GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52                 complete(&task->slow_task->completion);
53         }
54         spin_unlock_irqrestore(&task->task_state_lock, flags);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         del_timer(&task->slow_task->timer);
60         complete(&task->slow_task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task_sg(struct domain_device *dev,
67                 struct scatterlist *req, struct scatterlist *resp)
68 {
69         int res, retry;
70         struct sas_task *task = NULL;
71         struct sas_internal *i =
72                 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74         mutex_lock(&dev->ex_dev.cmd_mutex);
75         for (retry = 0; retry < 3; retry++) {
76                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
77                         res = -ECOMM;
78                         break;
79                 }
80
81                 task = sas_alloc_slow_task(GFP_KERNEL);
82                 if (!task) {
83                         res = -ENOMEM;
84                         break;
85                 }
86                 task->dev = dev;
87                 task->task_proto = dev->tproto;
88                 task->smp_task.smp_req = *req;
89                 task->smp_task.smp_resp = *resp;
90
91                 task->task_done = smp_task_done;
92
93                 task->slow_task->timer.data = (unsigned long) task;
94                 task->slow_task->timer.function = smp_task_timedout;
95                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96                 add_timer(&task->slow_task->timer);
97
98                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99
100                 if (res) {
101                         del_timer(&task->slow_task->timer);
102                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
103                         break;
104                 }
105
106                 wait_for_completion(&task->slow_task->completion);
107                 res = -ECOMM;
108                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109                         SAS_DPRINTK("smp task timed out or aborted\n");
110                         i->dft->lldd_abort_task(task);
111                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112                                 SAS_DPRINTK("SMP task aborted and not done\n");
113                                 break;
114                         }
115                 }
116                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
117                     task->task_status.stat == SAM_STAT_GOOD) {
118                         res = 0;
119                         break;
120                 }
121                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
122                     task->task_status.stat == SAS_DATA_UNDERRUN) {
123                         /* no error, but return the number of bytes of
124                          * underrun */
125                         res = task->task_status.residual;
126                         break;
127                 }
128                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
129                     task->task_status.stat == SAS_DATA_OVERRUN) {
130                         res = -EMSGSIZE;
131                         break;
132                 }
133                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
135                         break;
136                 else {
137                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138                                     "status 0x%x\n", __func__,
139                                     SAS_ADDR(dev->sas_addr),
140                                     task->task_status.resp,
141                                     task->task_status.stat);
142                         sas_free_task(task);
143                         task = NULL;
144                 }
145         }
146         mutex_unlock(&dev->ex_dev.cmd_mutex);
147
148         BUG_ON(retry == 3 && task != NULL);
149         sas_free_task(task);
150         return res;
151 }
152
153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154                             void *resp, int resp_size)
155 {
156         struct scatterlist req_sg;
157         struct scatterlist resp_sg;
158
159         sg_init_one(&req_sg, req, req_size);
160         sg_init_one(&resp_sg, resp, resp_size);
161         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163
164 /* ---------- Allocations ---------- */
165
166 static inline void *alloc_smp_req(int size)
167 {
168         u8 *p = kzalloc(size, GFP_KERNEL);
169         if (p)
170                 p[0] = SMP_REQUEST;
171         return p;
172 }
173
174 static inline void *alloc_smp_resp(int size)
175 {
176         return kzalloc(size, GFP_KERNEL);
177 }
178
179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181         switch (phy->routing_attr) {
182         case TABLE_ROUTING:
183                 if (dev->ex_dev.t2t_supp)
184                         return 'U';
185                 else
186                         return 'T';
187         case DIRECT_ROUTING:
188                 return 'D';
189         case SUBTRACTIVE_ROUTING:
190                 return 'S';
191         default:
192                 return '?';
193         }
194 }
195
196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198         /* This is detecting a failure to transmit initial dev to host
199          * FIS as described in section J.5 of sas-2 r16
200          */
201         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203                 return SAS_SATA_PENDING;
204         else
205                 return dr->attached_dev_type;
206 }
207
208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210         enum sas_device_type dev_type;
211         enum sas_linkrate linkrate;
212         u8 sas_addr[SAS_ADDR_SIZE];
213         struct smp_resp *resp = rsp;
214         struct discover_resp *dr = &resp->disc;
215         struct sas_ha_struct *ha = dev->port->ha;
216         struct expander_device *ex = &dev->ex_dev;
217         struct ex_phy *phy = &ex->ex_phy[phy_id];
218         struct sas_rphy *rphy = dev->rphy;
219         bool new_phy = !phy->phy;
220         char *type;
221
222         if (new_phy) {
223                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224                         return;
225                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226
227                 /* FIXME: error_handling */
228                 BUG_ON(!phy->phy);
229         }
230
231         switch (resp->result) {
232         case SMP_RESP_PHY_VACANT:
233                 phy->phy_state = PHY_VACANT;
234                 break;
235         default:
236                 phy->phy_state = PHY_NOT_PRESENT;
237                 break;
238         case SMP_RESP_FUNC_ACC:
239                 phy->phy_state = PHY_EMPTY; /* do not know yet */
240                 break;
241         }
242
243         /* check if anything important changed to squelch debug */
244         dev_type = phy->attached_dev_type;
245         linkrate  = phy->linkrate;
246         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247
248         /* Handle vacant phy - rest of dr data is not valid so skip it */
249         if (phy->phy_state == PHY_VACANT) {
250                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251                 phy->attached_dev_type = SAS_PHY_UNUSED;
252                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253                         phy->phy_id = phy_id;
254                         goto skip;
255                 } else
256                         goto out;
257         }
258
259         phy->attached_dev_type = to_dev_type(dr);
260         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261                 goto out;
262         phy->phy_id = phy_id;
263         phy->linkrate = dr->linkrate;
264         phy->attached_sata_host = dr->attached_sata_host;
265         phy->attached_sata_dev  = dr->attached_sata_dev;
266         phy->attached_sata_ps   = dr->attached_sata_ps;
267         phy->attached_iproto = dr->iproto << 1;
268         phy->attached_tproto = dr->tproto << 1;
269         /* help some expanders that fail to zero sas_address in the 'no
270          * device' case
271          */
272         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275         else
276                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277         phy->attached_phy_id = dr->attached_phy_id;
278         phy->phy_change_count = dr->change_count;
279         phy->routing_attr = dr->routing_attr;
280         phy->virtual = dr->virtual;
281         phy->last_da_index = -1;
282
283         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284         phy->phy->identify.device_type = dr->attached_dev_type;
285         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286         phy->phy->identify.target_port_protocols = phy->attached_tproto;
287         if (!phy->attached_tproto && dr->attached_sata_dev)
288                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289         phy->phy->identify.phy_identifier = phy_id;
290         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292         phy->phy->minimum_linkrate = dr->pmin_linkrate;
293         phy->phy->maximum_linkrate = dr->pmax_linkrate;
294         phy->phy->negotiated_linkrate = phy->linkrate;
295         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296
297  skip:
298         if (new_phy)
299                 if (sas_phy_add(phy->phy)) {
300                         sas_phy_free(phy->phy);
301                         return;
302                 }
303
304  out:
305         switch (phy->attached_dev_type) {
306         case SAS_SATA_PENDING:
307                 type = "stp pending";
308                 break;
309         case SAS_PHY_UNUSED:
310                 type = "no device";
311                 break;
312         case SAS_END_DEVICE:
313                 if (phy->attached_iproto) {
314                         if (phy->attached_tproto)
315                                 type = "host+target";
316                         else
317                                 type = "host";
318                 } else {
319                         if (dr->attached_sata_dev)
320                                 type = "stp";
321                         else
322                                 type = "ssp";
323                 }
324                 break;
325         case SAS_EDGE_EXPANDER_DEVICE:
326         case SAS_FANOUT_EXPANDER_DEVICE:
327                 type = "smp";
328                 break;
329         default:
330                 type = "unknown";
331         }
332
333         /* this routine is polled by libata error recovery so filter
334          * unimportant messages
335          */
336         if (new_phy || phy->attached_dev_type != dev_type ||
337             phy->linkrate != linkrate ||
338             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339                 /* pass */;
340         else
341                 return;
342
343         /* if the attached device type changed and ata_eh is active,
344          * make sure we run revalidation when eh completes (see:
345          * sas_enable_revalidation)
346          */
347         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349
350         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352                     SAS_ADDR(dev->sas_addr), phy->phy_id,
353                     sas_route_char(dev, phy), phy->linkrate,
354                     SAS_ADDR(phy->attached_sas_addr), type);
355 }
356
357 /* check if we have an existing attached ata device on this expander phy */
358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361         struct domain_device *dev;
362         struct sas_rphy *rphy;
363
364         if (!ex_phy->port)
365                 return NULL;
366
367         rphy = ex_phy->port->rphy;
368         if (!rphy)
369                 return NULL;
370
371         dev = sas_find_dev_by_rphy(rphy);
372
373         if (dev && dev_is_sata(dev))
374                 return dev;
375
376         return NULL;
377 }
378
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381
382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383                                       u8 *disc_resp, int single)
384 {
385         struct discover_resp *dr;
386         int res;
387
388         disc_req[9] = single;
389
390         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391                                disc_resp, DISCOVER_RESP_SIZE);
392         if (res)
393                 return res;
394         dr = &((struct smp_resp *)disc_resp)->disc;
395         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396                 sas_printk("Found loopback topology, just ignore it!\n");
397                 return 0;
398         }
399         sas_set_ex_phy(dev, single, disc_resp);
400         return 0;
401 }
402
403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405         struct expander_device *ex = &dev->ex_dev;
406         int  res = 0;
407         u8   *disc_req;
408         u8   *disc_resp;
409
410         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411         if (!disc_req)
412                 return -ENOMEM;
413
414         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415         if (!disc_resp) {
416                 kfree(disc_req);
417                 return -ENOMEM;
418         }
419
420         disc_req[1] = SMP_DISCOVER;
421
422         if (0 <= single && single < ex->num_phys) {
423                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424         } else {
425                 int i;
426
427                 for (i = 0; i < ex->num_phys; i++) {
428                         res = sas_ex_phy_discover_helper(dev, disc_req,
429                                                          disc_resp, i);
430                         if (res)
431                                 goto out_err;
432                 }
433         }
434 out_err:
435         kfree(disc_resp);
436         kfree(disc_req);
437         return res;
438 }
439
440 static int sas_expander_discover(struct domain_device *dev)
441 {
442         struct expander_device *ex = &dev->ex_dev;
443         int res = -ENOMEM;
444
445         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
446         if (!ex->ex_phy)
447                 return -ENOMEM;
448
449         res = sas_ex_phy_discover(dev, -1);
450         if (res)
451                 goto out_err;
452
453         return 0;
454  out_err:
455         kfree(ex->ex_phy);
456         ex->ex_phy = NULL;
457         return res;
458 }
459
460 #define MAX_EXPANDER_PHYS 128
461
462 static void ex_assign_report_general(struct domain_device *dev,
463                                             struct smp_resp *resp)
464 {
465         struct report_general_resp *rg = &resp->rg;
466
467         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470         dev->ex_dev.t2t_supp = rg->t2t_supp;
471         dev->ex_dev.conf_route_table = rg->conf_route_table;
472         dev->ex_dev.configuring = rg->configuring;
473         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478
479 static int sas_ex_general(struct domain_device *dev)
480 {
481         u8 *rg_req;
482         struct smp_resp *rg_resp;
483         int res;
484         int i;
485
486         rg_req = alloc_smp_req(RG_REQ_SIZE);
487         if (!rg_req)
488                 return -ENOMEM;
489
490         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491         if (!rg_resp) {
492                 kfree(rg_req);
493                 return -ENOMEM;
494         }
495
496         rg_req[1] = SMP_REPORT_GENERAL;
497
498         for (i = 0; i < 5; i++) {
499                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500                                        RG_RESP_SIZE);
501
502                 if (res) {
503                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504                                     SAS_ADDR(dev->sas_addr), res);
505                         goto out;
506                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
509                         res = rg_resp->result;
510                         goto out;
511                 }
512
513                 ex_assign_report_general(dev, rg_resp);
514
515                 if (dev->ex_dev.configuring) {
516                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517                                     SAS_ADDR(dev->sas_addr));
518                         schedule_timeout_interruptible(5*HZ);
519                 } else
520                         break;
521         }
522 out:
523         kfree(rg_req);
524         kfree(rg_resp);
525         return res;
526 }
527
528 static void ex_assign_manuf_info(struct domain_device *dev, void
529                                         *_mi_resp)
530 {
531         u8 *mi_resp = _mi_resp;
532         struct sas_rphy *rphy = dev->rphy;
533         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534
535         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537         memcpy(edev->product_rev, mi_resp + 36,
538                SAS_EXPANDER_PRODUCT_REV_LEN);
539
540         if (mi_resp[8] & 1) {
541                 memcpy(edev->component_vendor_id, mi_resp + 40,
542                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544                 edev->component_revision_id = mi_resp[50];
545         }
546 }
547
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550
551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553         u8 *mi_req;
554         u8 *mi_resp;
555         int res;
556
557         mi_req = alloc_smp_req(MI_REQ_SIZE);
558         if (!mi_req)
559                 return -ENOMEM;
560
561         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562         if (!mi_resp) {
563                 kfree(mi_req);
564                 return -ENOMEM;
565         }
566
567         mi_req[1] = SMP_REPORT_MANUF_INFO;
568
569         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570         if (res) {
571                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572                             SAS_ADDR(dev->sas_addr), res);
573                 goto out;
574         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
577                 goto out;
578         }
579
580         ex_assign_manuf_info(dev, mi_resp);
581 out:
582         kfree(mi_req);
583         kfree(mi_resp);
584         return res;
585 }
586
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589
590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591                         enum phy_func phy_func,
592                         struct sas_phy_linkrates *rates)
593 {
594         u8 *pc_req;
595         u8 *pc_resp;
596         int res;
597
598         pc_req = alloc_smp_req(PC_REQ_SIZE);
599         if (!pc_req)
600                 return -ENOMEM;
601
602         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603         if (!pc_resp) {
604                 kfree(pc_req);
605                 return -ENOMEM;
606         }
607
608         pc_req[1] = SMP_PHY_CONTROL;
609         pc_req[9] = phy_id;
610         pc_req[10]= phy_func;
611         if (rates) {
612                 pc_req[32] = rates->minimum_linkrate << 4;
613                 pc_req[33] = rates->maximum_linkrate << 4;
614         }
615
616         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617         if (res) {
618                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
619                        SAS_ADDR(dev->sas_addr), phy_id, res);
620         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
621                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
622                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
623                 res = pc_resp[2];
624         }
625         kfree(pc_resp);
626         kfree(pc_req);
627         return res;
628 }
629
630 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
631 {
632         struct expander_device *ex = &dev->ex_dev;
633         struct ex_phy *phy = &ex->ex_phy[phy_id];
634
635         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
636         phy->linkrate = SAS_PHY_DISABLED;
637 }
638
639 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
640 {
641         struct expander_device *ex = &dev->ex_dev;
642         int i;
643
644         for (i = 0; i < ex->num_phys; i++) {
645                 struct ex_phy *phy = &ex->ex_phy[i];
646
647                 if (phy->phy_state == PHY_VACANT ||
648                     phy->phy_state == PHY_NOT_PRESENT)
649                         continue;
650
651                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
652                         sas_ex_disable_phy(dev, i);
653         }
654 }
655
656 static int sas_dev_present_in_domain(struct asd_sas_port *port,
657                                             u8 *sas_addr)
658 {
659         struct domain_device *dev;
660
661         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
662                 return 1;
663         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
664                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
665                         return 1;
666         }
667         return 0;
668 }
669
670 #define RPEL_REQ_SIZE   16
671 #define RPEL_RESP_SIZE  32
672 int sas_smp_get_phy_events(struct sas_phy *phy)
673 {
674         int res;
675         u8 *req;
676         u8 *resp;
677         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
678         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
679
680         req = alloc_smp_req(RPEL_REQ_SIZE);
681         if (!req)
682                 return -ENOMEM;
683
684         resp = alloc_smp_resp(RPEL_RESP_SIZE);
685         if (!resp) {
686                 kfree(req);
687                 return -ENOMEM;
688         }
689
690         req[1] = SMP_REPORT_PHY_ERR_LOG;
691         req[9] = phy->number;
692
693         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
694                                     resp, RPEL_RESP_SIZE);
695
696         if (res)
697                 goto out;
698
699         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
700         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
701         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
702         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
703
704  out:
705         kfree(req);
706         kfree(resp);
707         return res;
708
709 }
710
711 #ifdef CONFIG_SCSI_SAS_ATA
712
713 #define RPS_REQ_SIZE  16
714 #define RPS_RESP_SIZE 60
715
716 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
717                             struct smp_resp *rps_resp)
718 {
719         int res;
720         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
721         u8 *resp = (u8 *)rps_resp;
722
723         if (!rps_req)
724                 return -ENOMEM;
725
726         rps_req[1] = SMP_REPORT_PHY_SATA;
727         rps_req[9] = phy_id;
728
729         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
730                                     rps_resp, RPS_RESP_SIZE);
731
732         /* 0x34 is the FIS type for the D2H fis.  There's a potential
733          * standards cockup here.  sas-2 explicitly specifies the FIS
734          * should be encoded so that FIS type is in resp[24].
735          * However, some expanders endian reverse this.  Undo the
736          * reversal here */
737         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
738                 int i;
739
740                 for (i = 0; i < 5; i++) {
741                         int j = 24 + (i*4);
742                         u8 a, b;
743                         a = resp[j + 0];
744                         b = resp[j + 1];
745                         resp[j + 0] = resp[j + 3];
746                         resp[j + 1] = resp[j + 2];
747                         resp[j + 2] = b;
748                         resp[j + 3] = a;
749                 }
750         }
751
752         kfree(rps_req);
753         return res;
754 }
755 #endif
756
757 static void sas_ex_get_linkrate(struct domain_device *parent,
758                                        struct domain_device *child,
759                                        struct ex_phy *parent_phy)
760 {
761         struct expander_device *parent_ex = &parent->ex_dev;
762         struct sas_port *port;
763         int i;
764
765         child->pathways = 0;
766
767         port = parent_phy->port;
768
769         for (i = 0; i < parent_ex->num_phys; i++) {
770                 struct ex_phy *phy = &parent_ex->ex_phy[i];
771
772                 if (phy->phy_state == PHY_VACANT ||
773                     phy->phy_state == PHY_NOT_PRESENT)
774                         continue;
775
776                 if (SAS_ADDR(phy->attached_sas_addr) ==
777                     SAS_ADDR(child->sas_addr)) {
778
779                         child->min_linkrate = min(parent->min_linkrate,
780                                                   phy->linkrate);
781                         child->max_linkrate = max(parent->max_linkrate,
782                                                   phy->linkrate);
783                         child->pathways++;
784                         sas_port_add_phy(port, phy->phy);
785                 }
786         }
787         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
788         child->pathways = min(child->pathways, parent->pathways);
789 }
790
791 static struct domain_device *sas_ex_discover_end_dev(
792         struct domain_device *parent, int phy_id)
793 {
794         struct expander_device *parent_ex = &parent->ex_dev;
795         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
796         struct domain_device *child = NULL;
797         struct sas_rphy *rphy;
798         int res;
799
800         if (phy->attached_sata_host || phy->attached_sata_ps)
801                 return NULL;
802
803         child = sas_alloc_device();
804         if (!child)
805                 return NULL;
806
807         kref_get(&parent->kref);
808         child->parent = parent;
809         child->port   = parent->port;
810         child->iproto = phy->attached_iproto;
811         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
812         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
813         if (!phy->port) {
814                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
815                 if (unlikely(!phy->port))
816                         goto out_err;
817                 if (unlikely(sas_port_add(phy->port) != 0)) {
818                         sas_port_free(phy->port);
819                         goto out_err;
820                 }
821         }
822         sas_ex_get_linkrate(parent, child, phy);
823         sas_device_set_phy(child, phy->port);
824
825 #ifdef CONFIG_SCSI_SAS_ATA
826         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
827                 if (child->linkrate > parent->min_linkrate) {
828                         struct sas_phy_linkrates rates = {
829                                 .maximum_linkrate = parent->min_linkrate,
830                                 .minimum_linkrate = parent->min_linkrate,
831                         };
832                         int ret;
833
834                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
835                                    SAS_ADDR(child->sas_addr), phy_id);
836                         ret = sas_smp_phy_control(parent, phy_id,
837                                                   PHY_FUNC_LINK_RESET, &rates);
838                         if (ret) {
839                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
840                                        SAS_ADDR(child->sas_addr), phy_id, ret);
841                                 goto out_free;
842                         }
843                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
844                                   SAS_ADDR(child->sas_addr), phy_id);
845                         child->linkrate = child->min_linkrate;
846                 }
847                 res = sas_get_ata_info(child, phy);
848                 if (res)
849                         goto out_free;
850
851                 sas_init_dev(child);
852                 res = sas_ata_init(child);
853                 if (res)
854                         goto out_free;
855                 rphy = sas_end_device_alloc(phy->port);
856                 if (!rphy)
857                         goto out_free;
858                 rphy->identify.phy_identifier = phy_id;
859
860                 child->rphy = rphy;
861                 get_device(&rphy->dev);
862
863                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864
865                 res = sas_discover_sata(child);
866                 if (res) {
867                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
868                                     "%016llx:0x%x returned 0x%x\n",
869                                     SAS_ADDR(child->sas_addr),
870                                     SAS_ADDR(parent->sas_addr), phy_id, res);
871                         goto out_list_del;
872                 }
873         } else
874 #endif
875           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876                 child->dev_type = SAS_END_DEVICE;
877                 rphy = sas_end_device_alloc(phy->port);
878                 /* FIXME: error handling */
879                 if (unlikely(!rphy))
880                         goto out_free;
881                 child->tproto = phy->attached_tproto;
882                 sas_init_dev(child);
883
884                 child->rphy = rphy;
885                 get_device(&rphy->dev);
886                 rphy->identify.phy_identifier = phy_id;
887                 sas_fill_in_rphy(child, rphy);
888
889                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
890
891                 res = sas_discover_end_dev(child);
892                 if (res) {
893                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
894                                     "at %016llx:0x%x returned 0x%x\n",
895                                     SAS_ADDR(child->sas_addr),
896                                     SAS_ADDR(parent->sas_addr), phy_id, res);
897                         goto out_list_del;
898                 }
899         } else {
900                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
901                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
902                             phy_id);
903                 goto out_free;
904         }
905
906         list_add_tail(&child->siblings, &parent_ex->children);
907         return child;
908
909  out_list_del:
910         sas_rphy_free(child->rphy);
911         list_del(&child->disco_list_node);
912         spin_lock_irq(&parent->port->dev_list_lock);
913         list_del(&child->dev_list_node);
914         spin_unlock_irq(&parent->port->dev_list_lock);
915  out_free:
916         sas_port_delete(phy->port);
917  out_err:
918         phy->port = NULL;
919         sas_put_device(child);
920         return NULL;
921 }
922
923 /* See if this phy is part of a wide port */
924 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
925 {
926         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
927         int i;
928
929         for (i = 0; i < parent->ex_dev.num_phys; i++) {
930                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
931
932                 if (ephy == phy)
933                         continue;
934
935                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
936                             SAS_ADDR_SIZE) && ephy->port) {
937                         sas_port_add_phy(ephy->port, phy->phy);
938                         phy->port = ephy->port;
939                         phy->phy_state = PHY_DEVICE_DISCOVERED;
940                         return true;
941                 }
942         }
943
944         return false;
945 }
946
947 static struct domain_device *sas_ex_discover_expander(
948         struct domain_device *parent, int phy_id)
949 {
950         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
951         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
952         struct domain_device *child = NULL;
953         struct sas_rphy *rphy;
954         struct sas_expander_device *edev;
955         struct asd_sas_port *port;
956         int res;
957
958         if (phy->routing_attr == DIRECT_ROUTING) {
959                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
960                             "allowed\n",
961                             SAS_ADDR(parent->sas_addr), phy_id,
962                             SAS_ADDR(phy->attached_sas_addr),
963                             phy->attached_phy_id);
964                 return NULL;
965         }
966         child = sas_alloc_device();
967         if (!child)
968                 return NULL;
969
970         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
971         /* FIXME: better error handling */
972         BUG_ON(sas_port_add(phy->port) != 0);
973
974
975         switch (phy->attached_dev_type) {
976         case SAS_EDGE_EXPANDER_DEVICE:
977                 rphy = sas_expander_alloc(phy->port,
978                                           SAS_EDGE_EXPANDER_DEVICE);
979                 break;
980         case SAS_FANOUT_EXPANDER_DEVICE:
981                 rphy = sas_expander_alloc(phy->port,
982                                           SAS_FANOUT_EXPANDER_DEVICE);
983                 break;
984         default:
985                 rphy = NULL;    /* shut gcc up */
986                 BUG();
987         }
988         port = parent->port;
989         child->rphy = rphy;
990         get_device(&rphy->dev);
991         edev = rphy_to_expander_device(rphy);
992         child->dev_type = phy->attached_dev_type;
993         kref_get(&parent->kref);
994         child->parent = parent;
995         child->port = port;
996         child->iproto = phy->attached_iproto;
997         child->tproto = phy->attached_tproto;
998         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
999         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1000         sas_ex_get_linkrate(parent, child, phy);
1001         edev->level = parent_ex->level + 1;
1002         parent->port->disc.max_level = max(parent->port->disc.max_level,
1003                                            edev->level);
1004         sas_init_dev(child);
1005         sas_fill_in_rphy(child, rphy);
1006         sas_rphy_add(rphy);
1007
1008         spin_lock_irq(&parent->port->dev_list_lock);
1009         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1010         spin_unlock_irq(&parent->port->dev_list_lock);
1011
1012         res = sas_discover_expander(child);
1013         if (res) {
1014                 sas_rphy_delete(rphy);
1015                 spin_lock_irq(&parent->port->dev_list_lock);
1016                 list_del(&child->dev_list_node);
1017                 spin_unlock_irq(&parent->port->dev_list_lock);
1018                 sas_put_device(child);
1019                 sas_port_delete(phy->port);
1020                 phy->port = NULL;
1021                 return NULL;
1022         }
1023         list_add_tail(&child->siblings, &parent->ex_dev.children);
1024         return child;
1025 }
1026
1027 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1028 {
1029         struct expander_device *ex = &dev->ex_dev;
1030         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1031         struct domain_device *child = NULL;
1032         int res = 0;
1033
1034         /* Phy state */
1035         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1036                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1037                         res = sas_ex_phy_discover(dev, phy_id);
1038                 if (res)
1039                         return res;
1040         }
1041
1042         /* Parent and domain coherency */
1043         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1044                              SAS_ADDR(dev->port->sas_addr))) {
1045                 sas_add_parent_port(dev, phy_id);
1046                 return 0;
1047         }
1048         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1049                             SAS_ADDR(dev->parent->sas_addr))) {
1050                 sas_add_parent_port(dev, phy_id);
1051                 if (ex_phy->routing_attr == TABLE_ROUTING)
1052                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1053                 return 0;
1054         }
1055
1056         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1057                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1058
1059         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1060                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1061                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1062                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1063                 }
1064                 return 0;
1065         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1066                 return 0;
1067
1068         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1069             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1070             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1071             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1072                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1073                             "phy 0x%x\n", ex_phy->attached_dev_type,
1074                             SAS_ADDR(dev->sas_addr),
1075                             phy_id);
1076                 return 0;
1077         }
1078
1079         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1080         if (res) {
1081                 SAS_DPRINTK("configure routing for dev %016llx "
1082                             "reported 0x%x. Forgotten\n",
1083                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1084                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1085                 return res;
1086         }
1087
1088         if (sas_ex_join_wide_port(dev, phy_id)) {
1089                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1090                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1091                 return res;
1092         }
1093
1094         switch (ex_phy->attached_dev_type) {
1095         case SAS_END_DEVICE:
1096         case SAS_SATA_PENDING:
1097                 child = sas_ex_discover_end_dev(dev, phy_id);
1098                 break;
1099         case SAS_FANOUT_EXPANDER_DEVICE:
1100                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1101                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1102                                     "attached to ex %016llx phy 0x%x\n",
1103                                     SAS_ADDR(ex_phy->attached_sas_addr),
1104                                     ex_phy->attached_phy_id,
1105                                     SAS_ADDR(dev->sas_addr),
1106                                     phy_id);
1107                         sas_ex_disable_phy(dev, phy_id);
1108                         break;
1109                 } else
1110                         memcpy(dev->port->disc.fanout_sas_addr,
1111                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1112                 /* fallthrough */
1113         case SAS_EDGE_EXPANDER_DEVICE:
1114                 child = sas_ex_discover_expander(dev, phy_id);
1115                 break;
1116         default:
1117                 break;
1118         }
1119
1120         if (child) {
1121                 int i;
1122
1123                 for (i = 0; i < ex->num_phys; i++) {
1124                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1125                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1126                                 continue;
1127                         /*
1128                          * Due to races, the phy might not get added to the
1129                          * wide port, so we add the phy to the wide port here.
1130                          */
1131                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1132                             SAS_ADDR(child->sas_addr)) {
1133                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1134                                 if (sas_ex_join_wide_port(dev, i))
1135                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1136                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1137
1138                         }
1139                 }
1140         }
1141
1142         return res;
1143 }
1144
1145 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1146 {
1147         struct expander_device *ex = &dev->ex_dev;
1148         int i;
1149
1150         for (i = 0; i < ex->num_phys; i++) {
1151                 struct ex_phy *phy = &ex->ex_phy[i];
1152
1153                 if (phy->phy_state == PHY_VACANT ||
1154                     phy->phy_state == PHY_NOT_PRESENT)
1155                         continue;
1156
1157                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1158                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1159                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160
1161                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1162
1163                         return 1;
1164                 }
1165         }
1166         return 0;
1167 }
1168
1169 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1170 {
1171         struct expander_device *ex = &dev->ex_dev;
1172         struct domain_device *child;
1173         u8 sub_addr[8] = {0, };
1174
1175         list_for_each_entry(child, &ex->children, siblings) {
1176                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1177                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1178                         continue;
1179                 if (sub_addr[0] == 0) {
1180                         sas_find_sub_addr(child, sub_addr);
1181                         continue;
1182                 } else {
1183                         u8 s2[8];
1184
1185                         if (sas_find_sub_addr(child, s2) &&
1186                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1187
1188                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1189                                             "diverges from subtractive "
1190                                             "boundary %016llx\n",
1191                                             SAS_ADDR(dev->sas_addr),
1192                                             SAS_ADDR(child->sas_addr),
1193                                             SAS_ADDR(s2),
1194                                             SAS_ADDR(sub_addr));
1195
1196                                 sas_ex_disable_port(child, s2);
1197                         }
1198                 }
1199         }
1200         return 0;
1201 }
1202 /**
1203  * sas_ex_discover_devices -- discover devices attached to this expander
1204  * dev: pointer to the expander domain device
1205  * single: if you want to do a single phy, else set to -1;
1206  *
1207  * Configure this expander for use with its devices and register the
1208  * devices of this expander.
1209  */
1210 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1211 {
1212         struct expander_device *ex = &dev->ex_dev;
1213         int i = 0, end = ex->num_phys;
1214         int res = 0;
1215
1216         if (0 <= single && single < end) {
1217                 i = single;
1218                 end = i+1;
1219         }
1220
1221         for ( ; i < end; i++) {
1222                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1223
1224                 if (ex_phy->phy_state == PHY_VACANT ||
1225                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1226                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1227                         continue;
1228
1229                 switch (ex_phy->linkrate) {
1230                 case SAS_PHY_DISABLED:
1231                 case SAS_PHY_RESET_PROBLEM:
1232                 case SAS_SATA_PORT_SELECTOR:
1233                         continue;
1234                 default:
1235                         res = sas_ex_discover_dev(dev, i);
1236                         if (res)
1237                                 break;
1238                         continue;
1239                 }
1240         }
1241
1242         if (!res)
1243                 sas_check_level_subtractive_boundary(dev);
1244
1245         return res;
1246 }
1247
1248 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1249 {
1250         struct expander_device *ex = &dev->ex_dev;
1251         int i;
1252         u8  *sub_sas_addr = NULL;
1253
1254         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1255                 return 0;
1256
1257         for (i = 0; i < ex->num_phys; i++) {
1258                 struct ex_phy *phy = &ex->ex_phy[i];
1259
1260                 if (phy->phy_state == PHY_VACANT ||
1261                     phy->phy_state == PHY_NOT_PRESENT)
1262                         continue;
1263
1264                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1265                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1266                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1267
1268                         if (!sub_sas_addr)
1269                                 sub_sas_addr = &phy->attached_sas_addr[0];
1270                         else if (SAS_ADDR(sub_sas_addr) !=
1271                                  SAS_ADDR(phy->attached_sas_addr)) {
1272
1273                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1274                                             "diverges(%016llx) on subtractive "
1275                                             "boundary(%016llx). Disabled\n",
1276                                             SAS_ADDR(dev->sas_addr), i,
1277                                             SAS_ADDR(phy->attached_sas_addr),
1278                                             SAS_ADDR(sub_sas_addr));
1279                                 sas_ex_disable_phy(dev, i);
1280                         }
1281                 }
1282         }
1283         return 0;
1284 }
1285
1286 static void sas_print_parent_topology_bug(struct domain_device *child,
1287                                                  struct ex_phy *parent_phy,
1288                                                  struct ex_phy *child_phy)
1289 {
1290         static const char *ex_type[] = {
1291                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1292                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1293         };
1294         struct domain_device *parent = child->parent;
1295
1296         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1297                    "phy 0x%x has %c:%c routing link!\n",
1298
1299                    ex_type[parent->dev_type],
1300                    SAS_ADDR(parent->sas_addr),
1301                    parent_phy->phy_id,
1302
1303                    ex_type[child->dev_type],
1304                    SAS_ADDR(child->sas_addr),
1305                    child_phy->phy_id,
1306
1307                    sas_route_char(parent, parent_phy),
1308                    sas_route_char(child, child_phy));
1309 }
1310
1311 static int sas_check_eeds(struct domain_device *child,
1312                                  struct ex_phy *parent_phy,
1313                                  struct ex_phy *child_phy)
1314 {
1315         int res = 0;
1316         struct domain_device *parent = child->parent;
1317
1318         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1319                 res = -ENODEV;
1320                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1321                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1322                             SAS_ADDR(parent->sas_addr),
1323                             parent_phy->phy_id,
1324                             SAS_ADDR(child->sas_addr),
1325                             child_phy->phy_id,
1326                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1327         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1328                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1329                        SAS_ADDR_SIZE);
1330                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1331                        SAS_ADDR_SIZE);
1332         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1333                     SAS_ADDR(parent->sas_addr)) ||
1334                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1335                     SAS_ADDR(child->sas_addr)))
1336                    &&
1337                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1338                      SAS_ADDR(parent->sas_addr)) ||
1339                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1340                      SAS_ADDR(child->sas_addr))))
1341                 ;
1342         else {
1343                 res = -ENODEV;
1344                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1345                             "phy 0x%x link forms a third EEDS!\n",
1346                             SAS_ADDR(parent->sas_addr),
1347                             parent_phy->phy_id,
1348                             SAS_ADDR(child->sas_addr),
1349                             child_phy->phy_id);
1350         }
1351
1352         return res;
1353 }
1354
1355 /* Here we spill over 80 columns.  It is intentional.
1356  */
1357 static int sas_check_parent_topology(struct domain_device *child)
1358 {
1359         struct expander_device *child_ex = &child->ex_dev;
1360         struct expander_device *parent_ex;
1361         int i;
1362         int res = 0;
1363
1364         if (!child->parent)
1365                 return 0;
1366
1367         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1368             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1369                 return 0;
1370
1371         parent_ex = &child->parent->ex_dev;
1372
1373         for (i = 0; i < parent_ex->num_phys; i++) {
1374                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1375                 struct ex_phy *child_phy;
1376
1377                 if (parent_phy->phy_state == PHY_VACANT ||
1378                     parent_phy->phy_state == PHY_NOT_PRESENT)
1379                         continue;
1380
1381                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1382                         continue;
1383
1384                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1385
1386                 switch (child->parent->dev_type) {
1387                 case SAS_EDGE_EXPANDER_DEVICE:
1388                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1389                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1390                                     child_phy->routing_attr != TABLE_ROUTING) {
1391                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1392                                         res = -ENODEV;
1393                                 }
1394                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1395                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1396                                         res = sas_check_eeds(child, parent_phy, child_phy);
1397                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1398                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1399                                         res = -ENODEV;
1400                                 }
1401                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1402                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1403                                     (child_phy->routing_attr == TABLE_ROUTING &&
1404                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1405                                         /* All good */;
1406                                 } else {
1407                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1408                                         res = -ENODEV;
1409                                 }
1410                         }
1411                         break;
1412                 case SAS_FANOUT_EXPANDER_DEVICE:
1413                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1414                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1415                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1416                                 res = -ENODEV;
1417                         }
1418                         break;
1419                 default:
1420                         break;
1421                 }
1422         }
1423
1424         return res;
1425 }
1426
1427 #define RRI_REQ_SIZE  16
1428 #define RRI_RESP_SIZE 44
1429
1430 static int sas_configure_present(struct domain_device *dev, int phy_id,
1431                                  u8 *sas_addr, int *index, int *present)
1432 {
1433         int i, res = 0;
1434         struct expander_device *ex = &dev->ex_dev;
1435         struct ex_phy *phy = &ex->ex_phy[phy_id];
1436         u8 *rri_req;
1437         u8 *rri_resp;
1438
1439         *present = 0;
1440         *index = 0;
1441
1442         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1443         if (!rri_req)
1444                 return -ENOMEM;
1445
1446         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1447         if (!rri_resp) {
1448                 kfree(rri_req);
1449                 return -ENOMEM;
1450         }
1451
1452         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1453         rri_req[9] = phy_id;
1454
1455         for (i = 0; i < ex->max_route_indexes ; i++) {
1456                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1457                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1458                                        RRI_RESP_SIZE);
1459                 if (res)
1460                         goto out;
1461                 res = rri_resp[2];
1462                 if (res == SMP_RESP_NO_INDEX) {
1463                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1464                                     "phy 0x%x index 0x%x\n",
1465                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1466                         goto out;
1467                 } else if (res != SMP_RESP_FUNC_ACC) {
1468                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1469                                     "result 0x%x\n", __func__,
1470                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1471                         goto out;
1472                 }
1473                 if (SAS_ADDR(sas_addr) != 0) {
1474                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1475                                 *index = i;
1476                                 if ((rri_resp[12] & 0x80) == 0x80)
1477                                         *present = 0;
1478                                 else
1479                                         *present = 1;
1480                                 goto out;
1481                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1482                                 *index = i;
1483                                 *present = 0;
1484                                 goto out;
1485                         }
1486                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1487                            phy->last_da_index < i) {
1488                         phy->last_da_index = i;
1489                         *index = i;
1490                         *present = 0;
1491                         goto out;
1492                 }
1493         }
1494         res = -1;
1495 out:
1496         kfree(rri_req);
1497         kfree(rri_resp);
1498         return res;
1499 }
1500
1501 #define CRI_REQ_SIZE  44
1502 #define CRI_RESP_SIZE  8
1503
1504 static int sas_configure_set(struct domain_device *dev, int phy_id,
1505                              u8 *sas_addr, int index, int include)
1506 {
1507         int res;
1508         u8 *cri_req;
1509         u8 *cri_resp;
1510
1511         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1512         if (!cri_req)
1513                 return -ENOMEM;
1514
1515         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1516         if (!cri_resp) {
1517                 kfree(cri_req);
1518                 return -ENOMEM;
1519         }
1520
1521         cri_req[1] = SMP_CONF_ROUTE_INFO;
1522         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1523         cri_req[9] = phy_id;
1524         if (SAS_ADDR(sas_addr) == 0 || !include)
1525                 cri_req[12] |= 0x80;
1526         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1527
1528         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1529                                CRI_RESP_SIZE);
1530         if (res)
1531                 goto out;
1532         res = cri_resp[2];
1533         if (res == SMP_RESP_NO_INDEX) {
1534                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1535                             "index 0x%x\n",
1536                             SAS_ADDR(dev->sas_addr), phy_id, index);
1537         }
1538 out:
1539         kfree(cri_req);
1540         kfree(cri_resp);
1541         return res;
1542 }
1543
1544 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1545                                     u8 *sas_addr, int include)
1546 {
1547         int index;
1548         int present;
1549         int res;
1550
1551         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1552         if (res)
1553                 return res;
1554         if (include ^ present)
1555                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1556
1557         return res;
1558 }
1559
1560 /**
1561  * sas_configure_parent -- configure routing table of parent
1562  * parent: parent expander
1563  * child: child expander
1564  * sas_addr: SAS port identifier of device directly attached to child
1565  */
1566 static int sas_configure_parent(struct domain_device *parent,
1567                                 struct domain_device *child,
1568                                 u8 *sas_addr, int include)
1569 {
1570         struct expander_device *ex_parent = &parent->ex_dev;
1571         int res = 0;
1572         int i;
1573
1574         if (parent->parent) {
1575                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1576                                            include);
1577                 if (res)
1578                         return res;
1579         }
1580
1581         if (ex_parent->conf_route_table == 0) {
1582                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1583                             SAS_ADDR(parent->sas_addr));
1584                 return 0;
1585         }
1586
1587         for (i = 0; i < ex_parent->num_phys; i++) {
1588                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1589
1590                 if ((phy->routing_attr == TABLE_ROUTING) &&
1591                     (SAS_ADDR(phy->attached_sas_addr) ==
1592                      SAS_ADDR(child->sas_addr))) {
1593                         res = sas_configure_phy(parent, i, sas_addr, include);
1594                         if (res)
1595                                 return res;
1596                 }
1597         }
1598
1599         return res;
1600 }
1601
1602 /**
1603  * sas_configure_routing -- configure routing
1604  * dev: expander device
1605  * sas_addr: port identifier of device directly attached to the expander device
1606  */
1607 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1608 {
1609         if (dev->parent)
1610                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1611         return 0;
1612 }
1613
1614 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1615 {
1616         if (dev->parent)
1617                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1618         return 0;
1619 }
1620
1621 /**
1622  * sas_discover_expander -- expander discovery
1623  * @ex: pointer to expander domain device
1624  *
1625  * See comment in sas_discover_sata().
1626  */
1627 static int sas_discover_expander(struct domain_device *dev)
1628 {
1629         int res;
1630
1631         res = sas_notify_lldd_dev_found(dev);
1632         if (res)
1633                 return res;
1634
1635         res = sas_ex_general(dev);
1636         if (res)
1637                 goto out_err;
1638         res = sas_ex_manuf_info(dev);
1639         if (res)
1640                 goto out_err;
1641
1642         res = sas_expander_discover(dev);
1643         if (res) {
1644                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1645                             SAS_ADDR(dev->sas_addr), res);
1646                 goto out_err;
1647         }
1648
1649         sas_check_ex_subtractive_boundary(dev);
1650         res = sas_check_parent_topology(dev);
1651         if (res)
1652                 goto out_err;
1653         return 0;
1654 out_err:
1655         sas_notify_lldd_dev_gone(dev);
1656         return res;
1657 }
1658
1659 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1660 {
1661         int res = 0;
1662         struct domain_device *dev;
1663
1664         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1665                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1666                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1667                         struct sas_expander_device *ex =
1668                                 rphy_to_expander_device(dev->rphy);
1669
1670                         if (level == ex->level)
1671                                 res = sas_ex_discover_devices(dev, -1);
1672                         else if (level > 0)
1673                                 res = sas_ex_discover_devices(port->port_dev, -1);
1674
1675                 }
1676         }
1677
1678         return res;
1679 }
1680
1681 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1682 {
1683         int res;
1684         int level;
1685
1686         do {
1687                 level = port->disc.max_level;
1688                 res = sas_ex_level_discovery(port, level);
1689                 mb();
1690         } while (level < port->disc.max_level);
1691
1692         return res;
1693 }
1694
1695 int sas_discover_root_expander(struct domain_device *dev)
1696 {
1697         int res;
1698         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1699
1700         res = sas_rphy_add(dev->rphy);
1701         if (res)
1702                 goto out_err;
1703
1704         ex->level = dev->port->disc.max_level; /* 0 */
1705         res = sas_discover_expander(dev);
1706         if (res)
1707                 goto out_err2;
1708
1709         sas_ex_bfs_disc(dev->port);
1710
1711         return res;
1712
1713 out_err2:
1714         sas_rphy_remove(dev->rphy);
1715 out_err:
1716         return res;
1717 }
1718
1719 /* ---------- Domain revalidation ---------- */
1720
1721 static int sas_get_phy_discover(struct domain_device *dev,
1722                                 int phy_id, struct smp_resp *disc_resp)
1723 {
1724         int res;
1725         u8 *disc_req;
1726
1727         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1728         if (!disc_req)
1729                 return -ENOMEM;
1730
1731         disc_req[1] = SMP_DISCOVER;
1732         disc_req[9] = phy_id;
1733
1734         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1735                                disc_resp, DISCOVER_RESP_SIZE);
1736         if (res)
1737                 goto out;
1738         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1739                 res = disc_resp->result;
1740                 goto out;
1741         }
1742 out:
1743         kfree(disc_req);
1744         return res;
1745 }
1746
1747 static int sas_get_phy_change_count(struct domain_device *dev,
1748                                     int phy_id, int *pcc)
1749 {
1750         int res;
1751         struct smp_resp *disc_resp;
1752
1753         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1754         if (!disc_resp)
1755                 return -ENOMEM;
1756
1757         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1758         if (!res)
1759                 *pcc = disc_resp->disc.change_count;
1760
1761         kfree(disc_resp);
1762         return res;
1763 }
1764
1765 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1766                                     u8 *sas_addr, enum sas_device_type *type)
1767 {
1768         int res;
1769         struct smp_resp *disc_resp;
1770         struct discover_resp *dr;
1771
1772         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1773         if (!disc_resp)
1774                 return -ENOMEM;
1775         dr = &disc_resp->disc;
1776
1777         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1778         if (res == 0) {
1779                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1780                 *type = to_dev_type(dr);
1781                 if (*type == 0)
1782                         memset(sas_addr, 0, 8);
1783         }
1784         kfree(disc_resp);
1785         return res;
1786 }
1787
1788 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1789                               int from_phy, bool update)
1790 {
1791         struct expander_device *ex = &dev->ex_dev;
1792         int res = 0;
1793         int i;
1794
1795         for (i = from_phy; i < ex->num_phys; i++) {
1796                 int phy_change_count = 0;
1797
1798                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1799                 switch (res) {
1800                 case SMP_RESP_PHY_VACANT:
1801                 case SMP_RESP_NO_PHY:
1802                         continue;
1803                 case SMP_RESP_FUNC_ACC:
1804                         break;
1805                 default:
1806                         return res;
1807                 }
1808
1809                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1810                         if (update)
1811                                 ex->ex_phy[i].phy_change_count =
1812                                         phy_change_count;
1813                         *phy_id = i;
1814                         return 0;
1815                 }
1816         }
1817         return 0;
1818 }
1819
1820 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1821 {
1822         int res;
1823         u8  *rg_req;
1824         struct smp_resp  *rg_resp;
1825
1826         rg_req = alloc_smp_req(RG_REQ_SIZE);
1827         if (!rg_req)
1828                 return -ENOMEM;
1829
1830         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1831         if (!rg_resp) {
1832                 kfree(rg_req);
1833                 return -ENOMEM;
1834         }
1835
1836         rg_req[1] = SMP_REPORT_GENERAL;
1837
1838         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1839                                RG_RESP_SIZE);
1840         if (res)
1841                 goto out;
1842         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1843                 res = rg_resp->result;
1844                 goto out;
1845         }
1846
1847         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1848 out:
1849         kfree(rg_resp);
1850         kfree(rg_req);
1851         return res;
1852 }
1853 /**
1854  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1855  * @dev:domain device to be detect.
1856  * @src_dev: the device which originated BROADCAST(CHANGE).
1857  *
1858  * Add self-configuration expander support. Suppose two expander cascading,
1859  * when the first level expander is self-configuring, hotplug the disks in
1860  * second level expander, BROADCAST(CHANGE) will not only be originated
1861  * in the second level expander, but also be originated in the first level
1862  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1863  * expander changed count in two level expanders will all increment at least
1864  * once, but the phy which chang count has changed is the source device which
1865  * we concerned.
1866  */
1867
1868 static int sas_find_bcast_dev(struct domain_device *dev,
1869                               struct domain_device **src_dev)
1870 {
1871         struct expander_device *ex = &dev->ex_dev;
1872         int ex_change_count = -1;
1873         int phy_id = -1;
1874         int res;
1875         struct domain_device *ch;
1876
1877         res = sas_get_ex_change_count(dev, &ex_change_count);
1878         if (res)
1879                 goto out;
1880         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1881                 /* Just detect if this expander phys phy change count changed,
1882                 * in order to determine if this expander originate BROADCAST,
1883                 * and do not update phy change count field in our structure.
1884                 */
1885                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1886                 if (phy_id != -1) {
1887                         *src_dev = dev;
1888                         ex->ex_change_count = ex_change_count;
1889                         SAS_DPRINTK("Expander phy change count has changed\n");
1890                         return res;
1891                 } else
1892                         SAS_DPRINTK("Expander phys DID NOT change\n");
1893         }
1894         list_for_each_entry(ch, &ex->children, siblings) {
1895                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1896                         res = sas_find_bcast_dev(ch, src_dev);
1897                         if (*src_dev)
1898                                 return res;
1899                 }
1900         }
1901 out:
1902         return res;
1903 }
1904
1905 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1906 {
1907         struct expander_device *ex = &dev->ex_dev;
1908         struct domain_device *child, *n;
1909
1910         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1911                 set_bit(SAS_DEV_GONE, &child->state);
1912                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1913                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1914                         sas_unregister_ex_tree(port, child);
1915                 else
1916                         sas_unregister_dev(port, child);
1917         }
1918         sas_unregister_dev(port, dev);
1919 }
1920
1921 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1922                                          int phy_id, bool last)
1923 {
1924         struct expander_device *ex_dev = &parent->ex_dev;
1925         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1926         struct domain_device *child, *n, *found = NULL;
1927         if (last) {
1928                 list_for_each_entry_safe(child, n,
1929                         &ex_dev->children, siblings) {
1930                         if (SAS_ADDR(child->sas_addr) ==
1931                             SAS_ADDR(phy->attached_sas_addr)) {
1932                                 set_bit(SAS_DEV_GONE, &child->state);
1933                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1935                                         sas_unregister_ex_tree(parent->port, child);
1936                                 else
1937                                         sas_unregister_dev(parent->port, child);
1938                                 found = child;
1939                                 break;
1940                         }
1941                 }
1942                 sas_disable_routing(parent, phy->attached_sas_addr);
1943         }
1944         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1945         if (phy->port) {
1946                 sas_port_delete_phy(phy->port, phy->phy);
1947                 sas_device_set_phy(found, phy->port);
1948                 if (phy->port->num_phys == 0)
1949                         sas_port_delete(phy->port);
1950                 phy->port = NULL;
1951         }
1952 }
1953
1954 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1955                                           const int level)
1956 {
1957         struct expander_device *ex_root = &root->ex_dev;
1958         struct domain_device *child;
1959         int res = 0;
1960
1961         list_for_each_entry(child, &ex_root->children, siblings) {
1962                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1963                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1964                         struct sas_expander_device *ex =
1965                                 rphy_to_expander_device(child->rphy);
1966
1967                         if (level > ex->level)
1968                                 res = sas_discover_bfs_by_root_level(child,
1969                                                                      level);
1970                         else if (level == ex->level)
1971                                 res = sas_ex_discover_devices(child, -1);
1972                 }
1973         }
1974         return res;
1975 }
1976
1977 static int sas_discover_bfs_by_root(struct domain_device *dev)
1978 {
1979         int res;
1980         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1981         int level = ex->level+1;
1982
1983         res = sas_ex_discover_devices(dev, -1);
1984         if (res)
1985                 goto out;
1986         do {
1987                 res = sas_discover_bfs_by_root_level(dev, level);
1988                 mb();
1989                 level += 1;
1990         } while (level <= dev->port->disc.max_level);
1991 out:
1992         return res;
1993 }
1994
1995 static int sas_discover_new(struct domain_device *dev, int phy_id)
1996 {
1997         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1998         struct domain_device *child;
1999         int res;
2000
2001         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
2002                     SAS_ADDR(dev->sas_addr), phy_id);
2003         res = sas_ex_phy_discover(dev, phy_id);
2004         if (res)
2005                 return res;
2006
2007         if (sas_ex_join_wide_port(dev, phy_id))
2008                 return 0;
2009
2010         res = sas_ex_discover_devices(dev, phy_id);
2011         if (res)
2012                 return res;
2013         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2014                 if (SAS_ADDR(child->sas_addr) ==
2015                     SAS_ADDR(ex_phy->attached_sas_addr)) {
2016                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2017                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2018                                 res = sas_discover_bfs_by_root(child);
2019                         break;
2020                 }
2021         }
2022         return res;
2023 }
2024
2025 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2026 {
2027         if (old == new)
2028                 return true;
2029
2030         /* treat device directed resets as flutter, if we went
2031          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2032          */
2033         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2034             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2035                 return true;
2036
2037         return false;
2038 }
2039
2040 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2041 {
2042         struct expander_device *ex = &dev->ex_dev;
2043         struct ex_phy *phy = &ex->ex_phy[phy_id];
2044         enum sas_device_type type = SAS_PHY_UNUSED;
2045         u8 sas_addr[8];
2046         int res;
2047
2048         memset(sas_addr, 0, 8);
2049         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2050         switch (res) {
2051         case SMP_RESP_NO_PHY:
2052                 phy->phy_state = PHY_NOT_PRESENT;
2053                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2054                 return res;
2055         case SMP_RESP_PHY_VACANT:
2056                 phy->phy_state = PHY_VACANT;
2057                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2058                 return res;
2059         case SMP_RESP_FUNC_ACC:
2060                 break;
2061         case -ECOMM:
2062                 break;
2063         default:
2064                 return res;
2065         }
2066
2067         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2068                 phy->phy_state = PHY_EMPTY;
2069                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2070                 /*
2071                  * Even though the PHY is empty, for convenience we discover
2072                  * the PHY to update the PHY info, like negotiated linkrate.
2073                  */
2074                 sas_ex_phy_discover(dev, phy_id);
2075                 return res;
2076         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2077                    dev_type_flutter(type, phy->attached_dev_type)) {
2078                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2079                 char *action = "";
2080
2081                 sas_ex_phy_discover(dev, phy_id);
2082
2083                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2084                         action = ", needs recovery";
2085                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2086                             SAS_ADDR(dev->sas_addr), phy_id, action);
2087                 return res;
2088         }
2089
2090         /* we always have to delete the old device when we went here */
2091         SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2092                     SAS_ADDR(dev->sas_addr), phy_id,
2093                     SAS_ADDR(phy->attached_sas_addr));
2094         sas_unregister_devs_sas_addr(dev, phy_id, last);
2095
2096         return sas_discover_new(dev, phy_id);
2097 }
2098
2099 /**
2100  * sas_rediscover - revalidate the domain.
2101  * @dev:domain device to be detect.
2102  * @phy_id: the phy id will be detected.
2103  *
2104  * NOTE: this process _must_ quit (return) as soon as any connection
2105  * errors are encountered.  Connection recovery is done elsewhere.
2106  * Discover process only interrogates devices in order to discover the
2107  * domain.For plugging out, we un-register the device only when it is
2108  * the last phy in the port, for other phys in this port, we just delete it
2109  * from the port.For inserting, we do discovery when it is the
2110  * first phy,for other phys in this port, we add it to the port to
2111  * forming the wide-port.
2112  */
2113 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2114 {
2115         struct expander_device *ex = &dev->ex_dev;
2116         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2117         int res = 0;
2118         int i;
2119         bool last = true;       /* is this the last phy of the port */
2120
2121         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2122                     SAS_ADDR(dev->sas_addr), phy_id);
2123
2124         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2125                 for (i = 0; i < ex->num_phys; i++) {
2126                         struct ex_phy *phy = &ex->ex_phy[i];
2127
2128                         if (i == phy_id)
2129                                 continue;
2130                         if (SAS_ADDR(phy->attached_sas_addr) ==
2131                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2132                                 SAS_DPRINTK("phy%d part of wide port with "
2133                                             "phy%d\n", phy_id, i);
2134                                 last = false;
2135                                 break;
2136                         }
2137                 }
2138                 res = sas_rediscover_dev(dev, phy_id, last);
2139         } else
2140                 res = sas_discover_new(dev, phy_id);
2141         return res;
2142 }
2143
2144 /**
2145  * sas_revalidate_domain -- revalidate the domain
2146  * @port: port to the domain of interest
2147  *
2148  * NOTE: this process _must_ quit (return) as soon as any connection
2149  * errors are encountered.  Connection recovery is done elsewhere.
2150  * Discover process only interrogates devices in order to discover the
2151  * domain.
2152  */
2153 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2154 {
2155         int res;
2156         struct domain_device *dev = NULL;
2157
2158         res = sas_find_bcast_dev(port_dev, &dev);
2159         while (res == 0 && dev) {
2160                 struct expander_device *ex = &dev->ex_dev;
2161                 int i = 0, phy_id;
2162
2163                 do {
2164                         phy_id = -1;
2165                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2166                         if (phy_id == -1)
2167                                 break;
2168                         res = sas_rediscover(dev, phy_id);
2169                         i = phy_id + 1;
2170                 } while (i < ex->num_phys);
2171
2172                 dev = NULL;
2173                 res = sas_find_bcast_dev(port_dev, &dev);
2174         }
2175         return res;
2176 }
2177
2178 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2179                 struct sas_rphy *rphy)
2180 {
2181         struct domain_device *dev;
2182         unsigned int rcvlen = 0;
2183         int ret = -EINVAL;
2184
2185         /* no rphy means no smp target support (ie aic94xx host) */
2186         if (!rphy)
2187                 return sas_smp_host_handler(job, shost);
2188
2189         switch (rphy->identify.device_type) {
2190         case SAS_EDGE_EXPANDER_DEVICE:
2191         case SAS_FANOUT_EXPANDER_DEVICE:
2192                 break;
2193         default:
2194                 printk("%s: can we send a smp request to a device?\n",
2195                        __func__);
2196                 goto out;
2197         }
2198
2199         dev = sas_find_dev_by_rphy(rphy);
2200         if (!dev) {
2201                 printk("%s: fail to find a domain_device?\n", __func__);
2202                 goto out;
2203         }
2204
2205         /* do we need to support multiple segments? */
2206         if (job->request_payload.sg_cnt > 1 ||
2207             job->reply_payload.sg_cnt > 1) {
2208                 printk("%s: multiple segments req %u, rsp %u\n",
2209                        __func__, job->request_payload.payload_len,
2210                        job->reply_payload.payload_len);
2211                 goto out;
2212         }
2213
2214         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2215                         job->reply_payload.sg_list);
2216         if (ret >= 0) {
2217                 /* bsg_job_done() requires the length received  */
2218                 rcvlen = job->reply_payload.payload_len - ret;
2219                 ret = 0;
2220         }
2221
2222 out:
2223         bsg_job_done(job, ret, rcvlen);
2224 }