,
1558  * regardless of taking lock or not.
1559  *
1560  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1561  * needs to return 'not busy'. Otherwise, request stacking drivers
1562  * may hold requests forever.
1563  */
1564 static int scsi_lld_busy(struct request_queue *q)
1565 {
1566         struct scsi_device *sdev = q->queuedata;
1567         struct Scsi_Host *shost;
1568
1569         if (blk_queue_dying(q))
1570                 return 0;
1571
1572         shost = sdev->host;
1573
1574         /*
1575          * Ignore host/starget busy state.
1576          * Since block layer does not have a concept of fairness across
1577          * multiple queues, congestion of host/starget needs to be handled
1578          * in SCSI layer.
1579          */
1580         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1581                 return 1;
1582
1583         return 0;
1584 }
1585
1586 /*
1587  * Kill a request for a dead device
1588  */
1589 static void scsi_kill_request(struct request *req, struct request_queue *q)
1590 {
1591         struct scsi_cmnd *cmd = req->special;
1592         struct scsi_device *sdev;
1593         struct scsi_target *starget;
1594         struct Scsi_Host *shost;
1595
1596         blk_start_request(req);
1597
1598         scmd_printk(KERN_INFO, cmd, "killing request\n");
1599
1600         sdev = cmd->device;
1601         starget = scsi_target(sdev);
1602         shost = sdev->host;
1603         scsi_init_cmd_errh(cmd);
1604         cmd->result = DID_NO_CONNECT << 16;
1605         atomic_inc(&cmd->device->iorequest_cnt);
1606
1607         /*
1608          * SCSI request completion path will do scsi_device_unbusy(),
1609          * bump busy counts.  To bump the counters, we need to dance
1610          * with the locks as normal issue path does.
1611          */
1612         atomic_inc(&sdev->device_busy);
1613         atomic_inc(&shost->host_busy);
1614         if (starget->can_queue > 0)
1615                 atomic_inc(&starget->target_busy);
1616
1617         blk_complete_request(req);
1618 }
1619
1620 static void scsi_softirq_done(struct request *rq)
1621 {
1622         struct scsi_cmnd *cmd = rq->special;
1623         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1624         int disposition;
1625
1626         INIT_LIST_HEAD(&cmd->eh_entry);
1627
1628         atomic_inc(&cmd->device->iodone_cnt);
1629         if (cmd->result)
1630                 atomic_inc(&cmd->device->ioerr_cnt);
1631
1632         disposition = scsi_decide_disposition(cmd);
1633         if (disposition != SUCCESS &&
1634             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1635                 sdev_printk(KERN_ERR, cmd->device,
1636                             "timing out command, waited %lus\n",
1637                             wait_for/HZ);
1638                 disposition = SUCCESS;
1639         }
1640
1641         scsi_log_completion(cmd, disposition);
1642
1643         switch (disposition) {
1644                 case SUCCESS:
1645                         scsi_finish_command(cmd);
1646                         break;
1647                 case NEEDS_RETRY:
1648                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1649                         break;
1650                 case ADD_TO_MLQUEUE:
1651                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1652                         break;
1653                 default:
1654                         if (!scsi_eh_scmd_add(cmd, 0))
1655                                 scsi_finish_command(cmd);
1656         }
1657 }
1658
1659 /**
1660  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1661  * @cmd: command block we are dispatching.
1662  *
1663  * Return: nonzero return request was rejected and device's queue needs to be
1664  * plugged.
1665  */
1666 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1667 {
1668         struct Scsi_Host *host = cmd->device->host;
1669         int rtn = 0;
1670
1671         atomic_inc(&cmd->device->iorequest_cnt);
1672
1673         /* check if the device is still usable */
1674         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1675                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1676                  * returns an immediate error upwards, and signals
1677                  * that the device is no longer present */
1678                 cmd->result = DID_NO_CONNECT << 16;
1679                 goto done;
1680         }
1681
1682         /* Check to see if the scsi lld made this device blocked. */
1683         if (unlikely(scsi_device_blocked(cmd->device))) {
1684                 /*
1685                  * in blocked state, the command is just put back on
1686                  * the device queue.  The suspend state has already
1687                  * blocked the queue so future requests should not
1688                  * occur until the device transitions out of the
1689                  * suspend state.
1690                  */
1691                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1692                         "queuecommand : device blocked\n"));
1693                 return SCSI_MLQUEUE_DEVICE_BUSY;
1694         }
1695
1696         /* Store the LUN value in cmnd, if needed. */
1697         if (cmd->device->lun_in_cdb)
1698                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1699                                (cmd->device->lun << 5 & 0xe0);
1700
1701         scsi_log_send(cmd);
1702
1703         /*
1704          * Before we queue this command, check if the command
1705          * length exceeds what the host adapter can handle.
1706          */
1707         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1708                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1709                                "queuecommand : command too long. "
1710                                "cdb_size=%d host->max_cmd_len=%d\n",
1711                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1712                 cmd->result = (DID_ABORT << 16);
1713                 goto done;
1714         }
1715
1716         if (unlikely(host->shost_state == SHOST_DEL)) {
1717                 cmd->result = (DID_NO_CONNECT << 16);
1718                 goto done;
1719
1720         }
1721
1722         trace_scsi_dispatch_cmd_start(cmd);
1723         rtn = host->hostt->queuecommand(host, cmd);
1724         if (rtn) {
1725                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1726                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1727                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1728                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1729
1730                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1731                         "queuecommand : request rejected\n"));
1732         }
1733
1734         return rtn;
1735  done:
1736         cmd->scsi_done(cmd);
1737         return 0;
1738 }
1739
1740 /**
1741  * scsi_done - Invoke completion on finished SCSI command.
1742  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1743  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1744  *
1745  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1746  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1747  * calls blk_complete_request() for further processing.
1748  *
1749  * This function is interrupt context safe.
1750  */
1751 static void scsi_done(struct scsi_cmnd *cmd)
1752 {
1753         trace_scsi_dispatch_cmd_done(cmd);
1754         blk_complete_request(cmd->request);
1755 }
1756
1757 /*
1758  * Function:    scsi_request_fn()
1759  *
1760  * Purpose:     Main strategy routine for SCSI.
1761  *
1762  * Arguments:   q       - Pointer to actual queue.
1763  *
1764  * Returns:     Nothing
1765  *
1766  * Lock status: IO request lock assumed to be held when called.
1767  */
1768 static void scsi_request_fn(struct request_queue *q)
1769         __releases(q->queue_lock)
1770         __acquires(q->queue_lock)
1771 {
1772         struct scsi_device *sdev = q->queuedata;
1773         struct Scsi_Host *shost;
1774         struct scsi_cmnd *cmd;
1775         struct request *req;
1776
1777         /*
1778          * To start with, we keep looping until the queue is empty, or until
1779          * the host is no longer able to accept any more requests.
1780          */
1781         shost = sdev->host;
1782         for (;;) {
1783                 int rtn;
1784                 /*
1785                  * get next queueable request.  We do this early to make sure
1786                  * that the request is fully prepared even if we cannot
1787                  * accept it.
1788                  */
1789                 req = blk_peek_request(q);
1790                 if (!req)
1791                         break;
1792
1793                 if (unlikely(!scsi_device_online(sdev))) {
1794                         sdev_printk(KERN_ERR, sdev,
1795                                     "rejecting I/O to offline device\n");
1796                         scsi_kill_request(req, q);
1797                         continue;
1798                 }
1799
1800                 if (!scsi_dev_queue_ready(q, sdev))
1801                         break;
1802
1803                 /*
1804                  * Remove the request from the request list.
1805                  */
1806                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1807                         blk_start_request(req);
1808
1809                 spin_unlock_irq(q->queue_lock);
1810                 cmd = req->special;
1811                 if (unlikely(cmd == NULL)) {
1812                         printk(KERN_CRIT "impossible request in %s.\n"
1813                                          "please mail a stack trace to "
1814                                          "linux-scsi@vger.kernel.org\n",
1815                                          __func__);
1816                         blk_dump_rq_flags(req, "foo");
1817                         BUG();
1818                 }
1819
1820                 /*
1821                  * We hit this when the driver is using a host wide
1822                  * tag map. For device level tag maps the queue_depth check
1823                  * in the device ready fn would prevent us from trying
1824                  * to allocate a tag. Since the map is a shared host resource
1825                  * we add the dev to the starved list so it eventually gets
1826                  * a run when a tag is freed.
1827                  */
1828                 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1829                         spin_lock_irq(shost->host_lock);
1830                         if (list_empty(&sdev->starved_entry))
1831                                 list_add_tail(&sdev->starved_entry,
1832                                               &shost->starved_list);
1833                         spin_unlock_irq(shost->host_lock);
1834                         goto not_ready;
1835                 }
1836
1837                 if (!scsi_target_queue_ready(shost, sdev))
1838                         goto not_ready;
1839
1840                 if (!scsi_host_queue_ready(q, shost, sdev))
1841                         goto host_not_ready;
1842         
1843                 if (sdev->simple_tags)
1844                         cmd->flags |= SCMD_TAGGED;
1845                 else
1846                         cmd->flags &= ~SCMD_TAGGED;
1847
1848                 /*
1849                  * Finally, initialize any error handling parameters, and set up
1850                  * the timers for timeouts.
1851                  */
1852                 scsi_init_cmd_errh(cmd);
1853
1854                 /*
1855                  * Dispatch the command to the low-level driver.
1856                  */
1857                 cmd->scsi_done = scsi_done;
1858                 rtn = scsi_dispatch_cmd(cmd);
1859                 if (rtn) {
1860                         scsi_queue_insert(cmd, rtn);
1861                         spin_lock_irq(q->queue_lock);
1862                         goto out_delay;
1863                 }
1864                 spin_lock_irq(q->queue_lock);
1865         }
1866
1867         return;
1868
1869  host_not_ready:
1870         if (scsi_target(sdev)->can_queue > 0)
1871                 atomic_dec(&scsi_target(sdev)->target_busy);
1872  not_ready:
1873         /*
1874          * lock q, handle tag, requeue req, and decrement device_busy. We
1875          * must return with queue_lock held.
1876          *
1877          * Decrementing device_busy without checking it is OK, as all such
1878          * cases (host limits or settings) should run the queue at some
1879          * later time.
1880          */
1881         spin_lock_irq(q->queue_lock);
1882         blk_requeue_request(q, req);
1883         atomic_dec(&sdev->device_busy);
1884 out_delay:
1885         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1886                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1887 }
1888
1889 static inline int prep_to_mq(int ret)
1890 {
1891         switch (ret) {
1892         case BLKPREP_OK:
1893                 return 0;
1894         case BLKPREP_DEFER:
1895                 return BLK_MQ_RQ_QUEUE_BUSY;
1896         default:
1897                 return BLK_MQ_RQ_QUEUE_ERROR;
1898         }
1899 }
1900
1901 static int scsi_mq_prep_fn(struct request *req)
1902 {
1903         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1904         struct scsi_device *sdev = req->q->queuedata;
1905         struct Scsi_Host *shost = sdev->host;
1906         unsigned char *sense_buf = cmd->sense_buffer;
1907         struct scatterlist *sg;
1908
1909         memset(cmd, 0, sizeof(struct scsi_cmnd));
1910
1911         req->special = cmd;
1912
1913         cmd->request = req;
1914         cmd->device = sdev;
1915         cmd->sense_buffer = sense_buf;
1916
1917         cmd->tag = req->tag;
1918
1919         cmd->cmnd = req->cmd;
1920         cmd->prot_op = SCSI_PROT_NORMAL;
1921
1922         INIT_LIST_HEAD(&cmd->list);
1923         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1924         cmd->jiffies_at_alloc = jiffies;
1925
1926         if (shost->use_cmd_list) {
1927                 spin_lock_irq(&sdev->list_lock);
1928                 list_add_tail(&cmd->list, &sdev->cmd_list);
1929                 spin_unlock_irq(&sdev->list_lock);
1930         }
1931
1932         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1933         cmd->sdb.table.sgl = sg;
1934
1935         if (scsi_host_get_prot(shost)) {
1936                 cmd->prot_sdb = (void *)sg +
1937                         min_t(unsigned int,
1938                               shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1939                         sizeof(struct scatterlist);
1940                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1941
1942                 cmd->prot_sdb->table.sgl =
1943                         (struct scatterlist *)(cmd->prot_sdb + 1);
1944         }
1945
1946         if (blk_bidi_rq(req)) {
1947                 struct request *next_rq = req->next_rq;
1948                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1949
1950                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1951                 bidi_sdb->table.sgl =
1952                         (struct scatterlist *)(bidi_sdb + 1);
1953
1954                 next_rq->special = bidi_sdb;
1955         }
1956
1957         blk_mq_start_request(req);
1958
1959         return scsi_setup_cmnd(sdev, req);
1960 }
1961
1962 static void scsi_mq_done(struct scsi_cmnd *cmd)
1963 {
1964         trace_scsi_dispatch_cmd_done(cmd);
1965         blk_mq_complete_request(cmd->request, cmd->request->errors);
1966 }
1967
1968 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1969                          const struct blk_mq_queue_data *bd)
1970 {
1971         struct request *req = bd->rq;
1972         struct request_queue *q = req->q;
1973         struct scsi_device *sdev = q->queuedata;
1974         struct Scsi_Host *shost = sdev->host;
1975         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1976         int ret;
1977         int reason;
1978
1979         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1980         if (ret)
1981                 goto out;
1982
1983         ret = BLK_MQ_RQ_QUEUE_BUSY;
1984         if (!get_device(&sdev->sdev_gendev))
1985                 goto out;
1986
1987         if (!scsi_dev_queue_ready(q, sdev))
1988                 goto out_put_device;
1989         if (!scsi_target_queue_ready(shost, sdev))
1990                 goto out_dec_device_busy;
1991         if (!scsi_host_queue_ready(q, shost, sdev))
1992                 goto out_dec_target_busy;
1993
1994
1995         if (!(req->cmd_flags & REQ_DONTPREP)) {
1996                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1997                 if (ret)
1998                         goto out_dec_host_busy;
1999                 req->cmd_flags |= REQ_DONTPREP;
2000         } else {
2001                 blk_mq_start_request(req);
2002         }
2003
2004         if (sdev->simple_tags)
2005                 cmd->flags |= SCMD_TAGGED;
2006         else
2007                 cmd->flags &= ~SCMD_TAGGED;
2008
2009         scsi_init_cmd_errh(cmd);
2010         cmd->scsi_done = scsi_mq_done;
2011
2012         reason = scsi_dispatch_cmd(cmd);
2013         if (reason) {
2014                 scsi_set_blocked(cmd, reason);
2015                 ret = BLK_MQ_RQ_QUEUE_BUSY;
2016                 goto out_dec_host_busy;
2017         }
2018
2019         return BLK_MQ_RQ_QUEUE_OK;
2020
2021 out_dec_host_busy:
2022         atomic_dec(&shost->host_busy);
2023 out_dec_target_busy:
2024         if (scsi_target(sdev)->can_queue > 0)
2025                 atomic_dec(&scsi_target(sdev)->target_busy);
2026 out_dec_device_busy:
2027         atomic_dec(&sdev->device_busy);
2028 out_put_device:
2029         put_device(&sdev->sdev_gendev);
2030 out:
2031         switch (ret) {
2032         case BLK_MQ_RQ_QUEUE_BUSY:
2033                 blk_mq_stop_hw_queue(hctx);
2034                 if (atomic_read(&sdev->device_busy) == 0 &&
2035                     !scsi_device_blocked(sdev))
2036                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2037                 break;
2038         case BLK_MQ_RQ_QUEUE_ERROR:
2039                 /*
2040                  * Make sure to release all allocated ressources when
2041                  * we hit an error, as we will never see this command
2042                  * again.
2043                  */
2044                 if (req->cmd_flags & REQ_DONTPREP)
2045                         scsi_mq_uninit_cmd(cmd);
2046                 break;
2047         default:
2048                 break;
2049         }
2050         return ret;
2051 }
2052
2053 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2054                 bool reserved)
2055 {
2056         if (reserved)
2057                 return BLK_EH_RESET_TIMER;
2058         return scsi_times_out(req);
2059 }
2060
2061 static int scsi_init_request(void *data, struct request *rq,
2062                 unsigned int hctx_idx, unsigned int request_idx,
2063                 unsigned int numa_node)
2064 {
2065         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2066
2067         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2068                         numa_node);
2069         if (!cmd->sense_buffer)
2070                 return -ENOMEM;
2071         return 0;
2072 }
2073
2074 static void scsi_exit_request(void *data, struct request *rq,
2075                 unsigned int hctx_idx, unsigned int request_idx)
2076 {
2077         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2078
2079         kfree(cmd->sense_buffer);
2080 }
2081
2082 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2083 {
2084         struct device *host_dev;
2085         u64 bounce_limit = 0xffffffff;
2086
2087         if (shost->unchecked_isa_dma)
2088                 return BLK_BOUNCE_ISA;
2089         /*
2090          * Platforms with virtual-DMA translation
2091          * hardware have no practical limit.
2092          */
2093         if (!PCI_DMA_BUS_IS_PHYS)
2094                 return BLK_BOUNCE_ANY;
2095
2096         host_dev = scsi_get_device(shost);
2097         if (host_dev && host_dev->dma_mask)
2098                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2099
2100         return bounce_limit;
2101 }
2102
2103 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2104 {
2105         struct device *dev = shost->dma_dev;
2106
2107         /*
2108          * this limit is imposed by hardware restrictions
2109          */
2110         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2111                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2112
2113         if (scsi_host_prot_dma(shost)) {
2114                 shost->sg_prot_tablesize =
2115                         min_not_zero(shost->sg_prot_tablesize,
2116                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2117                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2118                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2119         }
2120
2121         blk_queue_max_hw_sectors(q, shost->max_sectors);
2122         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2123         blk_queue_segment_boundary(q, shost->dma_boundary);
2124         dma_set_seg_boundary(dev, shost->dma_boundary);
2125
2126         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2127
2128         if (!shost->use_clustering)
2129                 q->limits.cluster = 0;
2130
2131         /*
2132          * set a reasonable default alignment on word boundaries: the
2133          * host and device may alter it using
2134          * blk_queue_update_dma_alignment() later.
2135          */
2136         blk_queue_dma_alignment(q, 0x03);
2137 }
2138
2139 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2140                                          request_fn_proc *request_fn)
2141 {
2142         struct request_queue *q;
2143
2144         q = blk_init_queue(request_fn, NULL);
2145         if (!q)
2146                 return NULL;
2147         __scsi_init_queue(shost, q);
2148         return q;
2149 }
2150 EXPORT_SYMBOL(__scsi_alloc_queue);
2151
2152 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2153 {
2154         struct request_queue *q;
2155
2156         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2157         if (!q)
2158                 return NULL;
2159
2160         blk_queue_prep_rq(q, scsi_prep_fn);
2161         blk_queue_unprep_rq(q, scsi_unprep_fn);
2162         blk_queue_softirq_done(q, scsi_softirq_done);
2163         blk_queue_rq_timed_out(q, scsi_times_out);
2164         blk_queue_lld_busy(q, scsi_lld_busy);
2165         return q;
2166 }
2167
2168 static struct blk_mq_ops scsi_mq_ops = {
2169         .map_queue      = blk_mq_map_queue,
2170         .queue_rq       = scsi_queue_rq,
2171         .complete       = scsi_softirq_done,
2172         .timeout        = scsi_timeout,
2173         .init_request   = scsi_init_request,
2174         .exit_request   = scsi_exit_request,
2175 };
2176
2177 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2178 {
2179         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2180         if (IS_ERR(sdev->request_queue))
2181                 return NULL;
2182
2183         sdev->request_queue->queuedata = sdev;
2184         __scsi_init_queue(sdev->host, sdev->request_queue);
2185         return sdev->request_queue;
2186 }
2187
2188 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2189 {
2190         unsigned int cmd_size, sgl_size, tbl_size;
2191
2192         tbl_size = shost->sg_tablesize;
2193         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2194                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2195         sgl_size = tbl_size * sizeof(struct scatterlist);
2196         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2197         if (scsi_host_get_prot(shost))
2198                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2199
2200         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2201         shost->tag_set.ops = &scsi_mq_ops;
2202         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2203         shost->tag_set.queue_depth = shost->can_queue;
2204         shost->tag_set.cmd_size = cmd_size;
2205         shost->tag_set.numa_node = NUMA_NO_NODE;
2206         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2207         shost->tag_set.flags |=
2208                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2209         shost->tag_set.driver_data = shost;
2210
2211         return blk_mq_alloc_tag_set(&shost->tag_set);
2212 }
2213
2214 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2215 {
2216         blk_mq_free_tag_set(&shost->tag_set);
2217 }
2218
2219 /**
2220  * scsi_device_from_queue - return sdev associated with a request_queue
2221  * @q: The request queue to return the sdev from
2222  *
2223  * Return the sdev associated with a request queue or NULL if the
2224  * request_queue does not reference a SCSI device.
2225  */
2226 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2227 {
2228         struct scsi_device *sdev = NULL;
2229
2230         if (q->mq_ops) {
2231                 if (q->mq_ops == &scsi_mq_ops)
2232                         sdev = q->queuedata;
2233         } else if (q->request_fn == scsi_request_fn)
2234                 sdev = q->queuedata;
2235         if (!sdev || !get_device(&sdev->sdev_gendev))
2236                 sdev = NULL;
2237
2238         return sdev;
2239 }
2240 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2241
2242 /*
2243  * Function:    scsi_block_requests()
2244  *
2245  * Purpose:     Utility function used by low-level drivers to prevent further
2246  *              commands from being queued to the device.
2247  *
2248  * Arguments:   shost       - Host in question
2249  *
2250  * Returns:     Nothing
2251  *
2252  * Lock status: No locks are assumed held.
2253  *
2254  * Notes:       There is no timer nor any other means by which the requests
2255  *              get unblocked other than the low-level driver calling
2256  *              scsi_unblock_requests().
2257  */
2258 void scsi_block_requests(struct Scsi_Host *shost)
2259 {
2260         shost->host_self_blocked = 1;
2261 }
2262 EXPORT_SYMBOL(scsi_block_requests);
2263
2264 /*
2265  * Function:    scsi_unblock_requests()
2266  *
2267  * Purpose:     Utility function used by low-level drivers to allow further
2268  *              commands from being queued to the device.
2269  *
2270  * Arguments:   shost       - Host in question
2271  *
2272  * Returns:     Nothing
2273  *
2274  * Lock status: No locks are assumed held.
2275  *
2276  * Notes:       There is no timer nor any other means by which the requests
2277  *              get unblocked other than the low-level driver calling
2278  *              scsi_unblock_requests().
2279  *
2280  *              This is done as an API function so that changes to the
2281  *              internals of the scsi mid-layer won't require wholesale
2282  *              changes to drivers that use this feature.
2283  */
2284 void scsi_unblock_requests(struct Scsi_Host *shost)
2285 {
2286         shost->host_self_blocked = 0;
2287         scsi_run_host_queues(shost);
2288 }
2289 EXPORT_SYMBOL(scsi_unblock_requests);
2290
2291 int __init scsi_init_queue(void)
2292 {
2293         int i;
2294
2295         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2296                                            sizeof(struct scsi_data_buffer),
2297                                            0, 0, NULL);
2298         if (!scsi_sdb_cache) {
2299                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2300                 return -ENOMEM;
2301         }
2302
2303         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2304                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2305                 int size = sgp->size * sizeof(struct scatterlist);
2306
2307                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2308                                 SLAB_HWCACHE_ALIGN, NULL);
2309                 if (!sgp->slab) {
2310                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2311                                         sgp->name);
2312                         goto cleanup_sdb;
2313                 }
2314
2315                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2316                                                      sgp->slab);
2317                 if (!sgp->pool) {
2318                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2319                                         sgp->name);
2320                         goto cleanup_sdb;
2321                 }
2322         }
2323
2324         return 0;
2325
2326 cleanup_sdb:
2327         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2328                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2329                 if (sgp->pool)
2330                         mempool_destroy(sgp->pool);
2331                 if (sgp->slab)
2332                         kmem_cache_destroy(sgp->slab);
2333         }
2334         kmem_cache_destroy(scsi_sdb_cache);
2335
2336         return -ENOMEM;
2337 }
2338
2339 void scsi_exit_queue(void)
2340 {
2341         int i;
2342
2343         kmem_cache_destroy(scsi_sdb_cache);
2344
2345         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2346                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2347                 mempool_destroy(sgp->pool);
2348                 kmem_cache_destroy(sgp->slab);
2349         }
2350 }
2351
2352 /**
2353  *      scsi_mode_select - issue a mode select
2354  *      @sdev:  SCSI device to be queried
2355  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2356  *      @sp:    Save page bit (0 == don't save, 1 == save)
2357  *      @modepage: mode page being requested
2358  *      @buffer: request buffer (may not be smaller than eight bytes)
2359  *      @len:   length of request buffer.
2360  *      @timeout: command timeout
2361  *      @retries: number of retries before failing
2362  *      @data: returns a structure abstracting the mode header data
2363  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2364  *              must be SCSI_SENSE_BUFFERSIZE big.
2365  *
2366  *      Returns zero if successful; negative error number or scsi
2367  *      status on error
2368  *
2369  */
2370 int
2371 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2372                  unsigned char *buffer, int len, int timeout, int retries,
2373                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2374 {
2375         unsigned char cmd[10];
2376         unsigned char *real_buffer;
2377         int ret;
2378
2379         memset(cmd, 0, sizeof(cmd));
2380         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2381
2382         if (sdev->use_10_for_ms) {
2383                 if (len > 65535)
2384                         return -EINVAL;
2385                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2386                 if (!real_buffer)
2387                         return -ENOMEM;
2388                 memcpy(real_buffer + 8, buffer, len);
2389                 len += 8;
2390                 real_buffer[0] = 0;
2391                 real_buffer[1] = 0;
2392                 real_buffer[2] = data->medium_type;
2393                 real_buffer[3] = data->device_specific;
2394                 real_buffer[4] = data->longlba ? 0x01 : 0;
2395                 real_buffer[5] = 0;
2396                 real_buffer[6] = data->block_descriptor_length >> 8;
2397                 real_buffer[7] = data->block_descriptor_length;
2398
2399                 cmd[0] = MODE_SELECT_10;
2400                 cmd[7] = len >> 8;
2401                 cmd[8] = len;
2402         } else {
2403                 if (len > 255 || data->block_descriptor_length > 255 ||
2404                     data->longlba)
2405                         return -EINVAL;
2406
2407                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2408                 if (!real_buffer)
2409                         return -ENOMEM;
2410                 memcpy(real_buffer + 4, buffer, len);
2411                 len += 4;
2412                 real_buffer[0] = 0;
2413                 real_buffer[1] = data->medium_type;
2414                 real_buffer[2] = data->device_specific;
2415                 real_buffer[3] = data->block_descriptor_length;
2416                 
2417
2418                 cmd[0] = MODE_SELECT;
2419                 cmd[4] = len;
2420         }
2421
2422         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2423                                sshdr, timeout, retries, NULL);
2424         kfree(real_buffer);
2425         return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(scsi_mode_select);
2428
2429 /**
2430  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2431  *      @sdev:  SCSI device to be queried
2432  *      @dbd:   set if mode sense will allow block descriptors to be returned
2433  *      @modepage: mode page being requested
2434  *      @buffer: request buffer (may not be smaller than eight bytes)
2435  *      @len:   length of request buffer.
2436  *      @timeout: command timeout
2437  *      @retries: number of retries before failing
2438  *      @data: returns a structure abstracting the mode header data
2439  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2440  *              must be SCSI_SENSE_BUFFERSIZE big.
2441  *
2442  *      Returns zero if unsuccessful, or the header offset (either 4
2443  *      or 8 depending on whether a six or ten byte command was
2444  *      issued) if successful.
2445  */
2446 int
2447 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2448                   unsigned char *buffer, int len, int timeout, int retries,
2449                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2450 {
2451         unsigned char cmd[12];
2452         int use_10_for_ms;
2453         int header_length;
2454         int result, retry_count = retries;
2455         struct scsi_sense_hdr my_sshdr;
2456
2457         memset(data, 0, sizeof(*data));
2458         memset(&cmd[0], 0, 12);
2459         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2460         cmd[2] = modepage;
2461
2462         /* caller might not be interested in sense, but we need it */
2463         if (!sshdr)
2464                 sshdr = &my_sshdr;
2465
2466  retry:
2467         use_10_for_ms = sdev->use_10_for_ms;
2468
2469         if (use_10_for_ms) {
2470                 if (len < 8)
2471                         len = 8;
2472
2473                 cmd[0] = MODE_SENSE_10;
2474                 cmd[8] = len;
2475                 header_length = 8;
2476         } else {
2477                 if (len < 4)
2478                         len = 4;
2479
2480                 cmd[0] = MODE_SENSE;
2481                 cmd[4] = len;
2482                 header_length = 4;
2483         }
2484
2485         memset(buffer, 0, len);
2486
2487         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2488                                   sshdr, timeout, retries, NULL);
2489
2490         /* This code looks awful: what it's doing is making sure an
2491          * ILLEGAL REQUEST sense return identifies the actual command
2492          * byte as the problem.  MODE_SENSE commands can return
2493          * ILLEGAL REQUEST if the code page isn't supported */
2494
2495         if (use_10_for_ms && !scsi_status_is_good(result) &&
2496             (driver_byte(result) & DRIVER_SENSE)) {
2497                 if (scsi_sense_valid(sshdr)) {
2498                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2499                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2500                                 /* 
2501                                  * Invalid command operation code
2502                                  */
2503                                 sdev->use_10_for_ms = 0;
2504                                 goto retry;
2505                         }
2506                 }
2507         }
2508
2509         if(scsi_status_is_good(result)) {
2510                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2511                              (modepage == 6 || modepage == 8))) {
2512                         /* Initio breakage? */
2513                         header_length = 0;
2514                         data->length = 13;
2515                         data->medium_type = 0;
2516                         data->device_specific = 0;
2517                         data->longlba = 0;
2518                         data->block_descriptor_length = 0;
2519                 } else if(use_10_for_ms) {
2520                         data->length = buffer[0]*256 + buffer[1] + 2;
2521                         data->medium_type = buffer[2];
2522                         data->device_specific = buffer[3];
2523                         data->longlba = buffer[4] & 0x01;
2524                         data->block_descriptor_length = buffer[6]*256
2525                                 + buffer[7];
2526                 } else {
2527                         data->length = buffer[0] + 1;
2528                         data->medium_type = buffer[1];
2529                         data->device_specific = buffer[2];
2530                         data->block_descriptor_length = buffer[3];
2531                 }
2532                 data->header_length = header_length;
2533         } else if ((status_byte(result) == CHECK_CONDITION) &&
2534                    scsi_sense_valid(sshdr) &&
2535                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2536                 retry_count--;
2537                 goto retry;
2538         }
2539
2540         return result;
2541 }
2542 EXPORT_SYMBOL(scsi_mode_sense);
2543
2544 /**
2545  *      scsi_test_unit_ready - test if unit is ready
2546  *      @sdev:  scsi device to change the state of.
2547  *      @timeout: command timeout
2548  *      @retries: number of retries before failing
2549  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2550  *              returning sense. Make sure that this is cleared before passing
2551  *              in.
2552  *
2553  *      Returns zero if unsuccessful or an error if TUR failed.  For
2554  *      removable media, UNIT_ATTENTION sets ->changed flag.
2555  **/
2556 int
2557 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2558                      struct scsi_sense_hdr *sshdr_external)
2559 {
2560         char cmd[] = {
2561                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2562         };
2563         struct scsi_sense_hdr *sshdr;
2564         int result;
2565
2566         if (!sshdr_external)
2567                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2568         else
2569                 sshdr = sshdr_external;
2570
2571         /* try to eat the UNIT_ATTENTION if there are enough retries */
2572         do {
2573                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2574                                           timeout, retries, NULL);
2575                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2576                     sshdr->sense_key == UNIT_ATTENTION)
2577                         sdev->changed = 1;
2578         } while (scsi_sense_valid(sshdr) &&
2579                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2580
2581         if (!sshdr_external)
2582                 kfree(sshdr);
2583         return result;
2584 }
2585 EXPORT_SYMBOL(scsi_test_unit_ready);
2586
2587 /**
2588  *      scsi_device_set_state - Take the given device through the device state model.
2589  *      @sdev:  scsi device to change the state of.
2590  *      @state: state to change to.
2591  *
2592  *      Returns zero if unsuccessful or an error if the requested 
2593  *      transition is illegal.
2594  */
2595 int
2596 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2597 {
2598         enum scsi_device_state oldstate = sdev->sdev_state;
2599
2600         if (state == oldstate)
2601                 return 0;
2602
2603         switch (state) {
2604         case SDEV_CREATED:
2605                 switch (oldstate) {
2606                 case SDEV_CREATED_BLOCK:
2607                         break;
2608                 default:
2609                         goto illegal;
2610                 }
2611                 break;
2612                         
2613         case SDEV_RUNNING:
2614                 switch (oldstate) {
2615                 case SDEV_CREATED:
2616                 case SDEV_OFFLINE:
2617                 case SDEV_TRANSPORT_OFFLINE:
2618                 case SDEV_QUIESCE:
2619                 case SDEV_BLOCK:
2620                         break;
2621                 default:
2622                         goto illegal;
2623                 }
2624                 break;
2625
2626         case SDEV_QUIESCE:
2627                 switch (oldstate) {
2628                 case SDEV_RUNNING:
2629                 case SDEV_OFFLINE:
2630                 case SDEV_TRANSPORT_OFFLINE:
2631                         break;
2632                 default:
2633                         goto illegal;
2634                 }
2635                 break;
2636
2637         case SDEV_OFFLINE:
2638         case SDEV_TRANSPORT_OFFLINE:
2639                 switch (oldstate) {
2640                 case SDEV_CREATED:
2641                 case SDEV_RUNNING:
2642                 case SDEV_QUIESCE:
2643                 case SDEV_BLOCK:
2644                         break;
2645                 default:
2646                         goto illegal;
2647                 }
2648                 break;
2649
2650         case SDEV_BLOCK:
2651                 switch (oldstate) {
2652                 case SDEV_RUNNING:
2653                 case SDEV_CREATED_BLOCK:
2654                         break;
2655                 default:
2656                         goto illegal;
2657                 }
2658                 break;
2659
2660         case SDEV_CREATED_BLOCK:
2661                 switch (oldstate) {
2662                 case SDEV_CREATED:
2663                         break;
2664                 default:
2665                         goto illegal;
2666                 }
2667                 break;
2668
2669         case SDEV_CANCEL:
2670                 switch (oldstate) {
2671                 case SDEV_CREATED:
2672                 case SDEV_RUNNING:
2673                 case SDEV_QUIESCE:
2674                 case SDEV_OFFLINE:
2675                 case SDEV_TRANSPORT_OFFLINE:
2676                 case SDEV_BLOCK:
2677                         break;
2678                 default:
2679                         goto illegal;
2680                 }
2681                 break;
2682
2683         case SDEV_DEL:
2684                 switch (oldstate) {
2685                 case SDEV_CREATED:
2686                 case SDEV_RUNNING:
2687                 case SDEV_OFFLINE:
2688                 case SDEV_TRANSPORT_OFFLINE:
2689                 case SDEV_CANCEL:
2690                 case SDEV_CREATED_BLOCK:
2691                         break;
2692                 default:
2693                         goto illegal;
2694                 }
2695                 break;
2696
2697         }
2698         sdev->sdev_state = state;
2699         return 0;
2700
2701  illegal:
2702         SCSI_LOG_ERROR_RECOVERY(1,
2703                                 sdev_printk(KERN_ERR, sdev,
2704                                             "Illegal state transition %s->%s",
2705                                             scsi_device_state_name(oldstate),
2706                                             scsi_device_state_name(state))
2707                                 );
2708         return -EINVAL;
2709 }
2710 EXPORT_SYMBOL(scsi_device_set_state);
2711
2712 /**
2713  *      sdev_evt_emit - emit a single SCSI device uevent
2714  *      @sdev: associated SCSI device
2715  *      @evt: event to emit
2716  *
2717  *      Send a single uevent (scsi_event) to the associated scsi_device.
2718  */
2719 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2720 {
2721         int idx = 0;
2722         char *envp[3];
2723
2724         switch (evt->evt_type) {
2725         case SDEV_EVT_MEDIA_CHANGE:
2726                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2727                 break;
2728         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2729                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2730                 break;
2731         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2732                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2733                 break;
2734         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2735                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2736                 break;
2737         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2738                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2739                 break;
2740         case SDEV_EVT_LUN_CHANGE_REPORTED:
2741                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2742                 break;
2743         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2744                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2745                 break;
2746         default:
2747                 /* do nothing */
2748                 break;
2749         }
2750
2751         envp[idx++] = NULL;
2752
2753         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2754 }
2755
2756 /**
2757  *      sdev_evt_thread - send a uevent for each scsi event
2758  *      @work: work struct for scsi_device
2759  *
2760  *      Dispatch queued events to their associated scsi_device kobjects
2761  *      as uevents.
2762  */
2763 void scsi_evt_thread(struct work_struct *work)
2764 {
2765         struct scsi_device *sdev;
2766         enum scsi_device_event evt_type;
2767         LIST_HEAD(event_list);
2768
2769         sdev = container_of(work, struct scsi_device, event_work);
2770
2771         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2772                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2773                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2774
2775         while (1) {
2776                 struct scsi_event *evt;
2777                 struct list_head *this, *tmp;
2778                 unsigned long flags;
2779
2780                 spin_lock_irqsave(&sdev->list_lock, flags);
2781                 list_splice_init(&sdev->event_list, &event_list);
2782                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2783
2784                 if (list_empty(&event_list))
2785                         break;
2786
2787                 list_for_each_safe(this, tmp, &event_list) {
2788                         evt = list_entry(this, struct scsi_event, node);
2789                         list_del(&evt->node);
2790                         scsi_evt_emit(sdev, evt);
2791                         kfree(evt);
2792                 }
2793         }
2794 }
2795
2796 /**
2797  *      sdev_evt_send - send asserted event to uevent thread
2798  *      @sdev: scsi_device event occurred on
2799  *      @evt: event to send
2800  *
2801  *      Assert scsi device event asynchronously.
2802  */
2803 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2804 {
2805         unsigned long flags;
2806
2807 #if 0
2808         /* FIXME: currently this check eliminates all media change events
2809          * for polled devices.  Need to update to discriminate between AN
2810          * and polled events */
2811         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2812                 kfree(evt);
2813                 return;
2814         }
2815 #endif
2816
2817         spin_lock_irqsave(&sdev->list_lock, flags);
2818         list_add_tail(&evt->node, &sdev->event_list);
2819         schedule_work(&sdev->event_work);
2820         spin_unlock_irqrestore(&sdev->list_lock, flags);
2821 }
2822 EXPORT_SYMBOL_GPL(sdev_evt_send);
2823
2824 /**
2825  *      sdev_evt_alloc - allocate a new scsi event
2826  *      @evt_type: type of event to allocate
2827  *      @gfpflags: GFP flags for allocation
2828  *
2829  *      Allocates and returns a new scsi_event.
2830  */
2831 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2832                                   gfp_t gfpflags)
2833 {
2834         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2835         if (!evt)
2836                 return NULL;
2837
2838         evt->evt_type = evt_type;
2839         INIT_LIST_HEAD(&evt->node);
2840
2841         /* evt_type-specific initialization, if any */
2842         switch (evt_type) {
2843         case SDEV_EVT_MEDIA_CHANGE:
2844         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2845         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2846         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2847         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2848         case SDEV_EVT_LUN_CHANGE_REPORTED:
2849         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2850         default:
2851                 /* do nothing */
2852                 break;
2853         }
2854
2855         return evt;
2856 }
2857 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2858
2859 /**
2860  *      sdev_evt_send_simple - send asserted event to uevent thread
2861  *      @sdev: scsi_device event occurred on
2862  *      @evt_type: type of event to send
2863  *      @gfpflags: GFP flags for allocation
2864  *
2865  *      Assert scsi device event asynchronously, given an event type.
2866  */
2867 void sdev_evt_send_simple(struct scsi_device *sdev,
2868                           enum scsi_device_event evt_type, gfp_t gfpflags)
2869 {
2870         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2871         if (!evt) {
2872                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2873                             evt_type);
2874                 return;
2875         }
2876
2877         sdev_evt_send(sdev, evt);
2878 }
2879 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2880
2881 /**
2882  *      scsi_device_quiesce - Block user issued commands.
2883  *      @sdev:  scsi device to quiesce.
2884  *
2885  *      This works by trying to transition to the SDEV_QUIESCE state
2886  *      (which must be a legal transition).  When the device is in this
2887  *      state, only special requests will be accepted, all others will
2888  *      be deferred.  Since special requests may also be requeued requests,
2889  *      a successful return doesn't guarantee the device will be 
2890  *      totally quiescent.
2891  *
2892  *      Must be called with user context, may sleep.
2893  *
2894  *      Returns zero if unsuccessful or an error if not.
2895  */
2896 int
2897 scsi_device_quiesce(struct scsi_device *sdev)
2898 {
2899         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2900         if (err)
2901                 return err;
2902
2903         scsi_run_queue(sdev->request_queue);
2904         while (atomic_read(&sdev->device_busy)) {
2905                 msleep_interruptible(200);
2906                 scsi_run_queue(sdev->request_queue);
2907         }
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(scsi_device_quiesce);
2911
2912 /**
2913  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2914  *      @sdev:  scsi device to resume.
2915  *
2916  *      Moves the device from quiesced back to running and restarts the
2917  *      queues.
2918  *
2919  *      Must be called with user context, may sleep.
2920  */
2921 void scsi_device_resume(struct scsi_device *sdev)
2922 {
2923         /* check if the device state was mutated prior to resume, and if
2924          * so assume the state is being managed elsewhere (for example
2925          * device deleted during suspend)
2926          */
2927         if (sdev->sdev_state != SDEV_QUIESCE ||
2928             scsi_device_set_state(sdev, SDEV_RUNNING))
2929                 return;
2930         scsi_run_queue(sdev->request_queue);
2931 }
2932 EXPORT_SYMBOL(scsi_device_resume);
2933
2934 static void
2935 device_quiesce_fn(struct scsi_device *sdev, void *data)
2936 {
2937         scsi_device_quiesce(sdev);
2938 }
2939
2940 void
2941 scsi_target_quiesce(struct scsi_target *starget)
2942 {
2943         starget_for_each_device(starget, NULL, device_quiesce_fn);
2944 }
2945 EXPORT_SYMBOL(scsi_target_quiesce);
2946
2947 static void
2948 device_resume_fn(struct scsi_device *sdev, void *data)
2949 {
2950         scsi_device_resume(sdev);
2951 }
2952
2953 void
2954 scsi_target_resume(struct scsi_target *starget)
2955 {
2956         starget_for_each_device(starget, NULL, device_resume_fn);
2957 }
2958 EXPORT_SYMBOL(scsi_target_resume);
2959
2960 /**
2961  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2962  * @sdev:       device to block
2963  *
2964  * Block request made by scsi lld's to temporarily stop all
2965  * scsi commands on the specified device.  Called from interrupt
2966  * or normal process context.
2967  *
2968  * Returns zero if successful or error if not
2969  *
2970  * Notes:       
2971  *      This routine transitions the device to the SDEV_BLOCK state
2972  *      (which must be a legal transition).  When the device is in this
2973  *      state, all commands are deferred until the scsi lld reenables
2974  *      the device with scsi_device_unblock or device_block_tmo fires.
2975  */
2976 int
2977 scsi_internal_device_block(struct scsi_device *sdev)
2978 {
2979         struct request_queue *q = sdev->request_queue;
2980         unsigned long flags;
2981         int err = 0;
2982
2983         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2984         if (err) {
2985                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2986
2987                 if (err)
2988                         return err;
2989         }
2990
2991         /* 
2992          * The device has transitioned to SDEV_BLOCK.  Stop the
2993          * block layer from calling the midlayer with this device's
2994          * request queue. 
2995          */
2996         if (q->mq_ops) {
2997                 blk_mq_stop_hw_queues(q);
2998         } else {
2999                 spin_lock_irqsave(q->queue_lock, flags);
3000                 blk_stop_queue(q);
3001                 spin_unlock_irqrestore(q->queue_lock, flags);
3002         }
3003
3004         return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
3007  
3008 /**
3009  * scsi_internal_device_unblock - resume a device after a block request
3010  * @sdev:       device to resume
3011  * @new_state:  state to set devices to after unblocking
3012  *
3013  * Called by scsi lld's or the midlayer to restart the device queue
3014  * for the previously suspended scsi device.  Called from interrupt or
3015  * normal process context.
3016  *
3017  * Returns zero if successful or error if not.
3018  *
3019  * Notes:       
3020  *      This routine transitions the device to the SDEV_RUNNING state
3021  *      or to one of the offline states (which must be a legal transition)
3022  *      allowing the midlayer to goose the queue for this device.
3023  */
3024 int
3025 scsi_internal_device_unblock(struct scsi_device *sdev,
3026                              enum scsi_device_state new_state)
3027 {
3028         struct request_queue *q = sdev->request_queue; 
3029         unsigned long flags;
3030
3031         /*
3032          * Try to transition the scsi device to SDEV_RUNNING or one of the
3033          * offlined states and goose the device queue if successful.
3034          */
3035         if ((sdev->sdev_state == SDEV_BLOCK) ||
3036             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3037                 sdev->sdev_state = new_state;
3038         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3039                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3040                     new_state == SDEV_OFFLINE)
3041                         sdev->sdev_state = new_state;
3042                 else
3043                         sdev->sdev_state = SDEV_CREATED;
3044         } else if (sdev->sdev_state != SDEV_CANCEL &&
3045                  sdev->sdev_state != SDEV_OFFLINE)
3046                 return -EINVAL;
3047
3048         if (q->mq_ops) {
3049                 blk_mq_start_stopped_hw_queues(q, false);
3050         } else {
3051                 spin_lock_irqsave(q->queue_lock, flags);
3052                 blk_start_queue(q);
3053                 spin_unlock_irqrestore(q->queue_lock, flags);
3054         }
3055
3056         return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3059
3060 static void
3061 device_block(struct scsi_device *sdev, void *data)
3062 {
3063         scsi_internal_device_block(sdev);
3064 }
3065
3066 static int
3067 target_block(struct device *dev, void *data)
3068 {
3069         if (scsi_is_target_device(dev))
3070                 starget_for_each_device(to_scsi_target(dev), NULL,
3071                                         device_block);
3072         return 0;
3073 }
3074
3075 void
3076 scsi_target_block(struct device *dev)
3077 {
3078         if (scsi_is_target_device(dev))
3079                 starget_for_each_device(to_scsi_target(dev), NULL,
3080                                         device_block);
3081         else
3082                 device_for_each_child(dev, NULL, target_block);
3083 }
3084 EXPORT_SYMBOL_GPL(scsi_target_block);
3085
3086 static void
3087 device_unblock(struct scsi_device *sdev, void *data)
3088 {
3089         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3090 }
3091
3092 static int
3093 target_unblock(struct device *dev, void *data)
3094 {
3095         if (scsi_is_target_device(dev))
3096                 starget_for_each_device(to_scsi_target(dev), data,
3097                                         device_unblock);
3098         return 0;
3099 }
3100
3101 void
3102 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3103 {
3104         if (scsi_is_target_device(dev))
3105                 starget_for_each_device(to_scsi_target(dev), &new_state,
3106                                         device_unblock);
3107         else
3108                 device_for_each_child(dev, &new_state, target_unblock);
3109 }
3110 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3111
3112 /**
3113  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3114  * @sgl:        scatter-gather list
3115  * @sg_count:   number of segments in sg
3116  * @offset:     offset in bytes into sg, on return offset into the mapped area
3117  * @len:        bytes to map, on return number of bytes mapped
3118  *
3119  * Returns virtual address of the start of the mapped page
3120  */
3121 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3122                           size_t *offset, size_t *len)
3123 {
3124         int i;
3125         size_t sg_len = 0, len_complete = 0;
3126         struct scatterlist *sg;
3127         struct page *page;
3128
3129         WARN_ON(!irqs_disabled());
3130
3131         for_each_sg(sgl, sg, sg_count, i) {
3132                 len_complete = sg_len; /* Complete sg-entries */
3133                 sg_len += sg->length;
3134                 if (sg_len > *offset)
3135                         break;
3136         }
3137
3138         if (unlikely(i == sg_count)) {
3139                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3140                         "elements %d\n",
3141                        __func__, sg_len, *offset, sg_count);
3142                 WARN_ON(1);
3143                 return NULL;
3144         }
3145
3146         /* Offset starting from the beginning of first page in this sg-entry */
3147         *offset = *offset - len_complete + sg->offset;
3148
3149         /* Assumption: contiguous pages can be accessed as "page + i" */
3150         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3151         *offset &= ~PAGE_MASK;
3152
3153         /* Bytes in this sg-entry from *offset to the end of the page */
3154         sg_len = PAGE_SIZE - *offset;
3155         if (*len > sg_len)
3156                 *len = sg_len;
3157
3158         return kmap_atomic(page);
3159 }
3160 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3161
3162 /**
3163  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3164  * @virt:       virtual address to be unmapped
3165  */
3166 void scsi_kunmap_atomic_sg(void *virt)
3167 {
3168         kunmap_atomic(virt);
3169 }
3170 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3171
3172 void sdev_disable_disk_events(struct scsi_device *sdev)
3173 {
3174         atomic_inc(&sdev->disk_events_disable_depth);
3175 }
3176 EXPORT_SYMBOL(sdev_disable_disk_events);
3177
3178 void sdev_enable_disk_events(struct scsi_device *sdev)
3179 {
3180         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3181                 return;
3182         atomic_dec(&sdev->disk_events_disable_depth);
3183 }
3184 EXPORT_SYMBOL(sdev_enable_disk_events);