GNU Linux-libre 4.14.302-gnu1
[releases.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH     30000
74 #define MAX_CHAIN_DEPTH         100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94         " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98         " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110         int ret = param_set_int(val, kp);
111         struct MPT3SAS_ADAPTER *ioc;
112
113         if (ret)
114                 return ret;
115
116         /* global ioc spinlock to protect controller list on list operations */
117         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118         spin_lock(&gioc_lock);
119         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121         spin_unlock(&gioc_lock);
122         return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125         param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137         struct pci_dev *pdev;
138
139         if ((ioc == NULL))
140                 return -1;
141
142         pdev = ioc->pdev;
143         if ((pdev == NULL))
144                 return -1;
145         pci_stop_and_remove_bus_device_locked(pdev);
146         return 0;
147 }
148
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159         struct MPT3SAS_ADAPTER *ioc =
160             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161         unsigned long    flags;
162         u32 doorbell;
163         int rc;
164         struct task_struct *p;
165
166
167         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168         if (ioc->shost_recovery || ioc->pci_error_recovery)
169                 goto rearm_timer;
170         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175                     ioc->name);
176
177                 /* It may be possible that EEH recovery can resolve some of
178                  * pci bus failure issues rather removing the dead ioc function
179                  * by considering controller is in a non-operational state. So
180                  * here priority is given to the EEH recovery. If it doesn't
181                  * not resolve this issue, mpt3sas driver will consider this
182                  * controller to non-operational state and remove the dead ioc
183                  * function.
184                  */
185                 if (ioc->non_operational_loop++ < 5) {
186                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187                                                          flags);
188                         goto rearm_timer;
189                 }
190
191                 /*
192                  * Call _scsih_flush_pending_cmds callback so that we flush all
193                  * pending commands back to OS. This call is required to aovid
194                  * deadlock at block layer. Dead IOC will fail to do diag reset,
195                  * and this call is safe since dead ioc will never return any
196                  * command back from HW.
197                  */
198                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199                 /*
200                  * Set remove_host flag early since kernel thread will
201                  * take some time to execute.
202                  */
203                 ioc->remove_host = 1;
204                 /*Remove the Dead Host */
205                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207                 if (IS_ERR(p))
208                         pr_err(MPT3SAS_FMT
209                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210                         ioc->name, __func__);
211                 else
212                         pr_err(MPT3SAS_FMT
213                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214                         ioc->name, __func__);
215                 return; /* don't rearm timer */
216         }
217
218         ioc->non_operational_loop = 0;
219
220         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223                     __func__, (rc == 0) ? "success" : "failed");
224                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226                         mpt3sas_base_fault_info(ioc, doorbell &
227                             MPI2_DOORBELL_DATA_MASK);
228                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229                     MPI2_IOC_STATE_OPERATIONAL)
230                         return; /* don't rearm timer */
231         }
232
233         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235         if (ioc->fault_reset_work_q)
236                 queue_delayed_work(ioc->fault_reset_work_q,
237                     &ioc->fault_reset_work,
238                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252         unsigned long    flags;
253
254         if (ioc->fault_reset_work_q)
255                 return;
256
257         /* initialize fault polling */
258
259         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260         snprintf(ioc->fault_reset_work_q_name,
261             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262             ioc->driver_name, ioc->id);
263         ioc->fault_reset_work_q =
264                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265         if (!ioc->fault_reset_work_q) {
266                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267                     ioc->name, __func__, __LINE__);
268                         return;
269         }
270         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271         if (ioc->fault_reset_work_q)
272                 queue_delayed_work(ioc->fault_reset_work_q,
273                     &ioc->fault_reset_work,
274                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288         unsigned long flags;
289         struct workqueue_struct *wq;
290
291         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292         wq = ioc->fault_reset_work_q;
293         ioc->fault_reset_work_q = NULL;
294         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295         if (wq) {
296                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297                         flush_workqueue(wq);
298                 destroy_workqueue(wq);
299         }
300 }
301
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313             ioc->name, fault_code);
314 }
315
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328         u32 doorbell;
329
330         if (!ioc->fwfault_debug)
331                 return;
332
333         dump_stack();
334
335         doorbell = readl(&ioc->chip->Doorbell);
336         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337                 mpt3sas_base_fault_info(ioc , doorbell);
338         else {
339                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341                         ioc->name);
342         }
343
344         if (ioc->fwfault_debug == 2)
345                 for (;;)
346                         ;
347         else
348                 panic("panic in %s\n", __func__);
349 }
350
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361         MPI2RequestHeader_t *request_hdr)
362 {
363         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364             MPI2_IOCSTATUS_MASK;
365         char *desc = NULL;
366         u16 frame_sz;
367         char *func_str = NULL;
368
369         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373                 return;
374
375         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376                 return;
377
378         switch (ioc_status) {
379
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383
384         case MPI2_IOCSTATUS_INVALID_FUNCTION:
385                 desc = "invalid function";
386                 break;
387         case MPI2_IOCSTATUS_BUSY:
388                 desc = "busy";
389                 break;
390         case MPI2_IOCSTATUS_INVALID_SGL:
391                 desc = "invalid sgl";
392                 break;
393         case MPI2_IOCSTATUS_INTERNAL_ERROR:
394                 desc = "internal error";
395                 break;
396         case MPI2_IOCSTATUS_INVALID_VPID:
397                 desc = "invalid vpid";
398                 break;
399         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400                 desc = "insufficient resources";
401                 break;
402         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403                 desc = "insufficient power";
404                 break;
405         case MPI2_IOCSTATUS_INVALID_FIELD:
406                 desc = "invalid field";
407                 break;
408         case MPI2_IOCSTATUS_INVALID_STATE:
409                 desc = "invalid state";
410                 break;
411         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412                 desc = "op state not supported";
413                 break;
414
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418
419         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420                 desc = "config invalid action";
421                 break;
422         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423                 desc = "config invalid type";
424                 break;
425         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426                 desc = "config invalid page";
427                 break;
428         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429                 desc = "config invalid data";
430                 break;
431         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432                 desc = "config no defaults";
433                 break;
434         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435                 desc = "config cant commit";
436                 break;
437
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441
442         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454                 break;
455
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461                 desc = "eedp guard error";
462                 break;
463         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464                 desc = "eedp ref tag error";
465                 break;
466         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467                 desc = "eedp app tag error";
468                 break;
469
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473
474         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475                 desc = "target invalid io index";
476                 break;
477         case MPI2_IOCSTATUS_TARGET_ABORTED:
478                 desc = "target aborted";
479                 break;
480         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481                 desc = "target no conn retryable";
482                 break;
483         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484                 desc = "target no connection";
485                 break;
486         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487                 desc = "target xfer count mismatch";
488                 break;
489         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490                 desc = "target data offset error";
491                 break;
492         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493                 desc = "target too much write data";
494                 break;
495         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496                 desc = "target iu too short";
497                 break;
498         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499                 desc = "target ack nak timeout";
500                 break;
501         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502                 desc = "target nak received";
503                 break;
504
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508
509         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510                 desc = "smp request failed";
511                 break;
512         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513                 desc = "smp data overrun";
514                 break;
515
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521                 desc = "diagnostic released";
522                 break;
523         default:
524                 break;
525         }
526
527         if (!desc)
528                 return;
529
530         switch (request_hdr->Function) {
531         case MPI2_FUNCTION_CONFIG:
532                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533                 func_str = "config_page";
534                 break;
535         case MPI2_FUNCTION_SCSI_TASK_MGMT:
536                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537                 func_str = "task_mgmt";
538                 break;
539         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541                 func_str = "sas_iounit_ctl";
542                 break;
543         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544                 frame_sz = sizeof(Mpi2SepRequest_t);
545                 func_str = "enclosure";
546                 break;
547         case MPI2_FUNCTION_IOC_INIT:
548                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549                 func_str = "ioc_init";
550                 break;
551         case MPI2_FUNCTION_PORT_ENABLE:
552                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553                 func_str = "port_enable";
554                 break;
555         case MPI2_FUNCTION_SMP_PASSTHROUGH:
556                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557                 func_str = "smp_passthru";
558                 break;
559         default:
560                 frame_sz = 32;
561                 func_str = "unknown";
562                 break;
563         }
564
565         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566                 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568         _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580         Mpi2EventNotificationReply_t *mpi_reply)
581 {
582         char *desc = NULL;
583         u16 event;
584
585         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586                 return;
587
588         event = le16_to_cpu(mpi_reply->Event);
589
590         switch (event) {
591         case MPI2_EVENT_LOG_DATA:
592                 desc = "Log Data";
593                 break;
594         case MPI2_EVENT_STATE_CHANGE:
595                 desc = "Status Change";
596                 break;
597         case MPI2_EVENT_HARD_RESET_RECEIVED:
598                 desc = "Hard Reset Received";
599                 break;
600         case MPI2_EVENT_EVENT_CHANGE:
601                 desc = "Event Change";
602                 break;
603         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604                 desc = "Device Status Change";
605                 break;
606         case MPI2_EVENT_IR_OPERATION_STATUS:
607                 if (!ioc->hide_ir_msg)
608                         desc = "IR Operation Status";
609                 break;
610         case MPI2_EVENT_SAS_DISCOVERY:
611         {
612                 Mpi2EventDataSasDiscovery_t *event_data =
613                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616                     "start" : "stop");
617                 if (event_data->DiscoveryStatus)
618                         pr_cont(" discovery_status(0x%08x)",
619                             le32_to_cpu(event_data->DiscoveryStatus));
620                 pr_cont("\n");
621                 return;
622         }
623         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624                 desc = "SAS Broadcast Primitive";
625                 break;
626         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627                 desc = "SAS Init Device Status Change";
628                 break;
629         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630                 desc = "SAS Init Table Overflow";
631                 break;
632         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633                 desc = "SAS Topology Change List";
634                 break;
635         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636                 desc = "SAS Enclosure Device Status Change";
637                 break;
638         case MPI2_EVENT_IR_VOLUME:
639                 if (!ioc->hide_ir_msg)
640                         desc = "IR Volume";
641                 break;
642         case MPI2_EVENT_IR_PHYSICAL_DISK:
643                 if (!ioc->hide_ir_msg)
644                         desc = "IR Physical Disk";
645                 break;
646         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647                 if (!ioc->hide_ir_msg)
648                         desc = "IR Configuration Change List";
649                 break;
650         case MPI2_EVENT_LOG_ENTRY_ADDED:
651                 if (!ioc->hide_ir_msg)
652                         desc = "Log Entry Added";
653                 break;
654         case MPI2_EVENT_TEMP_THRESHOLD:
655                 desc = "Temperature Threshold";
656                 break;
657         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658                 desc = "Active cable exception";
659                 break;
660         }
661
662         if (!desc)
663                 return;
664
665         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678         union loginfo_type {
679                 u32     loginfo;
680                 struct {
681                         u32     subcode:16;
682                         u32     code:8;
683                         u32     originator:4;
684                         u32     bus_type:4;
685                 } dw;
686         };
687         union loginfo_type sas_loginfo;
688         char *originator_str = NULL;
689
690         sas_loginfo.loginfo = log_info;
691         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692                 return;
693
694         /* each nexus loss loginfo */
695         if (log_info == 0x31170000)
696                 return;
697
698         /* eat the loginfos associated with task aborts */
699         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700             0x31140000 || log_info == 0x31130000))
701                 return;
702
703         switch (sas_loginfo.dw.originator) {
704         case 0:
705                 originator_str = "IOP";
706                 break;
707         case 1:
708                 originator_str = "PL";
709                 break;
710         case 2:
711                 if (!ioc->hide_ir_msg)
712                         originator_str = "IR";
713                 else
714                         originator_str = "WarpDrive";
715                 break;
716         }
717
718         pr_warn(MPT3SAS_FMT
719                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720                 ioc->name, log_info,
721              originator_str, sas_loginfo.dw.code,
722              sas_loginfo.dw.subcode);
723 }
724
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736         u32 reply)
737 {
738         MPI2DefaultReply_t *mpi_reply;
739         u16 ioc_status;
740         u32 loginfo = 0;
741
742         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743         if (unlikely(!mpi_reply)) {
744                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745                     ioc->name, __FILE__, __LINE__, __func__);
746                 return;
747         }
748         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749
750         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751             (ioc->logging_level & MPT_DEBUG_REPLY)) {
752                 _base_sas_ioc_info(ioc , mpi_reply,
753                    mpt3sas_base_get_msg_frame(ioc, smid));
754         }
755
756         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758                 _base_sas_log_info(ioc, loginfo);
759         }
760
761         if (ioc_status || loginfo) {
762                 ioc_status &= MPI2_IOCSTATUS_MASK;
763                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764         }
765 }
766
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779         u32 reply)
780 {
781         MPI2DefaultReply_t *mpi_reply;
782
783         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786
787         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788                 return 1;
789
790         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791         if (mpi_reply) {
792                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794         }
795         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796
797         complete(&ioc->base_cmds.done);
798         return 1;
799 }
800
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813         Mpi2EventNotificationReply_t *mpi_reply;
814         Mpi2EventAckRequest_t *ack_request;
815         u16 smid;
816         struct _event_ack_list *delayed_event_ack;
817
818         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819         if (!mpi_reply)
820                 return 1;
821         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822                 return 1;
823
824         _base_display_event_data(ioc, mpi_reply);
825
826         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827                 goto out;
828         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829         if (!smid) {
830                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831                                         GFP_ATOMIC);
832                 if (!delayed_event_ack)
833                         goto out;
834                 INIT_LIST_HEAD(&delayed_event_ack->list);
835                 delayed_event_ack->Event = mpi_reply->Event;
836                 delayed_event_ack->EventContext = mpi_reply->EventContext;
837                 list_add_tail(&delayed_event_ack->list,
838                                 &ioc->delayed_event_ack_list);
839                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
840                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
841                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
842                 goto out;
843         }
844
845         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848         ack_request->Event = mpi_reply->Event;
849         ack_request->EventContext = mpi_reply->EventContext;
850         ack_request->VF_ID = 0;  /* TODO */
851         ack_request->VP_ID = 0;
852         ioc->put_smid_default(ioc, smid);
853
854  out:
855
856         /* scsih callback handler */
857         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858
859         /* ctl callback handler */
860         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861
862         return 1;
863 }
864
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875         int i;
876         u8 cb_idx;
877
878         if (smid < ioc->hi_priority_smid) {
879                 i = smid - 1;
880                 cb_idx = ioc->scsi_lookup[i].cb_idx;
881         } else if (smid < ioc->internal_smid) {
882                 i = smid - ioc->hi_priority_smid;
883                 cb_idx = ioc->hpr_lookup[i].cb_idx;
884         } else if (smid <= ioc->hba_queue_depth) {
885                 i = smid - ioc->internal_smid;
886                 cb_idx = ioc->internal_lookup[i].cb_idx;
887         } else
888                 cb_idx = 0xFF;
889         return cb_idx;
890 }
891
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903         u32 him_register;
904
905         ioc->mask_interrupts = 1;
906         him_register = readl(&ioc->chip->HostInterruptMask);
907         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908         writel(him_register, &ioc->chip->HostInterruptMask);
909         readl(&ioc->chip->HostInterruptMask);
910 }
911
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923         u32 him_register;
924
925         him_register = readl(&ioc->chip->HostInterruptMask);
926         him_register &= ~MPI2_HIM_RIM;
927         writel(him_register, &ioc->chip->HostInterruptMask);
928         ioc->mask_interrupts = 0;
929 }
930
931 union reply_descriptor {
932         u64 word;
933         struct {
934                 u32 low;
935                 u32 high;
936         } u;
937 };
938
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950         struct adapter_reply_queue *reply_q = bus_id;
951         union reply_descriptor rd;
952         u32 completed_cmds;
953         u8 request_desript_type;
954         u16 smid;
955         u8 cb_idx;
956         u32 reply;
957         u8 msix_index = reply_q->msix_index;
958         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959         Mpi2ReplyDescriptorsUnion_t *rpf;
960         u8 rc;
961
962         if (ioc->mask_interrupts)
963                 return IRQ_NONE;
964
965         if (!atomic_add_unless(&reply_q->busy, 1, 1))
966                 return IRQ_NONE;
967
968         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969         request_desript_type = rpf->Default.ReplyFlags
970              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972                 atomic_dec(&reply_q->busy);
973                 return IRQ_NONE;
974         }
975
976         completed_cmds = 0;
977         cb_idx = 0xFF;
978         do {
979                 rd.word = le64_to_cpu(rpf->Words);
980                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981                         goto out;
982                 reply = 0;
983                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984                 if (request_desript_type ==
985                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986                     request_desript_type ==
987                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988                         cb_idx = _base_get_cb_idx(ioc, smid);
989                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990                             (likely(mpt_callbacks[cb_idx] != NULL))) {
991                                 rc = mpt_callbacks[cb_idx](ioc, smid,
992                                     msix_index, 0);
993                                 if (rc)
994                                         mpt3sas_base_free_smid(ioc, smid);
995                         }
996                 } else if (request_desript_type ==
997                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998                         reply = le32_to_cpu(
999                             rpf->AddressReply.ReplyFrameAddress);
1000                         if (reply > ioc->reply_dma_max_address ||
1001                             reply < ioc->reply_dma_min_address)
1002                                 reply = 0;
1003                         if (smid) {
1004                                 cb_idx = _base_get_cb_idx(ioc, smid);
1005                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1007                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1008                                             msix_index, reply);
1009                                         if (reply)
1010                                                 _base_display_reply_info(ioc,
1011                                                     smid, msix_index, reply);
1012                                         if (rc)
1013                                                 mpt3sas_base_free_smid(ioc,
1014                                                     smid);
1015                                 }
1016                         } else {
1017                                 _base_async_event(ioc, msix_index, reply);
1018                         }
1019
1020                         /* reply free queue handling */
1021                         if (reply) {
1022                                 ioc->reply_free_host_index =
1023                                     (ioc->reply_free_host_index ==
1024                                     (ioc->reply_free_queue_depth - 1)) ?
1025                                     0 : ioc->reply_free_host_index + 1;
1026                                 ioc->reply_free[ioc->reply_free_host_index] =
1027                                     cpu_to_le32(reply);
1028                                 writel(ioc->reply_free_host_index,
1029                                     &ioc->chip->ReplyFreeHostIndex);
1030                         }
1031                 }
1032
1033                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1034                 reply_q->reply_post_host_index =
1035                     (reply_q->reply_post_host_index ==
1036                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1037                     reply_q->reply_post_host_index + 1;
1038                 request_desript_type =
1039                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1040                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1041                 completed_cmds++;
1042                 /* Update the reply post host index after continuously
1043                  * processing the threshold number of Reply Descriptors.
1044                  * So that FW can find enough entries to post the Reply
1045                  * Descriptors in the reply descriptor post queue.
1046                  */
1047                 if (completed_cmds > ioc->hba_queue_depth/3) {
1048                         if (ioc->combined_reply_queue) {
1049                                 writel(reply_q->reply_post_host_index |
1050                                                 ((msix_index  & 7) <<
1051                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1052                                     ioc->replyPostRegisterIndex[msix_index/8]);
1053                         } else {
1054                                 writel(reply_q->reply_post_host_index |
1055                                                 (msix_index <<
1056                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1057                                                 &ioc->chip->ReplyPostHostIndex);
1058                         }
1059                         completed_cmds = 1;
1060                 }
1061                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1062                         goto out;
1063                 if (!reply_q->reply_post_host_index)
1064                         rpf = reply_q->reply_post_free;
1065                 else
1066                         rpf++;
1067         } while (1);
1068
1069  out:
1070
1071         if (!completed_cmds) {
1072                 atomic_dec(&reply_q->busy);
1073                 return IRQ_NONE;
1074         }
1075
1076         if (ioc->is_warpdrive) {
1077                 writel(reply_q->reply_post_host_index,
1078                 ioc->reply_post_host_index[msix_index]);
1079                 atomic_dec(&reply_q->busy);
1080                 return IRQ_HANDLED;
1081         }
1082
1083         /* Update Reply Post Host Index.
1084          * For those HBA's which support combined reply queue feature
1085          * 1. Get the correct Supplemental Reply Post Host Index Register.
1086          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1087          *    Index Register address bank i.e replyPostRegisterIndex[],
1088          * 2. Then update this register with new reply host index value
1089          *    in ReplyPostIndex field and the MSIxIndex field with
1090          *    msix_index value reduced to a value between 0 and 7,
1091          *    using a modulo 8 operation. Since each Supplemental Reply Post
1092          *    Host Index Register supports 8 MSI-X vectors.
1093          *
1094          * For other HBA's just update the Reply Post Host Index register with
1095          * new reply host index value in ReplyPostIndex Field and msix_index
1096          * value in MSIxIndex field.
1097          */
1098         if (ioc->combined_reply_queue)
1099                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1100                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1101                         ioc->replyPostRegisterIndex[msix_index/8]);
1102         else
1103                 writel(reply_q->reply_post_host_index | (msix_index <<
1104                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1105                         &ioc->chip->ReplyPostHostIndex);
1106         atomic_dec(&reply_q->busy);
1107         return IRQ_HANDLED;
1108 }
1109
1110 /**
1111  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1112  * @ioc: per adapter object
1113  *
1114  */
1115 static inline int
1116 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118         return (ioc->facts.IOCCapabilities &
1119             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1120 }
1121
1122 /**
1123  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1124  * @ioc: per adapter object
1125  * Context: non ISR conext
1126  *
1127  * Called when a Task Management request has completed.
1128  *
1129  * Return nothing.
1130  */
1131 void
1132 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1133 {
1134         struct adapter_reply_queue *reply_q;
1135
1136         /* If MSIX capability is turned off
1137          * then multi-queues are not enabled
1138          */
1139         if (!_base_is_controller_msix_enabled(ioc))
1140                 return;
1141
1142         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1143                 if (ioc->shost_recovery || ioc->remove_host ||
1144                                 ioc->pci_error_recovery)
1145                         return;
1146                 /* TMs are on msix_index == 0 */
1147                 if (reply_q->msix_index == 0)
1148                         continue;
1149                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1150         }
1151 }
1152
1153 /**
1154  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1155  * @cb_idx: callback index
1156  *
1157  * Return nothing.
1158  */
1159 void
1160 mpt3sas_base_release_callback_handler(u8 cb_idx)
1161 {
1162         mpt_callbacks[cb_idx] = NULL;
1163 }
1164
1165 /**
1166  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1167  * @cb_func: callback function
1168  *
1169  * Returns cb_func.
1170  */
1171 u8
1172 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1173 {
1174         u8 cb_idx;
1175
1176         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1177                 if (mpt_callbacks[cb_idx] == NULL)
1178                         break;
1179
1180         mpt_callbacks[cb_idx] = cb_func;
1181         return cb_idx;
1182 }
1183
1184 /**
1185  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1186  *
1187  * Return nothing.
1188  */
1189 void
1190 mpt3sas_base_initialize_callback_handler(void)
1191 {
1192         u8 cb_idx;
1193
1194         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1195                 mpt3sas_base_release_callback_handler(cb_idx);
1196 }
1197
1198
1199 /**
1200  * _base_build_zero_len_sge - build zero length sg entry
1201  * @ioc: per adapter object
1202  * @paddr: virtual address for SGE
1203  *
1204  * Create a zero length scatter gather entry to insure the IOCs hardware has
1205  * something to use if the target device goes brain dead and tries
1206  * to send data even when none is asked for.
1207  *
1208  * Return nothing.
1209  */
1210 static void
1211 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1212 {
1213         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1214             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1215             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1216             MPI2_SGE_FLAGS_SHIFT);
1217         ioc->base_add_sg_single(paddr, flags_length, -1);
1218 }
1219
1220 /**
1221  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1222  * @paddr: virtual address for SGE
1223  * @flags_length: SGE flags and data transfer length
1224  * @dma_addr: Physical address
1225  *
1226  * Return nothing.
1227  */
1228 static void
1229 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1230 {
1231         Mpi2SGESimple32_t *sgel = paddr;
1232
1233         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1234             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1235         sgel->FlagsLength = cpu_to_le32(flags_length);
1236         sgel->Address = cpu_to_le32(dma_addr);
1237 }
1238
1239
1240 /**
1241  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1242  * @paddr: virtual address for SGE
1243  * @flags_length: SGE flags and data transfer length
1244  * @dma_addr: Physical address
1245  *
1246  * Return nothing.
1247  */
1248 static void
1249 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1250 {
1251         Mpi2SGESimple64_t *sgel = paddr;
1252
1253         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1254             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1255         sgel->FlagsLength = cpu_to_le32(flags_length);
1256         sgel->Address = cpu_to_le64(dma_addr);
1257 }
1258
1259 /**
1260  * _base_get_chain_buffer_tracker - obtain chain tracker
1261  * @ioc: per adapter object
1262  * @smid: smid associated to an IO request
1263  *
1264  * Returns chain tracker(from ioc->free_chain_list)
1265  */
1266 static struct chain_tracker *
1267 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1268 {
1269         struct chain_tracker *chain_req;
1270         unsigned long flags;
1271
1272         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1273         if (list_empty(&ioc->free_chain_list)) {
1274                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1275                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1276                         "chain buffers not available\n", ioc->name));
1277                 return NULL;
1278         }
1279         chain_req = list_entry(ioc->free_chain_list.next,
1280             struct chain_tracker, tracker_list);
1281         list_del_init(&chain_req->tracker_list);
1282         list_add_tail(&chain_req->tracker_list,
1283             &ioc->scsi_lookup[smid - 1].chain_list);
1284         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1285         return chain_req;
1286 }
1287
1288
1289 /**
1290  * _base_build_sg - build generic sg
1291  * @ioc: per adapter object
1292  * @psge: virtual address for SGE
1293  * @data_out_dma: physical address for WRITES
1294  * @data_out_sz: data xfer size for WRITES
1295  * @data_in_dma: physical address for READS
1296  * @data_in_sz: data xfer size for READS
1297  *
1298  * Return nothing.
1299  */
1300 static void
1301 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1302         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1303         size_t data_in_sz)
1304 {
1305         u32 sgl_flags;
1306
1307         if (!data_out_sz && !data_in_sz) {
1308                 _base_build_zero_len_sge(ioc, psge);
1309                 return;
1310         }
1311
1312         if (data_out_sz && data_in_sz) {
1313                 /* WRITE sgel first */
1314                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1316                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1317                 ioc->base_add_sg_single(psge, sgl_flags |
1318                     data_out_sz, data_out_dma);
1319
1320                 /* incr sgel */
1321                 psge += ioc->sge_size;
1322
1323                 /* READ sgel last */
1324                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1325                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1326                     MPI2_SGE_FLAGS_END_OF_LIST);
1327                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1328                 ioc->base_add_sg_single(psge, sgl_flags |
1329                     data_in_sz, data_in_dma);
1330         } else if (data_out_sz) /* WRITE */ {
1331                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1332                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1333                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1334                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1335                 ioc->base_add_sg_single(psge, sgl_flags |
1336                     data_out_sz, data_out_dma);
1337         } else if (data_in_sz) /* READ */ {
1338                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1339                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1340                     MPI2_SGE_FLAGS_END_OF_LIST);
1341                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1342                 ioc->base_add_sg_single(psge, sgl_flags |
1343                     data_in_sz, data_in_dma);
1344         }
1345 }
1346
1347 /* IEEE format sgls */
1348
1349 /**
1350  * _base_add_sg_single_ieee - add sg element for IEEE format
1351  * @paddr: virtual address for SGE
1352  * @flags: SGE flags
1353  * @chain_offset: number of 128 byte elements from start of segment
1354  * @length: data transfer length
1355  * @dma_addr: Physical address
1356  *
1357  * Return nothing.
1358  */
1359 static void
1360 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1361         dma_addr_t dma_addr)
1362 {
1363         Mpi25IeeeSgeChain64_t *sgel = paddr;
1364
1365         sgel->Flags = flags;
1366         sgel->NextChainOffset = chain_offset;
1367         sgel->Length = cpu_to_le32(length);
1368         sgel->Address = cpu_to_le64(dma_addr);
1369 }
1370
1371 /**
1372  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1373  * @ioc: per adapter object
1374  * @paddr: virtual address for SGE
1375  *
1376  * Create a zero length scatter gather entry to insure the IOCs hardware has
1377  * something to use if the target device goes brain dead and tries
1378  * to send data even when none is asked for.
1379  *
1380  * Return nothing.
1381  */
1382 static void
1383 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1384 {
1385         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1386                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1387                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1388
1389         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1390 }
1391
1392 /**
1393  * _base_build_sg_scmd - main sg creation routine
1394  * @ioc: per adapter object
1395  * @scmd: scsi command
1396  * @smid: system request message index
1397  * Context: none.
1398  *
1399  * The main routine that builds scatter gather table from a given
1400  * scsi request sent via the .queuecommand main handler.
1401  *
1402  * Returns 0 success, anything else error
1403  */
1404 static int
1405 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1406                 struct scsi_cmnd *scmd, u16 smid)
1407 {
1408         Mpi2SCSIIORequest_t *mpi_request;
1409         dma_addr_t chain_dma;
1410         struct scatterlist *sg_scmd;
1411         void *sg_local, *chain;
1412         u32 chain_offset;
1413         u32 chain_length;
1414         u32 chain_flags;
1415         int sges_left;
1416         u32 sges_in_segment;
1417         u32 sgl_flags;
1418         u32 sgl_flags_last_element;
1419         u32 sgl_flags_end_buffer;
1420         struct chain_tracker *chain_req;
1421
1422         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1423
1424         /* init scatter gather flags */
1425         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1426         if (scmd->sc_data_direction == DMA_TO_DEVICE)
1427                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1428         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1429             << MPI2_SGE_FLAGS_SHIFT;
1430         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1431             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1432             << MPI2_SGE_FLAGS_SHIFT;
1433         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1434
1435         sg_scmd = scsi_sglist(scmd);
1436         sges_left = scsi_dma_map(scmd);
1437         if (sges_left < 0) {
1438                 sdev_printk(KERN_ERR, scmd->device,
1439                  "pci_map_sg failed: request for %d bytes!\n",
1440                  scsi_bufflen(scmd));
1441                 return -ENOMEM;
1442         }
1443
1444         sg_local = &mpi_request->SGL;
1445         sges_in_segment = ioc->max_sges_in_main_message;
1446         if (sges_left <= sges_in_segment)
1447                 goto fill_in_last_segment;
1448
1449         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1450             (sges_in_segment * ioc->sge_size))/4;
1451
1452         /* fill in main message segment when there is a chain following */
1453         while (sges_in_segment) {
1454                 if (sges_in_segment == 1)
1455                         ioc->base_add_sg_single(sg_local,
1456                             sgl_flags_last_element | sg_dma_len(sg_scmd),
1457                             sg_dma_address(sg_scmd));
1458                 else
1459                         ioc->base_add_sg_single(sg_local, sgl_flags |
1460                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1461                 sg_scmd = sg_next(sg_scmd);
1462                 sg_local += ioc->sge_size;
1463                 sges_left--;
1464                 sges_in_segment--;
1465         }
1466
1467         /* initializing the chain flags and pointers */
1468         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1469         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1470         if (!chain_req)
1471                 return -1;
1472         chain = chain_req->chain_buffer;
1473         chain_dma = chain_req->chain_buffer_dma;
1474         do {
1475                 sges_in_segment = (sges_left <=
1476                     ioc->max_sges_in_chain_message) ? sges_left :
1477                     ioc->max_sges_in_chain_message;
1478                 chain_offset = (sges_left == sges_in_segment) ?
1479                     0 : (sges_in_segment * ioc->sge_size)/4;
1480                 chain_length = sges_in_segment * ioc->sge_size;
1481                 if (chain_offset) {
1482                         chain_offset = chain_offset <<
1483                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
1484                         chain_length += ioc->sge_size;
1485                 }
1486                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1487                     chain_length, chain_dma);
1488                 sg_local = chain;
1489                 if (!chain_offset)
1490                         goto fill_in_last_segment;
1491
1492                 /* fill in chain segments */
1493                 while (sges_in_segment) {
1494                         if (sges_in_segment == 1)
1495                                 ioc->base_add_sg_single(sg_local,
1496                                     sgl_flags_last_element |
1497                                     sg_dma_len(sg_scmd),
1498                                     sg_dma_address(sg_scmd));
1499                         else
1500                                 ioc->base_add_sg_single(sg_local, sgl_flags |
1501                                     sg_dma_len(sg_scmd),
1502                                     sg_dma_address(sg_scmd));
1503                         sg_scmd = sg_next(sg_scmd);
1504                         sg_local += ioc->sge_size;
1505                         sges_left--;
1506                         sges_in_segment--;
1507                 }
1508
1509                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1510                 if (!chain_req)
1511                         return -1;
1512                 chain = chain_req->chain_buffer;
1513                 chain_dma = chain_req->chain_buffer_dma;
1514         } while (1);
1515
1516
1517  fill_in_last_segment:
1518
1519         /* fill the last segment */
1520         while (sges_left) {
1521                 if (sges_left == 1)
1522                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1523                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1524                 else
1525                         ioc->base_add_sg_single(sg_local, sgl_flags |
1526                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1527                 sg_scmd = sg_next(sg_scmd);
1528                 sg_local += ioc->sge_size;
1529                 sges_left--;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /**
1536  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1537  * @ioc: per adapter object
1538  * @scmd: scsi command
1539  * @smid: system request message index
1540  * Context: none.
1541  *
1542  * The main routine that builds scatter gather table from a given
1543  * scsi request sent via the .queuecommand main handler.
1544  *
1545  * Returns 0 success, anything else error
1546  */
1547 static int
1548 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1549         struct scsi_cmnd *scmd, u16 smid)
1550 {
1551         Mpi2SCSIIORequest_t *mpi_request;
1552         dma_addr_t chain_dma;
1553         struct scatterlist *sg_scmd;
1554         void *sg_local, *chain;
1555         u32 chain_offset;
1556         u32 chain_length;
1557         int sges_left;
1558         u32 sges_in_segment;
1559         u8 simple_sgl_flags;
1560         u8 simple_sgl_flags_last;
1561         u8 chain_sgl_flags;
1562         struct chain_tracker *chain_req;
1563
1564         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1565
1566         /* init scatter gather flags */
1567         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1568             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1569         simple_sgl_flags_last = simple_sgl_flags |
1570             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1571         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1572             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1573
1574         sg_scmd = scsi_sglist(scmd);
1575         sges_left = scsi_dma_map(scmd);
1576         if (sges_left < 0) {
1577                 sdev_printk(KERN_ERR, scmd->device,
1578                         "pci_map_sg failed: request for %d bytes!\n",
1579                         scsi_bufflen(scmd));
1580                 return -ENOMEM;
1581         }
1582
1583         sg_local = &mpi_request->SGL;
1584         sges_in_segment = (ioc->request_sz -
1585             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1586         if (sges_left <= sges_in_segment)
1587                 goto fill_in_last_segment;
1588
1589         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1590             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1591
1592         /* fill in main message segment when there is a chain following */
1593         while (sges_in_segment > 1) {
1594                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1595                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1596                 sg_scmd = sg_next(sg_scmd);
1597                 sg_local += ioc->sge_size_ieee;
1598                 sges_left--;
1599                 sges_in_segment--;
1600         }
1601
1602         /* initializing the pointers */
1603         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1604         if (!chain_req)
1605                 return -1;
1606         chain = chain_req->chain_buffer;
1607         chain_dma = chain_req->chain_buffer_dma;
1608         do {
1609                 sges_in_segment = (sges_left <=
1610                     ioc->max_sges_in_chain_message) ? sges_left :
1611                     ioc->max_sges_in_chain_message;
1612                 chain_offset = (sges_left == sges_in_segment) ?
1613                     0 : sges_in_segment;
1614                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1615                 if (chain_offset)
1616                         chain_length += ioc->sge_size_ieee;
1617                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1618                     chain_offset, chain_length, chain_dma);
1619
1620                 sg_local = chain;
1621                 if (!chain_offset)
1622                         goto fill_in_last_segment;
1623
1624                 /* fill in chain segments */
1625                 while (sges_in_segment) {
1626                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1627                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1628                         sg_scmd = sg_next(sg_scmd);
1629                         sg_local += ioc->sge_size_ieee;
1630                         sges_left--;
1631                         sges_in_segment--;
1632                 }
1633
1634                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1635                 if (!chain_req)
1636                         return -1;
1637                 chain = chain_req->chain_buffer;
1638                 chain_dma = chain_req->chain_buffer_dma;
1639         } while (1);
1640
1641
1642  fill_in_last_segment:
1643
1644         /* fill the last segment */
1645         while (sges_left > 0) {
1646                 if (sges_left == 1)
1647                         _base_add_sg_single_ieee(sg_local,
1648                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1649                             sg_dma_address(sg_scmd));
1650                 else
1651                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1652                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1653                 sg_scmd = sg_next(sg_scmd);
1654                 sg_local += ioc->sge_size_ieee;
1655                 sges_left--;
1656         }
1657
1658         return 0;
1659 }
1660
1661 /**
1662  * _base_build_sg_ieee - build generic sg for IEEE format
1663  * @ioc: per adapter object
1664  * @psge: virtual address for SGE
1665  * @data_out_dma: physical address for WRITES
1666  * @data_out_sz: data xfer size for WRITES
1667  * @data_in_dma: physical address for READS
1668  * @data_in_sz: data xfer size for READS
1669  *
1670  * Return nothing.
1671  */
1672 static void
1673 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1674         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1675         size_t data_in_sz)
1676 {
1677         u8 sgl_flags;
1678
1679         if (!data_out_sz && !data_in_sz) {
1680                 _base_build_zero_len_sge_ieee(ioc, psge);
1681                 return;
1682         }
1683
1684         if (data_out_sz && data_in_sz) {
1685                 /* WRITE sgel first */
1686                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1688                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1689                     data_out_dma);
1690
1691                 /* incr sgel */
1692                 psge += ioc->sge_size_ieee;
1693
1694                 /* READ sgel last */
1695                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1696                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1697                     data_in_dma);
1698         } else if (data_out_sz) /* WRITE */ {
1699                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1700                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1701                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1702                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1703                     data_out_dma);
1704         } else if (data_in_sz) /* READ */ {
1705                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1706                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1707                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1708                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1709                     data_in_dma);
1710         }
1711 }
1712
1713 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1714
1715 /**
1716  * _base_config_dma_addressing - set dma addressing
1717  * @ioc: per adapter object
1718  * @pdev: PCI device struct
1719  *
1720  * Returns 0 for success, non-zero for failure.
1721  */
1722 static int
1723 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1724 {
1725         struct sysinfo s;
1726         u64 consistent_dma_mask;
1727         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
1728         int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64;
1729
1730         if (ioc->dma_mask)
1731                 consistent_dma_mask = DMA_BIT_MASK(dma_mask);
1732         else
1733                 consistent_dma_mask = DMA_BIT_MASK(32);
1734
1735         if (sizeof(dma_addr_t) > 4) {
1736                 const uint64_t required_mask =
1737                     dma_get_required_mask(&pdev->dev);
1738                 if ((required_mask > DMA_BIT_MASK(32)) &&
1739                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_mask)) &&
1740                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1741                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1742                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1743                         ioc->dma_mask = dma_mask;
1744                         goto out;
1745                 }
1746         }
1747
1748         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1749             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1750                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1751                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1752                 ioc->dma_mask = 32;
1753         } else
1754                 return -ENODEV;
1755
1756  out:
1757         si_meminfo(&s);
1758         pr_info(MPT3SAS_FMT
1759                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1760                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1761
1762         return 0;
1763 }
1764
1765 static int
1766 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1767                                       struct pci_dev *pdev)
1768 {
1769         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) {
1770                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1771                         return -ENODEV;
1772         }
1773         return 0;
1774 }
1775
1776 /**
1777  * _base_check_enable_msix - checks MSIX capabable.
1778  * @ioc: per adapter object
1779  *
1780  * Check to see if card is capable of MSIX, and set number
1781  * of available msix vectors
1782  */
1783 static int
1784 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1785 {
1786         int base;
1787         u16 message_control;
1788
1789         /* Check whether controller SAS2008 B0 controller,
1790          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1791          */
1792         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1793             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1794                 return -EINVAL;
1795         }
1796
1797         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1798         if (!base) {
1799                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1800                         ioc->name));
1801                 return -EINVAL;
1802         }
1803
1804         /* get msix vector count */
1805         /* NUMA_IO not supported for older controllers */
1806         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1807             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1808             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1809             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1810             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1811             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1812             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1813                 ioc->msix_vector_count = 1;
1814         else {
1815                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1816                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1817         }
1818         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1819                 "msix is supported, vector_count(%d)\n",
1820                 ioc->name, ioc->msix_vector_count));
1821         return 0;
1822 }
1823
1824 /**
1825  * _base_free_irq - free irq
1826  * @ioc: per adapter object
1827  *
1828  * Freeing respective reply_queue from the list.
1829  */
1830 static void
1831 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1832 {
1833         struct adapter_reply_queue *reply_q, *next;
1834
1835         if (list_empty(&ioc->reply_queue_list))
1836                 return;
1837
1838         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1839                 list_del(&reply_q->list);
1840                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
1841                          reply_q);
1842                 kfree(reply_q);
1843         }
1844 }
1845
1846 /**
1847  * _base_request_irq - request irq
1848  * @ioc: per adapter object
1849  * @index: msix index into vector table
1850  *
1851  * Inserting respective reply_queue into the list.
1852  */
1853 static int
1854 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
1855 {
1856         struct pci_dev *pdev = ioc->pdev;
1857         struct adapter_reply_queue *reply_q;
1858         int r;
1859
1860         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1861         if (!reply_q) {
1862                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1863                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1864                 return -ENOMEM;
1865         }
1866         reply_q->ioc = ioc;
1867         reply_q->msix_index = index;
1868
1869         atomic_set(&reply_q->busy, 0);
1870         if (ioc->msix_enable)
1871                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1872                     ioc->driver_name, ioc->id, index);
1873         else
1874                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1875                     ioc->driver_name, ioc->id);
1876         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
1877                         IRQF_SHARED, reply_q->name, reply_q);
1878         if (r) {
1879                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1880                        reply_q->name, pci_irq_vector(pdev, index));
1881                 kfree(reply_q);
1882                 return -EBUSY;
1883         }
1884
1885         INIT_LIST_HEAD(&reply_q->list);
1886         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1887         return 0;
1888 }
1889
1890 /**
1891  * _base_assign_reply_queues - assigning msix index for each cpu
1892  * @ioc: per adapter object
1893  *
1894  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1895  *
1896  * It would nice if we could call irq_set_affinity, however it is not
1897  * an exported symbol
1898  */
1899 static void
1900 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1901 {
1902         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1903         struct adapter_reply_queue *reply_q;
1904
1905         if (!_base_is_controller_msix_enabled(ioc))
1906                 return;
1907
1908         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1909
1910         nr_cpus = num_online_cpus();
1911         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1912                                                ioc->facts.MaxMSIxVectors);
1913         if (!nr_msix)
1914                 return;
1915
1916         if (smp_affinity_enable) {
1917                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1918                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
1919                                                         reply_q->msix_index);
1920                         if (!mask) {
1921                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
1922                                         ioc->name, reply_q->msix_index);
1923                                 continue;
1924                         }
1925
1926                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
1927                                 if (cpu >= ioc->cpu_msix_table_sz)
1928                                         break;
1929                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1930                         }
1931                 }
1932                 return;
1933         }
1934         cpu = cpumask_first(cpu_online_mask);
1935
1936         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1937
1938                 unsigned int i, group = nr_cpus / nr_msix;
1939
1940                 if (cpu >= nr_cpus)
1941                         break;
1942
1943                 if (index < nr_cpus % nr_msix)
1944                         group++;
1945
1946                 for (i = 0 ; i < group ; i++) {
1947                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1948                         cpu = cpumask_next(cpu, cpu_online_mask);
1949                 }
1950                 index++;
1951         }
1952 }
1953
1954 /**
1955  * _base_disable_msix - disables msix
1956  * @ioc: per adapter object
1957  *
1958  */
1959 static void
1960 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1961 {
1962         if (!ioc->msix_enable)
1963                 return;
1964         pci_disable_msix(ioc->pdev);
1965         ioc->msix_enable = 0;
1966 }
1967
1968 /**
1969  * _base_enable_msix - enables msix, failback to io_apic
1970  * @ioc: per adapter object
1971  *
1972  */
1973 static int
1974 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1975 {
1976         int r;
1977         int i, local_max_msix_vectors;
1978         u8 try_msix = 0;
1979         unsigned int irq_flags = PCI_IRQ_MSIX;
1980
1981         if (msix_disable == -1 || msix_disable == 0)
1982                 try_msix = 1;
1983
1984         if (!try_msix)
1985                 goto try_ioapic;
1986
1987         if (_base_check_enable_msix(ioc) != 0)
1988                 goto try_ioapic;
1989
1990         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1991                 ioc->msix_vector_count);
1992
1993         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1994           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1995           ioc->cpu_count, max_msix_vectors);
1996
1997         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1998                 local_max_msix_vectors = 8;
1999         else
2000                 local_max_msix_vectors = max_msix_vectors;
2001
2002         if (local_max_msix_vectors > 0)
2003                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2004                         ioc->reply_queue_count);
2005         else if (local_max_msix_vectors == 0)
2006                 goto try_ioapic;
2007
2008         if (ioc->msix_vector_count < ioc->cpu_count)
2009                 smp_affinity_enable = 0;
2010
2011         if (smp_affinity_enable)
2012                 irq_flags |= PCI_IRQ_AFFINITY;
2013
2014         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2015                                   irq_flags);
2016         if (r < 0) {
2017                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2018                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2019                         ioc->name, r));
2020                 goto try_ioapic;
2021         }
2022
2023         ioc->msix_enable = 1;
2024         ioc->reply_queue_count = r;
2025         for (i = 0; i < ioc->reply_queue_count; i++) {
2026                 r = _base_request_irq(ioc, i);
2027                 if (r) {
2028                         _base_free_irq(ioc);
2029                         _base_disable_msix(ioc);
2030                         goto try_ioapic;
2031                 }
2032         }
2033
2034         return 0;
2035
2036 /* failback to io_apic interrupt routing */
2037  try_ioapic:
2038
2039         ioc->reply_queue_count = 1;
2040         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2041         if (r < 0) {
2042                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2043                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2044                         ioc->name, r));
2045         } else
2046                 r = _base_request_irq(ioc, 0);
2047
2048         return r;
2049 }
2050
2051 /**
2052  * mpt3sas_base_unmap_resources - free controller resources
2053  * @ioc: per adapter object
2054  */
2055 static void
2056 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2057 {
2058         struct pci_dev *pdev = ioc->pdev;
2059
2060         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2061                 ioc->name, __func__));
2062
2063         _base_free_irq(ioc);
2064         _base_disable_msix(ioc);
2065
2066         if (ioc->combined_reply_queue) {
2067                 kfree(ioc->replyPostRegisterIndex);
2068                 ioc->replyPostRegisterIndex = NULL;
2069         }
2070
2071         if (ioc->chip_phys) {
2072                 iounmap(ioc->chip);
2073                 ioc->chip_phys = 0;
2074         }
2075
2076         if (pci_is_enabled(pdev)) {
2077                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2078                 pci_disable_pcie_error_reporting(pdev);
2079                 pci_disable_device(pdev);
2080         }
2081 }
2082
2083 /**
2084  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2085  * @ioc: per adapter object
2086  *
2087  * Returns 0 for success, non-zero for failure.
2088  */
2089 int
2090 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2091 {
2092         struct pci_dev *pdev = ioc->pdev;
2093         u32 memap_sz;
2094         u32 pio_sz;
2095         int i, r = 0;
2096         u64 pio_chip = 0;
2097         u64 chip_phys = 0;
2098         struct adapter_reply_queue *reply_q;
2099
2100         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2101             ioc->name, __func__));
2102
2103         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2104         if (pci_enable_device_mem(pdev)) {
2105                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2106                         ioc->name);
2107                 ioc->bars = 0;
2108                 return -ENODEV;
2109         }
2110
2111
2112         if (pci_request_selected_regions(pdev, ioc->bars,
2113             ioc->driver_name)) {
2114                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2115                         ioc->name);
2116                 ioc->bars = 0;
2117                 r = -ENODEV;
2118                 goto out_fail;
2119         }
2120
2121 /* AER (Advanced Error Reporting) hooks */
2122         pci_enable_pcie_error_reporting(pdev);
2123
2124         pci_set_master(pdev);
2125
2126
2127         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2128                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2129                     ioc->name, pci_name(pdev));
2130                 r = -ENODEV;
2131                 goto out_fail;
2132         }
2133
2134         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2135              (!memap_sz || !pio_sz); i++) {
2136                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2137                         if (pio_sz)
2138                                 continue;
2139                         pio_chip = (u64)pci_resource_start(pdev, i);
2140                         pio_sz = pci_resource_len(pdev, i);
2141                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2142                         if (memap_sz)
2143                                 continue;
2144                         ioc->chip_phys = pci_resource_start(pdev, i);
2145                         chip_phys = (u64)ioc->chip_phys;
2146                         memap_sz = pci_resource_len(pdev, i);
2147                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2148                 }
2149         }
2150
2151         if (ioc->chip == NULL) {
2152                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2153                         " or resource not found\n", ioc->name);
2154                 r = -EINVAL;
2155                 goto out_fail;
2156         }
2157
2158         _base_mask_interrupts(ioc);
2159
2160         r = _base_get_ioc_facts(ioc);
2161         if (r)
2162                 goto out_fail;
2163
2164         if (!ioc->rdpq_array_enable_assigned) {
2165                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2166                 ioc->rdpq_array_enable_assigned = 1;
2167         }
2168
2169         r = _base_enable_msix(ioc);
2170         if (r)
2171                 goto out_fail;
2172
2173         /* Use the Combined reply queue feature only for SAS3 C0 & higher
2174          * revision HBAs and also only when reply queue count is greater than 8
2175          */
2176         if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2177                 /* Determine the Supplemental Reply Post Host Index Registers
2178                  * Addresse. Supplemental Reply Post Host Index Registers
2179                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2180                  * each register is at offset bytes of
2181                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2182                  */
2183                 ioc->replyPostRegisterIndex = kcalloc(
2184                      ioc->combined_reply_index_count,
2185                      sizeof(resource_size_t *), GFP_KERNEL);
2186                 if (!ioc->replyPostRegisterIndex) {
2187                         dfailprintk(ioc, printk(MPT3SAS_FMT
2188                         "allocation for reply Post Register Index failed!!!\n",
2189                                                                    ioc->name));
2190                         r = -ENOMEM;
2191                         goto out_fail;
2192                 }
2193
2194                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
2195                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2196                              ((u8 *)&ioc->chip->Doorbell +
2197                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2198                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2199                 }
2200         } else
2201                 ioc->combined_reply_queue = 0;
2202
2203         if (ioc->is_warpdrive) {
2204                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2205                     &ioc->chip->ReplyPostHostIndex;
2206
2207                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2208                         ioc->reply_post_host_index[i] =
2209                         (resource_size_t __iomem *)
2210                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2211                         * 4)));
2212         }
2213
2214         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2215                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2216                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2217                     "IO-APIC enabled"),
2218                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
2219
2220         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2221             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2222         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2223             ioc->name, (unsigned long long)pio_chip, pio_sz);
2224
2225         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2226         pci_save_state(pdev);
2227         return 0;
2228
2229  out_fail:
2230         mpt3sas_base_unmap_resources(ioc);
2231         return r;
2232 }
2233
2234 /**
2235  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2236  * @ioc: per adapter object
2237  * @smid: system request message index(smid zero is invalid)
2238  *
2239  * Returns virt pointer to message frame.
2240  */
2241 void *
2242 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2243 {
2244         return (void *)(ioc->request + (smid * ioc->request_sz));
2245 }
2246
2247 /**
2248  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2249  * @ioc: per adapter object
2250  * @smid: system request message index
2251  *
2252  * Returns virt pointer to sense buffer.
2253  */
2254 void *
2255 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2256 {
2257         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2258 }
2259
2260 /**
2261  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2262  * @ioc: per adapter object
2263  * @smid: system request message index
2264  *
2265  * Returns phys pointer to the low 32bit address of the sense buffer.
2266  */
2267 __le32
2268 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2269 {
2270         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2271             SCSI_SENSE_BUFFERSIZE));
2272 }
2273
2274 /**
2275  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2276  * @ioc: per adapter object
2277  * @phys_addr: lower 32 physical addr of the reply
2278  *
2279  * Converts 32bit lower physical addr into a virt address.
2280  */
2281 void *
2282 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2283 {
2284         if (!phys_addr)
2285                 return NULL;
2286         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2287 }
2288
2289 static inline u8
2290 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2291 {
2292         return ioc->cpu_msix_table[raw_smp_processor_id()];
2293 }
2294
2295 /**
2296  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2297  * @ioc: per adapter object
2298  * @cb_idx: callback index
2299  *
2300  * Returns smid (zero is invalid)
2301  */
2302 u16
2303 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2304 {
2305         unsigned long flags;
2306         struct request_tracker *request;
2307         u16 smid;
2308
2309         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2310         if (list_empty(&ioc->internal_free_list)) {
2311                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2312                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2313                     ioc->name, __func__);
2314                 return 0;
2315         }
2316
2317         request = list_entry(ioc->internal_free_list.next,
2318             struct request_tracker, tracker_list);
2319         request->cb_idx = cb_idx;
2320         smid = request->smid;
2321         list_del(&request->tracker_list);
2322         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2323         return smid;
2324 }
2325
2326 /**
2327  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2328  * @ioc: per adapter object
2329  * @cb_idx: callback index
2330  * @scmd: pointer to scsi command object
2331  *
2332  * Returns smid (zero is invalid)
2333  */
2334 u16
2335 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2336         struct scsi_cmnd *scmd)
2337 {
2338         unsigned long flags;
2339         struct scsiio_tracker *request;
2340         u16 smid;
2341
2342         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2343         if (list_empty(&ioc->free_list)) {
2344                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2345                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2346                     ioc->name, __func__);
2347                 return 0;
2348         }
2349
2350         request = list_entry(ioc->free_list.next,
2351             struct scsiio_tracker, tracker_list);
2352         request->scmd = scmd;
2353         request->cb_idx = cb_idx;
2354         smid = request->smid;
2355         request->msix_io = _base_get_msix_index(ioc);
2356         list_del(&request->tracker_list);
2357         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2358         return smid;
2359 }
2360
2361 /**
2362  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2363  * @ioc: per adapter object
2364  * @cb_idx: callback index
2365  *
2366  * Returns smid (zero is invalid)
2367  */
2368 u16
2369 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2370 {
2371         unsigned long flags;
2372         struct request_tracker *request;
2373         u16 smid;
2374
2375         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2376         if (list_empty(&ioc->hpr_free_list)) {
2377                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2378                 return 0;
2379         }
2380
2381         request = list_entry(ioc->hpr_free_list.next,
2382             struct request_tracker, tracker_list);
2383         request->cb_idx = cb_idx;
2384         smid = request->smid;
2385         list_del(&request->tracker_list);
2386         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2387         return smid;
2388 }
2389
2390 /**
2391  * mpt3sas_base_free_smid - put smid back on free_list
2392  * @ioc: per adapter object
2393  * @smid: system request message index
2394  *
2395  * Return nothing.
2396  */
2397 void
2398 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2399 {
2400         unsigned long flags;
2401         int i;
2402         struct chain_tracker *chain_req, *next;
2403
2404         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2405         if (smid < ioc->hi_priority_smid) {
2406                 /* scsiio queue */
2407                 i = smid - 1;
2408                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2409                         list_for_each_entry_safe(chain_req, next,
2410                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2411                                 list_del_init(&chain_req->tracker_list);
2412                                 list_add(&chain_req->tracker_list,
2413                                     &ioc->free_chain_list);
2414                         }
2415                 }
2416                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2417                 ioc->scsi_lookup[i].scmd = NULL;
2418                 ioc->scsi_lookup[i].direct_io = 0;
2419                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2420                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2421
2422                 /*
2423                  * See _wait_for_commands_to_complete() call with regards
2424                  * to this code.
2425                  */
2426                 if (ioc->shost_recovery && ioc->pending_io_count) {
2427                         if (ioc->pending_io_count == 1)
2428                                 wake_up(&ioc->reset_wq);
2429                         ioc->pending_io_count--;
2430                 }
2431                 return;
2432         } else if (smid < ioc->internal_smid) {
2433                 /* hi-priority */
2434                 i = smid - ioc->hi_priority_smid;
2435                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2436                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2437         } else if (smid <= ioc->hba_queue_depth) {
2438                 /* internal queue */
2439                 i = smid - ioc->internal_smid;
2440                 ioc->internal_lookup[i].cb_idx = 0xFF;
2441                 list_add(&ioc->internal_lookup[i].tracker_list,
2442                     &ioc->internal_free_list);
2443         }
2444         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2445 }
2446
2447 /**
2448  * _base_writeq - 64 bit write to MMIO
2449  * @ioc: per adapter object
2450  * @b: data payload
2451  * @addr: address in MMIO space
2452  * @writeq_lock: spin lock
2453  *
2454  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2455  * care of 32 bit environment where its not quarenteed to send the entire word
2456  * in one transfer.
2457  */
2458 #if defined(writeq) && defined(CONFIG_64BIT)
2459 static inline void
2460 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2461 {
2462         writeq(cpu_to_le64(b), addr);
2463 }
2464 #else
2465 static inline void
2466 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2467 {
2468         unsigned long flags;
2469         __u64 data_out = cpu_to_le64(b);
2470
2471         spin_lock_irqsave(writeq_lock, flags);
2472         writel((u32)(data_out), addr);
2473         writel((u32)(data_out >> 32), (addr + 4));
2474         spin_unlock_irqrestore(writeq_lock, flags);
2475 }
2476 #endif
2477
2478 /**
2479  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2480  * @ioc: per adapter object
2481  * @smid: system request message index
2482  * @handle: device handle
2483  *
2484  * Return nothing.
2485  */
2486 static void
2487 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2488 {
2489         Mpi2RequestDescriptorUnion_t descriptor;
2490         u64 *request = (u64 *)&descriptor;
2491
2492
2493         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2494         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2495         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2496         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2497         descriptor.SCSIIO.LMID = 0;
2498         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2499             &ioc->scsi_lookup_lock);
2500 }
2501
2502 /**
2503  * _base_put_smid_fast_path - send fast path request to firmware
2504  * @ioc: per adapter object
2505  * @smid: system request message index
2506  * @handle: device handle
2507  *
2508  * Return nothing.
2509  */
2510 static void
2511 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2512         u16 handle)
2513 {
2514         Mpi2RequestDescriptorUnion_t descriptor;
2515         u64 *request = (u64 *)&descriptor;
2516
2517         descriptor.SCSIIO.RequestFlags =
2518             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2519         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2520         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2521         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2522         descriptor.SCSIIO.LMID = 0;
2523         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2524             &ioc->scsi_lookup_lock);
2525 }
2526
2527 /**
2528  * _base_put_smid_hi_priority - send Task Management request to firmware
2529  * @ioc: per adapter object
2530  * @smid: system request message index
2531  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2532  * Return nothing.
2533  */
2534 static void
2535 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2536         u16 msix_task)
2537 {
2538         Mpi2RequestDescriptorUnion_t descriptor;
2539         u64 *request = (u64 *)&descriptor;
2540
2541         descriptor.HighPriority.RequestFlags =
2542             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2543         descriptor.HighPriority.MSIxIndex =  msix_task;
2544         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2545         descriptor.HighPriority.LMID = 0;
2546         descriptor.HighPriority.Reserved1 = 0;
2547         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2548             &ioc->scsi_lookup_lock);
2549 }
2550
2551 /**
2552  * _base_put_smid_default - Default, primarily used for config pages
2553  * @ioc: per adapter object
2554  * @smid: system request message index
2555  *
2556  * Return nothing.
2557  */
2558 static void
2559 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2560 {
2561         Mpi2RequestDescriptorUnion_t descriptor;
2562         u64 *request = (u64 *)&descriptor;
2563
2564         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2565         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2566         descriptor.Default.SMID = cpu_to_le16(smid);
2567         descriptor.Default.LMID = 0;
2568         descriptor.Default.DescriptorTypeDependent = 0;
2569         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2570             &ioc->scsi_lookup_lock);
2571 }
2572
2573 /**
2574 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2575 *   Atomic Request Descriptor
2576 * @ioc: per adapter object
2577 * @smid: system request message index
2578 * @handle: device handle, unused in this function, for function type match
2579 *
2580 * Return nothing.
2581 */
2582 static void
2583 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2584         u16 handle)
2585 {
2586         Mpi26AtomicRequestDescriptor_t descriptor;
2587         u32 *request = (u32 *)&descriptor;
2588
2589         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2590         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2591         descriptor.SMID = cpu_to_le16(smid);
2592
2593         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2594 }
2595
2596 /**
2597  * _base_put_smid_fast_path_atomic - send fast path request to firmware
2598  * using Atomic Request Descriptor
2599  * @ioc: per adapter object
2600  * @smid: system request message index
2601  * @handle: device handle, unused in this function, for function type match
2602  * Return nothing
2603  */
2604 static void
2605 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2606         u16 handle)
2607 {
2608         Mpi26AtomicRequestDescriptor_t descriptor;
2609         u32 *request = (u32 *)&descriptor;
2610
2611         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2612         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2613         descriptor.SMID = cpu_to_le16(smid);
2614
2615         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2616 }
2617
2618 /**
2619  * _base_put_smid_hi_priority_atomic - send Task Management request to
2620  * firmware using Atomic Request Descriptor
2621  * @ioc: per adapter object
2622  * @smid: system request message index
2623  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2624  *
2625  * Return nothing.
2626  */
2627 static void
2628 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2629         u16 msix_task)
2630 {
2631         Mpi26AtomicRequestDescriptor_t descriptor;
2632         u32 *request = (u32 *)&descriptor;
2633
2634         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2635         descriptor.MSIxIndex = msix_task;
2636         descriptor.SMID = cpu_to_le16(smid);
2637
2638         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2639 }
2640
2641 /**
2642  * _base_put_smid_default - Default, primarily used for config pages
2643  * use Atomic Request Descriptor
2644  * @ioc: per adapter object
2645  * @smid: system request message index
2646  *
2647  * Return nothing.
2648  */
2649 static void
2650 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2651 {
2652         Mpi26AtomicRequestDescriptor_t descriptor;
2653         u32 *request = (u32 *)&descriptor;
2654
2655         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2656         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2657         descriptor.SMID = cpu_to_le16(smid);
2658
2659         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2660 }
2661
2662 /**
2663  * _base_display_OEMs_branding - Display branding string
2664  * @ioc: per adapter object
2665  *
2666  * Return nothing.
2667  */
2668 static void
2669 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2670 {
2671         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2672                 return;
2673
2674         switch (ioc->pdev->subsystem_vendor) {
2675         case PCI_VENDOR_ID_INTEL:
2676                 switch (ioc->pdev->device) {
2677                 case MPI2_MFGPAGE_DEVID_SAS2008:
2678                         switch (ioc->pdev->subsystem_device) {
2679                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
2680                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2681                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
2682                                 break;
2683                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
2684                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2685                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
2686                                 break;
2687                         case MPT2SAS_INTEL_SSD910_SSDID:
2688                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2689                                     MPT2SAS_INTEL_SSD910_BRANDING);
2690                                 break;
2691                         default:
2692                                 pr_info(MPT3SAS_FMT
2693                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2694                                  ioc->name, ioc->pdev->subsystem_device);
2695                                 break;
2696                         }
2697                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2698                         switch (ioc->pdev->subsystem_device) {
2699                         case MPT2SAS_INTEL_RS25GB008_SSDID:
2700                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2701                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
2702                                 break;
2703                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
2704                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2705                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
2706                                 break;
2707                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
2708                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2709                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
2710                                 break;
2711                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
2712                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2713                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
2714                                 break;
2715                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
2716                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2717                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
2718                                 break;
2719                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
2720                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2721                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
2722                                 break;
2723                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
2724                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2725                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
2726                                 break;
2727                         default:
2728                                 pr_info(MPT3SAS_FMT
2729                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2730                                  ioc->name, ioc->pdev->subsystem_device);
2731                                 break;
2732                         }
2733                 case MPI25_MFGPAGE_DEVID_SAS3008:
2734                         switch (ioc->pdev->subsystem_device) {
2735                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
2736                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2737                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
2738                                 break;
2739
2740                         case MPT3SAS_INTEL_RS3GC008_SSDID:
2741                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2742                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
2743                                 break;
2744                         case MPT3SAS_INTEL_RS3FC044_SSDID:
2745                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2746                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
2747                                 break;
2748                         case MPT3SAS_INTEL_RS3UC080_SSDID:
2749                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2750                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
2751                                 break;
2752                         default:
2753                                 pr_info(MPT3SAS_FMT
2754                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2755                                  ioc->name, ioc->pdev->subsystem_device);
2756                                 break;
2757                         }
2758                         break;
2759                 default:
2760                         pr_info(MPT3SAS_FMT
2761                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
2762                          ioc->name, ioc->pdev->subsystem_device);
2763                         break;
2764                 }
2765                 break;
2766         case PCI_VENDOR_ID_DELL:
2767                 switch (ioc->pdev->device) {
2768                 case MPI2_MFGPAGE_DEVID_SAS2008:
2769                         switch (ioc->pdev->subsystem_device) {
2770                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2771                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2772                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2773                                 break;
2774                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2775                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2776                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2777                                 break;
2778                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2779                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2780                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2781                                 break;
2782                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2783                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2784                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2785                                 break;
2786                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2787                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2788                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2789                                 break;
2790                         case MPT2SAS_DELL_PERC_H200_SSDID:
2791                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2792                                  MPT2SAS_DELL_PERC_H200_BRANDING);
2793                                 break;
2794                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2795                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2796                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2797                                 break;
2798                         default:
2799                                 pr_info(MPT3SAS_FMT
2800                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2801                                    ioc->name, ioc->pdev->subsystem_device);
2802                                 break;
2803                         }
2804                         break;
2805                 case MPI25_MFGPAGE_DEVID_SAS3008:
2806                         switch (ioc->pdev->subsystem_device) {
2807                         case MPT3SAS_DELL_12G_HBA_SSDID:
2808                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2809                                         MPT3SAS_DELL_12G_HBA_BRANDING);
2810                                 break;
2811                         default:
2812                                 pr_info(MPT3SAS_FMT
2813                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2814                                    ioc->name, ioc->pdev->subsystem_device);
2815                                 break;
2816                         }
2817                         break;
2818                 default:
2819                         pr_info(MPT3SAS_FMT
2820                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2821                            ioc->pdev->subsystem_device);
2822                         break;
2823                 }
2824                 break;
2825         case PCI_VENDOR_ID_CISCO:
2826                 switch (ioc->pdev->device) {
2827                 case MPI25_MFGPAGE_DEVID_SAS3008:
2828                         switch (ioc->pdev->subsystem_device) {
2829                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2830                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2831                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2832                                 break;
2833                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2834                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2835                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2836                                 break;
2837                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2838                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2839                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2840                                 break;
2841                         default:
2842                                 pr_info(MPT3SAS_FMT
2843                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2844                                   ioc->name, ioc->pdev->subsystem_device);
2845                                 break;
2846                         }
2847                         break;
2848                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2849                         switch (ioc->pdev->subsystem_device) {
2850                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2851                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2852                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2853                                 break;
2854                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2855                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2856                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2857                                 );
2858                                 break;
2859                         default:
2860                                 pr_info(MPT3SAS_FMT
2861                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2862                                  ioc->name, ioc->pdev->subsystem_device);
2863                                 break;
2864                         }
2865                         break;
2866                 default:
2867                         pr_info(MPT3SAS_FMT
2868                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2869                            ioc->name, ioc->pdev->subsystem_device);
2870                         break;
2871                 }
2872                 break;
2873         case MPT2SAS_HP_3PAR_SSVID:
2874                 switch (ioc->pdev->device) {
2875                 case MPI2_MFGPAGE_DEVID_SAS2004:
2876                         switch (ioc->pdev->subsystem_device) {
2877                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2878                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2879                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2880                                 break;
2881                         default:
2882                                 pr_info(MPT3SAS_FMT
2883                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2884                                    ioc->name, ioc->pdev->subsystem_device);
2885                                 break;
2886                         }
2887                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2888                         switch (ioc->pdev->subsystem_device) {
2889                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2890                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2891                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2892                                 break;
2893                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2894                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2895                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2896                                 break;
2897                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2898                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2899                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2900                                 break;
2901                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2902                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2903                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2904                                 break;
2905                         default:
2906                                 pr_info(MPT3SAS_FMT
2907                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2908                                    ioc->name, ioc->pdev->subsystem_device);
2909                                 break;
2910                         }
2911                 default:
2912                         pr_info(MPT3SAS_FMT
2913                            "HP SAS HBA: Subsystem ID: 0x%X\n",
2914                            ioc->name, ioc->pdev->subsystem_device);
2915                         break;
2916                 }
2917         default:
2918                 break;
2919         }
2920 }
2921
2922 /**
2923  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2924  * @ioc: per adapter object
2925  *
2926  * Return nothing.
2927  */
2928 static void
2929 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2930 {
2931         int i = 0;
2932         char desc[16];
2933         u32 iounit_pg1_flags;
2934         u32 bios_version;
2935
2936         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2937         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2938         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2939            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2940             ioc->name, desc,
2941            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2942            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2943            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2944            ioc->facts.FWVersion.Word & 0x000000FF,
2945            ioc->pdev->revision,
2946            (bios_version & 0xFF000000) >> 24,
2947            (bios_version & 0x00FF0000) >> 16,
2948            (bios_version & 0x0000FF00) >> 8,
2949             bios_version & 0x000000FF);
2950
2951         _base_display_OEMs_branding(ioc);
2952
2953         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2954
2955         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2956                 pr_info("Initiator");
2957                 i++;
2958         }
2959
2960         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2961                 pr_info("%sTarget", i ? "," : "");
2962                 i++;
2963         }
2964
2965         i = 0;
2966         pr_info("), ");
2967         pr_info("Capabilities=(");
2968
2969         if (!ioc->hide_ir_msg) {
2970                 if (ioc->facts.IOCCapabilities &
2971                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2972                         pr_info("Raid");
2973                         i++;
2974                 }
2975         }
2976
2977         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2978                 pr_info("%sTLR", i ? "," : "");
2979                 i++;
2980         }
2981
2982         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2983                 pr_info("%sMulticast", i ? "," : "");
2984                 i++;
2985         }
2986
2987         if (ioc->facts.IOCCapabilities &
2988             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2989                 pr_info("%sBIDI Target", i ? "," : "");
2990                 i++;
2991         }
2992
2993         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2994                 pr_info("%sEEDP", i ? "," : "");
2995                 i++;
2996         }
2997
2998         if (ioc->facts.IOCCapabilities &
2999             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3000                 pr_info("%sSnapshot Buffer", i ? "," : "");
3001                 i++;
3002         }
3003
3004         if (ioc->facts.IOCCapabilities &
3005             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3006                 pr_info("%sDiag Trace Buffer", i ? "," : "");
3007                 i++;
3008         }
3009
3010         if (ioc->facts.IOCCapabilities &
3011             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3012                 pr_info("%sDiag Extended Buffer", i ? "," : "");
3013                 i++;
3014         }
3015
3016         if (ioc->facts.IOCCapabilities &
3017             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3018                 pr_info("%sTask Set Full", i ? "," : "");
3019                 i++;
3020         }
3021
3022         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3023         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3024                 pr_info("%sNCQ", i ? "," : "");
3025                 i++;
3026         }
3027
3028         pr_info(")\n");
3029 }
3030
3031 /**
3032  * mpt3sas_base_update_missing_delay - change the missing delay timers
3033  * @ioc: per adapter object
3034  * @device_missing_delay: amount of time till device is reported missing
3035  * @io_missing_delay: interval IO is returned when there is a missing device
3036  *
3037  * Return nothing.
3038  *
3039  * Passed on the command line, this function will modify the device missing
3040  * delay, as well as the io missing delay. This should be called at driver
3041  * load time.
3042  */
3043 void
3044 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3045         u16 device_missing_delay, u8 io_missing_delay)
3046 {
3047         u16 dmd, dmd_new, dmd_orignal;
3048         u8 io_missing_delay_original;
3049         u16 sz;
3050         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3051         Mpi2ConfigReply_t mpi_reply;
3052         u8 num_phys = 0;
3053         u16 ioc_status;
3054
3055         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3056         if (!num_phys)
3057                 return;
3058
3059         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3060             sizeof(Mpi2SasIOUnit1PhyData_t));
3061         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3062         if (!sas_iounit_pg1) {
3063                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3064                     ioc->name, __FILE__, __LINE__, __func__);
3065                 goto out;
3066         }
3067         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3068             sas_iounit_pg1, sz))) {
3069                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3070                     ioc->name, __FILE__, __LINE__, __func__);
3071                 goto out;
3072         }
3073         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3074             MPI2_IOCSTATUS_MASK;
3075         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3076                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3077                     ioc->name, __FILE__, __LINE__, __func__);
3078                 goto out;
3079         }
3080
3081         /* device missing delay */
3082         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3083         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3084                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3085         else
3086                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3087         dmd_orignal = dmd;
3088         if (device_missing_delay > 0x7F) {
3089                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3090                     device_missing_delay;
3091                 dmd = dmd / 16;
3092                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3093         } else
3094                 dmd = device_missing_delay;
3095         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3096
3097         /* io missing delay */
3098         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3099         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3100
3101         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3102             sz)) {
3103                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3104                         dmd_new = (dmd &
3105                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3106                 else
3107                         dmd_new =
3108                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3109                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3110                         ioc->name, dmd_orignal, dmd_new);
3111                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3112                         ioc->name, io_missing_delay_original,
3113                     io_missing_delay);
3114                 ioc->device_missing_delay = dmd_new;
3115                 ioc->io_missing_delay = io_missing_delay;
3116         }
3117
3118 out:
3119         kfree(sas_iounit_pg1);
3120 }
3121 /**
3122  * _base_static_config_pages - static start of day config pages
3123  * @ioc: per adapter object
3124  *
3125  * Return nothing.
3126  */
3127 static void
3128 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3129 {
3130         Mpi2ConfigReply_t mpi_reply;
3131         u32 iounit_pg1_flags;
3132
3133         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3134         if (ioc->ir_firmware)
3135                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3136                     &ioc->manu_pg10);
3137
3138         /*
3139          * Ensure correct T10 PI operation if vendor left EEDPTagMode
3140          * flag unset in NVDATA.
3141          */
3142         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3143         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
3144                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3145                     ioc->name);
3146                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3147                 ioc->manu_pg11.EEDPTagMode |= 0x1;
3148                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3149                     &ioc->manu_pg11);
3150         }
3151
3152         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3153         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3154         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3155         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3156         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3157         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3158         _base_display_ioc_capabilities(ioc);
3159
3160         /*
3161          * Enable task_set_full handling in iounit_pg1 when the
3162          * facts capabilities indicate that its supported.
3163          */
3164         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3165         if ((ioc->facts.IOCCapabilities &
3166             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3167                 iounit_pg1_flags &=
3168                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3169         else
3170                 iounit_pg1_flags |=
3171                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3172         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3173         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3174
3175         if (ioc->iounit_pg8.NumSensors)
3176                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3177 }
3178
3179 /**
3180  * _base_release_memory_pools - release memory
3181  * @ioc: per adapter object
3182  *
3183  * Free memory allocated from _base_allocate_memory_pools.
3184  *
3185  * Return nothing.
3186  */
3187 static void
3188 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3189 {
3190         int i = 0;
3191         struct reply_post_struct *rps;
3192
3193         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3194             __func__));
3195
3196         if (ioc->request) {
3197                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3198                     ioc->request,  ioc->request_dma);
3199                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3200                         "request_pool(0x%p): free\n",
3201                         ioc->name, ioc->request));
3202                 ioc->request = NULL;
3203         }
3204
3205         if (ioc->sense) {
3206                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3207                 dma_pool_destroy(ioc->sense_dma_pool);
3208                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3209                         "sense_pool(0x%p): free\n",
3210                         ioc->name, ioc->sense));
3211                 ioc->sense = NULL;
3212         }
3213
3214         if (ioc->reply) {
3215                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3216                 dma_pool_destroy(ioc->reply_dma_pool);
3217                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3218                         "reply_pool(0x%p): free\n",
3219                         ioc->name, ioc->reply));
3220                 ioc->reply = NULL;
3221         }
3222
3223         if (ioc->reply_free) {
3224                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3225                     ioc->reply_free_dma);
3226                 dma_pool_destroy(ioc->reply_free_dma_pool);
3227                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3228                         "reply_free_pool(0x%p): free\n",
3229                         ioc->name, ioc->reply_free));
3230                 ioc->reply_free = NULL;
3231         }
3232
3233         if (ioc->reply_post) {
3234                 do {
3235                         rps = &ioc->reply_post[i];
3236                         if (rps->reply_post_free) {
3237                                 dma_pool_free(
3238                                     ioc->reply_post_free_dma_pool,
3239                                     rps->reply_post_free,
3240                                     rps->reply_post_free_dma);
3241                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3242                                     "reply_post_free_pool(0x%p): free\n",
3243                                     ioc->name, rps->reply_post_free));
3244                                 rps->reply_post_free = NULL;
3245                         }
3246                 } while (ioc->rdpq_array_enable &&
3247                            (++i < ioc->reply_queue_count));
3248
3249                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
3250                 kfree(ioc->reply_post);
3251         }
3252
3253         if (ioc->config_page) {
3254                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3255                     "config_page(0x%p): free\n", ioc->name,
3256                     ioc->config_page));
3257                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3258                     ioc->config_page, ioc->config_page_dma);
3259         }
3260
3261         if (ioc->scsi_lookup) {
3262                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3263                 ioc->scsi_lookup = NULL;
3264         }
3265         kfree(ioc->hpr_lookup);
3266         ioc->hpr_lookup = NULL;
3267         kfree(ioc->internal_lookup);
3268         ioc->internal_lookup = NULL;
3269         if (ioc->chain_lookup) {
3270                 for (i = 0; i < ioc->chain_depth; i++) {
3271                         if (ioc->chain_lookup[i].chain_buffer)
3272                                 dma_pool_free(ioc->chain_dma_pool,
3273                                     ioc->chain_lookup[i].chain_buffer,
3274                                     ioc->chain_lookup[i].chain_buffer_dma);
3275                 }
3276                 dma_pool_destroy(ioc->chain_dma_pool);
3277                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3278                 ioc->chain_lookup = NULL;
3279         }
3280 }
3281
3282 /**
3283  * _base_allocate_memory_pools - allocate start of day memory pools
3284  * @ioc: per adapter object
3285  *
3286  * Returns 0 success, anything else error
3287  */
3288 static int
3289 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3290 {
3291         struct mpt3sas_facts *facts;
3292         u16 max_sge_elements;
3293         u16 chains_needed_per_io;
3294         u32 sz, total_sz, reply_post_free_sz;
3295         u32 retry_sz;
3296         u16 max_request_credit;
3297         unsigned short sg_tablesize;
3298         u16 sge_size;
3299         int i;
3300
3301         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3302             __func__));
3303
3304
3305         retry_sz = 0;
3306         facts = &ioc->facts;
3307
3308         /* command line tunables for max sgl entries */
3309         if (max_sgl_entries != -1)
3310                 sg_tablesize = max_sgl_entries;
3311         else {
3312                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3313                         sg_tablesize = MPT2SAS_SG_DEPTH;
3314                 else
3315                         sg_tablesize = MPT3SAS_SG_DEPTH;
3316         }
3317
3318         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3319                 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3320         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3321                 sg_tablesize = min_t(unsigned short, sg_tablesize,
3322                                       SG_MAX_SEGMENTS);
3323                 pr_warn(MPT3SAS_FMT
3324                  "sg_tablesize(%u) is bigger than kernel"
3325                  " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3326                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3327         }
3328         ioc->shost->sg_tablesize = sg_tablesize;
3329
3330         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3331                 (facts->RequestCredit / 4));
3332         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3333                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3334                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
3335                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3336                             Credits, it has just %d number of credits\n",
3337                             ioc->name, facts->RequestCredit);
3338                         return -ENOMEM;
3339                 }
3340                 ioc->internal_depth = 10;
3341         }
3342
3343         ioc->hi_priority_depth = ioc->internal_depth - (5);
3344         /* command line tunables  for max controller queue depth */
3345         if (max_queue_depth != -1 && max_queue_depth != 0) {
3346                 max_request_credit = min_t(u16, max_queue_depth +
3347                         ioc->internal_depth, facts->RequestCredit);
3348                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3349                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3350         } else
3351                 max_request_credit = min_t(u16, facts->RequestCredit,
3352                     MAX_HBA_QUEUE_DEPTH);
3353
3354         /* Firmware maintains additional facts->HighPriorityCredit number of
3355          * credits for HiPriprity Request messages, so hba queue depth will be
3356          * sum of max_request_credit and high priority queue depth.
3357          */
3358         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3359
3360         /* request frame size */
3361         ioc->request_sz = facts->IOCRequestFrameSize * 4;
3362
3363         /* reply frame size */
3364         ioc->reply_sz = facts->ReplyFrameSize * 4;
3365
3366         /* chain segment size */
3367         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3368                 if (facts->IOCMaxChainSegmentSize)
3369                         ioc->chain_segment_sz =
3370                                         facts->IOCMaxChainSegmentSize *
3371                                         MAX_CHAIN_ELEMT_SZ;
3372                 else
3373                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3374                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3375                                                     MAX_CHAIN_ELEMT_SZ;
3376         } else
3377                 ioc->chain_segment_sz = ioc->request_sz;
3378
3379         /* calculate the max scatter element size */
3380         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3381
3382  retry_allocation:
3383         total_sz = 0;
3384         /* calculate number of sg elements left over in the 1st frame */
3385         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3386             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3387         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3388
3389         /* now do the same for a chain buffer */
3390         max_sge_elements = ioc->chain_segment_sz - sge_size;
3391         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3392
3393         /*
3394          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3395          */
3396         chains_needed_per_io = ((ioc->shost->sg_tablesize -
3397            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3398             + 1;
3399         if (chains_needed_per_io > facts->MaxChainDepth) {
3400                 chains_needed_per_io = facts->MaxChainDepth;
3401                 ioc->shost->sg_tablesize = min_t(u16,
3402                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3403                 * chains_needed_per_io), ioc->shost->sg_tablesize);
3404         }
3405         ioc->chains_needed_per_io = chains_needed_per_io;
3406
3407         /* reply free queue sizing - taking into account for 64 FW events */
3408         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3409
3410         /* calculate reply descriptor post queue depth */
3411         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3412                                 ioc->reply_free_queue_depth +  1 ;
3413         /* align the reply post queue on the next 16 count boundary */
3414         if (ioc->reply_post_queue_depth % 16)
3415                 ioc->reply_post_queue_depth += 16 -
3416                 (ioc->reply_post_queue_depth % 16);
3417
3418         if (ioc->reply_post_queue_depth >
3419             facts->MaxReplyDescriptorPostQueueDepth) {
3420                 ioc->reply_post_queue_depth =
3421                                 facts->MaxReplyDescriptorPostQueueDepth -
3422                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
3423                 ioc->hba_queue_depth =
3424                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3425                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3426         }
3427
3428         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3429             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3430             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3431             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3432             ioc->chains_needed_per_io));
3433
3434         /* reply post queue, 16 byte align */
3435         reply_post_free_sz = ioc->reply_post_queue_depth *
3436             sizeof(Mpi2DefaultReplyDescriptor_t);
3437
3438         sz = reply_post_free_sz;
3439         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3440                 sz *= ioc->reply_queue_count;
3441
3442         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3443             (ioc->reply_queue_count):1,
3444             sizeof(struct reply_post_struct), GFP_KERNEL);
3445
3446         if (!ioc->reply_post) {
3447                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3448                         ioc->name);
3449                 goto out;
3450         }
3451         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
3452             &ioc->pdev->dev, sz, 16, 0);
3453         if (!ioc->reply_post_free_dma_pool) {
3454                 pr_err(MPT3SAS_FMT
3455                  "reply_post_free pool: dma_pool_create failed\n",
3456                  ioc->name);
3457                 goto out;
3458         }
3459         i = 0;
3460         do {
3461                 ioc->reply_post[i].reply_post_free =
3462                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
3463                     GFP_KERNEL,
3464                     &ioc->reply_post[i].reply_post_free_dma);
3465                 if (!ioc->reply_post[i].reply_post_free) {
3466                         pr_err(MPT3SAS_FMT
3467                         "reply_post_free pool: dma_pool_alloc failed\n",
3468                         ioc->name);
3469                         goto out;
3470                 }
3471                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3472                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3473                     "reply post free pool (0x%p): depth(%d),"
3474                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
3475                     ioc->reply_post[i].reply_post_free,
3476                     ioc->reply_post_queue_depth, 8, sz/1024));
3477                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3478                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
3479                     (unsigned long long)
3480                     ioc->reply_post[i].reply_post_free_dma));
3481                 total_sz += sz;
3482         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3483
3484         if (ioc->dma_mask > 32) {
3485                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3486                         pr_warn(MPT3SAS_FMT
3487                             "no suitable consistent DMA mask for %s\n",
3488                             ioc->name, pci_name(ioc->pdev));
3489                         goto out;
3490                 }
3491         }
3492
3493         ioc->scsiio_depth = ioc->hba_queue_depth -
3494             ioc->hi_priority_depth - ioc->internal_depth;
3495
3496         /* set the scsi host can_queue depth
3497          * with some internal commands that could be outstanding
3498          */
3499         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3500         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3501                 "scsi host: can_queue depth (%d)\n",
3502                 ioc->name, ioc->shost->can_queue));
3503
3504
3505         /* contiguous pool for request and chains, 16 byte align, one extra "
3506          * "frame for smid=0
3507          */
3508         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3509         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3510
3511         /* hi-priority queue */
3512         sz += (ioc->hi_priority_depth * ioc->request_sz);
3513
3514         /* internal queue */
3515         sz += (ioc->internal_depth * ioc->request_sz);
3516
3517         ioc->request_dma_sz = sz;
3518         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3519         if (!ioc->request) {
3520                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3521                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3522                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3523                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3524                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3525                         goto out;
3526                 retry_sz = 64;
3527                 ioc->hba_queue_depth -= retry_sz;
3528                 _base_release_memory_pools(ioc);
3529                 goto retry_allocation;
3530         }
3531
3532         if (retry_sz)
3533                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3534                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3535                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3536                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3537
3538         /* hi-priority queue */
3539         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3540             ioc->request_sz);
3541         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3542             ioc->request_sz);
3543
3544         /* internal queue */
3545         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3546             ioc->request_sz);
3547         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3548             ioc->request_sz);
3549
3550         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3551                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3552                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3553             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3554
3555         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3556             ioc->name, (unsigned long long) ioc->request_dma));
3557         total_sz += sz;
3558
3559         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3560         ioc->scsi_lookup_pages = get_order(sz);
3561         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3562             GFP_KERNEL, ioc->scsi_lookup_pages);
3563         if (!ioc->scsi_lookup) {
3564                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3565                         ioc->name, (int)sz);
3566                 goto out;
3567         }
3568
3569         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3570                 ioc->name, ioc->request, ioc->scsiio_depth));
3571
3572         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3573         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3574         ioc->chain_pages = get_order(sz);
3575         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3576             GFP_KERNEL, ioc->chain_pages);
3577         if (!ioc->chain_lookup) {
3578                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3579                         ioc->name);
3580                 goto out;
3581         }
3582         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
3583             ioc->chain_segment_sz, 16, 0);
3584         if (!ioc->chain_dma_pool) {
3585                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
3586                         ioc->name);
3587                 goto out;
3588         }
3589         for (i = 0; i < ioc->chain_depth; i++) {
3590                 ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
3591                     ioc->chain_dma_pool , GFP_KERNEL,
3592                     &ioc->chain_lookup[i].chain_buffer_dma);
3593                 if (!ioc->chain_lookup[i].chain_buffer) {
3594                         ioc->chain_depth = i;
3595                         goto chain_done;
3596                 }
3597                 total_sz += ioc->chain_segment_sz;
3598         }
3599  chain_done:
3600         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3601                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3602                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3603                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3604
3605         /* initialize hi-priority queue smid's */
3606         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3607             sizeof(struct request_tracker), GFP_KERNEL);
3608         if (!ioc->hpr_lookup) {
3609                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3610                     ioc->name);
3611                 goto out;
3612         }
3613         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3614         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3615                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3616                 ioc->name, ioc->hi_priority,
3617             ioc->hi_priority_depth, ioc->hi_priority_smid));
3618
3619         /* initialize internal queue smid's */
3620         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3621             sizeof(struct request_tracker), GFP_KERNEL);
3622         if (!ioc->internal_lookup) {
3623                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3624                     ioc->name);
3625                 goto out;
3626         }
3627         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3628         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3629                 "internal(0x%p): depth(%d), start smid(%d)\n",
3630                 ioc->name, ioc->internal,
3631             ioc->internal_depth, ioc->internal_smid));
3632
3633         /* sense buffers, 4 byte align */
3634         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3635         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
3636                                               4, 0);
3637         if (!ioc->sense_dma_pool) {
3638                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
3639                     ioc->name);
3640                 goto out;
3641         }
3642         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
3643             &ioc->sense_dma);
3644         if (!ioc->sense) {
3645                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
3646                     ioc->name);
3647                 goto out;
3648         }
3649         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3650             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3651             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3652             SCSI_SENSE_BUFFERSIZE, sz/1024));
3653         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3654             ioc->name, (unsigned long long)ioc->sense_dma));
3655         total_sz += sz;
3656
3657         /* reply pool, 4 byte align */
3658         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3659         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
3660                                               4, 0);
3661         if (!ioc->reply_dma_pool) {
3662                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
3663                     ioc->name);
3664                 goto out;
3665         }
3666         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
3667             &ioc->reply_dma);
3668         if (!ioc->reply) {
3669                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
3670                     ioc->name);
3671                 goto out;
3672         }
3673         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3674         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3675         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3676                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3677                 ioc->name, ioc->reply,
3678             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3679         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3680             ioc->name, (unsigned long long)ioc->reply_dma));
3681         total_sz += sz;
3682
3683         /* reply free queue, 16 byte align */
3684         sz = ioc->reply_free_queue_depth * 4;
3685         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
3686             &ioc->pdev->dev, sz, 16, 0);
3687         if (!ioc->reply_free_dma_pool) {
3688                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
3689                         ioc->name);
3690                 goto out;
3691         }
3692         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
3693             &ioc->reply_free_dma);
3694         if (!ioc->reply_free) {
3695                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
3696                         ioc->name);
3697                 goto out;
3698         }
3699         memset(ioc->reply_free, 0, sz);
3700         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3701             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3702             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3703         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3704                 "reply_free_dma (0x%llx)\n",
3705                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3706         total_sz += sz;
3707
3708         ioc->config_page_sz = 512;
3709         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3710             ioc->config_page_sz, &ioc->config_page_dma);
3711         if (!ioc->config_page) {
3712                 pr_err(MPT3SAS_FMT
3713                         "config page: dma_pool_alloc failed\n",
3714                         ioc->name);
3715                 goto out;
3716         }
3717         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3718                 "config page(0x%p): size(%d)\n",
3719                 ioc->name, ioc->config_page, ioc->config_page_sz));
3720         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3721                 ioc->name, (unsigned long long)ioc->config_page_dma));
3722         total_sz += ioc->config_page_sz;
3723
3724         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3725             ioc->name, total_sz/1024);
3726         pr_info(MPT3SAS_FMT
3727                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3728             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3729         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3730             ioc->name, ioc->shost->sg_tablesize);
3731         return 0;
3732
3733  out:
3734         return -ENOMEM;
3735 }
3736
3737 /**
3738  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3739  * @ioc: Pointer to MPT_ADAPTER structure
3740  * @cooked: Request raw or cooked IOC state
3741  *
3742  * Returns all IOC Doorbell register bits if cooked==0, else just the
3743  * Doorbell bits in MPI_IOC_STATE_MASK.
3744  */
3745 u32
3746 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3747 {
3748         u32 s, sc;
3749
3750         s = readl(&ioc->chip->Doorbell);
3751         sc = s & MPI2_IOC_STATE_MASK;
3752         return cooked ? sc : s;
3753 }
3754
3755 /**
3756  * _base_wait_on_iocstate - waiting on a particular ioc state
3757  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3758  * @timeout: timeout in second
3759  *
3760  * Returns 0 for success, non-zero for failure.
3761  */
3762 static int
3763 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3764 {
3765         u32 count, cntdn;
3766         u32 current_state;
3767
3768         count = 0;
3769         cntdn = 1000 * timeout;
3770         do {
3771                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3772                 if (current_state == ioc_state)
3773                         return 0;
3774                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3775                         break;
3776
3777                 usleep_range(1000, 1500);
3778                 count++;
3779         } while (--cntdn);
3780
3781         return current_state;
3782 }
3783
3784 /**
3785  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3786  * a write to the doorbell)
3787  * @ioc: per adapter object
3788  * @timeout: timeout in second
3789  *
3790  * Returns 0 for success, non-zero for failure.
3791  *
3792  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3793  */
3794 static int
3795 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3796
3797 static int
3798 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3799 {
3800         u32 cntdn, count;
3801         u32 int_status;
3802
3803         count = 0;
3804         cntdn = 1000 * timeout;
3805         do {
3806                 int_status = readl(&ioc->chip->HostInterruptStatus);
3807                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3808                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3809                                 "%s: successful count(%d), timeout(%d)\n",
3810                                 ioc->name, __func__, count, timeout));
3811                         return 0;
3812                 }
3813
3814                 usleep_range(1000, 1500);
3815                 count++;
3816         } while (--cntdn);
3817
3818         pr_err(MPT3SAS_FMT
3819                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3820                 ioc->name, __func__, count, int_status);
3821         return -EFAULT;
3822 }
3823
3824 static int
3825 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3826 {
3827         u32 cntdn, count;
3828         u32 int_status;
3829
3830         count = 0;
3831         cntdn = 2000 * timeout;
3832         do {
3833                 int_status = readl(&ioc->chip->HostInterruptStatus);
3834                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3835                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3836                                 "%s: successful count(%d), timeout(%d)\n",
3837                                 ioc->name, __func__, count, timeout));
3838                         return 0;
3839                 }
3840
3841                 udelay(500);
3842                 count++;
3843         } while (--cntdn);
3844
3845         pr_err(MPT3SAS_FMT
3846                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3847                 ioc->name, __func__, count, int_status);
3848         return -EFAULT;
3849
3850 }
3851
3852 /**
3853  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3854  * @ioc: per adapter object
3855  * @timeout: timeout in second
3856  *
3857  * Returns 0 for success, non-zero for failure.
3858  *
3859  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3860  * doorbell.
3861  */
3862 static int
3863 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3864 {
3865         u32 cntdn, count;
3866         u32 int_status;
3867         u32 doorbell;
3868
3869         count = 0;
3870         cntdn = 1000 * timeout;
3871         do {
3872                 int_status = readl(&ioc->chip->HostInterruptStatus);
3873                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3874                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3875                                 "%s: successful count(%d), timeout(%d)\n",
3876                                 ioc->name, __func__, count, timeout));
3877                         return 0;
3878                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3879                         doorbell = readl(&ioc->chip->Doorbell);
3880                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3881                             MPI2_IOC_STATE_FAULT) {
3882                                 mpt3sas_base_fault_info(ioc , doorbell);
3883                                 return -EFAULT;
3884                         }
3885                 } else if (int_status == 0xFFFFFFFF)
3886                         goto out;
3887
3888                 usleep_range(1000, 1500);
3889                 count++;
3890         } while (--cntdn);
3891
3892  out:
3893         pr_err(MPT3SAS_FMT
3894          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3895          ioc->name, __func__, count, int_status);
3896         return -EFAULT;
3897 }
3898
3899 /**
3900  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3901  * @ioc: per adapter object
3902  * @timeout: timeout in second
3903  *
3904  * Returns 0 for success, non-zero for failure.
3905  *
3906  */
3907 static int
3908 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3909 {
3910         u32 cntdn, count;
3911         u32 doorbell_reg;
3912
3913         count = 0;
3914         cntdn = 1000 * timeout;
3915         do {
3916                 doorbell_reg = readl(&ioc->chip->Doorbell);
3917                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3918                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3919                                 "%s: successful count(%d), timeout(%d)\n",
3920                                 ioc->name, __func__, count, timeout));
3921                         return 0;
3922                 }
3923
3924                 usleep_range(1000, 1500);
3925                 count++;
3926         } while (--cntdn);
3927
3928         pr_err(MPT3SAS_FMT
3929                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3930                 ioc->name, __func__, count, doorbell_reg);
3931         return -EFAULT;
3932 }
3933
3934 /**
3935  * _base_send_ioc_reset - send doorbell reset
3936  * @ioc: per adapter object
3937  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3938  * @timeout: timeout in second
3939  *
3940  * Returns 0 for success, non-zero for failure.
3941  */
3942 static int
3943 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3944 {
3945         u32 ioc_state;
3946         int r = 0;
3947
3948         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3949                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3950                     ioc->name, __func__);
3951                 return -EFAULT;
3952         }
3953
3954         if (!(ioc->facts.IOCCapabilities &
3955            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3956                 return -EFAULT;
3957
3958         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3959
3960         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3961             &ioc->chip->Doorbell);
3962         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3963                 r = -EFAULT;
3964                 goto out;
3965         }
3966         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3967         if (ioc_state) {
3968                 pr_err(MPT3SAS_FMT
3969                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3970                         ioc->name, __func__, ioc_state);
3971                 r = -EFAULT;
3972                 goto out;
3973         }
3974  out:
3975         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3976             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3977         return r;
3978 }
3979
3980 /**
3981  * _base_handshake_req_reply_wait - send request thru doorbell interface
3982  * @ioc: per adapter object
3983  * @request_bytes: request length
3984  * @request: pointer having request payload
3985  * @reply_bytes: reply length
3986  * @reply: pointer to reply payload
3987  * @timeout: timeout in second
3988  *
3989  * Returns 0 for success, non-zero for failure.
3990  */
3991 static int
3992 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3993         u32 *request, int reply_bytes, u16 *reply, int timeout)
3994 {
3995         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3996         int i;
3997         u8 failed;
3998         __le32 *mfp;
3999
4000         /* make sure doorbell is not in use */
4001         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4002                 pr_err(MPT3SAS_FMT
4003                         "doorbell is in use (line=%d)\n",
4004                         ioc->name, __LINE__);
4005                 return -EFAULT;
4006         }
4007
4008         /* clear pending doorbell interrupts from previous state changes */
4009         if (readl(&ioc->chip->HostInterruptStatus) &
4010             MPI2_HIS_IOC2SYS_DB_STATUS)
4011                 writel(0, &ioc->chip->HostInterruptStatus);
4012
4013         /* send message to ioc */
4014         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4015             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4016             &ioc->chip->Doorbell);
4017
4018         if ((_base_spin_on_doorbell_int(ioc, 5))) {
4019                 pr_err(MPT3SAS_FMT
4020                         "doorbell handshake int failed (line=%d)\n",
4021                         ioc->name, __LINE__);
4022                 return -EFAULT;
4023         }
4024         writel(0, &ioc->chip->HostInterruptStatus);
4025
4026         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4027                 pr_err(MPT3SAS_FMT
4028                         "doorbell handshake ack failed (line=%d)\n",
4029                         ioc->name, __LINE__);
4030                 return -EFAULT;
4031         }
4032
4033         /* send message 32-bits at a time */
4034         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4035                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4036                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
4037                         failed = 1;
4038         }
4039
4040         if (failed) {
4041                 pr_err(MPT3SAS_FMT
4042                         "doorbell handshake sending request failed (line=%d)\n",
4043                         ioc->name, __LINE__);
4044                 return -EFAULT;
4045         }
4046
4047         /* now wait for the reply */
4048         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4049                 pr_err(MPT3SAS_FMT
4050                         "doorbell handshake int failed (line=%d)\n",
4051                         ioc->name, __LINE__);
4052                 return -EFAULT;
4053         }
4054
4055         /* read the first two 16-bits, it gives the total length of the reply */
4056         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4057             & MPI2_DOORBELL_DATA_MASK);
4058         writel(0, &ioc->chip->HostInterruptStatus);
4059         if ((_base_wait_for_doorbell_int(ioc, 5))) {
4060                 pr_err(MPT3SAS_FMT
4061                         "doorbell handshake int failed (line=%d)\n",
4062                         ioc->name, __LINE__);
4063                 return -EFAULT;
4064         }
4065         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4066             & MPI2_DOORBELL_DATA_MASK);
4067         writel(0, &ioc->chip->HostInterruptStatus);
4068
4069         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4070                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4071                         pr_err(MPT3SAS_FMT
4072                                 "doorbell handshake int failed (line=%d)\n",
4073                                 ioc->name, __LINE__);
4074                         return -EFAULT;
4075                 }
4076                 if (i >=  reply_bytes/2) /* overflow case */
4077                         readl(&ioc->chip->Doorbell);
4078                 else
4079                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4080                             & MPI2_DOORBELL_DATA_MASK);
4081                 writel(0, &ioc->chip->HostInterruptStatus);
4082         }
4083
4084         _base_wait_for_doorbell_int(ioc, 5);
4085         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4086                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4087                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4088         }
4089         writel(0, &ioc->chip->HostInterruptStatus);
4090
4091         if (ioc->logging_level & MPT_DEBUG_INIT) {
4092                 mfp = (__le32 *)reply;
4093                 pr_info("\toffset:data\n");
4094                 for (i = 0; i < reply_bytes/4; i++)
4095                         pr_info("\t[0x%02x]:%08x\n", i*4,
4096                             le32_to_cpu(mfp[i]));
4097         }
4098         return 0;
4099 }
4100
4101 /**
4102  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4103  * @ioc: per adapter object
4104  * @mpi_reply: the reply payload from FW
4105  * @mpi_request: the request payload sent to FW
4106  *
4107  * The SAS IO Unit Control Request message allows the host to perform low-level
4108  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4109  * to obtain the IOC assigned device handles for a device if it has other
4110  * identifying information about the device, in addition allows the host to
4111  * remove IOC resources associated with the device.
4112  *
4113  * Returns 0 for success, non-zero for failure.
4114  */
4115 int
4116 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4117         Mpi2SasIoUnitControlReply_t *mpi_reply,
4118         Mpi2SasIoUnitControlRequest_t *mpi_request)
4119 {
4120         u16 smid;
4121         u32 ioc_state;
4122         bool issue_reset = false;
4123         int rc;
4124         void *request;
4125         u16 wait_state_count;
4126
4127         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4128             __func__));
4129
4130         mutex_lock(&ioc->base_cmds.mutex);
4131
4132         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4133                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4134                     ioc->name, __func__);
4135                 rc = -EAGAIN;
4136                 goto out;
4137         }
4138
4139         wait_state_count = 0;
4140         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4141         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4142                 if (wait_state_count++ == 10) {
4143                         pr_err(MPT3SAS_FMT
4144                             "%s: failed due to ioc not operational\n",
4145                             ioc->name, __func__);
4146                         rc = -EFAULT;
4147                         goto out;
4148                 }
4149                 ssleep(1);
4150                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4151                 pr_info(MPT3SAS_FMT
4152                         "%s: waiting for operational state(count=%d)\n",
4153                         ioc->name, __func__, wait_state_count);
4154         }
4155
4156         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4157         if (!smid) {
4158                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4159                     ioc->name, __func__);
4160                 rc = -EAGAIN;
4161                 goto out;
4162         }
4163
4164         rc = 0;
4165         ioc->base_cmds.status = MPT3_CMD_PENDING;
4166         request = mpt3sas_base_get_msg_frame(ioc, smid);
4167         ioc->base_cmds.smid = smid;
4168         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4169         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4170             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4171                 ioc->ioc_link_reset_in_progress = 1;
4172         init_completion(&ioc->base_cmds.done);
4173         ioc->put_smid_default(ioc, smid);
4174         wait_for_completion_timeout(&ioc->base_cmds.done,
4175             msecs_to_jiffies(10000));
4176         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4177             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4178             ioc->ioc_link_reset_in_progress)
4179                 ioc->ioc_link_reset_in_progress = 0;
4180         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4181                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4182                     ioc->name, __func__);
4183                 _debug_dump_mf(mpi_request,
4184                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4185                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4186                         issue_reset = true;
4187                 goto issue_host_reset;
4188         }
4189         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4190                 memcpy(mpi_reply, ioc->base_cmds.reply,
4191                     sizeof(Mpi2SasIoUnitControlReply_t));
4192         else
4193                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4194         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4195         goto out;
4196
4197  issue_host_reset:
4198         if (issue_reset)
4199                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4200         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4201         rc = -EFAULT;
4202  out:
4203         mutex_unlock(&ioc->base_cmds.mutex);
4204         return rc;
4205 }
4206
4207 /**
4208  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4209  * @ioc: per adapter object
4210  * @mpi_reply: the reply payload from FW
4211  * @mpi_request: the request payload sent to FW
4212  *
4213  * The SCSI Enclosure Processor request message causes the IOC to
4214  * communicate with SES devices to control LED status signals.
4215  *
4216  * Returns 0 for success, non-zero for failure.
4217  */
4218 int
4219 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4220         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4221 {
4222         u16 smid;
4223         u32 ioc_state;
4224         bool issue_reset = false;
4225         int rc;
4226         void *request;
4227         u16 wait_state_count;
4228
4229         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4230             __func__));
4231
4232         mutex_lock(&ioc->base_cmds.mutex);
4233
4234         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4235                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4236                     ioc->name, __func__);
4237                 rc = -EAGAIN;
4238                 goto out;
4239         }
4240
4241         wait_state_count = 0;
4242         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4243         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4244                 if (wait_state_count++ == 10) {
4245                         pr_err(MPT3SAS_FMT
4246                             "%s: failed due to ioc not operational\n",
4247                             ioc->name, __func__);
4248                         rc = -EFAULT;
4249                         goto out;
4250                 }
4251                 ssleep(1);
4252                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4253                 pr_info(MPT3SAS_FMT
4254                         "%s: waiting for operational state(count=%d)\n",
4255                         ioc->name,
4256                     __func__, wait_state_count);
4257         }
4258
4259         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4260         if (!smid) {
4261                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4262                     ioc->name, __func__);
4263                 rc = -EAGAIN;
4264                 goto out;
4265         }
4266
4267         rc = 0;
4268         ioc->base_cmds.status = MPT3_CMD_PENDING;
4269         request = mpt3sas_base_get_msg_frame(ioc, smid);
4270         ioc->base_cmds.smid = smid;
4271         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4272         init_completion(&ioc->base_cmds.done);
4273         ioc->put_smid_default(ioc, smid);
4274         wait_for_completion_timeout(&ioc->base_cmds.done,
4275             msecs_to_jiffies(10000));
4276         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4277                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4278                     ioc->name, __func__);
4279                 _debug_dump_mf(mpi_request,
4280                     sizeof(Mpi2SepRequest_t)/4);
4281                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4282                         issue_reset = false;
4283                 goto issue_host_reset;
4284         }
4285         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4286                 memcpy(mpi_reply, ioc->base_cmds.reply,
4287                     sizeof(Mpi2SepReply_t));
4288         else
4289                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4290         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4291         goto out;
4292
4293  issue_host_reset:
4294         if (issue_reset)
4295                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4296         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4297         rc = -EFAULT;
4298  out:
4299         mutex_unlock(&ioc->base_cmds.mutex);
4300         return rc;
4301 }
4302
4303 /**
4304  * _base_get_port_facts - obtain port facts reply and save in ioc
4305  * @ioc: per adapter object
4306  *
4307  * Returns 0 for success, non-zero for failure.
4308  */
4309 static int
4310 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4311 {
4312         Mpi2PortFactsRequest_t mpi_request;
4313         Mpi2PortFactsReply_t mpi_reply;
4314         struct mpt3sas_port_facts *pfacts;
4315         int mpi_reply_sz, mpi_request_sz, r;
4316
4317         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4318             __func__));
4319
4320         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4321         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4322         memset(&mpi_request, 0, mpi_request_sz);
4323         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4324         mpi_request.PortNumber = port;
4325         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4326             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4327
4328         if (r != 0) {
4329                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4330                     ioc->name, __func__, r);
4331                 return r;
4332         }
4333
4334         pfacts = &ioc->pfacts[port];
4335         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4336         pfacts->PortNumber = mpi_reply.PortNumber;
4337         pfacts->VP_ID = mpi_reply.VP_ID;
4338         pfacts->VF_ID = mpi_reply.VF_ID;
4339         pfacts->MaxPostedCmdBuffers =
4340             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4341
4342         return 0;
4343 }
4344
4345 /**
4346  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4347  * @ioc: per adapter object
4348  * @timeout:
4349  *
4350  * Returns 0 for success, non-zero for failure.
4351  */
4352 static int
4353 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4354 {
4355         u32 ioc_state;
4356         int rc;
4357
4358         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4359             __func__));
4360
4361         if (ioc->pci_error_recovery) {
4362                 dfailprintk(ioc, printk(MPT3SAS_FMT
4363                     "%s: host in pci error recovery\n", ioc->name, __func__));
4364                 return -EFAULT;
4365         }
4366
4367         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4368         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4369             ioc->name, __func__, ioc_state));
4370
4371         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4372             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4373                 return 0;
4374
4375         if (ioc_state & MPI2_DOORBELL_USED) {
4376                 dhsprintk(ioc, printk(MPT3SAS_FMT
4377                     "unexpected doorbell active!\n", ioc->name));
4378                 goto issue_diag_reset;
4379         }
4380
4381         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4382                 mpt3sas_base_fault_info(ioc, ioc_state &
4383                     MPI2_DOORBELL_DATA_MASK);
4384                 goto issue_diag_reset;
4385         }
4386
4387         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4388         if (ioc_state) {
4389                 dfailprintk(ioc, printk(MPT3SAS_FMT
4390                     "%s: failed going to ready state (ioc_state=0x%x)\n",
4391                     ioc->name, __func__, ioc_state));
4392                 return -EFAULT;
4393         }
4394
4395  issue_diag_reset:
4396         rc = _base_diag_reset(ioc);
4397         return rc;
4398 }
4399
4400 /**
4401  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4402  * @ioc: per adapter object
4403  *
4404  * Returns 0 for success, non-zero for failure.
4405  */
4406 static int
4407 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4408 {
4409         Mpi2IOCFactsRequest_t mpi_request;
4410         Mpi2IOCFactsReply_t mpi_reply;
4411         struct mpt3sas_facts *facts;
4412         int mpi_reply_sz, mpi_request_sz, r;
4413
4414         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4415             __func__));
4416
4417         r = _base_wait_for_iocstate(ioc, 10);
4418         if (r) {
4419                 dfailprintk(ioc, printk(MPT3SAS_FMT
4420                     "%s: failed getting to correct state\n",
4421                     ioc->name, __func__));
4422                 return r;
4423         }
4424         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4425         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4426         memset(&mpi_request, 0, mpi_request_sz);
4427         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4428         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4429             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4430
4431         if (r != 0) {
4432                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4433                     ioc->name, __func__, r);
4434                 return r;
4435         }
4436
4437         facts = &ioc->facts;
4438         memset(facts, 0, sizeof(struct mpt3sas_facts));
4439         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4440         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4441         facts->VP_ID = mpi_reply.VP_ID;
4442         facts->VF_ID = mpi_reply.VF_ID;
4443         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4444         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4445         facts->WhoInit = mpi_reply.WhoInit;
4446         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4447         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4448         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4449         facts->MaxReplyDescriptorPostQueueDepth =
4450             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4451         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4452         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4453         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4454                 ioc->ir_firmware = 1;
4455         if ((facts->IOCCapabilities &
4456               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4457                 ioc->rdpq_array_capable = 1;
4458         if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4459                 ioc->atomic_desc_capable = 1;
4460         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4461         facts->IOCRequestFrameSize =
4462             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4463         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4464                 facts->IOCMaxChainSegmentSize =
4465                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4466         }
4467         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4468         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4469         ioc->shost->max_id = -1;
4470         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4471         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4472         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4473         facts->HighPriorityCredit =
4474             le16_to_cpu(mpi_reply.HighPriorityCredit);
4475         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4476         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4477
4478         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4479                 "hba queue depth(%d), max chains per io(%d)\n",
4480                 ioc->name, facts->RequestCredit,
4481             facts->MaxChainDepth));
4482         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4483                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4484             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4485         return 0;
4486 }
4487
4488 /**
4489  * _base_send_ioc_init - send ioc_init to firmware
4490  * @ioc: per adapter object
4491  *
4492  * Returns 0 for success, non-zero for failure.
4493  */
4494 static int
4495 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4496 {
4497         Mpi2IOCInitRequest_t mpi_request;
4498         Mpi2IOCInitReply_t mpi_reply;
4499         int i, r = 0;
4500         ktime_t current_time;
4501         u16 ioc_status;
4502         u32 reply_post_free_array_sz = 0;
4503         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4504         dma_addr_t reply_post_free_array_dma;
4505
4506         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4507             __func__));
4508
4509         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4510         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4511         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4512         mpi_request.VF_ID = 0; /* TODO */
4513         mpi_request.VP_ID = 0;
4514         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4515         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4516
4517         if (_base_is_controller_msix_enabled(ioc))
4518                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4519         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4520         mpi_request.ReplyDescriptorPostQueueDepth =
4521             cpu_to_le16(ioc->reply_post_queue_depth);
4522         mpi_request.ReplyFreeQueueDepth =
4523             cpu_to_le16(ioc->reply_free_queue_depth);
4524
4525         mpi_request.SenseBufferAddressHigh =
4526             cpu_to_le32((u64)ioc->sense_dma >> 32);
4527         mpi_request.SystemReplyAddressHigh =
4528             cpu_to_le32((u64)ioc->reply_dma >> 32);
4529         mpi_request.SystemRequestFrameBaseAddress =
4530             cpu_to_le64((u64)ioc->request_dma);
4531         mpi_request.ReplyFreeQueueAddress =
4532             cpu_to_le64((u64)ioc->reply_free_dma);
4533
4534         if (ioc->rdpq_array_enable) {
4535                 reply_post_free_array_sz = ioc->reply_queue_count *
4536                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4537                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4538                         reply_post_free_array_sz, &reply_post_free_array_dma);
4539                 if (!reply_post_free_array) {
4540                         pr_err(MPT3SAS_FMT
4541                         "reply_post_free_array: pci_alloc_consistent failed\n",
4542                         ioc->name);
4543                         r = -ENOMEM;
4544                         goto out;
4545                 }
4546                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4547                 for (i = 0; i < ioc->reply_queue_count; i++)
4548                         reply_post_free_array[i].RDPQBaseAddress =
4549                             cpu_to_le64(
4550                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4551                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4552                 mpi_request.ReplyDescriptorPostQueueAddress =
4553                     cpu_to_le64((u64)reply_post_free_array_dma);
4554         } else {
4555                 mpi_request.ReplyDescriptorPostQueueAddress =
4556                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4557         }
4558
4559         /* This time stamp specifies number of milliseconds
4560          * since epoch ~ midnight January 1, 1970.
4561          */
4562         current_time = ktime_get_real();
4563         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4564
4565         if (ioc->logging_level & MPT_DEBUG_INIT) {
4566                 __le32 *mfp;
4567                 int i;
4568
4569                 mfp = (__le32 *)&mpi_request;
4570                 pr_info("\toffset:data\n");
4571                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4572                         pr_info("\t[0x%02x]:%08x\n", i*4,
4573                             le32_to_cpu(mfp[i]));
4574         }
4575
4576         r = _base_handshake_req_reply_wait(ioc,
4577             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4578             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
4579
4580         if (r != 0) {
4581                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4582                     ioc->name, __func__, r);
4583                 goto out;
4584         }
4585
4586         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4587         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4588             mpi_reply.IOCLogInfo) {
4589                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4590                 r = -EIO;
4591         }
4592
4593 out:
4594         if (reply_post_free_array)
4595                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4596                                     reply_post_free_array,
4597                                     reply_post_free_array_dma);
4598         return r;
4599 }
4600
4601 /**
4602  * mpt3sas_port_enable_done - command completion routine for port enable
4603  * @ioc: per adapter object
4604  * @smid: system request message index
4605  * @msix_index: MSIX table index supplied by the OS
4606  * @reply: reply message frame(lower 32bit addr)
4607  *
4608  * Return 1 meaning mf should be freed from _base_interrupt
4609  *        0 means the mf is freed from this function.
4610  */
4611 u8
4612 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4613         u32 reply)
4614 {
4615         MPI2DefaultReply_t *mpi_reply;
4616         u16 ioc_status;
4617
4618         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4619                 return 1;
4620
4621         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4622         if (!mpi_reply)
4623                 return 1;
4624
4625         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4626                 return 1;
4627
4628         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4629         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4630         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4631         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4632         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4633         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4634                 ioc->port_enable_failed = 1;
4635
4636         if (ioc->is_driver_loading) {
4637                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4638                         mpt3sas_port_enable_complete(ioc);
4639                         return 1;
4640                 } else {
4641                         ioc->start_scan_failed = ioc_status;
4642                         ioc->start_scan = 0;
4643                         return 1;
4644                 }
4645         }
4646         complete(&ioc->port_enable_cmds.done);
4647         return 1;
4648 }
4649
4650 /**
4651  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4652  * @ioc: per adapter object
4653  *
4654  * Returns 0 for success, non-zero for failure.
4655  */
4656 static int
4657 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4658 {
4659         Mpi2PortEnableRequest_t *mpi_request;
4660         Mpi2PortEnableReply_t *mpi_reply;
4661         int r = 0;
4662         u16 smid;
4663         u16 ioc_status;
4664
4665         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4666
4667         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4668                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4669                     ioc->name, __func__);
4670                 return -EAGAIN;
4671         }
4672
4673         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4674         if (!smid) {
4675                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4676                     ioc->name, __func__);
4677                 return -EAGAIN;
4678         }
4679
4680         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4681         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4682         ioc->port_enable_cmds.smid = smid;
4683         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4684         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4685
4686         init_completion(&ioc->port_enable_cmds.done);
4687         ioc->put_smid_default(ioc, smid);
4688         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4689         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4690                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4691                     ioc->name, __func__);
4692                 _debug_dump_mf(mpi_request,
4693                     sizeof(Mpi2PortEnableRequest_t)/4);
4694                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4695                         r = -EFAULT;
4696                 else
4697                         r = -ETIME;
4698                 goto out;
4699         }
4700
4701         mpi_reply = ioc->port_enable_cmds.reply;
4702         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4703         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4704                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4705                     ioc->name, __func__, ioc_status);
4706                 r = -EFAULT;
4707                 goto out;
4708         }
4709
4710  out:
4711         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4712         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4713             "SUCCESS" : "FAILED"));
4714         return r;
4715 }
4716
4717 /**
4718  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4719  * @ioc: per adapter object
4720  *
4721  * Returns 0 for success, non-zero for failure.
4722  */
4723 int
4724 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4725 {
4726         Mpi2PortEnableRequest_t *mpi_request;
4727         u16 smid;
4728
4729         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4730
4731         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4732                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4733                     ioc->name, __func__);
4734                 return -EAGAIN;
4735         }
4736
4737         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4738         if (!smid) {
4739                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4740                     ioc->name, __func__);
4741                 return -EAGAIN;
4742         }
4743
4744         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4745         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4746         ioc->port_enable_cmds.smid = smid;
4747         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4748         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4749
4750         ioc->put_smid_default(ioc, smid);
4751         return 0;
4752 }
4753
4754 /**
4755  * _base_determine_wait_on_discovery - desposition
4756  * @ioc: per adapter object
4757  *
4758  * Decide whether to wait on discovery to complete. Used to either
4759  * locate boot device, or report volumes ahead of physical devices.
4760  *
4761  * Returns 1 for wait, 0 for don't wait
4762  */
4763 static int
4764 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4765 {
4766         /* We wait for discovery to complete if IR firmware is loaded.
4767          * The sas topology events arrive before PD events, so we need time to
4768          * turn on the bit in ioc->pd_handles to indicate PD
4769          * Also, it maybe required to report Volumes ahead of physical
4770          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4771          */
4772         if (ioc->ir_firmware)
4773                 return 1;
4774
4775         /* if no Bios, then we don't need to wait */
4776         if (!ioc->bios_pg3.BiosVersion)
4777                 return 0;
4778
4779         /* Bios is present, then we drop down here.
4780          *
4781          * If there any entries in the Bios Page 2, then we wait
4782          * for discovery to complete.
4783          */
4784
4785         /* Current Boot Device */
4786         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4787             MPI2_BIOSPAGE2_FORM_MASK) ==
4788             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4789         /* Request Boot Device */
4790            (ioc->bios_pg2.ReqBootDeviceForm &
4791             MPI2_BIOSPAGE2_FORM_MASK) ==
4792             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4793         /* Alternate Request Boot Device */
4794            (ioc->bios_pg2.ReqAltBootDeviceForm &
4795             MPI2_BIOSPAGE2_FORM_MASK) ==
4796             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4797                 return 0;
4798
4799         return 1;
4800 }
4801
4802 /**
4803  * _base_unmask_events - turn on notification for this event
4804  * @ioc: per adapter object
4805  * @event: firmware event
4806  *
4807  * The mask is stored in ioc->event_masks.
4808  */
4809 static void
4810 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4811 {
4812         u32 desired_event;
4813
4814         if (event >= 128)
4815                 return;
4816
4817         desired_event = (1 << (event % 32));
4818
4819         if (event < 32)
4820                 ioc->event_masks[0] &= ~desired_event;
4821         else if (event < 64)
4822                 ioc->event_masks[1] &= ~desired_event;
4823         else if (event < 96)
4824                 ioc->event_masks[2] &= ~desired_event;
4825         else if (event < 128)
4826                 ioc->event_masks[3] &= ~desired_event;
4827 }
4828
4829 /**
4830  * _base_event_notification - send event notification
4831  * @ioc: per adapter object
4832  *
4833  * Returns 0 for success, non-zero for failure.
4834  */
4835 static int
4836 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4837 {
4838         Mpi2EventNotificationRequest_t *mpi_request;
4839         u16 smid;
4840         int r = 0;
4841         int i;
4842
4843         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4844             __func__));
4845
4846         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4847                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4848                     ioc->name, __func__);
4849                 return -EAGAIN;
4850         }
4851
4852         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4853         if (!smid) {
4854                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4855                     ioc->name, __func__);
4856                 return -EAGAIN;
4857         }
4858         ioc->base_cmds.status = MPT3_CMD_PENDING;
4859         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4860         ioc->base_cmds.smid = smid;
4861         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4862         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4863         mpi_request->VF_ID = 0; /* TODO */
4864         mpi_request->VP_ID = 0;
4865         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4866                 mpi_request->EventMasks[i] =
4867                     cpu_to_le32(ioc->event_masks[i]);
4868         init_completion(&ioc->base_cmds.done);
4869         ioc->put_smid_default(ioc, smid);
4870         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4871         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4872                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4873                     ioc->name, __func__);
4874                 _debug_dump_mf(mpi_request,
4875                     sizeof(Mpi2EventNotificationRequest_t)/4);
4876                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4877                         r = -EFAULT;
4878                 else
4879                         r = -ETIME;
4880         } else
4881                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4882                     ioc->name, __func__));
4883         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4884         return r;
4885 }
4886
4887 /**
4888  * mpt3sas_base_validate_event_type - validating event types
4889  * @ioc: per adapter object
4890  * @event: firmware event
4891  *
4892  * This will turn on firmware event notification when application
4893  * ask for that event. We don't mask events that are already enabled.
4894  */
4895 void
4896 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4897 {
4898         int i, j;
4899         u32 event_mask, desired_event;
4900         u8 send_update_to_fw;
4901
4902         for (i = 0, send_update_to_fw = 0; i <
4903             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4904                 event_mask = ~event_type[i];
4905                 desired_event = 1;
4906                 for (j = 0; j < 32; j++) {
4907                         if (!(event_mask & desired_event) &&
4908                             (ioc->event_masks[i] & desired_event)) {
4909                                 ioc->event_masks[i] &= ~desired_event;
4910                                 send_update_to_fw = 1;
4911                         }
4912                         desired_event = (desired_event << 1);
4913                 }
4914         }
4915
4916         if (!send_update_to_fw)
4917                 return;
4918
4919         mutex_lock(&ioc->base_cmds.mutex);
4920         _base_event_notification(ioc);
4921         mutex_unlock(&ioc->base_cmds.mutex);
4922 }
4923
4924 /**
4925  * _base_diag_reset - the "big hammer" start of day reset
4926  * @ioc: per adapter object
4927  *
4928  * Returns 0 for success, non-zero for failure.
4929  */
4930 static int
4931 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4932 {
4933         u32 host_diagnostic;
4934         u32 ioc_state;
4935         u32 count;
4936         u32 hcb_size;
4937
4938         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4939
4940         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4941             ioc->name));
4942
4943         count = 0;
4944         do {
4945                 /* Write magic sequence to WriteSequence register
4946                  * Loop until in diagnostic mode
4947                  */
4948                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4949                         "write magic sequence\n", ioc->name));
4950                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4951                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4952                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4953                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4954                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4955                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4956                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4957
4958                 /* wait 100 msec */
4959                 msleep(100);
4960
4961                 if (count++ > 20)
4962                         goto out;
4963
4964                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4965                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4966                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4967                     ioc->name, count, host_diagnostic));
4968
4969         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4970
4971         hcb_size = readl(&ioc->chip->HCBSize);
4972
4973         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4974             ioc->name));
4975         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4976              &ioc->chip->HostDiagnostic);
4977
4978         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4979         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4980
4981         /* Approximately 300 second max wait */
4982         for (count = 0; count < (300000000 /
4983                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4984
4985                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4986
4987                 if (host_diagnostic == 0xFFFFFFFF)
4988                         goto out;
4989                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4990                         break;
4991
4992                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4993         }
4994
4995         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4996
4997                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4998                 "restart the adapter assuming the HCB Address points to good F/W\n",
4999                     ioc->name));
5000                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5001                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5002                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5003
5004                 drsprintk(ioc, pr_info(MPT3SAS_FMT
5005                     "re-enable the HCDW\n", ioc->name));
5006                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5007                     &ioc->chip->HCBSize);
5008         }
5009
5010         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5011             ioc->name));
5012         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5013             &ioc->chip->HostDiagnostic);
5014
5015         drsprintk(ioc, pr_info(MPT3SAS_FMT
5016                 "disable writes to the diagnostic register\n", ioc->name));
5017         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5018
5019         drsprintk(ioc, pr_info(MPT3SAS_FMT
5020                 "Wait for FW to go to the READY state\n", ioc->name));
5021         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5022         if (ioc_state) {
5023                 pr_err(MPT3SAS_FMT
5024                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5025                         ioc->name, __func__, ioc_state);
5026                 goto out;
5027         }
5028
5029         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5030         return 0;
5031
5032  out:
5033         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5034         return -EFAULT;
5035 }
5036
5037 /**
5038  * _base_make_ioc_ready - put controller in READY state
5039  * @ioc: per adapter object
5040  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5041  *
5042  * Returns 0 for success, non-zero for failure.
5043  */
5044 static int
5045 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5046 {
5047         u32 ioc_state;
5048         int rc;
5049         int count;
5050
5051         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5052             __func__));
5053
5054         if (ioc->pci_error_recovery)
5055                 return 0;
5056
5057         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5058         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5059             ioc->name, __func__, ioc_state));
5060
5061         /* if in RESET state, it should move to READY state shortly */
5062         count = 0;
5063         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5064                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5065                     MPI2_IOC_STATE_READY) {
5066                         if (count++ == 10) {
5067                                 pr_err(MPT3SAS_FMT
5068                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5069                                     ioc->name, __func__, ioc_state);
5070                                 return -EFAULT;
5071                         }
5072                         ssleep(1);
5073                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5074                 }
5075         }
5076
5077         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5078                 return 0;
5079
5080         if (ioc_state & MPI2_DOORBELL_USED) {
5081                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5082                         "unexpected doorbell active!\n",
5083                         ioc->name));
5084                 goto issue_diag_reset;
5085         }
5086
5087         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5088                 mpt3sas_base_fault_info(ioc, ioc_state &
5089                     MPI2_DOORBELL_DATA_MASK);
5090                 goto issue_diag_reset;
5091         }
5092
5093         if (type == FORCE_BIG_HAMMER)
5094                 goto issue_diag_reset;
5095
5096         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5097                 if (!(_base_send_ioc_reset(ioc,
5098                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5099                         return 0;
5100         }
5101
5102  issue_diag_reset:
5103         rc = _base_diag_reset(ioc);
5104         return rc;
5105 }
5106
5107 /**
5108  * _base_make_ioc_operational - put controller in OPERATIONAL state
5109  * @ioc: per adapter object
5110  *
5111  * Returns 0 for success, non-zero for failure.
5112  */
5113 static int
5114 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5115 {
5116         int r, i, index;
5117         unsigned long   flags;
5118         u32 reply_address;
5119         u16 smid;
5120         struct _tr_list *delayed_tr, *delayed_tr_next;
5121         struct _sc_list *delayed_sc, *delayed_sc_next;
5122         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5123         u8 hide_flag;
5124         struct adapter_reply_queue *reply_q;
5125         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5126
5127         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5128             __func__));
5129
5130         /* clean the delayed target reset list */
5131         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5132             &ioc->delayed_tr_list, list) {
5133                 list_del(&delayed_tr->list);
5134                 kfree(delayed_tr);
5135         }
5136
5137
5138         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5139             &ioc->delayed_tr_volume_list, list) {
5140                 list_del(&delayed_tr->list);
5141                 kfree(delayed_tr);
5142         }
5143
5144         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5145             &ioc->delayed_sc_list, list) {
5146                 list_del(&delayed_sc->list);
5147                 kfree(delayed_sc);
5148         }
5149
5150         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5151             &ioc->delayed_event_ack_list, list) {
5152                 list_del(&delayed_event_ack->list);
5153                 kfree(delayed_event_ack);
5154         }
5155
5156         /* initialize the scsi lookup free list */
5157         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5158         INIT_LIST_HEAD(&ioc->free_list);
5159         smid = 1;
5160         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5161                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5162                 ioc->scsi_lookup[i].cb_idx = 0xFF;
5163                 ioc->scsi_lookup[i].smid = smid;
5164                 ioc->scsi_lookup[i].scmd = NULL;
5165                 ioc->scsi_lookup[i].direct_io = 0;
5166                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5167                     &ioc->free_list);
5168         }
5169
5170         /* hi-priority queue */
5171         INIT_LIST_HEAD(&ioc->hpr_free_list);
5172         smid = ioc->hi_priority_smid;
5173         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5174                 ioc->hpr_lookup[i].cb_idx = 0xFF;
5175                 ioc->hpr_lookup[i].smid = smid;
5176                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5177                     &ioc->hpr_free_list);
5178         }
5179
5180         /* internal queue */
5181         INIT_LIST_HEAD(&ioc->internal_free_list);
5182         smid = ioc->internal_smid;
5183         for (i = 0; i < ioc->internal_depth; i++, smid++) {
5184                 ioc->internal_lookup[i].cb_idx = 0xFF;
5185                 ioc->internal_lookup[i].smid = smid;
5186                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5187                     &ioc->internal_free_list);
5188         }
5189
5190         /* chain pool */
5191         INIT_LIST_HEAD(&ioc->free_chain_list);
5192         for (i = 0; i < ioc->chain_depth; i++)
5193                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5194                     &ioc->free_chain_list);
5195
5196         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5197
5198         /* initialize Reply Free Queue */
5199         for (i = 0, reply_address = (u32)ioc->reply_dma ;
5200             i < ioc->reply_free_queue_depth ; i++, reply_address +=
5201             ioc->reply_sz)
5202                 ioc->reply_free[i] = cpu_to_le32(reply_address);
5203
5204         /* initialize reply queues */
5205         if (ioc->is_driver_loading)
5206                 _base_assign_reply_queues(ioc);
5207
5208         /* initialize Reply Post Free Queue */
5209         index = 0;
5210         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5211         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5212                 /*
5213                  * If RDPQ is enabled, switch to the next allocation.
5214                  * Otherwise advance within the contiguous region.
5215                  */
5216                 if (ioc->rdpq_array_enable) {
5217                         reply_q->reply_post_free =
5218                                 ioc->reply_post[index++].reply_post_free;
5219                 } else {
5220                         reply_q->reply_post_free = reply_post_free_contig;
5221                         reply_post_free_contig += ioc->reply_post_queue_depth;
5222                 }
5223
5224                 reply_q->reply_post_host_index = 0;
5225                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5226                         reply_q->reply_post_free[i].Words =
5227                             cpu_to_le64(ULLONG_MAX);
5228                 if (!_base_is_controller_msix_enabled(ioc))
5229                         goto skip_init_reply_post_free_queue;
5230         }
5231  skip_init_reply_post_free_queue:
5232
5233         r = _base_send_ioc_init(ioc);
5234         if (r)
5235                 return r;
5236
5237         /* initialize reply free host index */
5238         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5239         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5240
5241         /* initialize reply post host index */
5242         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5243                 if (ioc->combined_reply_queue)
5244                         writel((reply_q->msix_index & 7)<<
5245                            MPI2_RPHI_MSIX_INDEX_SHIFT,
5246                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5247                 else
5248                         writel(reply_q->msix_index <<
5249                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
5250                                 &ioc->chip->ReplyPostHostIndex);
5251
5252                 if (!_base_is_controller_msix_enabled(ioc))
5253                         goto skip_init_reply_post_host_index;
5254         }
5255
5256  skip_init_reply_post_host_index:
5257
5258         _base_unmask_interrupts(ioc);
5259         r = _base_event_notification(ioc);
5260         if (r)
5261                 return r;
5262
5263         _base_static_config_pages(ioc);
5264
5265         if (ioc->is_driver_loading) {
5266
5267                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5268                     == 0x80) {
5269                         hide_flag = (u8) (
5270                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5271                             MFG_PAGE10_HIDE_SSDS_MASK);
5272                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5273                                 ioc->mfg_pg10_hide_flag = hide_flag;
5274                 }
5275
5276                 ioc->wait_for_discovery_to_complete =
5277                     _base_determine_wait_on_discovery(ioc);
5278
5279                 return r; /* scan_start and scan_finished support */
5280         }
5281
5282         r = _base_send_port_enable(ioc);
5283         if (r)
5284                 return r;
5285
5286         return r;
5287 }
5288
5289 /**
5290  * mpt3sas_base_free_resources - free resources controller resources
5291  * @ioc: per adapter object
5292  *
5293  * Return nothing.
5294  */
5295 void
5296 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5297 {
5298         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5299             __func__));
5300
5301         /* synchronizing freeing resource with pci_access_mutex lock */
5302         mutex_lock(&ioc->pci_access_mutex);
5303         if (ioc->chip_phys && ioc->chip) {
5304                 _base_mask_interrupts(ioc);
5305                 ioc->shost_recovery = 1;
5306                 _base_make_ioc_ready(ioc, SOFT_RESET);
5307                 ioc->shost_recovery = 0;
5308         }
5309
5310         mpt3sas_base_unmap_resources(ioc);
5311         mutex_unlock(&ioc->pci_access_mutex);
5312         return;
5313 }
5314
5315 /**
5316  * mpt3sas_base_attach - attach controller instance
5317  * @ioc: per adapter object
5318  *
5319  * Returns 0 for success, non-zero for failure.
5320  */
5321 int
5322 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5323 {
5324         int r, i;
5325         int cpu_id, last_cpu_id = 0;
5326
5327         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5328             __func__));
5329
5330         /* setup cpu_msix_table */
5331         ioc->cpu_count = num_online_cpus();
5332         for_each_online_cpu(cpu_id)
5333                 last_cpu_id = cpu_id;
5334         ioc->cpu_msix_table_sz = last_cpu_id + 1;
5335         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5336         ioc->reply_queue_count = 1;
5337         if (!ioc->cpu_msix_table) {
5338                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5339                         "allocation for cpu_msix_table failed!!!\n",
5340                         ioc->name));
5341                 r = -ENOMEM;
5342                 goto out_free_resources;
5343         }
5344
5345         if (ioc->is_warpdrive) {
5346                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5347                     sizeof(resource_size_t *), GFP_KERNEL);
5348                 if (!ioc->reply_post_host_index) {
5349                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5350                                 "for reply_post_host_index failed!!!\n",
5351                                 ioc->name));
5352                         r = -ENOMEM;
5353                         goto out_free_resources;
5354                 }
5355         }
5356
5357         ioc->rdpq_array_enable_assigned = 0;
5358         ioc->dma_mask = 0;
5359         r = mpt3sas_base_map_resources(ioc);
5360         if (r)
5361                 goto out_free_resources;
5362
5363         pci_set_drvdata(ioc->pdev, ioc->shost);
5364         r = _base_get_ioc_facts(ioc);
5365         if (r)
5366                 goto out_free_resources;
5367
5368         switch (ioc->hba_mpi_version_belonged) {
5369         case MPI2_VERSION:
5370                 ioc->build_sg_scmd = &_base_build_sg_scmd;
5371                 ioc->build_sg = &_base_build_sg;
5372                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5373                 break;
5374         case MPI25_VERSION:
5375         case MPI26_VERSION:
5376                 /*
5377                  * In SAS3.0,
5378                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5379                  * Target Status - all require the IEEE formated scatter gather
5380                  * elements.
5381                  */
5382                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5383                 ioc->build_sg = &_base_build_sg_ieee;
5384                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5385                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5386
5387                 break;
5388         }
5389
5390         if (ioc->atomic_desc_capable) {
5391                 ioc->put_smid_default = &_base_put_smid_default_atomic;
5392                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5393                 ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5394                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5395         } else {
5396                 ioc->put_smid_default = &_base_put_smid_default;
5397                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5398                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5399                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5400         }
5401
5402
5403         /*
5404          * These function pointers for other requests that don't
5405          * the require IEEE scatter gather elements.
5406          *
5407          * For example Configuration Pages and SAS IOUNIT Control don't.
5408          */
5409         ioc->build_sg_mpi = &_base_build_sg;
5410         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5411
5412         r = _base_make_ioc_ready(ioc, SOFT_RESET);
5413         if (r)
5414                 goto out_free_resources;
5415
5416         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5417             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5418         if (!ioc->pfacts) {
5419                 r = -ENOMEM;
5420                 goto out_free_resources;
5421         }
5422
5423         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5424                 r = _base_get_port_facts(ioc, i);
5425                 if (r)
5426                         goto out_free_resources;
5427         }
5428
5429         r = _base_allocate_memory_pools(ioc);
5430         if (r)
5431                 goto out_free_resources;
5432
5433         init_waitqueue_head(&ioc->reset_wq);
5434
5435         /* allocate memory pd handle bitmask list */
5436         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5437         if (ioc->facts.MaxDevHandle % 8)
5438                 ioc->pd_handles_sz++;
5439         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5440             GFP_KERNEL);
5441         if (!ioc->pd_handles) {
5442                 r = -ENOMEM;
5443                 goto out_free_resources;
5444         }
5445         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5446             GFP_KERNEL);
5447         if (!ioc->blocking_handles) {
5448                 r = -ENOMEM;
5449                 goto out_free_resources;
5450         }
5451
5452         /* allocate memory for pending OS device add list */
5453         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5454         if (ioc->facts.MaxDevHandle % 8)
5455                 ioc->pend_os_device_add_sz++;
5456         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5457             GFP_KERNEL);
5458         if (!ioc->pend_os_device_add) {
5459                 r = -ENOMEM;
5460                 goto out_free_resources;
5461         }
5462
5463         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5464         ioc->device_remove_in_progress =
5465                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5466         if (!ioc->device_remove_in_progress) {
5467                 r = -ENOMEM;
5468                 goto out_free_resources;
5469         }
5470
5471         ioc->fwfault_debug = mpt3sas_fwfault_debug;
5472
5473         /* base internal command bits */
5474         mutex_init(&ioc->base_cmds.mutex);
5475         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5476         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5477
5478         /* port_enable command bits */
5479         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5480         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5481
5482         /* transport internal command bits */
5483         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5484         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5485         mutex_init(&ioc->transport_cmds.mutex);
5486
5487         /* scsih internal command bits */
5488         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5489         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5490         mutex_init(&ioc->scsih_cmds.mutex);
5491
5492         /* task management internal command bits */
5493         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5494         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5495         mutex_init(&ioc->tm_cmds.mutex);
5496
5497         /* config page internal command bits */
5498         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5499         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5500         mutex_init(&ioc->config_cmds.mutex);
5501
5502         /* ctl module internal command bits */
5503         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5504         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5505         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5506         mutex_init(&ioc->ctl_cmds.mutex);
5507
5508         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
5509             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
5510             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
5511             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
5512                 r = -ENOMEM;
5513                 goto out_free_resources;
5514         }
5515
5516         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5517                 ioc->event_masks[i] = -1;
5518
5519         /* here we enable the events we care about */
5520         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5521         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5522         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5523         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5524         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5525         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5526         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5527         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5528         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5529         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5530         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5531         if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5532                 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5533
5534         r = _base_make_ioc_operational(ioc);
5535         if (r)
5536                 goto out_free_resources;
5537
5538         ioc->non_operational_loop = 0;
5539         ioc->got_task_abort_from_ioctl = 0;
5540         return 0;
5541
5542  out_free_resources:
5543
5544         ioc->remove_host = 1;
5545
5546         mpt3sas_base_free_resources(ioc);
5547         _base_release_memory_pools(ioc);
5548         pci_set_drvdata(ioc->pdev, NULL);
5549         kfree(ioc->cpu_msix_table);
5550         if (ioc->is_warpdrive)
5551                 kfree(ioc->reply_post_host_index);
5552         kfree(ioc->pd_handles);
5553         kfree(ioc->blocking_handles);
5554         kfree(ioc->device_remove_in_progress);
5555         kfree(ioc->pend_os_device_add);
5556         kfree(ioc->tm_cmds.reply);
5557         kfree(ioc->transport_cmds.reply);
5558         kfree(ioc->scsih_cmds.reply);
5559         kfree(ioc->config_cmds.reply);
5560         kfree(ioc->base_cmds.reply);
5561         kfree(ioc->port_enable_cmds.reply);
5562         kfree(ioc->ctl_cmds.reply);
5563         kfree(ioc->ctl_cmds.sense);
5564         kfree(ioc->pfacts);
5565         ioc->ctl_cmds.reply = NULL;
5566         ioc->base_cmds.reply = NULL;
5567         ioc->tm_cmds.reply = NULL;
5568         ioc->scsih_cmds.reply = NULL;
5569         ioc->transport_cmds.reply = NULL;
5570         ioc->config_cmds.reply = NULL;
5571         ioc->pfacts = NULL;
5572         return r;
5573 }
5574
5575
5576 /**
5577  * mpt3sas_base_detach - remove controller instance
5578  * @ioc: per adapter object
5579  *
5580  * Return nothing.
5581  */
5582 void
5583 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5584 {
5585         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5586             __func__));
5587
5588         mpt3sas_base_stop_watchdog(ioc);
5589         mpt3sas_base_free_resources(ioc);
5590         _base_release_memory_pools(ioc);
5591         pci_set_drvdata(ioc->pdev, NULL);
5592         kfree(ioc->cpu_msix_table);
5593         if (ioc->is_warpdrive)
5594                 kfree(ioc->reply_post_host_index);
5595         kfree(ioc->pd_handles);
5596         kfree(ioc->blocking_handles);
5597         kfree(ioc->device_remove_in_progress);
5598         kfree(ioc->pend_os_device_add);
5599         kfree(ioc->pfacts);
5600         kfree(ioc->ctl_cmds.reply);
5601         kfree(ioc->ctl_cmds.sense);
5602         kfree(ioc->base_cmds.reply);
5603         kfree(ioc->port_enable_cmds.reply);
5604         kfree(ioc->tm_cmds.reply);
5605         kfree(ioc->transport_cmds.reply);
5606         kfree(ioc->scsih_cmds.reply);
5607         kfree(ioc->config_cmds.reply);
5608 }
5609
5610 /**
5611  * _base_reset_handler - reset callback handler (for base)
5612  * @ioc: per adapter object
5613  * @reset_phase: phase
5614  *
5615  * The handler for doing any required cleanup or initialization.
5616  *
5617  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5618  * MPT3_IOC_DONE_RESET
5619  *
5620  * Return nothing.
5621  */
5622 static void
5623 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5624 {
5625         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5626         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5627         switch (reset_phase) {
5628         case MPT3_IOC_PRE_RESET:
5629                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5630                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5631                 break;
5632         case MPT3_IOC_AFTER_RESET:
5633                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5634                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5635                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5636                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5637                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5638                         complete(&ioc->transport_cmds.done);
5639                 }
5640                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5641                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5642                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5643                         complete(&ioc->base_cmds.done);
5644                 }
5645                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5646                         ioc->port_enable_failed = 1;
5647                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5648                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5649                         if (ioc->is_driver_loading) {
5650                                 ioc->start_scan_failed =
5651                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5652                                 ioc->start_scan = 0;
5653                                 ioc->port_enable_cmds.status =
5654                                     MPT3_CMD_NOT_USED;
5655                         } else
5656                                 complete(&ioc->port_enable_cmds.done);
5657                 }
5658                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5659                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5660                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5661                         ioc->config_cmds.smid = USHRT_MAX;
5662                         complete(&ioc->config_cmds.done);
5663                 }
5664                 break;
5665         case MPT3_IOC_DONE_RESET:
5666                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5667                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5668                 break;
5669         }
5670 }
5671
5672 /**
5673  * mpt3sas_wait_for_commands_to_complete - reset controller
5674  * @ioc: Pointer to MPT_ADAPTER structure
5675  *
5676  * This function waiting(3s) for all pending commands to complete
5677  * prior to putting controller in reset.
5678  */
5679 void
5680 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5681 {
5682         u32 ioc_state;
5683         unsigned long flags;
5684         u16 i;
5685
5686         ioc->pending_io_count = 0;
5687
5688         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5689         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5690                 return;
5691
5692         /* pending command count */
5693         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5694         for (i = 0; i < ioc->scsiio_depth; i++)
5695                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5696                         ioc->pending_io_count++;
5697         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5698
5699         if (!ioc->pending_io_count)
5700                 return;
5701
5702         /* wait for pending commands to complete */
5703         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5704 }
5705
5706 /**
5707  * mpt3sas_base_hard_reset_handler - reset controller
5708  * @ioc: Pointer to MPT_ADAPTER structure
5709  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5710  *
5711  * Returns 0 for success, non-zero for failure.
5712  */
5713 int
5714 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5715         enum reset_type type)
5716 {
5717         int r;
5718         unsigned long flags;
5719         u32 ioc_state;
5720         u8 is_fault = 0, is_trigger = 0;
5721
5722         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5723             __func__));
5724
5725         if (ioc->pci_error_recovery) {
5726                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5727                     ioc->name, __func__);
5728                 r = 0;
5729                 goto out_unlocked;
5730         }
5731
5732         if (mpt3sas_fwfault_debug)
5733                 mpt3sas_halt_firmware(ioc);
5734
5735         /* wait for an active reset in progress to complete */
5736         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5737                 do {
5738                         ssleep(1);
5739                 } while (ioc->shost_recovery == 1);
5740                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5741                     __func__));
5742                 return ioc->ioc_reset_in_progress_status;
5743         }
5744
5745         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5746         ioc->shost_recovery = 1;
5747         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5748
5749         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5750             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5751             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5752             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5753                 is_trigger = 1;
5754                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5755                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5756                         is_fault = 1;
5757         }
5758         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5759         mpt3sas_wait_for_commands_to_complete(ioc);
5760         _base_mask_interrupts(ioc);
5761         r = _base_make_ioc_ready(ioc, type);
5762         if (r)
5763                 goto out;
5764         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5765
5766         /* If this hard reset is called while port enable is active, then
5767          * there is no reason to call make_ioc_operational
5768          */
5769         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5770                 ioc->remove_host = 1;
5771                 r = -EFAULT;
5772                 goto out;
5773         }
5774         r = _base_get_ioc_facts(ioc);
5775         if (r)
5776                 goto out;
5777
5778         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5779                 panic("%s: Issue occurred with flashing controller firmware."
5780                       "Please reboot the system and ensure that the correct"
5781                       " firmware version is running\n", ioc->name);
5782
5783         r = _base_make_ioc_operational(ioc);
5784         if (!r)
5785                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5786
5787  out:
5788         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5789             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5790
5791         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5792         ioc->ioc_reset_in_progress_status = r;
5793         ioc->shost_recovery = 0;
5794         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5795         ioc->ioc_reset_count++;
5796         mutex_unlock(&ioc->reset_in_progress_mutex);
5797
5798  out_unlocked:
5799         if ((r == 0) && is_trigger) {
5800                 if (is_fault)
5801                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5802                 else
5803                         mpt3sas_trigger_master(ioc,
5804                             MASTER_TRIGGER_ADAPTER_RESET);
5805         }
5806         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5807             __func__));
5808         return r;
5809 }