GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258                                IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260                                    BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264         void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271                                             struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274         int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282         unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292         struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294         struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297         int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303                                u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305                                     unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307                                 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309                                            unsigned char lunaddr[],
310                                            int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312                                      int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327         struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329         unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332                                struct hpsa_scsi_dev_t *dev,
333                                unsigned char *scsi3addr);
334
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337         unsigned long *priv = shost_priv(sdev->host);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343         unsigned long *priv = shost_priv(sh);
344         return (struct ctlr_info *) *priv;
345 }
346
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349         return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513         device->offload_enabled = 0;
514         device->offload_to_be_enabled = 0;
515 }
516
517 static ssize_t host_show_firmware_revision(struct device *dev,
518              struct device_attribute *attr, char *buf)
519 {
520         struct ctlr_info *h;
521         struct Scsi_Host *shost = class_to_shost(dev);
522         unsigned char *fwrev;
523
524         h = shost_to_hba(shost);
525         if (!h->hba_inquiry_data)
526                 return 0;
527         fwrev = &h->hba_inquiry_data[32];
528         return snprintf(buf, 20, "%c%c%c%c\n",
529                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533              struct device_attribute *attr, char *buf)
534 {
535         struct Scsi_Host *shost = class_to_shost(dev);
536         struct ctlr_info *h = shost_to_hba(shost);
537
538         return snprintf(buf, 20, "%d\n",
539                         atomic_read(&h->commands_outstanding));
540 }
541
542 static ssize_t host_show_transport_mode(struct device *dev,
543         struct device_attribute *attr, char *buf)
544 {
545         struct ctlr_info *h;
546         struct Scsi_Host *shost = class_to_shost(dev);
547
548         h = shost_to_hba(shost);
549         return snprintf(buf, 20, "%s\n",
550                 h->transMethod & CFGTBL_Trans_Performant ?
551                         "performant" : "simple");
552 }
553
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555         struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct Scsi_Host *shost = class_to_shost(dev);
559
560         h = shost_to_hba(shost);
561         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567         0x324a103C, /* Smart Array P712m */
568         0x324b103C, /* Smart Array P711m */
569         0x3223103C, /* Smart Array P800 */
570         0x3234103C, /* Smart Array P400 */
571         0x3235103C, /* Smart Array P400i */
572         0x3211103C, /* Smart Array E200i */
573         0x3212103C, /* Smart Array E200 */
574         0x3213103C, /* Smart Array E200i */
575         0x3214103C, /* Smart Array E200i */
576         0x3215103C, /* Smart Array E200i */
577         0x3237103C, /* Smart Array E500 */
578         0x323D103C, /* Smart Array P700m */
579         0x40800E11, /* Smart Array 5i */
580         0x409C0E11, /* Smart Array 6400 */
581         0x409D0E11, /* Smart Array 6400 EM */
582         0x40700E11, /* Smart Array 5300 */
583         0x40820E11, /* Smart Array 532 */
584         0x40830E11, /* Smart Array 5312 */
585         0x409A0E11, /* Smart Array 641 */
586         0x409B0E11, /* Smart Array 642 */
587         0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592         0x40800E11, /* Smart Array 5i */
593         0x40700E11, /* Smart Array 5300 */
594         0x40820E11, /* Smart Array 532 */
595         0x40830E11, /* Smart Array 5312 */
596         0x409A0E11, /* Smart Array 641 */
597         0x409B0E11, /* Smart Array 642 */
598         0x40910E11, /* Smart Array 6i */
599         /* Exclude 640x boards.  These are two pci devices in one slot
600          * which share a battery backed cache module.  One controls the
601          * cache, the other accesses the cache through the one that controls
602          * it.  If we reset the one controlling the cache, the other will
603          * likely not be happy.  Just forbid resetting this conjoined mess.
604          * The 640x isn't really supported by hpsa anyway.
605          */
606         0x409C0E11, /* Smart Array 6400 */
607         0x409D0E11, /* Smart Array 6400 EM */
608 };
609
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612         int i;
613
614         for (i = 0; i < nelems; i++)
615                 if (a[i] == board_id)
616                         return 1;
617         return 0;
618 }
619
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622         return !board_id_in_array(unresettable_controller,
623                         ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628         return !board_id_in_array(soft_unresettable_controller,
629                         ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
632 static int ctlr_is_resettable(u32 board_id)
633 {
634         return ctlr_is_hard_resettable(board_id) ||
635                 ctlr_is_soft_resettable(board_id);
636 }
637
638 static ssize_t host_show_resettable(struct device *dev,
639         struct device_attribute *attr, char *buf)
640 {
641         struct ctlr_info *h;
642         struct Scsi_Host *shost = class_to_shost(dev);
643
644         h = shost_to_hba(shost);
645         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650         return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0     0
657 #define HPSA_RAID_4     1
658 #define HPSA_RAID_1     2       /* also used for RAID 10 */
659 #define HPSA_RAID_5     3       /* also used for RAID 50 */
660 #define HPSA_RAID_51    4
661 #define HPSA_RAID_6     5       /* also used for RAID 60 */
662 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668         return !device->physical_device;
669 }
670
671 static ssize_t raid_level_show(struct device *dev,
672              struct device_attribute *attr, char *buf)
673 {
674         ssize_t l = 0;
675         unsigned char rlevel;
676         struct ctlr_info *h;
677         struct scsi_device *sdev;
678         struct hpsa_scsi_dev_t *hdev;
679         unsigned long flags;
680
681         sdev = to_scsi_device(dev);
682         h = sdev_to_hba(sdev);
683         spin_lock_irqsave(&h->lock, flags);
684         hdev = sdev->hostdata;
685         if (!hdev) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 return -ENODEV;
688         }
689
690         /* Is this even a logical drive? */
691         if (!is_logical_device(hdev)) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694                 return l;
695         }
696
697         rlevel = hdev->raid_level;
698         spin_unlock_irqrestore(&h->lock, flags);
699         if (rlevel > RAID_UNKNOWN)
700                 rlevel = RAID_UNKNOWN;
701         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702         return l;
703 }
704
705 static ssize_t lunid_show(struct device *dev,
706              struct device_attribute *attr, char *buf)
707 {
708         struct ctlr_info *h;
709         struct scsi_device *sdev;
710         struct hpsa_scsi_dev_t *hdev;
711         unsigned long flags;
712         unsigned char lunid[8];
713
714         sdev = to_scsi_device(dev);
715         h = sdev_to_hba(sdev);
716         spin_lock_irqsave(&h->lock, flags);
717         hdev = sdev->hostdata;
718         if (!hdev) {
719                 spin_unlock_irqrestore(&h->lock, flags);
720                 return -ENODEV;
721         }
722         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723         spin_unlock_irqrestore(&h->lock, flags);
724         return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
727 static ssize_t unique_id_show(struct device *dev,
728              struct device_attribute *attr, char *buf)
729 {
730         struct ctlr_info *h;
731         struct scsi_device *sdev;
732         struct hpsa_scsi_dev_t *hdev;
733         unsigned long flags;
734         unsigned char sn[16];
735
736         sdev = to_scsi_device(dev);
737         h = sdev_to_hba(sdev);
738         spin_lock_irqsave(&h->lock, flags);
739         hdev = sdev->hostdata;
740         if (!hdev) {
741                 spin_unlock_irqrestore(&h->lock, flags);
742                 return -ENODEV;
743         }
744         memcpy(sn, hdev->device_id, sizeof(sn));
745         spin_unlock_irqrestore(&h->lock, flags);
746         return snprintf(buf, 16 * 2 + 2,
747                         "%02X%02X%02X%02X%02X%02X%02X%02X"
748                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749                         sn[0], sn[1], sn[2], sn[3],
750                         sn[4], sn[5], sn[6], sn[7],
751                         sn[8], sn[9], sn[10], sn[11],
752                         sn[12], sn[13], sn[14], sn[15]);
753 }
754
755 static ssize_t sas_address_show(struct device *dev,
756               struct device_attribute *attr, char *buf)
757 {
758         struct ctlr_info *h;
759         struct scsi_device *sdev;
760         struct hpsa_scsi_dev_t *hdev;
761         unsigned long flags;
762         u64 sas_address;
763
764         sdev = to_scsi_device(dev);
765         h = sdev_to_hba(sdev);
766         spin_lock_irqsave(&h->lock, flags);
767         hdev = sdev->hostdata;
768         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769                 spin_unlock_irqrestore(&h->lock, flags);
770                 return -ENODEV;
771         }
772         sas_address = hdev->sas_address;
773         spin_unlock_irqrestore(&h->lock, flags);
774
775         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779              struct device_attribute *attr, char *buf)
780 {
781         struct ctlr_info *h;
782         struct scsi_device *sdev;
783         struct hpsa_scsi_dev_t *hdev;
784         unsigned long flags;
785         int offload_enabled;
786
787         sdev = to_scsi_device(dev);
788         h = sdev_to_hba(sdev);
789         spin_lock_irqsave(&h->lock, flags);
790         hdev = sdev->hostdata;
791         if (!hdev) {
792                 spin_unlock_irqrestore(&h->lock, flags);
793                 return -ENODEV;
794         }
795         offload_enabled = hdev->offload_enabled;
796         spin_unlock_irqrestore(&h->lock, flags);
797
798         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799                 return snprintf(buf, 20, "%d\n", offload_enabled);
800         else
801                 return snprintf(buf, 40, "%s\n",
802                                 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807              struct device_attribute *attr, char *buf)
808 {
809         struct ctlr_info *h;
810         struct scsi_device *sdev;
811         struct hpsa_scsi_dev_t *hdev;
812         unsigned long flags;
813         int i;
814         int output_len = 0;
815         u8 box;
816         u8 bay;
817         u8 path_map_index = 0;
818         char *active;
819         unsigned char phys_connector[2];
820
821         sdev = to_scsi_device(dev);
822         h = sdev_to_hba(sdev);
823         spin_lock_irqsave(&h->devlock, flags);
824         hdev = sdev->hostdata;
825         if (!hdev) {
826                 spin_unlock_irqrestore(&h->devlock, flags);
827                 return -ENODEV;
828         }
829
830         bay = hdev->bay;
831         for (i = 0; i < MAX_PATHS; i++) {
832                 path_map_index = 1<<i;
833                 if (i == hdev->active_path_index)
834                         active = "Active";
835                 else if (hdev->path_map & path_map_index)
836                         active = "Inactive";
837                 else
838                         continue;
839
840                 output_len += scnprintf(buf + output_len,
841                                 PAGE_SIZE - output_len,
842                                 "[%d:%d:%d:%d] %20.20s ",
843                                 h->scsi_host->host_no,
844                                 hdev->bus, hdev->target, hdev->lun,
845                                 scsi_device_type(hdev->devtype));
846
847                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848                         output_len += scnprintf(buf + output_len,
849                                                 PAGE_SIZE - output_len,
850                                                 "%s\n", active);
851                         continue;
852                 }
853
854                 box = hdev->box[i];
855                 memcpy(&phys_connector, &hdev->phys_connector[i],
856                         sizeof(phys_connector));
857                 if (phys_connector[0] < '0')
858                         phys_connector[0] = '0';
859                 if (phys_connector[1] < '0')
860                         phys_connector[1] = '0';
861                 output_len += scnprintf(buf + output_len,
862                                 PAGE_SIZE - output_len,
863                                 "PORT: %.2s ",
864                                 phys_connector);
865                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866                         hdev->expose_device) {
867                         if (box == 0 || box == 0xFF) {
868                                 output_len += scnprintf(buf + output_len,
869                                         PAGE_SIZE - output_len,
870                                         "BAY: %hhu %s\n",
871                                         bay, active);
872                         } else {
873                                 output_len += scnprintf(buf + output_len,
874                                         PAGE_SIZE - output_len,
875                                         "BOX: %hhu BAY: %hhu %s\n",
876                                         box, bay, active);
877                         }
878                 } else if (box != 0 && box != 0xFF) {
879                         output_len += scnprintf(buf + output_len,
880                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881                                 box, active);
882                 } else
883                         output_len += scnprintf(buf + output_len,
884                                 PAGE_SIZE - output_len, "%s\n", active);
885         }
886
887         spin_unlock_irqrestore(&h->devlock, flags);
888         return output_len;
889 }
890
891 static ssize_t host_show_ctlr_num(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
901 static ssize_t host_show_legacy_board(struct device *dev,
902         struct device_attribute *attr, char *buf)
903 {
904         struct ctlr_info *h;
905         struct Scsi_Host *shost = class_to_shost(dev);
906
907         h = shost_to_hba(shost);
908         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917                         host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920                 host_show_hp_ssd_smart_path_status,
921                 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923                         host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925         host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927         host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929         host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931         host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933         host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935         host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937         host_show_legacy_board, NULL);
938
939 static struct attribute *hpsa_sdev_attrs[] = {
940         &dev_attr_raid_level.attr,
941         &dev_attr_lunid.attr,
942         &dev_attr_unique_id.attr,
943         &dev_attr_hp_ssd_smart_path_enabled.attr,
944         &dev_attr_path_info.attr,
945         &dev_attr_sas_address.attr,
946         NULL,
947 };
948
949 ATTRIBUTE_GROUPS(hpsa_sdev);
950
951 static struct attribute *hpsa_shost_attrs[] = {
952         &dev_attr_rescan.attr,
953         &dev_attr_firmware_revision.attr,
954         &dev_attr_commands_outstanding.attr,
955         &dev_attr_transport_mode.attr,
956         &dev_attr_resettable.attr,
957         &dev_attr_hp_ssd_smart_path_status.attr,
958         &dev_attr_raid_offload_debug.attr,
959         &dev_attr_lockup_detected.attr,
960         &dev_attr_ctlr_num.attr,
961         &dev_attr_legacy_board.attr,
962         NULL,
963 };
964
965 ATTRIBUTE_GROUPS(hpsa_shost);
966
967 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
968                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
969
970 static struct scsi_host_template hpsa_driver_template = {
971         .module                 = THIS_MODULE,
972         .name                   = HPSA,
973         .proc_name              = HPSA,
974         .queuecommand           = hpsa_scsi_queue_command,
975         .scan_start             = hpsa_scan_start,
976         .scan_finished          = hpsa_scan_finished,
977         .change_queue_depth     = hpsa_change_queue_depth,
978         .this_id                = -1,
979         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
980         .ioctl                  = hpsa_ioctl,
981         .slave_alloc            = hpsa_slave_alloc,
982         .slave_configure        = hpsa_slave_configure,
983         .slave_destroy          = hpsa_slave_destroy,
984 #ifdef CONFIG_COMPAT
985         .compat_ioctl           = hpsa_compat_ioctl,
986 #endif
987         .sdev_groups = hpsa_sdev_groups,
988         .shost_groups = hpsa_shost_groups,
989         .max_sectors = 2048,
990         .no_write_same = 1,
991 };
992
993 static inline u32 next_command(struct ctlr_info *h, u8 q)
994 {
995         u32 a;
996         struct reply_queue_buffer *rq = &h->reply_queue[q];
997
998         if (h->transMethod & CFGTBL_Trans_io_accel1)
999                 return h->access.command_completed(h, q);
1000
1001         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002                 return h->access.command_completed(h, q);
1003
1004         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005                 a = rq->head[rq->current_entry];
1006                 rq->current_entry++;
1007                 atomic_dec(&h->commands_outstanding);
1008         } else {
1009                 a = FIFO_EMPTY;
1010         }
1011         /* Check for wraparound */
1012         if (rq->current_entry == h->max_commands) {
1013                 rq->current_entry = 0;
1014                 rq->wraparound ^= 1;
1015         }
1016         return a;
1017 }
1018
1019 /*
1020  * There are some special bits in the bus address of the
1021  * command that we have to set for the controller to know
1022  * how to process the command:
1023  *
1024  * Normal performant mode:
1025  * bit 0: 1 means performant mode, 0 means simple mode.
1026  * bits 1-3 = block fetch table entry
1027  * bits 4-6 = command type (== 0)
1028  *
1029  * ioaccel1 mode:
1030  * bit 0 = "performant mode" bit.
1031  * bits 1-3 = block fetch table entry
1032  * bits 4-6 = command type (== 110)
1033  * (command type is needed because ioaccel1 mode
1034  * commands are submitted through the same register as normal
1035  * mode commands, so this is how the controller knows whether
1036  * the command is normal mode or ioaccel1 mode.)
1037  *
1038  * ioaccel2 mode:
1039  * bit 0 = "performant mode" bit.
1040  * bits 1-4 = block fetch table entry (note extra bit)
1041  * bits 4-6 = not needed, because ioaccel2 mode has
1042  * a separate special register for submitting commands.
1043  */
1044
1045 /*
1046  * set_performant_mode: Modify the tag for cciss performant
1047  * set bit 0 for pull model, bits 3-1 for block fetch
1048  * register number
1049  */
1050 #define DEFAULT_REPLY_QUEUE (-1)
1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1052                                         int reply_queue)
1053 {
1054         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056                 if (unlikely(!h->msix_vectors))
1057                         return;
1058                 c->Header.ReplyQueue = reply_queue;
1059         }
1060 }
1061
1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063                                                 struct CommandList *c,
1064                                                 int reply_queue)
1065 {
1066         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1067
1068         /*
1069          * Tell the controller to post the reply to the queue for this
1070          * processor.  This seems to give the best I/O throughput.
1071          */
1072         cp->ReplyQueue = reply_queue;
1073         /*
1074          * Set the bits in the address sent down to include:
1075          *  - performant mode bit (bit 0)
1076          *  - pull count (bits 1-3)
1077          *  - command type (bits 4-6)
1078          */
1079         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080                                         IOACCEL1_BUSADDR_CMDTYPE;
1081 }
1082
1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084                                                 struct CommandList *c,
1085                                                 int reply_queue)
1086 {
1087         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088                 &h->ioaccel2_cmd_pool[c->cmdindex];
1089
1090         /* Tell the controller to post the reply to the queue for this
1091          * processor.  This seems to give the best I/O throughput.
1092          */
1093         cp->reply_queue = reply_queue;
1094         /* Set the bits in the address sent down to include:
1095          *  - performant mode bit not used in ioaccel mode 2
1096          *  - pull count (bits 0-3)
1097          *  - command type isn't needed for ioaccel2
1098          */
1099         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103                                                 struct CommandList *c,
1104                                                 int reply_queue)
1105 {
1106         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108         /*
1109          * Tell the controller to post the reply to the queue for this
1110          * processor.  This seems to give the best I/O throughput.
1111          */
1112         cp->reply_queue = reply_queue;
1113         /*
1114          * Set the bits in the address sent down to include:
1115          *  - performant mode bit not used in ioaccel mode 2
1116          *  - pull count (bits 0-3)
1117          *  - command type isn't needed for ioaccel2
1118          */
1119         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1120 }
1121
1122 static int is_firmware_flash_cmd(u8 *cdb)
1123 {
1124         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125 }
1126
1127 /*
1128  * During firmware flash, the heartbeat register may not update as frequently
1129  * as it should.  So we dial down lockup detection during firmware flash. and
1130  * dial it back up when firmware flash completes.
1131  */
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136                 struct CommandList *c)
1137 {
1138         if (!is_firmware_flash_cmd(c->Request.CDB))
1139                 return;
1140         atomic_inc(&h->firmware_flash_in_progress);
1141         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1142 }
1143
1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145                 struct CommandList *c)
1146 {
1147         if (is_firmware_flash_cmd(c->Request.CDB) &&
1148                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1149                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1150 }
1151
1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153         struct CommandList *c, int reply_queue)
1154 {
1155         dial_down_lockup_detection_during_fw_flash(h, c);
1156         atomic_inc(&h->commands_outstanding);
1157         /*
1158          * Check to see if the command is being retried.
1159          */
1160         if (c->device && !c->retry_pending)
1161                 atomic_inc(&c->device->commands_outstanding);
1162
1163         reply_queue = h->reply_map[raw_smp_processor_id()];
1164         switch (c->cmd_type) {
1165         case CMD_IOACCEL1:
1166                 set_ioaccel1_performant_mode(h, c, reply_queue);
1167                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1168                 break;
1169         case CMD_IOACCEL2:
1170                 set_ioaccel2_performant_mode(h, c, reply_queue);
1171                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172                 break;
1173         case IOACCEL2_TMF:
1174                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1176                 break;
1177         default:
1178                 set_performant_mode(h, c, reply_queue);
1179                 h->access.submit_command(h, c);
1180         }
1181 }
1182
1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1184 {
1185         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1186 }
1187
1188 static inline int is_hba_lunid(unsigned char scsi3addr[])
1189 {
1190         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1191 }
1192
1193 static inline int is_scsi_rev_5(struct ctlr_info *h)
1194 {
1195         if (!h->hba_inquiry_data)
1196                 return 0;
1197         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1198                 return 1;
1199         return 0;
1200 }
1201
1202 static int hpsa_find_target_lun(struct ctlr_info *h,
1203         unsigned char scsi3addr[], int bus, int *target, int *lun)
1204 {
1205         /* finds an unused bus, target, lun for a new physical device
1206          * assumes h->devlock is held
1207          */
1208         int i, found = 0;
1209         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210
1211         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212
1213         for (i = 0; i < h->ndevices; i++) {
1214                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215                         __set_bit(h->dev[i]->target, lun_taken);
1216         }
1217
1218         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219         if (i < HPSA_MAX_DEVICES) {
1220                 /* *bus = 1; */
1221                 *target = i;
1222                 *lun = 0;
1223                 found = 1;
1224         }
1225         return !found;
1226 }
1227
1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229         struct hpsa_scsi_dev_t *dev, char *description)
1230 {
1231 #define LABEL_SIZE 25
1232         char label[LABEL_SIZE];
1233
1234         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1235                 return;
1236
1237         switch (dev->devtype) {
1238         case TYPE_RAID:
1239                 snprintf(label, LABEL_SIZE, "controller");
1240                 break;
1241         case TYPE_ENCLOSURE:
1242                 snprintf(label, LABEL_SIZE, "enclosure");
1243                 break;
1244         case TYPE_DISK:
1245         case TYPE_ZBC:
1246                 if (dev->external)
1247                         snprintf(label, LABEL_SIZE, "external");
1248                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249                         snprintf(label, LABEL_SIZE, "%s",
1250                                 raid_label[PHYSICAL_DRIVE]);
1251                 else
1252                         snprintf(label, LABEL_SIZE, "RAID-%s",
1253                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1254                                 raid_label[dev->raid_level]);
1255                 break;
1256         case TYPE_ROM:
1257                 snprintf(label, LABEL_SIZE, "rom");
1258                 break;
1259         case TYPE_TAPE:
1260                 snprintf(label, LABEL_SIZE, "tape");
1261                 break;
1262         case TYPE_MEDIUM_CHANGER:
1263                 snprintf(label, LABEL_SIZE, "changer");
1264                 break;
1265         default:
1266                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1267                 break;
1268         }
1269
1270         dev_printk(level, &h->pdev->dev,
1271                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1273                         description,
1274                         scsi_device_type(dev->devtype),
1275                         dev->vendor,
1276                         dev->model,
1277                         label,
1278                         dev->offload_config ? '+' : '-',
1279                         dev->offload_to_be_enabled ? '+' : '-',
1280                         dev->expose_device);
1281 }
1282
1283 /* Add an entry into h->dev[] array. */
1284 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285                 struct hpsa_scsi_dev_t *device,
1286                 struct hpsa_scsi_dev_t *added[], int *nadded)
1287 {
1288         /* assumes h->devlock is held */
1289         int n = h->ndevices;
1290         int i;
1291         unsigned char addr1[8], addr2[8];
1292         struct hpsa_scsi_dev_t *sd;
1293
1294         if (n >= HPSA_MAX_DEVICES) {
1295                 dev_err(&h->pdev->dev, "too many devices, some will be "
1296                         "inaccessible.\n");
1297                 return -1;
1298         }
1299
1300         /* physical devices do not have lun or target assigned until now. */
1301         if (device->lun != -1)
1302                 /* Logical device, lun is already assigned. */
1303                 goto lun_assigned;
1304
1305         /* If this device a non-zero lun of a multi-lun device
1306          * byte 4 of the 8-byte LUN addr will contain the logical
1307          * unit no, zero otherwise.
1308          */
1309         if (device->scsi3addr[4] == 0) {
1310                 /* This is not a non-zero lun of a multi-lun device */
1311                 if (hpsa_find_target_lun(h, device->scsi3addr,
1312                         device->bus, &device->target, &device->lun) != 0)
1313                         return -1;
1314                 goto lun_assigned;
1315         }
1316
1317         /* This is a non-zero lun of a multi-lun device.
1318          * Search through our list and find the device which
1319          * has the same 8 byte LUN address, excepting byte 4 and 5.
1320          * Assign the same bus and target for this new LUN.
1321          * Use the logical unit number from the firmware.
1322          */
1323         memcpy(addr1, device->scsi3addr, 8);
1324         addr1[4] = 0;
1325         addr1[5] = 0;
1326         for (i = 0; i < n; i++) {
1327                 sd = h->dev[i];
1328                 memcpy(addr2, sd->scsi3addr, 8);
1329                 addr2[4] = 0;
1330                 addr2[5] = 0;
1331                 /* differ only in byte 4 and 5? */
1332                 if (memcmp(addr1, addr2, 8) == 0) {
1333                         device->bus = sd->bus;
1334                         device->target = sd->target;
1335                         device->lun = device->scsi3addr[4];
1336                         break;
1337                 }
1338         }
1339         if (device->lun == -1) {
1340                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341                         " suspect firmware bug or unsupported hardware "
1342                         "configuration.\n");
1343                 return -1;
1344         }
1345
1346 lun_assigned:
1347
1348         h->dev[n] = device;
1349         h->ndevices++;
1350         added[*nadded] = device;
1351         (*nadded)++;
1352         hpsa_show_dev_msg(KERN_INFO, h, device,
1353                 device->expose_device ? "added" : "masked");
1354         return 0;
1355 }
1356
1357 /*
1358  * Called during a scan operation.
1359  *
1360  * Update an entry in h->dev[] array.
1361  */
1362 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363         int entry, struct hpsa_scsi_dev_t *new_entry)
1364 {
1365         /* assumes h->devlock is held */
1366         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367
1368         /* Raid level changed. */
1369         h->dev[entry]->raid_level = new_entry->raid_level;
1370
1371         /*
1372          * ioacccel_handle may have changed for a dual domain disk
1373          */
1374         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375
1376         /* Raid offload parameters changed.  Careful about the ordering. */
1377         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378                 /*
1379                  * if drive is newly offload_enabled, we want to copy the
1380                  * raid map data first.  If previously offload_enabled and
1381                  * offload_config were set, raid map data had better be
1382                  * the same as it was before. If raid map data has changed
1383                  * then it had better be the case that
1384                  * h->dev[entry]->offload_enabled is currently 0.
1385                  */
1386                 h->dev[entry]->raid_map = new_entry->raid_map;
1387                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388         }
1389         if (new_entry->offload_to_be_enabled) {
1390                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392         }
1393         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394         h->dev[entry]->offload_config = new_entry->offload_config;
1395         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396         h->dev[entry]->queue_depth = new_entry->queue_depth;
1397
1398         /*
1399          * We can turn off ioaccel offload now, but need to delay turning
1400          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401          * can't do that until all the devices are updated.
1402          */
1403         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1404
1405         /*
1406          * turn ioaccel off immediately if told to do so.
1407          */
1408         if (!new_entry->offload_to_be_enabled)
1409                 h->dev[entry]->offload_enabled = 0;
1410
1411         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1412 }
1413
1414 /* Replace an entry from h->dev[] array. */
1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416         int entry, struct hpsa_scsi_dev_t *new_entry,
1417         struct hpsa_scsi_dev_t *added[], int *nadded,
1418         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419 {
1420         /* assumes h->devlock is held */
1421         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422         removed[*nremoved] = h->dev[entry];
1423         (*nremoved)++;
1424
1425         /*
1426          * New physical devices won't have target/lun assigned yet
1427          * so we need to preserve the values in the slot we are replacing.
1428          */
1429         if (new_entry->target == -1) {
1430                 new_entry->target = h->dev[entry]->target;
1431                 new_entry->lun = h->dev[entry]->lun;
1432         }
1433
1434         h->dev[entry] = new_entry;
1435         added[*nadded] = new_entry;
1436         (*nadded)++;
1437
1438         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1439 }
1440
1441 /* Remove an entry from h->dev[] array. */
1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444 {
1445         /* assumes h->devlock is held */
1446         int i;
1447         struct hpsa_scsi_dev_t *sd;
1448
1449         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450
1451         sd = h->dev[entry];
1452         removed[*nremoved] = h->dev[entry];
1453         (*nremoved)++;
1454
1455         for (i = entry; i < h->ndevices-1; i++)
1456                 h->dev[i] = h->dev[i+1];
1457         h->ndevices--;
1458         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1459 }
1460
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462         (a)[7] == (b)[7] && \
1463         (a)[6] == (b)[6] && \
1464         (a)[5] == (b)[5] && \
1465         (a)[4] == (b)[4] && \
1466         (a)[3] == (b)[3] && \
1467         (a)[2] == (b)[2] && \
1468         (a)[1] == (b)[1] && \
1469         (a)[0] == (b)[0])
1470
1471 static void fixup_botched_add(struct ctlr_info *h,
1472         struct hpsa_scsi_dev_t *added)
1473 {
1474         /* called when scsi_add_device fails in order to re-adjust
1475          * h->dev[] to match the mid layer's view.
1476          */
1477         unsigned long flags;
1478         int i, j;
1479
1480         spin_lock_irqsave(&h->lock, flags);
1481         for (i = 0; i < h->ndevices; i++) {
1482                 if (h->dev[i] == added) {
1483                         for (j = i; j < h->ndevices-1; j++)
1484                                 h->dev[j] = h->dev[j+1];
1485                         h->ndevices--;
1486                         break;
1487                 }
1488         }
1489         spin_unlock_irqrestore(&h->lock, flags);
1490         kfree(added);
1491 }
1492
1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494         struct hpsa_scsi_dev_t *dev2)
1495 {
1496         /* we compare everything except lun and target as these
1497          * are not yet assigned.  Compare parts likely
1498          * to differ first
1499          */
1500         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501                 sizeof(dev1->scsi3addr)) != 0)
1502                 return 0;
1503         if (memcmp(dev1->device_id, dev2->device_id,
1504                 sizeof(dev1->device_id)) != 0)
1505                 return 0;
1506         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1507                 return 0;
1508         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1509                 return 0;
1510         if (dev1->devtype != dev2->devtype)
1511                 return 0;
1512         if (dev1->bus != dev2->bus)
1513                 return 0;
1514         return 1;
1515 }
1516
1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518         struct hpsa_scsi_dev_t *dev2)
1519 {
1520         /* Device attributes that can change, but don't mean
1521          * that the device is a different device, nor that the OS
1522          * needs to be told anything about the change.
1523          */
1524         if (dev1->raid_level != dev2->raid_level)
1525                 return 1;
1526         if (dev1->offload_config != dev2->offload_config)
1527                 return 1;
1528         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1529                 return 1;
1530         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531                 if (dev1->queue_depth != dev2->queue_depth)
1532                         return 1;
1533         /*
1534          * This can happen for dual domain devices. An active
1535          * path change causes the ioaccel handle to change
1536          *
1537          * for example note the handle differences between p0 and p1
1538          * Device                    WWN               ,WWN hash,Handle
1539          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541          */
1542         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1543                 return 1;
1544         return 0;
1545 }
1546
1547 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1548  * and return needle location in *index.  If scsi3addr matches, but not
1549  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550  * location in *index.
1551  * In the case of a minor device attribute change, such as RAID level, just
1552  * return DEVICE_UPDATED, along with the updated device's location in index.
1553  * If needle not found, return DEVICE_NOT_FOUND.
1554  */
1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557         int *index)
1558 {
1559         int i;
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1564         if (needle == NULL)
1565                 return DEVICE_NOT_FOUND;
1566
1567         for (i = 0; i < haystack_size; i++) {
1568                 if (haystack[i] == NULL) /* previously removed. */
1569                         continue;
1570                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1571                         *index = i;
1572                         if (device_is_the_same(needle, haystack[i])) {
1573                                 if (device_updated(needle, haystack[i]))
1574                                         return DEVICE_UPDATED;
1575                                 return DEVICE_SAME;
1576                         } else {
1577                                 /* Keep offline devices offline */
1578                                 if (needle->volume_offline)
1579                                         return DEVICE_NOT_FOUND;
1580                                 return DEVICE_CHANGED;
1581                         }
1582                 }
1583         }
1584         *index = -1;
1585         return DEVICE_NOT_FOUND;
1586 }
1587
1588 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589                                         unsigned char scsi3addr[])
1590 {
1591         struct offline_device_entry *device;
1592         unsigned long flags;
1593
1594         /* Check to see if device is already on the list */
1595         spin_lock_irqsave(&h->offline_device_lock, flags);
1596         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597                 if (memcmp(device->scsi3addr, scsi3addr,
1598                         sizeof(device->scsi3addr)) == 0) {
1599                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600                         return;
1601                 }
1602         }
1603         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604
1605         /* Device is not on the list, add it. */
1606         device = kmalloc(sizeof(*device), GFP_KERNEL);
1607         if (!device)
1608                 return;
1609
1610         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611         spin_lock_irqsave(&h->offline_device_lock, flags);
1612         list_add_tail(&device->offline_list, &h->offline_device_list);
1613         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1614 }
1615
1616 /* Print a message explaining various offline volume states */
1617 static void hpsa_show_volume_status(struct ctlr_info *h,
1618         struct hpsa_scsi_dev_t *sd)
1619 {
1620         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625         switch (sd->volume_offline) {
1626         case HPSA_LV_OK:
1627                 break;
1628         case HPSA_LV_UNDERGOING_ERASE:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_NOT_AVAILABLE:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_UNDERGOING_RPI:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PENDING_RPI:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_ENCRYPTED_NO_KEY:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_UNDERGOING_ENCRYPTION:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         case HPSA_LV_PENDING_ENCRYPTION:
1683                 dev_info(&h->pdev->dev,
1684                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685                         h->scsi_host->host_no,
1686                         sd->bus, sd->target, sd->lun);
1687                 break;
1688         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689                 dev_info(&h->pdev->dev,
1690                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691                         h->scsi_host->host_no,
1692                         sd->bus, sd->target, sd->lun);
1693                 break;
1694         }
1695 }
1696
1697 /*
1698  * Figure the list of physical drive pointers for a logical drive with
1699  * raid offload configured.
1700  */
1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1703                                 struct hpsa_scsi_dev_t *logical_drive)
1704 {
1705         struct raid_map_data *map = &logical_drive->raid_map;
1706         struct raid_map_disk_data *dd = &map->data[0];
1707         int i, j;
1708         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709                                 le16_to_cpu(map->metadata_disks_per_row);
1710         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711                                 le16_to_cpu(map->layout_map_count) *
1712                                 total_disks_per_row;
1713         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714                                 total_disks_per_row;
1715         int qdepth;
1716
1717         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719
1720         logical_drive->nphysical_disks = nraid_map_entries;
1721
1722         qdepth = 0;
1723         for (i = 0; i < nraid_map_entries; i++) {
1724                 logical_drive->phys_disk[i] = NULL;
1725                 if (!logical_drive->offload_config)
1726                         continue;
1727                 for (j = 0; j < ndevices; j++) {
1728                         if (dev[j] == NULL)
1729                                 continue;
1730                         if (dev[j]->devtype != TYPE_DISK &&
1731                             dev[j]->devtype != TYPE_ZBC)
1732                                 continue;
1733                         if (is_logical_device(dev[j]))
1734                                 continue;
1735                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1736                                 continue;
1737
1738                         logical_drive->phys_disk[i] = dev[j];
1739                         if (i < nphys_disk)
1740                                 qdepth = min(h->nr_cmds, qdepth +
1741                                     logical_drive->phys_disk[i]->queue_depth);
1742                         break;
1743                 }
1744
1745                 /*
1746                  * This can happen if a physical drive is removed and
1747                  * the logical drive is degraded.  In that case, the RAID
1748                  * map data will refer to a physical disk which isn't actually
1749                  * present.  And in that case offload_enabled should already
1750                  * be 0, but we'll turn it off here just in case
1751                  */
1752                 if (!logical_drive->phys_disk[i]) {
1753                         dev_warn(&h->pdev->dev,
1754                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755                                 __func__,
1756                                 h->scsi_host->host_no, logical_drive->bus,
1757                                 logical_drive->target, logical_drive->lun);
1758                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1759                         logical_drive->queue_depth = 8;
1760                 }
1761         }
1762         if (nraid_map_entries)
1763                 /*
1764                  * This is correct for reads, too high for full stripe writes,
1765                  * way too high for partial stripe writes
1766                  */
1767                 logical_drive->queue_depth = qdepth;
1768         else {
1769                 if (logical_drive->external)
1770                         logical_drive->queue_depth = EXTERNAL_QD;
1771                 else
1772                         logical_drive->queue_depth = h->nr_cmds;
1773         }
1774 }
1775
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779         int i;
1780
1781         for (i = 0; i < ndevices; i++) {
1782                 if (dev[i] == NULL)
1783                         continue;
1784                 if (dev[i]->devtype != TYPE_DISK &&
1785                     dev[i]->devtype != TYPE_ZBC)
1786                         continue;
1787                 if (!is_logical_device(dev[i]))
1788                         continue;
1789
1790                 /*
1791                  * If offload is currently enabled, the RAID map and
1792                  * phys_disk[] assignment *better* not be changing
1793                  * because we would be changing ioaccel phsy_disk[] pointers
1794                  * on a ioaccel volume processing I/O requests.
1795                  *
1796                  * If an ioaccel volume status changed, initially because it was
1797                  * re-configured and thus underwent a transformation, or
1798                  * a drive failed, we would have received a state change
1799                  * request and ioaccel should have been turned off. When the
1800                  * transformation completes, we get another state change
1801                  * request to turn ioaccel back on. In this case, we need
1802                  * to update the ioaccel information.
1803                  *
1804                  * Thus: If it is not currently enabled, but will be after
1805                  * the scan completes, make sure the ioaccel pointers
1806                  * are up to date.
1807                  */
1808
1809                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811         }
1812 }
1813
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816         int rc = 0;
1817
1818         if (!h->scsi_host)
1819                 return 1;
1820
1821         if (is_logical_device(device)) /* RAID */
1822                 rc = scsi_add_device(h->scsi_host, device->bus,
1823                                         device->target, device->lun);
1824         else /* HBA */
1825                 rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827         return rc;
1828 }
1829
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831                                                 struct hpsa_scsi_dev_t *dev)
1832 {
1833         int i;
1834         int count = 0;
1835
1836         for (i = 0; i < h->nr_cmds; i++) {
1837                 struct CommandList *c = h->cmd_pool + i;
1838                 int refcount = atomic_inc_return(&c->refcount);
1839
1840                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841                                 dev->scsi3addr)) {
1842                         unsigned long flags;
1843
1844                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1845                         if (!hpsa_is_cmd_idle(c))
1846                                 ++count;
1847                         spin_unlock_irqrestore(&h->lock, flags);
1848                 }
1849
1850                 cmd_free(h, c);
1851         }
1852
1853         return count;
1854 }
1855
1856 #define NUM_WAIT 20
1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858                                                 struct hpsa_scsi_dev_t *device)
1859 {
1860         int cmds = 0;
1861         int waits = 0;
1862         int num_wait = NUM_WAIT;
1863
1864         if (device->external)
1865                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1866
1867         while (1) {
1868                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1869                 if (cmds == 0)
1870                         break;
1871                 if (++waits > num_wait)
1872                         break;
1873                 msleep(1000);
1874         }
1875
1876         if (waits > num_wait) {
1877                 dev_warn(&h->pdev->dev,
1878                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1879                         __func__,
1880                         h->scsi_host->host_no,
1881                         device->bus, device->target, device->lun, cmds);
1882         }
1883 }
1884
1885 static void hpsa_remove_device(struct ctlr_info *h,
1886                         struct hpsa_scsi_dev_t *device)
1887 {
1888         struct scsi_device *sdev = NULL;
1889
1890         if (!h->scsi_host)
1891                 return;
1892
1893         /*
1894          * Allow for commands to drain
1895          */
1896         device->removed = 1;
1897         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1898
1899         if (is_logical_device(device)) { /* RAID */
1900                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901                                                 device->target, device->lun);
1902                 if (sdev) {
1903                         scsi_remove_device(sdev);
1904                         scsi_device_put(sdev);
1905                 } else {
1906                         /*
1907                          * We don't expect to get here.  Future commands
1908                          * to this device will get a selection timeout as
1909                          * if the device were gone.
1910                          */
1911                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1912                                         "didn't find device for removal.");
1913                 }
1914         } else { /* HBA */
1915
1916                 hpsa_remove_sas_device(device);
1917         }
1918 }
1919
1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921         struct hpsa_scsi_dev_t *sd[], int nsds)
1922 {
1923         /* sd contains scsi3 addresses and devtypes, and inquiry
1924          * data.  This function takes what's in sd to be the current
1925          * reality and updates h->dev[] to reflect that reality.
1926          */
1927         int i, entry, device_change, changes = 0;
1928         struct hpsa_scsi_dev_t *csd;
1929         unsigned long flags;
1930         struct hpsa_scsi_dev_t **added, **removed;
1931         int nadded, nremoved;
1932
1933         /*
1934          * A reset can cause a device status to change
1935          * re-schedule the scan to see what happened.
1936          */
1937         spin_lock_irqsave(&h->reset_lock, flags);
1938         if (h->reset_in_progress) {
1939                 h->drv_req_rescan = 1;
1940                 spin_unlock_irqrestore(&h->reset_lock, flags);
1941                 return;
1942         }
1943         spin_unlock_irqrestore(&h->reset_lock, flags);
1944
1945         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1947
1948         if (!added || !removed) {
1949                 dev_warn(&h->pdev->dev, "out of memory in "
1950                         "adjust_hpsa_scsi_table\n");
1951                 goto free_and_out;
1952         }
1953
1954         spin_lock_irqsave(&h->devlock, flags);
1955
1956         /* find any devices in h->dev[] that are not in
1957          * sd[] and remove them from h->dev[], and for any
1958          * devices which have changed, remove the old device
1959          * info and add the new device info.
1960          * If minor device attributes change, just update
1961          * the existing device structure.
1962          */
1963         i = 0;
1964         nremoved = 0;
1965         nadded = 0;
1966         while (i < h->ndevices) {
1967                 csd = h->dev[i];
1968                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969                 if (device_change == DEVICE_NOT_FOUND) {
1970                         changes++;
1971                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972                         continue; /* remove ^^^, hence i not incremented */
1973                 } else if (device_change == DEVICE_CHANGED) {
1974                         changes++;
1975                         hpsa_scsi_replace_entry(h, i, sd[entry],
1976                                 added, &nadded, removed, &nremoved);
1977                         /* Set it to NULL to prevent it from being freed
1978                          * at the bottom of hpsa_update_scsi_devices()
1979                          */
1980                         sd[entry] = NULL;
1981                 } else if (device_change == DEVICE_UPDATED) {
1982                         hpsa_scsi_update_entry(h, i, sd[entry]);
1983                 }
1984                 i++;
1985         }
1986
1987         /* Now, make sure every device listed in sd[] is also
1988          * listed in h->dev[], adding them if they aren't found
1989          */
1990
1991         for (i = 0; i < nsds; i++) {
1992                 if (!sd[i]) /* if already added above. */
1993                         continue;
1994
1995                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996                  * as the SCSI mid-layer does not handle such devices well.
1997                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998                  * at 160Hz, and prevents the system from coming up.
1999                  */
2000                 if (sd[i]->volume_offline) {
2001                         hpsa_show_volume_status(h, sd[i]);
2002                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003                         continue;
2004                 }
2005
2006                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007                                         h->ndevices, &entry);
2008                 if (device_change == DEVICE_NOT_FOUND) {
2009                         changes++;
2010                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2011                                 break;
2012                         sd[i] = NULL; /* prevent from being freed later. */
2013                 } else if (device_change == DEVICE_CHANGED) {
2014                         /* should never happen... */
2015                         changes++;
2016                         dev_warn(&h->pdev->dev,
2017                                 "device unexpectedly changed.\n");
2018                         /* but if it does happen, we just ignore that device */
2019                 }
2020         }
2021         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2022
2023         /*
2024          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025          * any logical drives that need it enabled.
2026          *
2027          * The raid map should be current by now.
2028          *
2029          * We are updating the device list used for I/O requests.
2030          */
2031         for (i = 0; i < h->ndevices; i++) {
2032                 if (h->dev[i] == NULL)
2033                         continue;
2034                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2035         }
2036
2037         spin_unlock_irqrestore(&h->devlock, flags);
2038
2039         /* Monitor devices which are in one of several NOT READY states to be
2040          * brought online later. This must be done without holding h->devlock,
2041          * so don't touch h->dev[]
2042          */
2043         for (i = 0; i < nsds; i++) {
2044                 if (!sd[i]) /* if already added above. */
2045                         continue;
2046                 if (sd[i]->volume_offline)
2047                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2048         }
2049
2050         /* Don't notify scsi mid layer of any changes the first time through
2051          * (or if there are no changes) scsi_scan_host will do it later the
2052          * first time through.
2053          */
2054         if (!changes)
2055                 goto free_and_out;
2056
2057         /* Notify scsi mid layer of any removed devices */
2058         for (i = 0; i < nremoved; i++) {
2059                 if (removed[i] == NULL)
2060                         continue;
2061                 if (removed[i]->expose_device)
2062                         hpsa_remove_device(h, removed[i]);
2063                 kfree(removed[i]);
2064                 removed[i] = NULL;
2065         }
2066
2067         /* Notify scsi mid layer of any added devices */
2068         for (i = 0; i < nadded; i++) {
2069                 int rc = 0;
2070
2071                 if (added[i] == NULL)
2072                         continue;
2073                 if (!(added[i]->expose_device))
2074                         continue;
2075                 rc = hpsa_add_device(h, added[i]);
2076                 if (!rc)
2077                         continue;
2078                 dev_warn(&h->pdev->dev,
2079                         "addition failed %d, device not added.", rc);
2080                 /* now we have to remove it from h->dev,
2081                  * since it didn't get added to scsi mid layer
2082                  */
2083                 fixup_botched_add(h, added[i]);
2084                 h->drv_req_rescan = 1;
2085         }
2086
2087 free_and_out:
2088         kfree(added);
2089         kfree(removed);
2090 }
2091
2092 /*
2093  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094  * Assume's h->devlock is held.
2095  */
2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097         int bus, int target, int lun)
2098 {
2099         int i;
2100         struct hpsa_scsi_dev_t *sd;
2101
2102         for (i = 0; i < h->ndevices; i++) {
2103                 sd = h->dev[i];
2104                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2105                         return sd;
2106         }
2107         return NULL;
2108 }
2109
2110 static int hpsa_slave_alloc(struct scsi_device *sdev)
2111 {
2112         struct hpsa_scsi_dev_t *sd = NULL;
2113         unsigned long flags;
2114         struct ctlr_info *h;
2115
2116         h = sdev_to_hba(sdev);
2117         spin_lock_irqsave(&h->devlock, flags);
2118         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119                 struct scsi_target *starget;
2120                 struct sas_rphy *rphy;
2121
2122                 starget = scsi_target(sdev);
2123                 rphy = target_to_rphy(starget);
2124                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2125                 if (sd) {
2126                         sd->target = sdev_id(sdev);
2127                         sd->lun = sdev->lun;
2128                 }
2129         }
2130         if (!sd)
2131                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132                                         sdev_id(sdev), sdev->lun);
2133
2134         if (sd && sd->expose_device) {
2135                 atomic_set(&sd->ioaccel_cmds_out, 0);
2136                 sdev->hostdata = sd;
2137         } else
2138                 sdev->hostdata = NULL;
2139         spin_unlock_irqrestore(&h->devlock, flags);
2140         return 0;
2141 }
2142
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
2145 static int hpsa_slave_configure(struct scsi_device *sdev)
2146 {
2147         struct hpsa_scsi_dev_t *sd;
2148         int queue_depth;
2149
2150         sd = sdev->hostdata;
2151         sdev->no_uld_attach = !sd || !sd->expose_device;
2152
2153         if (sd) {
2154                 sd->was_removed = 0;
2155                 queue_depth = sd->queue_depth != 0 ?
2156                                 sd->queue_depth : sdev->host->can_queue;
2157                 if (sd->external) {
2158                         queue_depth = EXTERNAL_QD;
2159                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160                         blk_queue_rq_timeout(sdev->request_queue,
2161                                                 HPSA_EH_PTRAID_TIMEOUT);
2162                 }
2163                 if (is_hba_lunid(sd->scsi3addr)) {
2164                         sdev->eh_timeout = CTLR_TIMEOUT;
2165                         blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2166                 }
2167         } else {
2168                 queue_depth = sdev->host->can_queue;
2169         }
2170
2171         scsi_change_queue_depth(sdev, queue_depth);
2172
2173         return 0;
2174 }
2175
2176 static void hpsa_slave_destroy(struct scsi_device *sdev)
2177 {
2178         struct hpsa_scsi_dev_t *hdev = NULL;
2179
2180         hdev = sdev->hostdata;
2181
2182         if (hdev)
2183                 hdev->was_removed = 1;
2184 }
2185
2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187 {
2188         int i;
2189
2190         if (!h->ioaccel2_cmd_sg_list)
2191                 return;
2192         for (i = 0; i < h->nr_cmds; i++) {
2193                 kfree(h->ioaccel2_cmd_sg_list[i]);
2194                 h->ioaccel2_cmd_sg_list[i] = NULL;
2195         }
2196         kfree(h->ioaccel2_cmd_sg_list);
2197         h->ioaccel2_cmd_sg_list = NULL;
2198 }
2199
2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201 {
2202         int i;
2203
2204         if (h->chainsize <= 0)
2205                 return 0;
2206
2207         h->ioaccel2_cmd_sg_list =
2208                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2209                                         GFP_KERNEL);
2210         if (!h->ioaccel2_cmd_sg_list)
2211                 return -ENOMEM;
2212         for (i = 0; i < h->nr_cmds; i++) {
2213                 h->ioaccel2_cmd_sg_list[i] =
2214                         kmalloc_array(h->maxsgentries,
2215                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2216                                       GFP_KERNEL);
2217                 if (!h->ioaccel2_cmd_sg_list[i])
2218                         goto clean;
2219         }
2220         return 0;
2221
2222 clean:
2223         hpsa_free_ioaccel2_sg_chain_blocks(h);
2224         return -ENOMEM;
2225 }
2226
2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228 {
2229         int i;
2230
2231         if (!h->cmd_sg_list)
2232                 return;
2233         for (i = 0; i < h->nr_cmds; i++) {
2234                 kfree(h->cmd_sg_list[i]);
2235                 h->cmd_sg_list[i] = NULL;
2236         }
2237         kfree(h->cmd_sg_list);
2238         h->cmd_sg_list = NULL;
2239 }
2240
2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242 {
2243         int i;
2244
2245         if (h->chainsize <= 0)
2246                 return 0;
2247
2248         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2249                                  GFP_KERNEL);
2250         if (!h->cmd_sg_list)
2251                 return -ENOMEM;
2252
2253         for (i = 0; i < h->nr_cmds; i++) {
2254                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255                                                   sizeof(*h->cmd_sg_list[i]),
2256                                                   GFP_KERNEL);
2257                 if (!h->cmd_sg_list[i])
2258                         goto clean;
2259
2260         }
2261         return 0;
2262
2263 clean:
2264         hpsa_free_sg_chain_blocks(h);
2265         return -ENOMEM;
2266 }
2267
2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269         struct io_accel2_cmd *cp, struct CommandList *c)
2270 {
2271         struct ioaccel2_sg_element *chain_block;
2272         u64 temp64;
2273         u32 chain_size;
2274
2275         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276         chain_size = le32_to_cpu(cp->sg[0].length);
2277         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2278                                 DMA_TO_DEVICE);
2279         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280                 /* prevent subsequent unmapping */
2281                 cp->sg->address = 0;
2282                 return -1;
2283         }
2284         cp->sg->address = cpu_to_le64(temp64);
2285         return 0;
2286 }
2287
2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289         struct io_accel2_cmd *cp)
2290 {
2291         struct ioaccel2_sg_element *chain_sg;
2292         u64 temp64;
2293         u32 chain_size;
2294
2295         chain_sg = cp->sg;
2296         temp64 = le64_to_cpu(chain_sg->address);
2297         chain_size = le32_to_cpu(cp->sg[0].length);
2298         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2299 }
2300
2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302         struct CommandList *c)
2303 {
2304         struct SGDescriptor *chain_sg, *chain_block;
2305         u64 temp64;
2306         u32 chain_len;
2307
2308         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309         chain_block = h->cmd_sg_list[c->cmdindex];
2310         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311         chain_len = sizeof(*chain_sg) *
2312                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313         chain_sg->Len = cpu_to_le32(chain_len);
2314         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2315                                 DMA_TO_DEVICE);
2316         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317                 /* prevent subsequent unmapping */
2318                 chain_sg->Addr = cpu_to_le64(0);
2319                 return -1;
2320         }
2321         chain_sg->Addr = cpu_to_le64(temp64);
2322         return 0;
2323 }
2324
2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326         struct CommandList *c)
2327 {
2328         struct SGDescriptor *chain_sg;
2329
2330         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2331                 return;
2332
2333         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336 }
2337
2338
2339 /* Decode the various types of errors on ioaccel2 path.
2340  * Return 1 for any error that should generate a RAID path retry.
2341  * Return 0 for errors that don't require a RAID path retry.
2342  */
2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344                                         struct CommandList *c,
2345                                         struct scsi_cmnd *cmd,
2346                                         struct io_accel2_cmd *c2,
2347                                         struct hpsa_scsi_dev_t *dev)
2348 {
2349         int data_len;
2350         int retry = 0;
2351         u32 ioaccel2_resid = 0;
2352
2353         switch (c2->error_data.serv_response) {
2354         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355                 switch (c2->error_data.status) {
2356                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357                         if (cmd)
2358                                 cmd->result = 0;
2359                         break;
2360                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2362                         if (c2->error_data.data_present !=
2363                                         IOACCEL2_SENSE_DATA_PRESENT) {
2364                                 memset(cmd->sense_buffer, 0,
2365                                         SCSI_SENSE_BUFFERSIZE);
2366                                 break;
2367                         }
2368                         /* copy the sense data */
2369                         data_len = c2->error_data.sense_data_len;
2370                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2371                                 data_len = SCSI_SENSE_BUFFERSIZE;
2372                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2373                                 data_len =
2374                                         sizeof(c2->error_data.sense_data_buff);
2375                         memcpy(cmd->sense_buffer,
2376                                 c2->error_data.sense_data_buff, data_len);
2377                         retry = 1;
2378                         break;
2379                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2380                         retry = 1;
2381                         break;
2382                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2383                         retry = 1;
2384                         break;
2385                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2386                         retry = 1;
2387                         break;
2388                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2389                         retry = 1;
2390                         break;
2391                 default:
2392                         retry = 1;
2393                         break;
2394                 }
2395                 break;
2396         case IOACCEL2_SERV_RESPONSE_FAILURE:
2397                 switch (c2->error_data.status) {
2398                 case IOACCEL2_STATUS_SR_IO_ERROR:
2399                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2400                 case IOACCEL2_STATUS_SR_OVERRUN:
2401                         retry = 1;
2402                         break;
2403                 case IOACCEL2_STATUS_SR_UNDERRUN:
2404                         cmd->result = (DID_OK << 16);           /* host byte */
2405                         ioaccel2_resid = get_unaligned_le32(
2406                                                 &c2->error_data.resid_cnt[0]);
2407                         scsi_set_resid(cmd, ioaccel2_resid);
2408                         break;
2409                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2412                         /*
2413                          * Did an HBA disk disappear? We will eventually
2414                          * get a state change event from the controller but
2415                          * in the meantime, we need to tell the OS that the
2416                          * HBA disk is no longer there and stop I/O
2417                          * from going down. This allows the potential re-insert
2418                          * of the disk to get the same device node.
2419                          */
2420                         if (dev->physical_device && dev->expose_device) {
2421                                 cmd->result = DID_NO_CONNECT << 16;
2422                                 dev->removed = 1;
2423                                 h->drv_req_rescan = 1;
2424                                 dev_warn(&h->pdev->dev,
2425                                         "%s: device is gone!\n", __func__);
2426                         } else
2427                                 /*
2428                                  * Retry by sending down the RAID path.
2429                                  * We will get an event from ctlr to
2430                                  * trigger rescan regardless.
2431                                  */
2432                                 retry = 1;
2433                         break;
2434                 default:
2435                         retry = 1;
2436                 }
2437                 break;
2438         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2439                 break;
2440         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2441                 break;
2442         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2443                 retry = 1;
2444                 break;
2445         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2446                 break;
2447         default:
2448                 retry = 1;
2449                 break;
2450         }
2451
2452         if (dev->in_reset)
2453                 retry = 0;
2454
2455         return retry;   /* retry on raid path? */
2456 }
2457
2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459                 struct CommandList *c)
2460 {
2461         struct hpsa_scsi_dev_t *dev = c->device;
2462
2463         /*
2464          * Reset c->scsi_cmd here so that the reset handler will know
2465          * this command has completed.  Then, check to see if the handler is
2466          * waiting for this command, and, if so, wake it.
2467          */
2468         c->scsi_cmd = SCSI_CMD_IDLE;
2469         mb();   /* Declare command idle before checking for pending events. */
2470         if (dev) {
2471                 atomic_dec(&dev->commands_outstanding);
2472                 if (dev->in_reset &&
2473                         atomic_read(&dev->commands_outstanding) <= 0)
2474                         wake_up_all(&h->event_sync_wait_queue);
2475         }
2476 }
2477
2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479                                       struct CommandList *c)
2480 {
2481         hpsa_cmd_resolve_events(h, c);
2482         cmd_tagged_free(h, c);
2483 }
2484
2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486                 struct CommandList *c, struct scsi_cmnd *cmd)
2487 {
2488         hpsa_cmd_resolve_and_free(h, c);
2489         if (cmd)
2490                 scsi_done(cmd);
2491 }
2492
2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2494 {
2495         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2497 }
2498
2499 static void process_ioaccel2_completion(struct ctlr_info *h,
2500                 struct CommandList *c, struct scsi_cmnd *cmd,
2501                 struct hpsa_scsi_dev_t *dev)
2502 {
2503         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2504
2505         /* check for good status */
2506         if (likely(c2->error_data.serv_response == 0 &&
2507                         c2->error_data.status == 0)) {
2508                 cmd->result = 0;
2509                 return hpsa_cmd_free_and_done(h, c, cmd);
2510         }
2511
2512         /*
2513          * Any RAID offload error results in retry which will use
2514          * the normal I/O path so the controller can handle whatever is
2515          * wrong.
2516          */
2517         if (is_logical_device(dev) &&
2518                 c2->error_data.serv_response ==
2519                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2520                 if (c2->error_data.status ==
2521                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522                         hpsa_turn_off_ioaccel_for_device(dev);
2523                 }
2524
2525                 if (dev->in_reset) {
2526                         cmd->result = DID_RESET << 16;
2527                         return hpsa_cmd_free_and_done(h, c, cmd);
2528                 }
2529
2530                 return hpsa_retry_cmd(h, c);
2531         }
2532
2533         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534                 return hpsa_retry_cmd(h, c);
2535
2536         return hpsa_cmd_free_and_done(h, c, cmd);
2537 }
2538
2539 /* Returns 0 on success, < 0 otherwise. */
2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541                                         struct CommandList *cp)
2542 {
2543         u8 tmf_status = cp->err_info->ScsiStatus;
2544
2545         switch (tmf_status) {
2546         case CISS_TMF_COMPLETE:
2547                 /*
2548                  * CISS_TMF_COMPLETE never happens, instead,
2549                  * ei->CommandStatus == 0 for this case.
2550                  */
2551         case CISS_TMF_SUCCESS:
2552                 return 0;
2553         case CISS_TMF_INVALID_FRAME:
2554         case CISS_TMF_NOT_SUPPORTED:
2555         case CISS_TMF_FAILED:
2556         case CISS_TMF_WRONG_LUN:
2557         case CISS_TMF_OVERLAPPED_TAG:
2558                 break;
2559         default:
2560                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2561                                 tmf_status);
2562                 break;
2563         }
2564         return -tmf_status;
2565 }
2566
2567 static void complete_scsi_command(struct CommandList *cp)
2568 {
2569         struct scsi_cmnd *cmd;
2570         struct ctlr_info *h;
2571         struct ErrorInfo *ei;
2572         struct hpsa_scsi_dev_t *dev;
2573         struct io_accel2_cmd *c2;
2574
2575         u8 sense_key;
2576         u8 asc;      /* additional sense code */
2577         u8 ascq;     /* additional sense code qualifier */
2578         unsigned long sense_data_size;
2579
2580         ei = cp->err_info;
2581         cmd = cp->scsi_cmd;
2582         h = cp->h;
2583
2584         if (!cmd->device) {
2585                 cmd->result = DID_NO_CONNECT << 16;
2586                 return hpsa_cmd_free_and_done(h, cp, cmd);
2587         }
2588
2589         dev = cmd->device->hostdata;
2590         if (!dev) {
2591                 cmd->result = DID_NO_CONNECT << 16;
2592                 return hpsa_cmd_free_and_done(h, cp, cmd);
2593         }
2594         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2595
2596         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597         if ((cp->cmd_type == CMD_SCSI) &&
2598                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599                 hpsa_unmap_sg_chain_block(h, cp);
2600
2601         if ((cp->cmd_type == CMD_IOACCEL2) &&
2602                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2604
2605         cmd->result = (DID_OK << 16);           /* host byte */
2606
2607         /* SCSI command has already been cleaned up in SML */
2608         if (dev->was_removed) {
2609                 hpsa_cmd_resolve_and_free(h, cp);
2610                 return;
2611         }
2612
2613         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614                 if (dev->physical_device && dev->expose_device &&
2615                         dev->removed) {
2616                         cmd->result = DID_NO_CONNECT << 16;
2617                         return hpsa_cmd_free_and_done(h, cp, cmd);
2618                 }
2619                 if (likely(cp->phys_disk != NULL))
2620                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621         }
2622
2623         /*
2624          * We check for lockup status here as it may be set for
2625          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626          * fail_all_oustanding_cmds()
2627          */
2628         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629                 /* DID_NO_CONNECT will prevent a retry */
2630                 cmd->result = DID_NO_CONNECT << 16;
2631                 return hpsa_cmd_free_and_done(h, cp, cmd);
2632         }
2633
2634         if (cp->cmd_type == CMD_IOACCEL2)
2635                 return process_ioaccel2_completion(h, cp, cmd, dev);
2636
2637         scsi_set_resid(cmd, ei->ResidualCnt);
2638         if (ei->CommandStatus == 0)
2639                 return hpsa_cmd_free_and_done(h, cp, cmd);
2640
2641         /* For I/O accelerator commands, copy over some fields to the normal
2642          * CISS header used below for error handling.
2643          */
2644         if (cp->cmd_type == CMD_IOACCEL1) {
2645                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646                 cp->Header.SGList = scsi_sg_count(cmd);
2647                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650                 cp->Header.tag = c->tag;
2651                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2653
2654                 /* Any RAID offload error results in retry which will use
2655                  * the normal I/O path so the controller can handle whatever's
2656                  * wrong.
2657                  */
2658                 if (is_logical_device(dev)) {
2659                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660                                 dev->offload_enabled = 0;
2661                         return hpsa_retry_cmd(h, cp);
2662                 }
2663         }
2664
2665         /* an error has occurred */
2666         switch (ei->CommandStatus) {
2667
2668         case CMD_TARGET_STATUS:
2669                 cmd->result |= ei->ScsiStatus;
2670                 /* copy the sense data */
2671                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2673                 else
2674                         sense_data_size = sizeof(ei->SenseInfo);
2675                 if (ei->SenseLen < sense_data_size)
2676                         sense_data_size = ei->SenseLen;
2677                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2678                 if (ei->ScsiStatus)
2679                         decode_sense_data(ei->SenseInfo, sense_data_size,
2680                                 &sense_key, &asc, &ascq);
2681                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682                         switch (sense_key) {
2683                         case ABORTED_COMMAND:
2684                                 cmd->result |= DID_SOFT_ERROR << 16;
2685                                 break;
2686                         case UNIT_ATTENTION:
2687                                 if (asc == 0x3F && ascq == 0x0E)
2688                                         h->drv_req_rescan = 1;
2689                                 break;
2690                         case ILLEGAL_REQUEST:
2691                                 if (asc == 0x25 && ascq == 0x00) {
2692                                         dev->removed = 1;
2693                                         cmd->result = DID_NO_CONNECT << 16;
2694                                 }
2695                                 break;
2696                         }
2697                         break;
2698                 }
2699                 /* Problem was not a check condition
2700                  * Pass it up to the upper layers...
2701                  */
2702                 if (ei->ScsiStatus) {
2703                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705                                 "Returning result: 0x%x\n",
2706                                 cp, ei->ScsiStatus,
2707                                 sense_key, asc, ascq,
2708                                 cmd->result);
2709                 } else {  /* scsi status is zero??? How??? */
2710                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711                                 "Returning no connection.\n", cp),
2712
2713                         /* Ordinarily, this case should never happen,
2714                          * but there is a bug in some released firmware
2715                          * revisions that allows it to happen if, for
2716                          * example, a 4100 backplane loses power and
2717                          * the tape drive is in it.  We assume that
2718                          * it's a fatal error of some kind because we
2719                          * can't show that it wasn't. We will make it
2720                          * look like selection timeout since that is
2721                          * the most common reason for this to occur,
2722                          * and it's severe enough.
2723                          */
2724
2725                         cmd->result = DID_NO_CONNECT << 16;
2726                 }
2727                 break;
2728
2729         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2730                 break;
2731         case CMD_DATA_OVERRUN:
2732                 dev_warn(&h->pdev->dev,
2733                         "CDB %16phN data overrun\n", cp->Request.CDB);
2734                 break;
2735         case CMD_INVALID: {
2736                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2737                 print_cmd(cp); */
2738                 /* We get CMD_INVALID if you address a non-existent device
2739                  * instead of a selection timeout (no response).  You will
2740                  * see this if you yank out a drive, then try to access it.
2741                  * This is kind of a shame because it means that any other
2742                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743                  * missing target. */
2744                 cmd->result = DID_NO_CONNECT << 16;
2745         }
2746                 break;
2747         case CMD_PROTOCOL_ERR:
2748                 cmd->result = DID_ERROR << 16;
2749                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2750                                 cp->Request.CDB);
2751                 break;
2752         case CMD_HARDWARE_ERR:
2753                 cmd->result = DID_ERROR << 16;
2754                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2755                         cp->Request.CDB);
2756                 break;
2757         case CMD_CONNECTION_LOST:
2758                 cmd->result = DID_ERROR << 16;
2759                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760                         cp->Request.CDB);
2761                 break;
2762         case CMD_ABORTED:
2763                 cmd->result = DID_ABORT << 16;
2764                 break;
2765         case CMD_ABORT_FAILED:
2766                 cmd->result = DID_ERROR << 16;
2767                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2768                         cp->Request.CDB);
2769                 break;
2770         case CMD_UNSOLICITED_ABORT:
2771                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773                         cp->Request.CDB);
2774                 break;
2775         case CMD_TIMEOUT:
2776                 cmd->result = DID_TIME_OUT << 16;
2777                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2778                         cp->Request.CDB);
2779                 break;
2780         case CMD_UNABORTABLE:
2781                 cmd->result = DID_ERROR << 16;
2782                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2783                 break;
2784         case CMD_TMF_STATUS:
2785                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786                         cmd->result = DID_ERROR << 16;
2787                 break;
2788         case CMD_IOACCEL_DISABLED:
2789                 /* This only handles the direct pass-through case since RAID
2790                  * offload is handled above.  Just attempt a retry.
2791                  */
2792                 cmd->result = DID_SOFT_ERROR << 16;
2793                 dev_warn(&h->pdev->dev,
2794                                 "cp %p had HP SSD Smart Path error\n", cp);
2795                 break;
2796         default:
2797                 cmd->result = DID_ERROR << 16;
2798                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799                                 cp, ei->CommandStatus);
2800         }
2801
2802         return hpsa_cmd_free_and_done(h, cp, cmd);
2803 }
2804
2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806                 int sg_used, enum dma_data_direction data_direction)
2807 {
2808         int i;
2809
2810         for (i = 0; i < sg_used; i++)
2811                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812                                 le32_to_cpu(c->SG[i].Len),
2813                                 data_direction);
2814 }
2815
2816 static int hpsa_map_one(struct pci_dev *pdev,
2817                 struct CommandList *cp,
2818                 unsigned char *buf,
2819                 size_t buflen,
2820                 enum dma_data_direction data_direction)
2821 {
2822         u64 addr64;
2823
2824         if (buflen == 0 || data_direction == DMA_NONE) {
2825                 cp->Header.SGList = 0;
2826                 cp->Header.SGTotal = cpu_to_le16(0);
2827                 return 0;
2828         }
2829
2830         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831         if (dma_mapping_error(&pdev->dev, addr64)) {
2832                 /* Prevent subsequent unmap of something never mapped */
2833                 cp->Header.SGList = 0;
2834                 cp->Header.SGTotal = cpu_to_le16(0);
2835                 return -1;
2836         }
2837         cp->SG[0].Addr = cpu_to_le64(addr64);
2838         cp->SG[0].Len = cpu_to_le32(buflen);
2839         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2841         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842         return 0;
2843 }
2844
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2849 {
2850         DECLARE_COMPLETION_ONSTACK(wait);
2851
2852         c->waiting = &wait;
2853         __enqueue_cmd_and_start_io(h, c, reply_queue);
2854         if (timeout_msecs == NO_TIMEOUT) {
2855                 /* TODO: get rid of this no-timeout thing */
2856                 wait_for_completion_io(&wait);
2857                 return IO_OK;
2858         }
2859         if (!wait_for_completion_io_timeout(&wait,
2860                                         msecs_to_jiffies(timeout_msecs))) {
2861                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2862                 return -ETIMEDOUT;
2863         }
2864         return IO_OK;
2865 }
2866
2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868                                    int reply_queue, unsigned long timeout_msecs)
2869 {
2870         if (unlikely(lockup_detected(h))) {
2871                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2872                 return IO_OK;
2873         }
2874         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2875 }
2876
2877 static u32 lockup_detected(struct ctlr_info *h)
2878 {
2879         int cpu;
2880         u32 rc, *lockup_detected;
2881
2882         cpu = get_cpu();
2883         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884         rc = *lockup_detected;
2885         put_cpu();
2886         return rc;
2887 }
2888
2889 #define MAX_DRIVER_CMD_RETRIES 25
2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891                 struct CommandList *c, enum dma_data_direction data_direction,
2892                 unsigned long timeout_msecs)
2893 {
2894         int backoff_time = 10, retry_count = 0;
2895         int rc;
2896
2897         do {
2898                 memset(c->err_info, 0, sizeof(*c->err_info));
2899                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2900                                                   timeout_msecs);
2901                 if (rc)
2902                         break;
2903                 retry_count++;
2904                 if (retry_count > 3) {
2905                         msleep(backoff_time);
2906                         if (backoff_time < 1000)
2907                                 backoff_time *= 2;
2908                 }
2909         } while ((check_for_unit_attention(h, c) ||
2910                         check_for_busy(h, c)) &&
2911                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2912         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2914                 rc = -EIO;
2915         return rc;
2916 }
2917
2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919                                 struct CommandList *c)
2920 {
2921         const u8 *cdb = c->Request.CDB;
2922         const u8 *lun = c->Header.LUN.LunAddrBytes;
2923
2924         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925                  txt, lun, cdb);
2926 }
2927
2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929                         struct CommandList *cp)
2930 {
2931         const struct ErrorInfo *ei = cp->err_info;
2932         struct device *d = &cp->h->pdev->dev;
2933         u8 sense_key, asc, ascq;
2934         int sense_len;
2935
2936         switch (ei->CommandStatus) {
2937         case CMD_TARGET_STATUS:
2938                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2939                         sense_len = sizeof(ei->SenseInfo);
2940                 else
2941                         sense_len = ei->SenseLen;
2942                 decode_sense_data(ei->SenseInfo, sense_len,
2943                                         &sense_key, &asc, &ascq);
2944                 hpsa_print_cmd(h, "SCSI status", cp);
2945                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947                                 sense_key, asc, ascq);
2948                 else
2949                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950                 if (ei->ScsiStatus == 0)
2951                         dev_warn(d, "SCSI status is abnormally zero.  "
2952                         "(probably indicates selection timeout "
2953                         "reported incorrectly due to a known "
2954                         "firmware bug, circa July, 2001.)\n");
2955                 break;
2956         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2957                 break;
2958         case CMD_DATA_OVERRUN:
2959                 hpsa_print_cmd(h, "overrun condition", cp);
2960                 break;
2961         case CMD_INVALID: {
2962                 /* controller unfortunately reports SCSI passthru's
2963                  * to non-existent targets as invalid commands.
2964                  */
2965                 hpsa_print_cmd(h, "invalid command", cp);
2966                 dev_warn(d, "probably means device no longer present\n");
2967                 }
2968                 break;
2969         case CMD_PROTOCOL_ERR:
2970                 hpsa_print_cmd(h, "protocol error", cp);
2971                 break;
2972         case CMD_HARDWARE_ERR:
2973                 hpsa_print_cmd(h, "hardware error", cp);
2974                 break;
2975         case CMD_CONNECTION_LOST:
2976                 hpsa_print_cmd(h, "connection lost", cp);
2977                 break;
2978         case CMD_ABORTED:
2979                 hpsa_print_cmd(h, "aborted", cp);
2980                 break;
2981         case CMD_ABORT_FAILED:
2982                 hpsa_print_cmd(h, "abort failed", cp);
2983                 break;
2984         case CMD_UNSOLICITED_ABORT:
2985                 hpsa_print_cmd(h, "unsolicited abort", cp);
2986                 break;
2987         case CMD_TIMEOUT:
2988                 hpsa_print_cmd(h, "timed out", cp);
2989                 break;
2990         case CMD_UNABORTABLE:
2991                 hpsa_print_cmd(h, "unabortable", cp);
2992                 break;
2993         case CMD_CTLR_LOCKUP:
2994                 hpsa_print_cmd(h, "controller lockup detected", cp);
2995                 break;
2996         default:
2997                 hpsa_print_cmd(h, "unknown status", cp);
2998                 dev_warn(d, "Unknown command status %x\n",
2999                                 ei->CommandStatus);
3000         }
3001 }
3002
3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004                                         u8 page, u8 *buf, size_t bufsize)
3005 {
3006         int rc = IO_OK;
3007         struct CommandList *c;
3008         struct ErrorInfo *ei;
3009
3010         c = cmd_alloc(h);
3011         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012                         page, scsi3addr, TYPE_CMD)) {
3013                 rc = -1;
3014                 goto out;
3015         }
3016         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3017                         NO_TIMEOUT);
3018         if (rc)
3019                 goto out;
3020         ei = c->err_info;
3021         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022                 hpsa_scsi_interpret_error(h, c);
3023                 rc = -1;
3024         }
3025 out:
3026         cmd_free(h, c);
3027         return rc;
3028 }
3029
3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3031                                                 u8 *scsi3addr)
3032 {
3033         u8 *buf;
3034         u64 sa = 0;
3035         int rc = 0;
3036
3037         buf = kzalloc(1024, GFP_KERNEL);
3038         if (!buf)
3039                 return 0;
3040
3041         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3042                                         buf, 1024);
3043
3044         if (rc)
3045                 goto out;
3046
3047         sa = get_unaligned_be64(buf+12);
3048
3049 out:
3050         kfree(buf);
3051         return sa;
3052 }
3053
3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055                         u16 page, unsigned char *buf,
3056                         unsigned char bufsize)
3057 {
3058         int rc = IO_OK;
3059         struct CommandList *c;
3060         struct ErrorInfo *ei;
3061
3062         c = cmd_alloc(h);
3063
3064         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065                         page, scsi3addr, TYPE_CMD)) {
3066                 rc = -1;
3067                 goto out;
3068         }
3069         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3070                         NO_TIMEOUT);
3071         if (rc)
3072                 goto out;
3073         ei = c->err_info;
3074         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075                 hpsa_scsi_interpret_error(h, c);
3076                 rc = -1;
3077         }
3078 out:
3079         cmd_free(h, c);
3080         return rc;
3081 }
3082
3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084         u8 reset_type, int reply_queue)
3085 {
3086         int rc = IO_OK;
3087         struct CommandList *c;
3088         struct ErrorInfo *ei;
3089
3090         c = cmd_alloc(h);
3091         c->device = dev;
3092
3093         /* fill_cmd can't fail here, no data buffer to map. */
3094         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3096         if (rc) {
3097                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3098                 goto out;
3099         }
3100         /* no unmap needed here because no data xfer. */
3101
3102         ei = c->err_info;
3103         if (ei->CommandStatus != 0) {
3104                 hpsa_scsi_interpret_error(h, c);
3105                 rc = -1;
3106         }
3107 out:
3108         cmd_free(h, c);
3109         return rc;
3110 }
3111
3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113                                struct hpsa_scsi_dev_t *dev,
3114                                unsigned char *scsi3addr)
3115 {
3116         int i;
3117         bool match = false;
3118         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3120
3121         if (hpsa_is_cmd_idle(c))
3122                 return false;
3123
3124         switch (c->cmd_type) {
3125         case CMD_SCSI:
3126         case CMD_IOCTL_PEND:
3127                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128                                 sizeof(c->Header.LUN.LunAddrBytes));
3129                 break;
3130
3131         case CMD_IOACCEL1:
3132         case CMD_IOACCEL2:
3133                 if (c->phys_disk == dev) {
3134                         /* HBA mode match */
3135                         match = true;
3136                 } else {
3137                         /* Possible RAID mode -- check each phys dev. */
3138                         /* FIXME:  Do we need to take out a lock here?  If
3139                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3140                          * instead. */
3141                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142                                 /* FIXME: an alternate test might be
3143                                  *
3144                                  * match = dev->phys_disk[i]->ioaccel_handle
3145                                  *              == c2->scsi_nexus;      */
3146                                 match = dev->phys_disk[i] == c->phys_disk;
3147                         }
3148                 }
3149                 break;
3150
3151         case IOACCEL2_TMF:
3152                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153                         match = dev->phys_disk[i]->ioaccel_handle ==
3154                                         le32_to_cpu(ac->it_nexus);
3155                 }
3156                 break;
3157
3158         case 0:         /* The command is in the middle of being initialized. */
3159                 match = false;
3160                 break;
3161
3162         default:
3163                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3164                         c->cmd_type);
3165                 BUG();
3166         }
3167
3168         return match;
3169 }
3170
3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172         u8 reset_type, int reply_queue)
3173 {
3174         int rc = 0;
3175
3176         /* We can really only handle one reset at a time */
3177         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179                 return -EINTR;
3180         }
3181
3182         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3183         if (!rc) {
3184                 /* incremented by sending the reset request */
3185                 atomic_dec(&dev->commands_outstanding);
3186                 wait_event(h->event_sync_wait_queue,
3187                         atomic_read(&dev->commands_outstanding) <= 0 ||
3188                         lockup_detected(h));
3189         }
3190
3191         if (unlikely(lockup_detected(h))) {
3192                 dev_warn(&h->pdev->dev,
3193                          "Controller lockup detected during reset wait\n");
3194                 rc = -ENODEV;
3195         }
3196
3197         if (!rc)
3198                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3199
3200         mutex_unlock(&h->reset_mutex);
3201         return rc;
3202 }
3203
3204 static void hpsa_get_raid_level(struct ctlr_info *h,
3205         unsigned char *scsi3addr, unsigned char *raid_level)
3206 {
3207         int rc;
3208         unsigned char *buf;
3209
3210         *raid_level = RAID_UNKNOWN;
3211         buf = kzalloc(64, GFP_KERNEL);
3212         if (!buf)
3213                 return;
3214
3215         if (!hpsa_vpd_page_supported(h, scsi3addr,
3216                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3217                 goto exit;
3218
3219         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3221
3222         if (rc == 0)
3223                 *raid_level = buf[8];
3224         if (*raid_level > RAID_UNKNOWN)
3225                 *raid_level = RAID_UNKNOWN;
3226 exit:
3227         kfree(buf);
3228         return;
3229 }
3230
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234                                 struct raid_map_data *map_buff)
3235 {
3236         struct raid_map_disk_data *dd = &map_buff->data[0];
3237         int map, row, col;
3238         u16 map_cnt, row_cnt, disks_per_row;
3239
3240         if (rc != 0)
3241                 return;
3242
3243         /* Show details only if debugging has been activated. */
3244         if (h->raid_offload_debug < 2)
3245                 return;
3246
3247         dev_info(&h->pdev->dev, "structure_size = %u\n",
3248                                 le32_to_cpu(map_buff->structure_size));
3249         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250                         le32_to_cpu(map_buff->volume_blk_size));
3251         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252                         le64_to_cpu(map_buff->volume_blk_cnt));
3253         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254                         map_buff->phys_blk_shift);
3255         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256                         map_buff->parity_rotation_shift);
3257         dev_info(&h->pdev->dev, "strip_size = %u\n",
3258                         le16_to_cpu(map_buff->strip_size));
3259         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260                         le64_to_cpu(map_buff->disk_starting_blk));
3261         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262                         le64_to_cpu(map_buff->disk_blk_cnt));
3263         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264                         le16_to_cpu(map_buff->data_disks_per_row));
3265         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266                         le16_to_cpu(map_buff->metadata_disks_per_row));
3267         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268                         le16_to_cpu(map_buff->row_cnt));
3269         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270                         le16_to_cpu(map_buff->layout_map_count));
3271         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272                         le16_to_cpu(map_buff->flags));
3273         dev_info(&h->pdev->dev, "encryption = %s\n",
3274                         le16_to_cpu(map_buff->flags) &
3275                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3276         dev_info(&h->pdev->dev, "dekindex = %u\n",
3277                         le16_to_cpu(map_buff->dekindex));
3278         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279         for (map = 0; map < map_cnt; map++) {
3280                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3281                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3282                 for (row = 0; row < row_cnt; row++) {
3283                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3284                         disks_per_row =
3285                                 le16_to_cpu(map_buff->data_disks_per_row);
3286                         for (col = 0; col < disks_per_row; col++, dd++)
3287                                 dev_info(&h->pdev->dev,
3288                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3289                                         col, dd->ioaccel_handle,
3290                                         dd->xor_mult[0], dd->xor_mult[1]);
3291                         disks_per_row =
3292                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3293                         for (col = 0; col < disks_per_row; col++, dd++)
3294                                 dev_info(&h->pdev->dev,
3295                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3296                                         col, dd->ioaccel_handle,
3297                                         dd->xor_mult[0], dd->xor_mult[1]);
3298                 }
3299         }
3300 }
3301 #else
3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303                         __attribute__((unused)) int rc,
3304                         __attribute__((unused)) struct raid_map_data *map_buff)
3305 {
3306 }
3307 #endif
3308
3309 static int hpsa_get_raid_map(struct ctlr_info *h,
3310         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3311 {
3312         int rc = 0;
3313         struct CommandList *c;
3314         struct ErrorInfo *ei;
3315
3316         c = cmd_alloc(h);
3317
3318         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319                         sizeof(this_device->raid_map), 0,
3320                         scsi3addr, TYPE_CMD)) {
3321                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322                 cmd_free(h, c);
3323                 return -1;
3324         }
3325         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3326                         NO_TIMEOUT);
3327         if (rc)
3328                 goto out;
3329         ei = c->err_info;
3330         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331                 hpsa_scsi_interpret_error(h, c);
3332                 rc = -1;
3333                 goto out;
3334         }
3335         cmd_free(h, c);
3336
3337         /* @todo in the future, dynamically allocate RAID map memory */
3338         if (le32_to_cpu(this_device->raid_map.structure_size) >
3339                                 sizeof(this_device->raid_map)) {
3340                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3341                 rc = -1;
3342         }
3343         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3344         return rc;
3345 out:
3346         cmd_free(h, c);
3347         return rc;
3348 }
3349
3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351                 unsigned char scsi3addr[], u16 bmic_device_index,
3352                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3353 {
3354         int rc = IO_OK;
3355         struct CommandList *c;
3356         struct ErrorInfo *ei;
3357
3358         c = cmd_alloc(h);
3359
3360         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361                 0, RAID_CTLR_LUNID, TYPE_CMD);
3362         if (rc)
3363                 goto out;
3364
3365         c->Request.CDB[2] = bmic_device_index & 0xff;
3366         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3367
3368         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3369                         NO_TIMEOUT);
3370         if (rc)
3371                 goto out;
3372         ei = c->err_info;
3373         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374                 hpsa_scsi_interpret_error(h, c);
3375                 rc = -1;
3376         }
3377 out:
3378         cmd_free(h, c);
3379         return rc;
3380 }
3381
3382 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383         struct bmic_identify_controller *buf, size_t bufsize)
3384 {
3385         int rc = IO_OK;
3386         struct CommandList *c;
3387         struct ErrorInfo *ei;
3388
3389         c = cmd_alloc(h);
3390
3391         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392                 0, RAID_CTLR_LUNID, TYPE_CMD);
3393         if (rc)
3394                 goto out;
3395
3396         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3397                         NO_TIMEOUT);
3398         if (rc)
3399                 goto out;
3400         ei = c->err_info;
3401         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402                 hpsa_scsi_interpret_error(h, c);
3403                 rc = -1;
3404         }
3405 out:
3406         cmd_free(h, c);
3407         return rc;
3408 }
3409
3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411                 unsigned char scsi3addr[], u16 bmic_device_index,
3412                 struct bmic_identify_physical_device *buf, size_t bufsize)
3413 {
3414         int rc = IO_OK;
3415         struct CommandList *c;
3416         struct ErrorInfo *ei;
3417
3418         c = cmd_alloc(h);
3419         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420                 0, RAID_CTLR_LUNID, TYPE_CMD);
3421         if (rc)
3422                 goto out;
3423
3424         c->Request.CDB[2] = bmic_device_index & 0xff;
3425         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3426
3427         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3428                                                 NO_TIMEOUT);
3429         ei = c->err_info;
3430         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431                 hpsa_scsi_interpret_error(h, c);
3432                 rc = -1;
3433         }
3434 out:
3435         cmd_free(h, c);
3436
3437         return rc;
3438 }
3439
3440 /*
3441  * get enclosure information
3442  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444  * Uses id_physical_device to determine the box_index.
3445  */
3446 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447                         unsigned char *scsi3addr,
3448                         struct ReportExtendedLUNdata *rlep, int rle_index,
3449                         struct hpsa_scsi_dev_t *encl_dev)
3450 {
3451         int rc = -1;
3452         struct CommandList *c = NULL;
3453         struct ErrorInfo *ei = NULL;
3454         struct bmic_sense_storage_box_params *bssbp = NULL;
3455         struct bmic_identify_physical_device *id_phys = NULL;
3456         struct ext_report_lun_entry *rle;
3457         u16 bmic_device_index = 0;
3458
3459         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3460                 return;
3461
3462         rle = &rlep->LUN[rle_index];
3463
3464         encl_dev->eli =
3465                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3466
3467         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3468
3469         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3470                 rc = IO_OK;
3471                 goto out;
3472         }
3473
3474         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3475                 rc = IO_OK;
3476                 goto out;
3477         }
3478
3479         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480         if (!bssbp)
3481                 goto out;
3482
3483         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484         if (!id_phys)
3485                 goto out;
3486
3487         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488                                                 id_phys, sizeof(*id_phys));
3489         if (rc) {
3490                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491                         __func__, encl_dev->external, bmic_device_index);
3492                 goto out;
3493         }
3494
3495         c = cmd_alloc(h);
3496
3497         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3499
3500         if (rc)
3501                 goto out;
3502
3503         if (id_phys->phys_connector[1] == 'E')
3504                 c->Request.CDB[5] = id_phys->box_index;
3505         else
3506                 c->Request.CDB[5] = 0;
3507
3508         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3509                                                 NO_TIMEOUT);
3510         if (rc)
3511                 goto out;
3512
3513         ei = c->err_info;
3514         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3515                 rc = -1;
3516                 goto out;
3517         }
3518
3519         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3522
3523         rc = IO_OK;
3524 out:
3525         kfree(bssbp);
3526         kfree(id_phys);
3527
3528         if (c)
3529                 cmd_free(h, c);
3530
3531         if (rc != IO_OK)
3532                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533                         "Error, could not get enclosure information");
3534 }
3535
3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537                                                 unsigned char *scsi3addr)
3538 {
3539         struct ReportExtendedLUNdata *physdev;
3540         u32 nphysicals;
3541         u64 sa = 0;
3542         int i;
3543
3544         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545         if (!physdev)
3546                 return 0;
3547
3548         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550                 kfree(physdev);
3551                 return 0;
3552         }
3553         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3554
3555         for (i = 0; i < nphysicals; i++)
3556                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3558                         break;
3559                 }
3560
3561         kfree(physdev);
3562
3563         return sa;
3564 }
3565
3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567                                         struct hpsa_scsi_dev_t *dev)
3568 {
3569         int rc;
3570         u64 sa = 0;
3571
3572         if (is_hba_lunid(scsi3addr)) {
3573                 struct bmic_sense_subsystem_info *ssi;
3574
3575                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576                 if (!ssi)
3577                         return;
3578
3579                 rc = hpsa_bmic_sense_subsystem_information(h,
3580                                         scsi3addr, 0, ssi, sizeof(*ssi));
3581                 if (rc == 0) {
3582                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583                         h->sas_address = sa;
3584                 }
3585
3586                 kfree(ssi);
3587         } else
3588                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3589
3590         dev->sas_address = sa;
3591 }
3592
3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594         struct ReportExtendedLUNdata *physdev)
3595 {
3596         u32 nphysicals;
3597         int i;
3598
3599         if (h->discovery_polling)
3600                 return;
3601
3602         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3603
3604         for (i = 0; i < nphysicals; i++) {
3605                 if (physdev->LUN[i].device_type ==
3606                         BMIC_DEVICE_TYPE_CONTROLLER
3607                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3608                         dev_info(&h->pdev->dev,
3609                                 "External controller present, activate discovery polling and disable rld caching\n");
3610                         hpsa_disable_rld_caching(h);
3611                         h->discovery_polling = 1;
3612                         break;
3613                 }
3614         }
3615 }
3616
3617 /* Get a device id from inquiry page 0x83 */
3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619         unsigned char scsi3addr[], u8 page)
3620 {
3621         int rc;
3622         int i;
3623         int pages;
3624         unsigned char *buf, bufsize;
3625
3626         buf = kzalloc(256, GFP_KERNEL);
3627         if (!buf)
3628                 return false;
3629
3630         /* Get the size of the page list first */
3631         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633                                 buf, HPSA_VPD_HEADER_SZ);
3634         if (rc != 0)
3635                 goto exit_unsupported;
3636         pages = buf[3];
3637         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3639         else
3640                 bufsize = 255;
3641
3642         /* Get the whole VPD page list */
3643         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3645                                 buf, bufsize);
3646         if (rc != 0)
3647                 goto exit_unsupported;
3648
3649         pages = buf[3];
3650         for (i = 1; i <= pages; i++)
3651                 if (buf[3 + i] == page)
3652                         goto exit_supported;
3653 exit_unsupported:
3654         kfree(buf);
3655         return false;
3656 exit_supported:
3657         kfree(buf);
3658         return true;
3659 }
3660
3661 /*
3662  * Called during a scan operation.
3663  * Sets ioaccel status on the new device list, not the existing device list
3664  *
3665  * The device list used during I/O will be updated later in
3666  * adjust_hpsa_scsi_table.
3667  */
3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3670 {
3671         int rc;
3672         unsigned char *buf;
3673         u8 ioaccel_status;
3674
3675         this_device->offload_config = 0;
3676         this_device->offload_enabled = 0;
3677         this_device->offload_to_be_enabled = 0;
3678
3679         buf = kzalloc(64, GFP_KERNEL);
3680         if (!buf)
3681                 return;
3682         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3683                 goto out;
3684         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686         if (rc != 0)
3687                 goto out;
3688
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693         this_device->offload_config =
3694                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695         if (this_device->offload_config) {
3696                 bool offload_enabled =
3697                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3698                 /*
3699                  * Check to see if offload can be enabled.
3700                  */
3701                 if (offload_enabled) {
3702                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703                         if (rc) /* could not load raid_map */
3704                                 goto out;
3705                         this_device->offload_to_be_enabled = 1;
3706                 }
3707         }
3708
3709 out:
3710         kfree(buf);
3711         return;
3712 }
3713
3714 /* Get the device id from inquiry page 0x83 */
3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716         unsigned char *device_id, int index, int buflen)
3717 {
3718         int rc;
3719         unsigned char *buf;
3720
3721         /* Does controller have VPD for device id? */
3722         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723                 return 1; /* not supported */
3724
3725         buf = kzalloc(64, GFP_KERNEL);
3726         if (!buf)
3727                 return -ENOMEM;
3728
3729         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731         if (rc == 0) {
3732                 if (buflen > 16)
3733                         buflen = 16;
3734                 memcpy(device_id, &buf[8], buflen);
3735         }
3736
3737         kfree(buf);
3738
3739         return rc; /*0 - got id,  otherwise, didn't */
3740 }
3741
3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743                 void *buf, int bufsize,
3744                 int extended_response)
3745 {
3746         int rc = IO_OK;
3747         struct CommandList *c;
3748         unsigned char scsi3addr[8];
3749         struct ErrorInfo *ei;
3750
3751         c = cmd_alloc(h);
3752
3753         /* address the controller */
3754         memset(scsi3addr, 0, sizeof(scsi3addr));
3755         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757                 rc = -EAGAIN;
3758                 goto out;
3759         }
3760         if (extended_response)
3761                 c->Request.CDB[1] = extended_response;
3762         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3763                         NO_TIMEOUT);
3764         if (rc)
3765                 goto out;
3766         ei = c->err_info;
3767         if (ei->CommandStatus != 0 &&
3768             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769                 hpsa_scsi_interpret_error(h, c);
3770                 rc = -EIO;
3771         } else {
3772                 struct ReportLUNdata *rld = buf;
3773
3774                 if (rld->extended_response_flag != extended_response) {
3775                         if (!h->legacy_board) {
3776                                 dev_err(&h->pdev->dev,
3777                                         "report luns requested format %u, got %u\n",
3778                                         extended_response,
3779                                         rld->extended_response_flag);
3780                                 rc = -EINVAL;
3781                         } else
3782                                 rc = -EOPNOTSUPP;
3783                 }
3784         }
3785 out:
3786         cmd_free(h, c);
3787         return rc;
3788 }
3789
3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791                 struct ReportExtendedLUNdata *buf, int bufsize)
3792 {
3793         int rc;
3794         struct ReportLUNdata *lbuf;
3795
3796         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797                                       HPSA_REPORT_PHYS_EXTENDED);
3798         if (!rc || rc != -EOPNOTSUPP)
3799                 return rc;
3800
3801         /* REPORT PHYS EXTENDED is not supported */
3802         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803         if (!lbuf)
3804                 return -ENOMEM;
3805
3806         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3807         if (!rc) {
3808                 int i;
3809                 u32 nphys;
3810
3811                 /* Copy ReportLUNdata header */
3812                 memcpy(buf, lbuf, 8);
3813                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814                 for (i = 0; i < nphys; i++)
3815                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3816         }
3817         kfree(lbuf);
3818         return rc;
3819 }
3820
3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822                 struct ReportLUNdata *buf, int bufsize)
3823 {
3824         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3825 }
3826
3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828         int bus, int target, int lun)
3829 {
3830         device->bus = bus;
3831         device->target = target;
3832         device->lun = lun;
3833 }
3834
3835 /* Use VPD inquiry to get details of volume status */
3836 static int hpsa_get_volume_status(struct ctlr_info *h,
3837                                         unsigned char scsi3addr[])
3838 {
3839         int rc;
3840         int status;
3841         int size;
3842         unsigned char *buf;
3843
3844         buf = kzalloc(64, GFP_KERNEL);
3845         if (!buf)
3846                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3847
3848         /* Does controller have VPD for logical volume status? */
3849         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3850                 goto exit_failed;
3851
3852         /* Get the size of the VPD return buffer */
3853         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854                                         buf, HPSA_VPD_HEADER_SZ);
3855         if (rc != 0)
3856                 goto exit_failed;
3857         size = buf[3];
3858
3859         /* Now get the whole VPD buffer */
3860         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861                                         buf, size + HPSA_VPD_HEADER_SZ);
3862         if (rc != 0)
3863                 goto exit_failed;
3864         status = buf[4]; /* status byte */
3865
3866         kfree(buf);
3867         return status;
3868 exit_failed:
3869         kfree(buf);
3870         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3871 }
3872
3873 /* Determine offline status of a volume.
3874  * Return either:
3875  *  0 (not offline)
3876  *  0xff (offline for unknown reasons)
3877  *  # (integer code indicating one of several NOT READY states
3878  *     describing why a volume is to be kept offline)
3879  */
3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881                                         unsigned char scsi3addr[])
3882 {
3883         struct CommandList *c;
3884         unsigned char *sense;
3885         u8 sense_key, asc, ascq;
3886         int sense_len;
3887         int rc, ldstat = 0;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891
3892         c = cmd_alloc(h);
3893
3894         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896                                         NO_TIMEOUT);
3897         if (rc) {
3898                 cmd_free(h, c);
3899                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900         }
3901         sense = c->err_info->SenseInfo;
3902         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903                 sense_len = sizeof(c->err_info->SenseInfo);
3904         else
3905                 sense_len = c->err_info->SenseLen;
3906         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3907         cmd_free(h, c);
3908
3909         /* Determine the reason for not ready state */
3910         ldstat = hpsa_get_volume_status(h, scsi3addr);
3911
3912         /* Keep volume offline in certain cases: */
3913         switch (ldstat) {
3914         case HPSA_LV_FAILED:
3915         case HPSA_LV_UNDERGOING_ERASE:
3916         case HPSA_LV_NOT_AVAILABLE:
3917         case HPSA_LV_UNDERGOING_RPI:
3918         case HPSA_LV_PENDING_RPI:
3919         case HPSA_LV_ENCRYPTED_NO_KEY:
3920         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921         case HPSA_LV_UNDERGOING_ENCRYPTION:
3922         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924                 return ldstat;
3925         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926                 /* If VPD status page isn't available,
3927                  * use ASC/ASCQ to determine state
3928                  */
3929                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931                         return ldstat;
3932                 break;
3933         default:
3934                 break;
3935         }
3936         return HPSA_LV_OK;
3937 }
3938
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941         unsigned char *is_OBDR_device)
3942 {
3943
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948
3949         unsigned char *inq_buff;
3950         unsigned char *obdr_sig;
3951         int rc = 0;
3952
3953         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954         if (!inq_buff) {
3955                 rc = -ENOMEM;
3956                 goto bail_out;
3957         }
3958
3959         /* Do an inquiry to the device to see what it is. */
3960         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962                 dev_err(&h->pdev->dev,
3963                         "%s: inquiry failed, device will be skipped.\n",
3964                         __func__);
3965                 rc = HPSA_INQUIRY_FAILED;
3966                 goto bail_out;
3967         }
3968
3969         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971
3972         this_device->devtype = (inq_buff[0] & 0x1f);
3973         memcpy(this_device->scsi3addr, scsi3addr, 8);
3974         memcpy(this_device->vendor, &inq_buff[8],
3975                 sizeof(this_device->vendor));
3976         memcpy(this_device->model, &inq_buff[16],
3977                 sizeof(this_device->model));
3978         this_device->rev = inq_buff[2];
3979         memset(this_device->device_id, 0,
3980                 sizeof(this_device->device_id));
3981         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982                 sizeof(this_device->device_id)) < 0) {
3983                 dev_err(&h->pdev->dev,
3984                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985                         h->ctlr, __func__,
3986                         h->scsi_host->host_no,
3987                         this_device->bus, this_device->target,
3988                         this_device->lun,
3989                         scsi_device_type(this_device->devtype),
3990                         this_device->model);
3991                 rc = HPSA_LV_FAILED;
3992                 goto bail_out;
3993         }
3994
3995         if ((this_device->devtype == TYPE_DISK ||
3996                 this_device->devtype == TYPE_ZBC) &&
3997                 is_logical_dev_addr_mode(scsi3addr)) {
3998                 unsigned char volume_offline;
3999
4000                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003                 volume_offline = hpsa_volume_offline(h, scsi3addr);
4004                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005                     h->legacy_board) {
4006                         /*
4007                          * Legacy boards might not support volume status
4008                          */
4009                         dev_info(&h->pdev->dev,
4010                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4011                                  this_device->target, this_device->lun);
4012                         volume_offline = 0;
4013                 }
4014                 this_device->volume_offline = volume_offline;
4015                 if (volume_offline == HPSA_LV_FAILED) {
4016                         rc = HPSA_LV_FAILED;
4017                         dev_err(&h->pdev->dev,
4018                                 "%s: LV failed, device will be skipped.\n",
4019                                 __func__);
4020                         goto bail_out;
4021                 }
4022         } else {
4023                 this_device->raid_level = RAID_UNKNOWN;
4024                 this_device->offload_config = 0;
4025                 hpsa_turn_off_ioaccel_for_device(this_device);
4026                 this_device->hba_ioaccel_enabled = 0;
4027                 this_device->volume_offline = 0;
4028                 this_device->queue_depth = h->nr_cmds;
4029         }
4030
4031         if (this_device->external)
4032                 this_device->queue_depth = EXTERNAL_QD;
4033
4034         if (is_OBDR_device) {
4035                 /* See if this is a One-Button-Disaster-Recovery device
4036                  * by looking for "$DR-10" at offset 43 in inquiry data.
4037                  */
4038                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4041                                                 OBDR_SIG_LEN) == 0);
4042         }
4043         kfree(inq_buff);
4044         return 0;
4045
4046 bail_out:
4047         kfree(inq_buff);
4048         return rc;
4049 }
4050
4051 /*
4052  * Helper function to assign bus, target, lun mapping of devices.
4053  * Logical drive target and lun are assigned at this time, but
4054  * physical device lun and target assignment are deferred (assigned
4055  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060         u32 lunid = get_unaligned_le32(lunaddrbytes);
4061
4062         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063                 /* physical device, target and lun filled in later */
4064                 if (is_hba_lunid(lunaddrbytes)) {
4065                         int bus = HPSA_HBA_BUS;
4066
4067                         if (!device->rev)
4068                                 bus = HPSA_LEGACY_HBA_BUS;
4069                         hpsa_set_bus_target_lun(device,
4070                                         bus, 0, lunid & 0x3fff);
4071                 } else
4072                         /* defer target, lun assignment for physical devices */
4073                         hpsa_set_bus_target_lun(device,
4074                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075                 return;
4076         }
4077         /* It's a logical device */
4078         if (device->external) {
4079                 hpsa_set_bus_target_lun(device,
4080                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081                         lunid & 0x00ff);
4082                 return;
4083         }
4084         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085                                 0, lunid & 0x3fff);
4086 }
4087
4088 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089         int i, int nphysicals, int nlocal_logicals)
4090 {
4091         /* In report logicals, local logicals are listed first,
4092         * then any externals.
4093         */
4094         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095
4096         if (i == raid_ctlr_position)
4097                 return 0;
4098
4099         if (i < logicals_start)
4100                 return 0;
4101
4102         /* i is in logicals range, but still within local logicals */
4103         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104                 return 0;
4105
4106         return 1; /* it's an external lun */
4107 }
4108
4109 /*
4110  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111  * logdev.  The number of luns in physdev and logdev are returned in
4112  * *nphysicals and *nlogicals, respectively.
4113  * Returns 0 on success, -1 otherwise.
4114  */
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117         struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121                 return -1;
4122         }
4123         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127                 *nphysicals = HPSA_MAX_PHYS_LUN;
4128         }
4129         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131                 return -1;
4132         }
4133         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134         /* Reject Logicals in excess of our max capability. */
4135         if (*nlogicals > HPSA_MAX_LUN) {
4136                 dev_warn(&h->pdev->dev,
4137                         "maximum logical LUNs (%d) exceeded.  "
4138                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139                         *nlogicals - HPSA_MAX_LUN);
4140                 *nlogicals = HPSA_MAX_LUN;
4141         }
4142         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143                 dev_warn(&h->pdev->dev,
4144                         "maximum logical + physical LUNs (%d) exceeded. "
4145                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148         }
4149         return 0;
4150 }
4151
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153         int i, int nphysicals, int nlogicals,
4154         struct ReportExtendedLUNdata *physdev_list,
4155         struct ReportLUNdata *logdev_list)
4156 {
4157         /* Helper function, figure out where the LUN ID info is coming from
4158          * given index i, lists of physical and logical devices, where in
4159          * the list the raid controller is supposed to appear (first or last)
4160          */
4161
4162         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164
4165         if (i == raid_ctlr_position)
4166                 return RAID_CTLR_LUNID;
4167
4168         if (i < logicals_start)
4169                 return &physdev_list->LUN[i -
4170                                 (raid_ctlr_position == 0)].lunid[0];
4171
4172         if (i < last_device)
4173                 return &logdev_list->LUN[i - nphysicals -
4174                         (raid_ctlr_position == 0)][0];
4175         BUG();
4176         return NULL;
4177 }
4178
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181                 struct hpsa_scsi_dev_t *dev,
4182                 struct ReportExtendedLUNdata *rlep, int rle_index,
4183                 struct bmic_identify_physical_device *id_phys)
4184 {
4185         int rc;
4186         struct ext_report_lun_entry *rle;
4187
4188         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189                 return;
4190
4191         rle = &rlep->LUN[rle_index];
4192
4193         dev->ioaccel_handle = rle->ioaccel_handle;
4194         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195                 dev->hba_ioaccel_enabled = 1;
4196         memset(id_phys, 0, sizeof(*id_phys));
4197         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199                         sizeof(*id_phys));
4200         if (!rc)
4201                 /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204                 dev->queue_depth =
4205                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4206                                 DRIVE_CMDS_RESERVED_FOR_FW;
4207         else
4208                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212         struct ReportExtendedLUNdata *rlep, int rle_index,
4213         struct bmic_identify_physical_device *id_phys)
4214 {
4215         struct ext_report_lun_entry *rle;
4216
4217         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218                 return;
4219
4220         rle = &rlep->LUN[rle_index];
4221
4222         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223                 this_device->hba_ioaccel_enabled = 1;
4224
4225         memcpy(&this_device->active_path_index,
4226                 &id_phys->active_path_number,
4227                 sizeof(this_device->active_path_index));
4228         memcpy(&this_device->path_map,
4229                 &id_phys->redundant_path_present_map,
4230                 sizeof(this_device->path_map));
4231         memcpy(&this_device->box,
4232                 &id_phys->alternate_paths_phys_box_on_port,
4233                 sizeof(this_device->box));
4234         memcpy(&this_device->phys_connector,
4235                 &id_phys->alternate_paths_phys_connector,
4236                 sizeof(this_device->phys_connector));
4237         memcpy(&this_device->bay,
4238                 &id_phys->phys_bay_in_box,
4239                 sizeof(this_device->bay));
4240 }
4241
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244         struct bmic_identify_controller *id_ctlr,
4245         u32 *nlocals)
4246 {
4247         int rc;
4248
4249         if (!id_ctlr) {
4250                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251                         __func__);
4252                 return -ENOMEM;
4253         }
4254         memset(id_ctlr, 0, sizeof(*id_ctlr));
4255         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256         if (!rc)
4257                 if (id_ctlr->configured_logical_drive_count < 255)
4258                         *nlocals = id_ctlr->configured_logical_drive_count;
4259                 else
4260                         *nlocals = le16_to_cpu(
4261                                         id_ctlr->extended_logical_unit_count);
4262         else
4263                 *nlocals = -1;
4264         return rc;
4265 }
4266
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269         struct bmic_identify_physical_device *id_phys;
4270         bool is_spare = false;
4271         int rc;
4272
4273         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274         if (!id_phys)
4275                 return false;
4276
4277         rc = hpsa_bmic_id_physical_device(h,
4278                                         lunaddrbytes,
4279                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280                                         id_phys, sizeof(*id_phys));
4281         if (rc == 0)
4282                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4283
4284         kfree(id_phys);
4285         return is_spare;
4286 }
4287
4288 #define RPL_DEV_FLAG_NON_DISK                           0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295                                 struct ext_report_lun_entry *rle)
4296 {
4297         u8 device_flags;
4298         u8 device_type;
4299
4300         if (!MASKED_DEVICE(lunaddrbytes))
4301                 return false;
4302
4303         device_flags = rle->device_flags;
4304         device_type = rle->device_type;
4305
4306         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308                         return false;
4309                 return true;
4310         }
4311
4312         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313                 return false;
4314
4315         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316                 return false;
4317
4318         /*
4319          * Spares may be spun down, we do not want to
4320          * do an Inquiry to a RAID set spare drive as
4321          * that would have them spun up, that is a
4322          * performance hit because I/O to the RAID device
4323          * stops while the spin up occurs which can take
4324          * over 50 seconds.
4325          */
4326         if (hpsa_is_disk_spare(h, lunaddrbytes))
4327                 return true;
4328
4329         return false;
4330 }
4331
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334         /* the idea here is we could get notified
4335          * that some devices have changed, so we do a report
4336          * physical luns and report logical luns cmd, and adjust
4337          * our list of devices accordingly.
4338          *
4339          * The scsi3addr's of devices won't change so long as the
4340          * adapter is not reset.  That means we can rescan and
4341          * tell which devices we already know about, vs. new
4342          * devices, vs.  disappearing devices.
4343          */
4344         struct ReportExtendedLUNdata *physdev_list = NULL;
4345         struct ReportLUNdata *logdev_list = NULL;
4346         struct bmic_identify_physical_device *id_phys = NULL;
4347         struct bmic_identify_controller *id_ctlr = NULL;
4348         u32 nphysicals = 0;
4349         u32 nlogicals = 0;
4350         u32 nlocal_logicals = 0;
4351         u32 ndev_allocated = 0;
4352         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353         int ncurrent = 0;
4354         int i, ndevs_to_allocate;
4355         int raid_ctlr_position;
4356         bool physical_device;
4357
4358         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364
4365         if (!currentsd || !physdev_list || !logdev_list ||
4366                 !tmpdevice || !id_phys || !id_ctlr) {
4367                 dev_err(&h->pdev->dev, "out of memory\n");
4368                 goto out;
4369         }
4370
4371         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372
4373         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4374                         logdev_list, &nlogicals)) {
4375                 h->drv_req_rescan = 1;
4376                 goto out;
4377         }
4378
4379         /* Set number of local logicals (non PTRAID) */
4380         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4381                 dev_warn(&h->pdev->dev,
4382                         "%s: Can't determine number of local logical devices.\n",
4383                         __func__);
4384         }
4385
4386         /* We might see up to the maximum number of logical and physical disks
4387          * plus external target devices, and a device for the local RAID
4388          * controller.
4389          */
4390         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391
4392         hpsa_ext_ctrl_present(h, physdev_list);
4393
4394         /* Allocate the per device structures */
4395         for (i = 0; i < ndevs_to_allocate; i++) {
4396                 if (i >= HPSA_MAX_DEVICES) {
4397                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4398                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4399                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4400                         break;
4401                 }
4402
4403                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4404                 if (!currentsd[i]) {
4405                         h->drv_req_rescan = 1;
4406                         goto out;
4407                 }
4408                 ndev_allocated++;
4409         }
4410
4411         if (is_scsi_rev_5(h))
4412                 raid_ctlr_position = 0;
4413         else
4414                 raid_ctlr_position = nphysicals + nlogicals;
4415
4416         /* adjust our table of devices */
4417         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4418                 u8 *lunaddrbytes, is_OBDR = 0;
4419                 int rc = 0;
4420                 int phys_dev_index = i - (raid_ctlr_position == 0);
4421                 bool skip_device = false;
4422
4423                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4424
4425                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426
4427                 /* Figure out where the LUN ID info is coming from */
4428                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4429                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4430
4431                 /* Determine if this is a lun from an external target array */
4432                 tmpdevice->external =
4433                         figure_external_status(h, raid_ctlr_position, i,
4434                                                 nphysicals, nlocal_logicals);
4435
4436                 /*
4437                  * Skip over some devices such as a spare.
4438                  */
4439                 if (phys_dev_index >= 0 && !tmpdevice->external &&
4440                         physical_device) {
4441                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4442                                         &physdev_list->LUN[phys_dev_index]);
4443                         if (skip_device)
4444                                 continue;
4445                 }
4446
4447                 /* Get device type, vendor, model, device id, raid_map */
4448                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449                                                         &is_OBDR);
4450                 if (rc == -ENOMEM) {
4451                         dev_warn(&h->pdev->dev,
4452                                 "Out of memory, rescan deferred.\n");
4453                         h->drv_req_rescan = 1;
4454                         goto out;
4455                 }
4456                 if (rc) {
4457                         h->drv_req_rescan = 1;
4458                         continue;
4459                 }
4460
4461                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4462                 this_device = currentsd[ncurrent];
4463
4464                 *this_device = *tmpdevice;
4465                 this_device->physical_device = physical_device;
4466
4467                 /*
4468                  * Expose all devices except for physical devices that
4469                  * are masked.
4470                  */
4471                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4472                         this_device->expose_device = 0;
4473                 else
4474                         this_device->expose_device = 1;
4475
4476
4477                 /*
4478                  * Get the SAS address for physical devices that are exposed.
4479                  */
4480                 if (this_device->physical_device && this_device->expose_device)
4481                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482
4483                 switch (this_device->devtype) {
4484                 case TYPE_ROM:
4485                         /* We don't *really* support actual CD-ROM devices,
4486                          * just "One Button Disaster Recovery" tape drive
4487                          * which temporarily pretends to be a CD-ROM drive.
4488                          * So we check that the device is really an OBDR tape
4489                          * device by checking for "$DR-10" in bytes 43-48 of
4490                          * the inquiry data.
4491                          */
4492                         if (is_OBDR)
4493                                 ncurrent++;
4494                         break;
4495                 case TYPE_DISK:
4496                 case TYPE_ZBC:
4497                         if (this_device->physical_device) {
4498                                 /* The disk is in HBA mode. */
4499                                 /* Never use RAID mapper in HBA mode. */
4500                                 this_device->offload_enabled = 0;
4501                                 hpsa_get_ioaccel_drive_info(h, this_device,
4502                                         physdev_list, phys_dev_index, id_phys);
4503                                 hpsa_get_path_info(this_device,
4504                                         physdev_list, phys_dev_index, id_phys);
4505                         }
4506                         ncurrent++;
4507                         break;
4508                 case TYPE_TAPE:
4509                 case TYPE_MEDIUM_CHANGER:
4510                         ncurrent++;
4511                         break;
4512                 case TYPE_ENCLOSURE:
4513                         if (!this_device->external)
4514                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4515                                                 physdev_list, phys_dev_index,
4516                                                 this_device);
4517                         ncurrent++;
4518                         break;
4519                 case TYPE_RAID:
4520                         /* Only present the Smartarray HBA as a RAID controller.
4521                          * If it's a RAID controller other than the HBA itself
4522                          * (an external RAID controller, MSA500 or similar)
4523                          * don't present it.
4524                          */
4525                         if (!is_hba_lunid(lunaddrbytes))
4526                                 break;
4527                         ncurrent++;
4528                         break;
4529                 default:
4530                         break;
4531                 }
4532                 if (ncurrent >= HPSA_MAX_DEVICES)
4533                         break;
4534         }
4535
4536         if (h->sas_host == NULL) {
4537                 int rc = 0;
4538
4539                 rc = hpsa_add_sas_host(h);
4540                 if (rc) {
4541                         dev_warn(&h->pdev->dev,
4542                                 "Could not add sas host %d\n", rc);
4543                         goto out;
4544                 }
4545         }
4546
4547         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4548 out:
4549         kfree(tmpdevice);
4550         for (i = 0; i < ndev_allocated; i++)
4551                 kfree(currentsd[i]);
4552         kfree(currentsd);
4553         kfree(physdev_list);
4554         kfree(logdev_list);
4555         kfree(id_ctlr);
4556         kfree(id_phys);
4557 }
4558
4559 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4560                                    struct scatterlist *sg)
4561 {
4562         u64 addr64 = (u64) sg_dma_address(sg);
4563         unsigned int len = sg_dma_len(sg);
4564
4565         desc->Addr = cpu_to_le64(addr64);
4566         desc->Len = cpu_to_le32(len);
4567         desc->Ext = 0;
4568 }
4569
4570 /*
4571  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572  * dma mapping  and fills in the scatter gather entries of the
4573  * hpsa command, cp.
4574  */
4575 static int hpsa_scatter_gather(struct ctlr_info *h,
4576                 struct CommandList *cp,
4577                 struct scsi_cmnd *cmd)
4578 {
4579         struct scatterlist *sg;
4580         int use_sg, i, sg_limit, chained;
4581         struct SGDescriptor *curr_sg;
4582
4583         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584
4585         use_sg = scsi_dma_map(cmd);
4586         if (use_sg < 0)
4587                 return use_sg;
4588
4589         if (!use_sg)
4590                 goto sglist_finished;
4591
4592         /*
4593          * If the number of entries is greater than the max for a single list,
4594          * then we have a chained list; we will set up all but one entry in the
4595          * first list (the last entry is saved for link information);
4596          * otherwise, we don't have a chained list and we'll set up at each of
4597          * the entries in the one list.
4598          */
4599         curr_sg = cp->SG;
4600         chained = use_sg > h->max_cmd_sg_entries;
4601         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4602         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4603                 hpsa_set_sg_descriptor(curr_sg, sg);
4604                 curr_sg++;
4605         }
4606
4607         if (chained) {
4608                 /*
4609                  * Continue with the chained list.  Set curr_sg to the chained
4610                  * list.  Modify the limit to the total count less the entries
4611                  * we've already set up.  Resume the scan at the list entry
4612                  * where the previous loop left off.
4613                  */
4614                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4615                 sg_limit = use_sg - sg_limit;
4616                 for_each_sg(sg, sg, sg_limit, i) {
4617                         hpsa_set_sg_descriptor(curr_sg, sg);
4618                         curr_sg++;
4619                 }
4620         }
4621
4622         /* Back the pointer up to the last entry and mark it as "last". */
4623         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624
4625         if (use_sg + chained > h->maxSG)
4626                 h->maxSG = use_sg + chained;
4627
4628         if (chained) {
4629                 cp->Header.SGList = h->max_cmd_sg_entries;
4630                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4631                 if (hpsa_map_sg_chain_block(h, cp)) {
4632                         scsi_dma_unmap(cmd);
4633                         return -1;
4634                 }
4635                 return 0;
4636         }
4637
4638 sglist_finished:
4639
4640         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4641         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4642         return 0;
4643 }
4644
4645 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4646                                                 u8 *cdb, int cdb_len,
4647                                                 const char *func)
4648 {
4649         dev_warn(&h->pdev->dev,
4650                  "%s: Blocking zero-length request: CDB:%*phN\n",
4651                  func, cdb_len, cdb);
4652 }
4653
4654 #define IO_ACCEL_INELIGIBLE 1
4655 /* zero-length transfers trigger hardware errors. */
4656 static bool is_zero_length_transfer(u8 *cdb)
4657 {
4658         u32 block_cnt;
4659
4660         /* Block zero-length transfer sizes on certain commands. */
4661         switch (cdb[0]) {
4662         case READ_10:
4663         case WRITE_10:
4664         case VERIFY:            /* 0x2F */
4665         case WRITE_VERIFY:      /* 0x2E */
4666                 block_cnt = get_unaligned_be16(&cdb[7]);
4667                 break;
4668         case READ_12:
4669         case WRITE_12:
4670         case VERIFY_12: /* 0xAF */
4671         case WRITE_VERIFY_12:   /* 0xAE */
4672                 block_cnt = get_unaligned_be32(&cdb[6]);
4673                 break;
4674         case READ_16:
4675         case WRITE_16:
4676         case VERIFY_16:         /* 0x8F */
4677                 block_cnt = get_unaligned_be32(&cdb[10]);
4678                 break;
4679         default:
4680                 return false;
4681         }
4682
4683         return block_cnt == 0;
4684 }
4685
4686 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4687 {
4688         int is_write = 0;
4689         u32 block;
4690         u32 block_cnt;
4691
4692         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4693         switch (cdb[0]) {
4694         case WRITE_6:
4695         case WRITE_12:
4696                 is_write = 1;
4697                 fallthrough;
4698         case READ_6:
4699         case READ_12:
4700                 if (*cdb_len == 6) {
4701                         block = (((cdb[1] & 0x1F) << 16) |
4702                                 (cdb[2] << 8) |
4703                                 cdb[3]);
4704                         block_cnt = cdb[4];
4705                         if (block_cnt == 0)
4706                                 block_cnt = 256;
4707                 } else {
4708                         BUG_ON(*cdb_len != 12);
4709                         block = get_unaligned_be32(&cdb[2]);
4710                         block_cnt = get_unaligned_be32(&cdb[6]);
4711                 }
4712                 if (block_cnt > 0xffff)
4713                         return IO_ACCEL_INELIGIBLE;
4714
4715                 cdb[0] = is_write ? WRITE_10 : READ_10;
4716                 cdb[1] = 0;
4717                 cdb[2] = (u8) (block >> 24);
4718                 cdb[3] = (u8) (block >> 16);
4719                 cdb[4] = (u8) (block >> 8);
4720                 cdb[5] = (u8) (block);
4721                 cdb[6] = 0;
4722                 cdb[7] = (u8) (block_cnt >> 8);
4723                 cdb[8] = (u8) (block_cnt);
4724                 cdb[9] = 0;
4725                 *cdb_len = 10;
4726                 break;
4727         }
4728         return 0;
4729 }
4730
4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4732         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4733         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734 {
4735         struct scsi_cmnd *cmd = c->scsi_cmd;
4736         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737         unsigned int len;
4738         unsigned int total_len = 0;
4739         struct scatterlist *sg;
4740         u64 addr64;
4741         int use_sg, i;
4742         struct SGDescriptor *curr_sg;
4743         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744
4745         /* TODO: implement chaining support */
4746         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4747                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4748                 return IO_ACCEL_INELIGIBLE;
4749         }
4750
4751         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752
4753         if (is_zero_length_transfer(cdb)) {
4754                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4755                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4756                 return IO_ACCEL_INELIGIBLE;
4757         }
4758
4759         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4760                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4761                 return IO_ACCEL_INELIGIBLE;
4762         }
4763
4764         c->cmd_type = CMD_IOACCEL1;
4765
4766         /* Adjust the DMA address to point to the accelerated command buffer */
4767         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4768                                 (c->cmdindex * sizeof(*cp));
4769         BUG_ON(c->busaddr & 0x0000007F);
4770
4771         use_sg = scsi_dma_map(cmd);
4772         if (use_sg < 0) {
4773                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4774                 return use_sg;
4775         }
4776
4777         if (use_sg) {
4778                 curr_sg = cp->SG;
4779                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4780                         addr64 = (u64) sg_dma_address(sg);
4781                         len  = sg_dma_len(sg);
4782                         total_len += len;
4783                         curr_sg->Addr = cpu_to_le64(addr64);
4784                         curr_sg->Len = cpu_to_le32(len);
4785                         curr_sg->Ext = cpu_to_le32(0);
4786                         curr_sg++;
4787                 }
4788                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789
4790                 switch (cmd->sc_data_direction) {
4791                 case DMA_TO_DEVICE:
4792                         control |= IOACCEL1_CONTROL_DATA_OUT;
4793                         break;
4794                 case DMA_FROM_DEVICE:
4795                         control |= IOACCEL1_CONTROL_DATA_IN;
4796                         break;
4797                 case DMA_NONE:
4798                         control |= IOACCEL1_CONTROL_NODATAXFER;
4799                         break;
4800                 default:
4801                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4802                         cmd->sc_data_direction);
4803                         BUG();
4804                         break;
4805                 }
4806         } else {
4807                 control |= IOACCEL1_CONTROL_NODATAXFER;
4808         }
4809
4810         c->Header.SGList = use_sg;
4811         /* Fill out the command structure to submit */
4812         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4813         cp->transfer_len = cpu_to_le32(total_len);
4814         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4815                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4816         cp->control = cpu_to_le32(control);
4817         memcpy(cp->CDB, cdb, cdb_len);
4818         memcpy(cp->CISS_LUN, scsi3addr, 8);
4819         /* Tag was already set at init time. */
4820         enqueue_cmd_and_start_io(h, c);
4821         return 0;
4822 }
4823
4824 /*
4825  * Queue a command directly to a device behind the controller using the
4826  * I/O accelerator path.
4827  */
4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4829         struct CommandList *c)
4830 {
4831         struct scsi_cmnd *cmd = c->scsi_cmd;
4832         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4833
4834         if (!dev)
4835                 return -1;
4836
4837         c->phys_disk = dev;
4838
4839         if (dev->in_reset)
4840                 return -1;
4841
4842         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4843                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4844 }
4845
4846 /*
4847  * Set encryption parameters for the ioaccel2 request
4848  */
4849 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4850         struct CommandList *c, struct io_accel2_cmd *cp)
4851 {
4852         struct scsi_cmnd *cmd = c->scsi_cmd;
4853         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4854         struct raid_map_data *map = &dev->raid_map;
4855         u64 first_block;
4856
4857         /* Are we doing encryption on this device */
4858         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859                 return;
4860         /* Set the data encryption key index. */
4861         cp->dekindex = map->dekindex;
4862
4863         /* Set the encryption enable flag, encoded into direction field. */
4864         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865
4866         /* Set encryption tweak values based on logical block address
4867          * If block size is 512, tweak value is LBA.
4868          * For other block sizes, tweak is (LBA * block size)/ 512)
4869          */
4870         switch (cmd->cmnd[0]) {
4871         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872         case READ_6:
4873         case WRITE_6:
4874                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4875                                 (cmd->cmnd[2] << 8) |
4876                                 cmd->cmnd[3]);
4877                 break;
4878         case WRITE_10:
4879         case READ_10:
4880         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881         case WRITE_12:
4882         case READ_12:
4883                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4884                 break;
4885         case WRITE_16:
4886         case READ_16:
4887                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4888                 break;
4889         default:
4890                 dev_err(&h->pdev->dev,
4891                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4892                         __func__, cmd->cmnd[0]);
4893                 BUG();
4894                 break;
4895         }
4896
4897         if (le32_to_cpu(map->volume_blk_size) != 512)
4898                 first_block = first_block *
4899                                 le32_to_cpu(map->volume_blk_size)/512;
4900
4901         cp->tweak_lower = cpu_to_le32(first_block);
4902         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4903 }
4904
4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4906         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4907         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908 {
4909         struct scsi_cmnd *cmd = c->scsi_cmd;
4910         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4911         struct ioaccel2_sg_element *curr_sg;
4912         int use_sg, i;
4913         struct scatterlist *sg;
4914         u64 addr64;
4915         u32 len;
4916         u32 total_len = 0;
4917
4918         if (!cmd->device)
4919                 return -1;
4920
4921         if (!cmd->device->hostdata)
4922                 return -1;
4923
4924         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925
4926         if (is_zero_length_transfer(cdb)) {
4927                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4928                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929                 return IO_ACCEL_INELIGIBLE;
4930         }
4931
4932         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4933                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4934                 return IO_ACCEL_INELIGIBLE;
4935         }
4936
4937         c->cmd_type = CMD_IOACCEL2;
4938         /* Adjust the DMA address to point to the accelerated command buffer */
4939         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4940                                 (c->cmdindex * sizeof(*cp));
4941         BUG_ON(c->busaddr & 0x0000007F);
4942
4943         memset(cp, 0, sizeof(*cp));
4944         cp->IU_type = IOACCEL2_IU_TYPE;
4945
4946         use_sg = scsi_dma_map(cmd);
4947         if (use_sg < 0) {
4948                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4949                 return use_sg;
4950         }
4951
4952         if (use_sg) {
4953                 curr_sg = cp->sg;
4954                 if (use_sg > h->ioaccel_maxsg) {
4955                         addr64 = le64_to_cpu(
4956                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4957                         curr_sg->address = cpu_to_le64(addr64);
4958                         curr_sg->length = 0;
4959                         curr_sg->reserved[0] = 0;
4960                         curr_sg->reserved[1] = 0;
4961                         curr_sg->reserved[2] = 0;
4962                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963
4964                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965                 }
4966                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4967                         addr64 = (u64) sg_dma_address(sg);
4968                         len  = sg_dma_len(sg);
4969                         total_len += len;
4970                         curr_sg->address = cpu_to_le64(addr64);
4971                         curr_sg->length = cpu_to_le32(len);
4972                         curr_sg->reserved[0] = 0;
4973                         curr_sg->reserved[1] = 0;
4974                         curr_sg->reserved[2] = 0;
4975                         curr_sg->chain_indicator = 0;
4976                         curr_sg++;
4977                 }
4978
4979                 /*
4980                  * Set the last s/g element bit
4981                  */
4982                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983
4984                 switch (cmd->sc_data_direction) {
4985                 case DMA_TO_DEVICE:
4986                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988                         break;
4989                 case DMA_FROM_DEVICE:
4990                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4992                         break;
4993                 case DMA_NONE:
4994                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4996                         break;
4997                 default:
4998                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4999                                 cmd->sc_data_direction);
5000                         BUG();
5001                         break;
5002                 }
5003         } else {
5004                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5005                 cp->direction |= IOACCEL2_DIR_NO_DATA;
5006         }
5007
5008         /* Set encryption parameters, if necessary */
5009         set_encrypt_ioaccel2(h, c, cp);
5010
5011         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5012         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5013         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014
5015         cp->data_len = cpu_to_le32(total_len);
5016         cp->err_ptr = cpu_to_le64(c->busaddr +
5017                         offsetof(struct io_accel2_cmd, error_data));
5018         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019
5020         /* fill in sg elements */
5021         if (use_sg > h->ioaccel_maxsg) {
5022                 cp->sg_count = 1;
5023                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5024                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5025                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5026                         scsi_dma_unmap(cmd);
5027                         return -1;
5028                 }
5029         } else
5030                 cp->sg_count = (u8) use_sg;
5031
5032         if (phys_disk->in_reset) {
5033                 cmd->result = DID_RESET << 16;
5034                 return -1;
5035         }
5036
5037         enqueue_cmd_and_start_io(h, c);
5038         return 0;
5039 }
5040
5041 /*
5042  * Queue a command to the correct I/O accelerator path.
5043  */
5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5045         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5046         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047 {
5048         if (!c->scsi_cmd->device)
5049                 return -1;
5050
5051         if (!c->scsi_cmd->device->hostdata)
5052                 return -1;
5053
5054         if (phys_disk->in_reset)
5055                 return -1;
5056
5057         /* Try to honor the device's queue depth */
5058         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5059                                         phys_disk->queue_depth) {
5060                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5061                 return IO_ACCEL_INELIGIBLE;
5062         }
5063         if (h->transMethod & CFGTBL_Trans_io_accel1)
5064                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5065                                                 cdb, cdb_len, scsi3addr,
5066                                                 phys_disk);
5067         else
5068                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5069                                                 cdb, cdb_len, scsi3addr,
5070                                                 phys_disk);
5071 }
5072
5073 static void raid_map_helper(struct raid_map_data *map,
5074                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5075 {
5076         if (offload_to_mirror == 0)  {
5077                 /* use physical disk in the first mirrored group. */
5078                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5079                 return;
5080         }
5081         do {
5082                 /* determine mirror group that *map_index indicates */
5083                 *current_group = *map_index /
5084                         le16_to_cpu(map->data_disks_per_row);
5085                 if (offload_to_mirror == *current_group)
5086                         continue;
5087                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5088                         /* select map index from next group */
5089                         *map_index += le16_to_cpu(map->data_disks_per_row);
5090                         (*current_group)++;
5091                 } else {
5092                         /* select map index from first group */
5093                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5094                         *current_group = 0;
5095                 }
5096         } while (offload_to_mirror != *current_group);
5097 }
5098
5099 /*
5100  * Attempt to perform offload RAID mapping for a logical volume I/O.
5101  */
5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5103         struct CommandList *c)
5104 {
5105         struct scsi_cmnd *cmd = c->scsi_cmd;
5106         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5107         struct raid_map_data *map = &dev->raid_map;
5108         struct raid_map_disk_data *dd = &map->data[0];
5109         int is_write = 0;
5110         u32 map_index;
5111         u64 first_block, last_block;
5112         u32 block_cnt;
5113         u32 blocks_per_row;
5114         u64 first_row, last_row;
5115         u32 first_row_offset, last_row_offset;
5116         u32 first_column, last_column;
5117         u64 r0_first_row, r0_last_row;
5118         u32 r5or6_blocks_per_row;
5119         u64 r5or6_first_row, r5or6_last_row;
5120         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5121         u32 r5or6_first_column, r5or6_last_column;
5122         u32 total_disks_per_row;
5123         u32 stripesize;
5124         u32 first_group, last_group, current_group;
5125         u32 map_row;
5126         u32 disk_handle;
5127         u64 disk_block;
5128         u32 disk_block_cnt;
5129         u8 cdb[16];
5130         u8 cdb_len;
5131         u16 strip_size;
5132 #if BITS_PER_LONG == 32
5133         u64 tmpdiv;
5134 #endif
5135         int offload_to_mirror;
5136
5137         if (!dev)
5138                 return -1;
5139
5140         if (dev->in_reset)
5141                 return -1;
5142
5143         /* check for valid opcode, get LBA and block count */
5144         switch (cmd->cmnd[0]) {
5145         case WRITE_6:
5146                 is_write = 1;
5147                 fallthrough;
5148         case READ_6:
5149                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5150                                 (cmd->cmnd[2] << 8) |
5151                                 cmd->cmnd[3]);
5152                 block_cnt = cmd->cmnd[4];
5153                 if (block_cnt == 0)
5154                         block_cnt = 256;
5155                 break;
5156         case WRITE_10:
5157                 is_write = 1;
5158                 fallthrough;
5159         case READ_10:
5160                 first_block =
5161                         (((u64) cmd->cmnd[2]) << 24) |
5162                         (((u64) cmd->cmnd[3]) << 16) |
5163                         (((u64) cmd->cmnd[4]) << 8) |
5164                         cmd->cmnd[5];
5165                 block_cnt =
5166                         (((u32) cmd->cmnd[7]) << 8) |
5167                         cmd->cmnd[8];
5168                 break;
5169         case WRITE_12:
5170                 is_write = 1;
5171                 fallthrough;
5172         case READ_12:
5173                 first_block =
5174                         (((u64) cmd->cmnd[2]) << 24) |
5175                         (((u64) cmd->cmnd[3]) << 16) |
5176                         (((u64) cmd->cmnd[4]) << 8) |
5177                         cmd->cmnd[5];
5178                 block_cnt =
5179                         (((u32) cmd->cmnd[6]) << 24) |
5180                         (((u32) cmd->cmnd[7]) << 16) |
5181                         (((u32) cmd->cmnd[8]) << 8) |
5182                 cmd->cmnd[9];
5183                 break;
5184         case WRITE_16:
5185                 is_write = 1;
5186                 fallthrough;
5187         case READ_16:
5188                 first_block =
5189                         (((u64) cmd->cmnd[2]) << 56) |
5190                         (((u64) cmd->cmnd[3]) << 48) |
5191                         (((u64) cmd->cmnd[4]) << 40) |
5192                         (((u64) cmd->cmnd[5]) << 32) |
5193                         (((u64) cmd->cmnd[6]) << 24) |
5194                         (((u64) cmd->cmnd[7]) << 16) |
5195                         (((u64) cmd->cmnd[8]) << 8) |
5196                         cmd->cmnd[9];
5197                 block_cnt =
5198                         (((u32) cmd->cmnd[10]) << 24) |
5199                         (((u32) cmd->cmnd[11]) << 16) |
5200                         (((u32) cmd->cmnd[12]) << 8) |
5201                         cmd->cmnd[13];
5202                 break;
5203         default:
5204                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205         }
5206         last_block = first_block + block_cnt - 1;
5207
5208         /* check for write to non-RAID-0 */
5209         if (is_write && dev->raid_level != 0)
5210                 return IO_ACCEL_INELIGIBLE;
5211
5212         /* check for invalid block or wraparound */
5213         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5214                 last_block < first_block)
5215                 return IO_ACCEL_INELIGIBLE;
5216
5217         /* calculate stripe information for the request */
5218         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5219                                 le16_to_cpu(map->strip_size);
5220         strip_size = le16_to_cpu(map->strip_size);
5221 #if BITS_PER_LONG == 32
5222         tmpdiv = first_block;
5223         (void) do_div(tmpdiv, blocks_per_row);
5224         first_row = tmpdiv;
5225         tmpdiv = last_block;
5226         (void) do_div(tmpdiv, blocks_per_row);
5227         last_row = tmpdiv;
5228         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230         tmpdiv = first_row_offset;
5231         (void) do_div(tmpdiv, strip_size);
5232         first_column = tmpdiv;
5233         tmpdiv = last_row_offset;
5234         (void) do_div(tmpdiv, strip_size);
5235         last_column = tmpdiv;
5236 #else
5237         first_row = first_block / blocks_per_row;
5238         last_row = last_block / blocks_per_row;
5239         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5240         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5241         first_column = first_row_offset / strip_size;
5242         last_column = last_row_offset / strip_size;
5243 #endif
5244
5245         /* if this isn't a single row/column then give to the controller */
5246         if ((first_row != last_row) || (first_column != last_column))
5247                 return IO_ACCEL_INELIGIBLE;
5248
5249         /* proceeding with driver mapping */
5250         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5251                                 le16_to_cpu(map->metadata_disks_per_row);
5252         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5253                                 le16_to_cpu(map->row_cnt);
5254         map_index = (map_row * total_disks_per_row) + first_column;
5255
5256         switch (dev->raid_level) {
5257         case HPSA_RAID_0:
5258                 break; /* nothing special to do */
5259         case HPSA_RAID_1:
5260                 /* Handles load balance across RAID 1 members.
5261                  * (2-drive R1 and R10 with even # of drives.)
5262                  * Appropriate for SSDs, not optimal for HDDs
5263                  * Ensure we have the correct raid_map.
5264                  */
5265                 if (le16_to_cpu(map->layout_map_count) != 2) {
5266                         hpsa_turn_off_ioaccel_for_device(dev);
5267                         return IO_ACCEL_INELIGIBLE;
5268                 }
5269                 if (dev->offload_to_mirror)
5270                         map_index += le16_to_cpu(map->data_disks_per_row);
5271                 dev->offload_to_mirror = !dev->offload_to_mirror;
5272                 break;
5273         case HPSA_RAID_ADM:
5274                 /* Handles N-way mirrors  (R1-ADM)
5275                  * and R10 with # of drives divisible by 3.)
5276                  * Ensure we have the correct raid_map.
5277                  */
5278                 if (le16_to_cpu(map->layout_map_count) != 3) {
5279                         hpsa_turn_off_ioaccel_for_device(dev);
5280                         return IO_ACCEL_INELIGIBLE;
5281                 }
5282
5283                 offload_to_mirror = dev->offload_to_mirror;
5284                 raid_map_helper(map, offload_to_mirror,
5285                                 &map_index, &current_group);
5286                 /* set mirror group to use next time */
5287                 offload_to_mirror =
5288                         (offload_to_mirror >=
5289                         le16_to_cpu(map->layout_map_count) - 1)
5290                         ? 0 : offload_to_mirror + 1;
5291                 dev->offload_to_mirror = offload_to_mirror;
5292                 /* Avoid direct use of dev->offload_to_mirror within this
5293                  * function since multiple threads might simultaneously
5294                  * increment it beyond the range of dev->layout_map_count -1.
5295                  */
5296                 break;
5297         case HPSA_RAID_5:
5298         case HPSA_RAID_6:
5299                 if (le16_to_cpu(map->layout_map_count) <= 1)
5300                         break;
5301
5302                 /* Verify first and last block are in same RAID group */
5303                 r5or6_blocks_per_row =
5304                         le16_to_cpu(map->strip_size) *
5305                         le16_to_cpu(map->data_disks_per_row);
5306                 if (r5or6_blocks_per_row == 0) {
5307                         hpsa_turn_off_ioaccel_for_device(dev);
5308                         return IO_ACCEL_INELIGIBLE;
5309                 }
5310                 stripesize = r5or6_blocks_per_row *
5311                         le16_to_cpu(map->layout_map_count);
5312 #if BITS_PER_LONG == 32
5313                 tmpdiv = first_block;
5314                 first_group = do_div(tmpdiv, stripesize);
5315                 tmpdiv = first_group;
5316                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5317                 first_group = tmpdiv;
5318                 tmpdiv = last_block;
5319                 last_group = do_div(tmpdiv, stripesize);
5320                 tmpdiv = last_group;
5321                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5322                 last_group = tmpdiv;
5323 #else
5324                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5325                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326 #endif
5327                 if (first_group != last_group)
5328                         return IO_ACCEL_INELIGIBLE;
5329
5330                 /* Verify request is in a single row of RAID 5/6 */
5331 #if BITS_PER_LONG == 32
5332                 tmpdiv = first_block;
5333                 (void) do_div(tmpdiv, stripesize);
5334                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5335                 tmpdiv = last_block;
5336                 (void) do_div(tmpdiv, stripesize);
5337                 r5or6_last_row = r0_last_row = tmpdiv;
5338 #else
5339                 first_row = r5or6_first_row = r0_first_row =
5340                                                 first_block / stripesize;
5341                 r5or6_last_row = r0_last_row = last_block / stripesize;
5342 #endif
5343                 if (r5or6_first_row != r5or6_last_row)
5344                         return IO_ACCEL_INELIGIBLE;
5345
5346
5347                 /* Verify request is in a single column */
5348 #if BITS_PER_LONG == 32
5349                 tmpdiv = first_block;
5350                 first_row_offset = do_div(tmpdiv, stripesize);
5351                 tmpdiv = first_row_offset;
5352                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5353                 r5or6_first_row_offset = first_row_offset;
5354                 tmpdiv = last_block;
5355                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5356                 tmpdiv = r5or6_last_row_offset;
5357                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5358                 tmpdiv = r5or6_first_row_offset;
5359                 (void) do_div(tmpdiv, map->strip_size);
5360                 first_column = r5or6_first_column = tmpdiv;
5361                 tmpdiv = r5or6_last_row_offset;
5362                 (void) do_div(tmpdiv, map->strip_size);
5363                 r5or6_last_column = tmpdiv;
5364 #else
5365                 first_row_offset = r5or6_first_row_offset =
5366                         (u32)((first_block % stripesize) %
5367                                                 r5or6_blocks_per_row);
5368
5369                 r5or6_last_row_offset =
5370                         (u32)((last_block % stripesize) %
5371                                                 r5or6_blocks_per_row);
5372
5373                 first_column = r5or6_first_column =
5374                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375                 r5or6_last_column =
5376                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377 #endif
5378                 if (r5or6_first_column != r5or6_last_column)
5379                         return IO_ACCEL_INELIGIBLE;
5380
5381                 /* Request is eligible */
5382                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5383                         le16_to_cpu(map->row_cnt);
5384
5385                 map_index = (first_group *
5386                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5387                         (map_row * total_disks_per_row) + first_column;
5388                 break;
5389         default:
5390                 return IO_ACCEL_INELIGIBLE;
5391         }
5392
5393         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5394                 return IO_ACCEL_INELIGIBLE;
5395
5396         c->phys_disk = dev->phys_disk[map_index];
5397         if (!c->phys_disk)
5398                 return IO_ACCEL_INELIGIBLE;
5399
5400         disk_handle = dd[map_index].ioaccel_handle;
5401         disk_block = le64_to_cpu(map->disk_starting_blk) +
5402                         first_row * le16_to_cpu(map->strip_size) +
5403                         (first_row_offset - first_column *
5404                         le16_to_cpu(map->strip_size));
5405         disk_block_cnt = block_cnt;
5406
5407         /* handle differing logical/physical block sizes */
5408         if (map->phys_blk_shift) {
5409                 disk_block <<= map->phys_blk_shift;
5410                 disk_block_cnt <<= map->phys_blk_shift;
5411         }
5412         BUG_ON(disk_block_cnt > 0xffff);
5413
5414         /* build the new CDB for the physical disk I/O */
5415         if (disk_block > 0xffffffff) {
5416                 cdb[0] = is_write ? WRITE_16 : READ_16;
5417                 cdb[1] = 0;
5418                 cdb[2] = (u8) (disk_block >> 56);
5419                 cdb[3] = (u8) (disk_block >> 48);
5420                 cdb[4] = (u8) (disk_block >> 40);
5421                 cdb[5] = (u8) (disk_block >> 32);
5422                 cdb[6] = (u8) (disk_block >> 24);
5423                 cdb[7] = (u8) (disk_block >> 16);
5424                 cdb[8] = (u8) (disk_block >> 8);
5425                 cdb[9] = (u8) (disk_block);
5426                 cdb[10] = (u8) (disk_block_cnt >> 24);
5427                 cdb[11] = (u8) (disk_block_cnt >> 16);
5428                 cdb[12] = (u8) (disk_block_cnt >> 8);
5429                 cdb[13] = (u8) (disk_block_cnt);
5430                 cdb[14] = 0;
5431                 cdb[15] = 0;
5432                 cdb_len = 16;
5433         } else {
5434                 cdb[0] = is_write ? WRITE_10 : READ_10;
5435                 cdb[1] = 0;
5436                 cdb[2] = (u8) (disk_block >> 24);
5437                 cdb[3] = (u8) (disk_block >> 16);
5438                 cdb[4] = (u8) (disk_block >> 8);
5439                 cdb[5] = (u8) (disk_block);
5440                 cdb[6] = 0;
5441                 cdb[7] = (u8) (disk_block_cnt >> 8);
5442                 cdb[8] = (u8) (disk_block_cnt);
5443                 cdb[9] = 0;
5444                 cdb_len = 10;
5445         }
5446         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447                                                 dev->scsi3addr,
5448                                                 dev->phys_disk[map_index]);
5449 }
5450
5451 /*
5452  * Submit commands down the "normal" RAID stack path
5453  * All callers to hpsa_ciss_submit must check lockup_detected
5454  * beforehand, before (opt.) and after calling cmd_alloc
5455  */
5456 static int hpsa_ciss_submit(struct ctlr_info *h,
5457         struct CommandList *c, struct scsi_cmnd *cmd,
5458         struct hpsa_scsi_dev_t *dev)
5459 {
5460         cmd->host_scribble = (unsigned char *) c;
5461         c->cmd_type = CMD_SCSI;
5462         c->scsi_cmd = cmd;
5463         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5464         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5465         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466
5467         /* Fill in the request block... */
5468
5469         c->Request.Timeout = 0;
5470         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5471         c->Request.CDBLen = cmd->cmd_len;
5472         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5473         switch (cmd->sc_data_direction) {
5474         case DMA_TO_DEVICE:
5475                 c->Request.type_attr_dir =
5476                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477                 break;
5478         case DMA_FROM_DEVICE:
5479                 c->Request.type_attr_dir =
5480                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5481                 break;
5482         case DMA_NONE:
5483                 c->Request.type_attr_dir =
5484                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485                 break;
5486         case DMA_BIDIRECTIONAL:
5487                 /* This can happen if a buggy application does a scsi passthru
5488                  * and sets both inlen and outlen to non-zero. ( see
5489                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490                  */
5491
5492                 c->Request.type_attr_dir =
5493                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5494                 /* This is technically wrong, and hpsa controllers should
5495                  * reject it with CMD_INVALID, which is the most correct
5496                  * response, but non-fibre backends appear to let it
5497                  * slide by, and give the same results as if this field
5498                  * were set correctly.  Either way is acceptable for
5499                  * our purposes here.
5500                  */
5501
5502                 break;
5503
5504         default:
5505                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5506                         cmd->sc_data_direction);
5507                 BUG();
5508                 break;
5509         }
5510
5511         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5512                 hpsa_cmd_resolve_and_free(h, c);
5513                 return SCSI_MLQUEUE_HOST_BUSY;
5514         }
5515
5516         if (dev->in_reset) {
5517                 hpsa_cmd_resolve_and_free(h, c);
5518                 return SCSI_MLQUEUE_HOST_BUSY;
5519         }
5520
5521         c->device = dev;
5522
5523         enqueue_cmd_and_start_io(h, c);
5524         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5525         return 0;
5526 }
5527
5528 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5529                                 struct CommandList *c)
5530 {
5531         dma_addr_t cmd_dma_handle, err_dma_handle;
5532
5533         /* Zero out all of commandlist except the last field, refcount */
5534         memset(c, 0, offsetof(struct CommandList, refcount));
5535         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5536         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5537         c->err_info = h->errinfo_pool + index;
5538         memset(c->err_info, 0, sizeof(*c->err_info));
5539         err_dma_handle = h->errinfo_pool_dhandle
5540             + index * sizeof(*c->err_info);
5541         c->cmdindex = index;
5542         c->busaddr = (u32) cmd_dma_handle;
5543         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5544         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545         c->h = h;
5546         c->scsi_cmd = SCSI_CMD_IDLE;
5547 }
5548
5549 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5550 {
5551         int i;
5552
5553         for (i = 0; i < h->nr_cmds; i++) {
5554                 struct CommandList *c = h->cmd_pool + i;
5555
5556                 hpsa_cmd_init(h, i, c);
5557                 atomic_set(&c->refcount, 0);
5558         }
5559 }
5560
5561 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5562                                 struct CommandList *c)
5563 {
5564         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565
5566         BUG_ON(c->cmdindex != index);
5567
5568         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5569         memset(c->err_info, 0, sizeof(*c->err_info));
5570         c->busaddr = (u32) cmd_dma_handle;
5571 }
5572
5573 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5574                 struct CommandList *c, struct scsi_cmnd *cmd,
5575                 bool retry)
5576 {
5577         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5578         int rc = IO_ACCEL_INELIGIBLE;
5579
5580         if (!dev)
5581                 return SCSI_MLQUEUE_HOST_BUSY;
5582
5583         if (dev->in_reset)
5584                 return SCSI_MLQUEUE_HOST_BUSY;
5585
5586         if (hpsa_simple_mode)
5587                 return IO_ACCEL_INELIGIBLE;
5588
5589         cmd->host_scribble = (unsigned char *) c;
5590
5591         if (dev->offload_enabled) {
5592                 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5593                 c->cmd_type = CMD_SCSI;
5594                 c->scsi_cmd = cmd;
5595                 c->device = dev;
5596                 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5597                         c->retry_pending = true;
5598                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599                 if (rc < 0)     /* scsi_dma_map failed. */
5600                         rc = SCSI_MLQUEUE_HOST_BUSY;
5601         } else if (dev->hba_ioaccel_enabled) {
5602                 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5603                 c->cmd_type = CMD_SCSI;
5604                 c->scsi_cmd = cmd;
5605                 c->device = dev;
5606                 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5607                         c->retry_pending = true;
5608                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5609                 if (rc < 0)     /* scsi_dma_map failed. */
5610                         rc = SCSI_MLQUEUE_HOST_BUSY;
5611         }
5612         return rc;
5613 }
5614
5615 static void hpsa_command_resubmit_worker(struct work_struct *work)
5616 {
5617         struct scsi_cmnd *cmd;
5618         struct hpsa_scsi_dev_t *dev;
5619         struct CommandList *c = container_of(work, struct CommandList, work);
5620
5621         cmd = c->scsi_cmd;
5622         dev = cmd->device->hostdata;
5623         if (!dev) {
5624                 cmd->result = DID_NO_CONNECT << 16;
5625                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5626         }
5627
5628         if (dev->in_reset) {
5629                 cmd->result = DID_RESET << 16;
5630                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5631         }
5632
5633         if (c->cmd_type == CMD_IOACCEL2) {
5634                 struct ctlr_info *h = c->h;
5635                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5636                 int rc;
5637
5638                 if (c2->error_data.serv_response ==
5639                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5640                         /* Resubmit with the retry_pending flag set. */
5641                         rc = hpsa_ioaccel_submit(h, c, cmd, true);
5642                         if (rc == 0)
5643                                 return;
5644                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645                                 /*
5646                                  * If we get here, it means dma mapping failed.
5647                                  * Try again via scsi mid layer, which will
5648                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5649                                  */
5650                                 cmd->result = DID_IMM_RETRY << 16;
5651                                 return hpsa_cmd_free_and_done(h, c, cmd);
5652                         }
5653                         /* else, fall thru and resubmit down CISS path */
5654                 }
5655         }
5656         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657         /*
5658          * Here we have not come in though queue_command, so we
5659          * can set the retry_pending flag to true for a driver initiated
5660          * retry attempt (I.E. not a SML retry).
5661          * I.E. We are submitting a driver initiated retry.
5662          * Note: hpsa_ciss_submit does not zero out the command fields like
5663          *       ioaccel submit does.
5664          */
5665         c->retry_pending = true;
5666         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667                 /*
5668                  * If we get here, it means dma mapping failed. Try
5669                  * again via scsi mid layer, which will then get
5670                  * SCSI_MLQUEUE_HOST_BUSY.
5671                  *
5672                  * hpsa_ciss_submit will have already freed c
5673                  * if it encountered a dma mapping failure.
5674                  */
5675                 cmd->result = DID_IMM_RETRY << 16;
5676                 scsi_done(cmd);
5677         }
5678 }
5679
5680 /* Running in struct Scsi_Host->host_lock less mode */
5681 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682 {
5683         struct ctlr_info *h;
5684         struct hpsa_scsi_dev_t *dev;
5685         struct CommandList *c;
5686         int rc = 0;
5687
5688         /* Get the ptr to our adapter structure out of cmd->host. */
5689         h = sdev_to_hba(cmd->device);
5690
5691         BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5692
5693         dev = cmd->device->hostdata;
5694         if (!dev) {
5695                 cmd->result = DID_NO_CONNECT << 16;
5696                 scsi_done(cmd);
5697                 return 0;
5698         }
5699
5700         if (dev->removed) {
5701                 cmd->result = DID_NO_CONNECT << 16;
5702                 scsi_done(cmd);
5703                 return 0;
5704         }
5705
5706         if (unlikely(lockup_detected(h))) {
5707                 cmd->result = DID_NO_CONNECT << 16;
5708                 scsi_done(cmd);
5709                 return 0;
5710         }
5711
5712         if (dev->in_reset)
5713                 return SCSI_MLQUEUE_DEVICE_BUSY;
5714
5715         c = cmd_tagged_alloc(h, cmd);
5716         if (c == NULL)
5717                 return SCSI_MLQUEUE_DEVICE_BUSY;
5718
5719         /*
5720          * This is necessary because the SML doesn't zero out this field during
5721          * error recovery.
5722          */
5723         cmd->result = 0;
5724
5725         /*
5726          * Call alternate submit routine for I/O accelerated commands.
5727          * Retries always go down the normal I/O path.
5728          * Note: If cmd->retries is non-zero, then this is a SML
5729          *       initiated retry and not a driver initiated retry.
5730          *       This command has been obtained from cmd_tagged_alloc
5731          *       and is therefore a brand-new command.
5732          */
5733         if (likely(cmd->retries == 0 &&
5734                         !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5735                         h->acciopath_status)) {
5736                 /* Submit with the retry_pending flag unset. */
5737                 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5738                 if (rc == 0)
5739                         return 0;
5740                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5741                         hpsa_cmd_resolve_and_free(h, c);
5742                         return SCSI_MLQUEUE_HOST_BUSY;
5743                 }
5744         }
5745         return hpsa_ciss_submit(h, c, cmd, dev);
5746 }
5747
5748 static void hpsa_scan_complete(struct ctlr_info *h)
5749 {
5750         unsigned long flags;
5751
5752         spin_lock_irqsave(&h->scan_lock, flags);
5753         h->scan_finished = 1;
5754         wake_up(&h->scan_wait_queue);
5755         spin_unlock_irqrestore(&h->scan_lock, flags);
5756 }
5757
5758 static void hpsa_scan_start(struct Scsi_Host *sh)
5759 {
5760         struct ctlr_info *h = shost_to_hba(sh);
5761         unsigned long flags;
5762
5763         /*
5764          * Don't let rescans be initiated on a controller known to be locked
5765          * up.  If the controller locks up *during* a rescan, that thread is
5766          * probably hosed, but at least we can prevent new rescan threads from
5767          * piling up on a locked up controller.
5768          */
5769         if (unlikely(lockup_detected(h)))
5770                 return hpsa_scan_complete(h);
5771
5772         /*
5773          * If a scan is already waiting to run, no need to add another
5774          */
5775         spin_lock_irqsave(&h->scan_lock, flags);
5776         if (h->scan_waiting) {
5777                 spin_unlock_irqrestore(&h->scan_lock, flags);
5778                 return;
5779         }
5780
5781         spin_unlock_irqrestore(&h->scan_lock, flags);
5782
5783         /* wait until any scan already in progress is finished. */
5784         while (1) {
5785                 spin_lock_irqsave(&h->scan_lock, flags);
5786                 if (h->scan_finished)
5787                         break;
5788                 h->scan_waiting = 1;
5789                 spin_unlock_irqrestore(&h->scan_lock, flags);
5790                 wait_event(h->scan_wait_queue, h->scan_finished);
5791                 /* Note: We don't need to worry about a race between this
5792                  * thread and driver unload because the midlayer will
5793                  * have incremented the reference count, so unload won't
5794                  * happen if we're in here.
5795                  */
5796         }
5797         h->scan_finished = 0; /* mark scan as in progress */
5798         h->scan_waiting = 0;
5799         spin_unlock_irqrestore(&h->scan_lock, flags);
5800
5801         if (unlikely(lockup_detected(h)))
5802                 return hpsa_scan_complete(h);
5803
5804         /*
5805          * Do the scan after a reset completion
5806          */
5807         spin_lock_irqsave(&h->reset_lock, flags);
5808         if (h->reset_in_progress) {
5809                 h->drv_req_rescan = 1;
5810                 spin_unlock_irqrestore(&h->reset_lock, flags);
5811                 hpsa_scan_complete(h);
5812                 return;
5813         }
5814         spin_unlock_irqrestore(&h->reset_lock, flags);
5815
5816         hpsa_update_scsi_devices(h);
5817
5818         hpsa_scan_complete(h);
5819 }
5820
5821 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822 {
5823         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5824
5825         if (!logical_drive)
5826                 return -ENODEV;
5827
5828         if (qdepth < 1)
5829                 qdepth = 1;
5830         else if (qdepth > logical_drive->queue_depth)
5831                 qdepth = logical_drive->queue_depth;
5832
5833         return scsi_change_queue_depth(sdev, qdepth);
5834 }
5835
5836 static int hpsa_scan_finished(struct Scsi_Host *sh,
5837         unsigned long elapsed_time)
5838 {
5839         struct ctlr_info *h = shost_to_hba(sh);
5840         unsigned long flags;
5841         int finished;
5842
5843         spin_lock_irqsave(&h->scan_lock, flags);
5844         finished = h->scan_finished;
5845         spin_unlock_irqrestore(&h->scan_lock, flags);
5846         return finished;
5847 }
5848
5849 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850 {
5851         struct Scsi_Host *sh;
5852
5853         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5854         if (sh == NULL) {
5855                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5856                 return -ENOMEM;
5857         }
5858
5859         sh->io_port = 0;
5860         sh->n_io_port = 0;
5861         sh->this_id = -1;
5862         sh->max_channel = 3;
5863         sh->max_cmd_len = MAX_COMMAND_SIZE;
5864         sh->max_lun = HPSA_MAX_LUN;
5865         sh->max_id = HPSA_MAX_LUN;
5866         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5867         sh->cmd_per_lun = sh->can_queue;
5868         sh->sg_tablesize = h->maxsgentries;
5869         sh->transportt = hpsa_sas_transport_template;
5870         sh->hostdata[0] = (unsigned long) h;
5871         sh->irq = pci_irq_vector(h->pdev, 0);
5872         sh->unique_id = sh->irq;
5873
5874         h->scsi_host = sh;
5875         return 0;
5876 }
5877
5878 static int hpsa_scsi_add_host(struct ctlr_info *h)
5879 {
5880         int rv;
5881
5882         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883         if (rv) {
5884                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5885                 return rv;
5886         }
5887         scsi_scan_host(h->scsi_host);
5888         return 0;
5889 }
5890
5891 /*
5892  * The block layer has already gone to the trouble of picking out a unique,
5893  * small-integer tag for this request.  We use an offset from that value as
5894  * an index to select our command block.  (The offset allows us to reserve the
5895  * low-numbered entries for our own uses.)
5896  */
5897 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898 {
5899         int idx = scsi_cmd_to_rq(scmd)->tag;
5900
5901         if (idx < 0)
5902                 return idx;
5903
5904         /* Offset to leave space for internal cmds. */
5905         return idx += HPSA_NRESERVED_CMDS;
5906 }
5907
5908 /*
5909  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911  */
5912 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5913                                 struct CommandList *c, unsigned char lunaddr[],
5914                                 int reply_queue)
5915 {
5916         int rc;
5917
5918         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919         (void) fill_cmd(c, TEST_UNIT_READY, h,
5920                         NULL, 0, 0, lunaddr, TYPE_CMD);
5921         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5922         if (rc)
5923                 return rc;
5924         /* no unmap needed here because no data xfer. */
5925
5926         /* Check if the unit is already ready. */
5927         if (c->err_info->CommandStatus == CMD_SUCCESS)
5928                 return 0;
5929
5930         /*
5931          * The first command sent after reset will receive "unit attention" to
5932          * indicate that the LUN has been reset...this is actually what we're
5933          * looking for (but, success is good too).
5934          */
5935         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5936                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5937                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5938                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5939                 return 0;
5940
5941         return 1;
5942 }
5943
5944 /*
5945  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946  * returns zero when the unit is ready, and non-zero when giving up.
5947  */
5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5949                                 struct CommandList *c,
5950                                 unsigned char lunaddr[], int reply_queue)
5951 {
5952         int rc;
5953         int count = 0;
5954         int waittime = 1; /* seconds */
5955
5956         /* Send test unit ready until device ready, or give up. */
5957         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5958
5959                 /*
5960                  * Wait for a bit.  do this first, because if we send
5961                  * the TUR right away, the reset will just abort it.
5962                  */
5963                 msleep(1000 * waittime);
5964
5965                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5966                 if (!rc)
5967                         break;
5968
5969                 /* Increase wait time with each try, up to a point. */
5970                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5971                         waittime *= 2;
5972
5973                 dev_warn(&h->pdev->dev,
5974                          "waiting %d secs for device to become ready.\n",
5975                          waittime);
5976         }
5977
5978         return rc;
5979 }
5980
5981 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5982                                            unsigned char lunaddr[],
5983                                            int reply_queue)
5984 {
5985         int first_queue;
5986         int last_queue;
5987         int rq;
5988         int rc = 0;
5989         struct CommandList *c;
5990
5991         c = cmd_alloc(h);
5992
5993         /*
5994          * If no specific reply queue was requested, then send the TUR
5995          * repeatedly, requesting a reply on each reply queue; otherwise execute
5996          * the loop exactly once using only the specified queue.
5997          */
5998         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999                 first_queue = 0;
6000                 last_queue = h->nreply_queues - 1;
6001         } else {
6002                 first_queue = reply_queue;
6003                 last_queue = reply_queue;
6004         }
6005
6006         for (rq = first_queue; rq <= last_queue; rq++) {
6007                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6008                 if (rc)
6009                         break;
6010         }
6011
6012         if (rc)
6013                 dev_warn(&h->pdev->dev, "giving up on device.\n");
6014         else
6015                 dev_warn(&h->pdev->dev, "device is ready.\n");
6016
6017         cmd_free(h, c);
6018         return rc;
6019 }
6020
6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022  * complaining.  Doing a host- or bus-reset can't do anything good here.
6023  */
6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6025 {
6026         int rc = SUCCESS;
6027         int i;
6028         struct ctlr_info *h;
6029         struct hpsa_scsi_dev_t *dev = NULL;
6030         u8 reset_type;
6031         char msg[48];
6032         unsigned long flags;
6033
6034         /* find the controller to which the command to be aborted was sent */
6035         h = sdev_to_hba(scsicmd->device);
6036         if (h == NULL) /* paranoia */
6037                 return FAILED;
6038
6039         spin_lock_irqsave(&h->reset_lock, flags);
6040         h->reset_in_progress = 1;
6041         spin_unlock_irqrestore(&h->reset_lock, flags);
6042
6043         if (lockup_detected(h)) {
6044                 rc = FAILED;
6045                 goto return_reset_status;
6046         }
6047
6048         dev = scsicmd->device->hostdata;
6049         if (!dev) {
6050                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051                 rc = FAILED;
6052                 goto return_reset_status;
6053         }
6054
6055         if (dev->devtype == TYPE_ENCLOSURE) {
6056                 rc = SUCCESS;
6057                 goto return_reset_status;
6058         }
6059
6060         /* if controller locked up, we can guarantee command won't complete */
6061         if (lockup_detected(h)) {
6062                 snprintf(msg, sizeof(msg),
6063                          "cmd %d RESET FAILED, lockup detected",
6064                          hpsa_get_cmd_index(scsicmd));
6065                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066                 rc = FAILED;
6067                 goto return_reset_status;
6068         }
6069
6070         /* this reset request might be the result of a lockup; check */
6071         if (detect_controller_lockup(h)) {
6072                 snprintf(msg, sizeof(msg),
6073                          "cmd %d RESET FAILED, new lockup detected",
6074                          hpsa_get_cmd_index(scsicmd));
6075                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076                 rc = FAILED;
6077                 goto return_reset_status;
6078         }
6079
6080         /* Do not attempt on controller */
6081         if (is_hba_lunid(dev->scsi3addr)) {
6082                 rc = SUCCESS;
6083                 goto return_reset_status;
6084         }
6085
6086         if (is_logical_dev_addr_mode(dev->scsi3addr))
6087                 reset_type = HPSA_DEVICE_RESET_MSG;
6088         else
6089                 reset_type = HPSA_PHYS_TARGET_RESET;
6090
6091         sprintf(msg, "resetting %s",
6092                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6093         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6094
6095         /*
6096          * wait to see if any commands will complete before sending reset
6097          */
6098         dev->in_reset = true; /* block any new cmds from OS for this device */
6099         for (i = 0; i < 10; i++) {
6100                 if (atomic_read(&dev->commands_outstanding) > 0)
6101                         msleep(1000);
6102                 else
6103                         break;
6104         }
6105
6106         /* send a reset to the SCSI LUN which the command was sent to */
6107         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6108         if (rc == 0)
6109                 rc = SUCCESS;
6110         else
6111                 rc = FAILED;
6112
6113         sprintf(msg, "reset %s %s",
6114                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6115                 rc == SUCCESS ? "completed successfully" : "failed");
6116         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117
6118 return_reset_status:
6119         spin_lock_irqsave(&h->reset_lock, flags);
6120         h->reset_in_progress = 0;
6121         if (dev)
6122                 dev->in_reset = false;
6123         spin_unlock_irqrestore(&h->reset_lock, flags);
6124         return rc;
6125 }
6126
6127 /*
6128  * For operations with an associated SCSI command, a command block is allocated
6129  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6131  * the complement, although cmd_free() may be called instead.
6132  * This function is only called for new requests from queue_command.
6133  */
6134 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6135                                             struct scsi_cmnd *scmd)
6136 {
6137         int idx = hpsa_get_cmd_index(scmd);
6138         struct CommandList *c = h->cmd_pool + idx;
6139
6140         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6141                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6142                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6143                 /* The index value comes from the block layer, so if it's out of
6144                  * bounds, it's probably not our bug.
6145                  */
6146                 BUG();
6147         }
6148
6149         if (unlikely(!hpsa_is_cmd_idle(c))) {
6150                 /*
6151                  * We expect that the SCSI layer will hand us a unique tag
6152                  * value.  Thus, there should never be a collision here between
6153                  * two requests...because if the selected command isn't idle
6154                  * then someone is going to be very disappointed.
6155                  */
6156                 if (idx != h->last_collision_tag) { /* Print once per tag */
6157                         dev_warn(&h->pdev->dev,
6158                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6159                         if (scmd)
6160                                 scsi_print_command(scmd);
6161                         h->last_collision_tag = idx;
6162                 }
6163                 return NULL;
6164         }
6165
6166         atomic_inc(&c->refcount);
6167         hpsa_cmd_partial_init(h, idx, c);
6168
6169         /*
6170          * This is a new command obtained from queue_command so
6171          * there have not been any driver initiated retry attempts.
6172          */
6173         c->retry_pending = false;
6174
6175         return c;
6176 }
6177
6178 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6179 {
6180         /*
6181          * Release our reference to the block.  We don't need to do anything
6182          * else to free it, because it is accessed by index.
6183          */
6184         (void)atomic_dec(&c->refcount);
6185 }
6186
6187 /*
6188  * For operations that cannot sleep, a command block is allocated at init,
6189  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190  * which ones are free or in use.  Lock must be held when calling this.
6191  * cmd_free() is the complement.
6192  * This function never gives up and returns NULL.  If it hangs,
6193  * another thread must call cmd_free() to free some tags.
6194  */
6195
6196 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197 {
6198         struct CommandList *c;
6199         int refcount, i;
6200         int offset = 0;
6201
6202         /*
6203          * There is some *extremely* small but non-zero chance that that
6204          * multiple threads could get in here, and one thread could
6205          * be scanning through the list of bits looking for a free
6206          * one, but the free ones are always behind him, and other
6207          * threads sneak in behind him and eat them before he can
6208          * get to them, so that while there is always a free one, a
6209          * very unlucky thread might be starved anyway, never able to
6210          * beat the other threads.  In reality, this happens so
6211          * infrequently as to be indistinguishable from never.
6212          *
6213          * Note that we start allocating commands before the SCSI host structure
6214          * is initialized.  Since the search starts at bit zero, this
6215          * all works, since we have at least one command structure available;
6216          * however, it means that the structures with the low indexes have to be
6217          * reserved for driver-initiated requests, while requests from the block
6218          * layer will use the higher indexes.
6219          */
6220
6221         for (;;) {
6222                 i = find_next_zero_bit(h->cmd_pool_bits,
6223                                         HPSA_NRESERVED_CMDS,
6224                                         offset);
6225                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6226                         offset = 0;
6227                         continue;
6228                 }
6229                 c = h->cmd_pool + i;
6230                 refcount = atomic_inc_return(&c->refcount);
6231                 if (unlikely(refcount > 1)) {
6232                         cmd_free(h, c); /* already in use */
6233                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6234                         continue;
6235                 }
6236                 set_bit(i & (BITS_PER_LONG - 1),
6237                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6238                 break; /* it's ours now. */
6239         }
6240         hpsa_cmd_partial_init(h, i, c);
6241         c->device = NULL;
6242
6243         /*
6244          * cmd_alloc is for "internal" commands and they are never
6245          * retried.
6246          */
6247         c->retry_pending = false;
6248
6249         return c;
6250 }
6251
6252 /*
6253  * This is the complementary operation to cmd_alloc().  Note, however, in some
6254  * corner cases it may also be used to free blocks allocated by
6255  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6256  * the clear-bit is harmless.
6257  */
6258 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6259 {
6260         if (atomic_dec_and_test(&c->refcount)) {
6261                 int i;
6262
6263                 i = c - h->cmd_pool;
6264                 clear_bit(i & (BITS_PER_LONG - 1),
6265                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6266         }
6267 }
6268
6269 #ifdef CONFIG_COMPAT
6270
6271 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6272         void __user *arg)
6273 {
6274         struct ctlr_info *h = sdev_to_hba(dev);
6275         IOCTL32_Command_struct __user *arg32 = arg;
6276         IOCTL_Command_struct arg64;
6277         int err;
6278         u32 cp;
6279
6280         if (!arg)
6281                 return -EINVAL;
6282
6283         memset(&arg64, 0, sizeof(arg64));
6284         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6285                 return -EFAULT;
6286         if (get_user(cp, &arg32->buf))
6287                 return -EFAULT;
6288         arg64.buf = compat_ptr(cp);
6289
6290         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291                 return -EAGAIN;
6292         err = hpsa_passthru_ioctl(h, &arg64);
6293         atomic_inc(&h->passthru_cmds_avail);
6294         if (err)
6295                 return err;
6296         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6297                          sizeof(arg32->error_info)))
6298                 return -EFAULT;
6299         return 0;
6300 }
6301
6302 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6303         unsigned int cmd, void __user *arg)
6304 {
6305         struct ctlr_info *h = sdev_to_hba(dev);
6306         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6307         BIG_IOCTL_Command_struct arg64;
6308         int err;
6309         u32 cp;
6310
6311         if (!arg)
6312                 return -EINVAL;
6313         memset(&arg64, 0, sizeof(arg64));
6314         if (copy_from_user(&arg64, arg32,
6315                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6316                 return -EFAULT;
6317         if (get_user(cp, &arg32->buf))
6318                 return -EFAULT;
6319         arg64.buf = compat_ptr(cp);
6320
6321         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6322                 return -EAGAIN;
6323         err = hpsa_big_passthru_ioctl(h, &arg64);
6324         atomic_inc(&h->passthru_cmds_avail);
6325         if (err)
6326                 return err;
6327         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6328                          sizeof(arg32->error_info)))
6329                 return -EFAULT;
6330         return 0;
6331 }
6332
6333 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6334                              void __user *arg)
6335 {
6336         switch (cmd) {
6337         case CCISS_GETPCIINFO:
6338         case CCISS_GETINTINFO:
6339         case CCISS_SETINTINFO:
6340         case CCISS_GETNODENAME:
6341         case CCISS_SETNODENAME:
6342         case CCISS_GETHEARTBEAT:
6343         case CCISS_GETBUSTYPES:
6344         case CCISS_GETFIRMVER:
6345         case CCISS_GETDRIVVER:
6346         case CCISS_REVALIDVOLS:
6347         case CCISS_DEREGDISK:
6348         case CCISS_REGNEWDISK:
6349         case CCISS_REGNEWD:
6350         case CCISS_RESCANDISK:
6351         case CCISS_GETLUNINFO:
6352                 return hpsa_ioctl(dev, cmd, arg);
6353
6354         case CCISS_PASSTHRU32:
6355                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6356         case CCISS_BIG_PASSTHRU32:
6357                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6358
6359         default:
6360                 return -ENOIOCTLCMD;
6361         }
6362 }
6363 #endif
6364
6365 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6366 {
6367         struct hpsa_pci_info pciinfo;
6368
6369         if (!argp)
6370                 return -EINVAL;
6371         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6372         pciinfo.bus = h->pdev->bus->number;
6373         pciinfo.dev_fn = h->pdev->devfn;
6374         pciinfo.board_id = h->board_id;
6375         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6376                 return -EFAULT;
6377         return 0;
6378 }
6379
6380 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6381 {
6382         DriverVer_type DriverVer;
6383         unsigned char vmaj, vmin, vsubmin;
6384         int rc;
6385
6386         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6387                 &vmaj, &vmin, &vsubmin);
6388         if (rc != 3) {
6389                 dev_info(&h->pdev->dev, "driver version string '%s' "
6390                         "unrecognized.", HPSA_DRIVER_VERSION);
6391                 vmaj = 0;
6392                 vmin = 0;
6393                 vsubmin = 0;
6394         }
6395         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6396         if (!argp)
6397                 return -EINVAL;
6398         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6399                 return -EFAULT;
6400         return 0;
6401 }
6402
6403 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6404                                IOCTL_Command_struct *iocommand)
6405 {
6406         struct CommandList *c;
6407         char *buff = NULL;
6408         u64 temp64;
6409         int rc = 0;
6410
6411         if (!capable(CAP_SYS_RAWIO))
6412                 return -EPERM;
6413         if ((iocommand->buf_size < 1) &&
6414             (iocommand->Request.Type.Direction != XFER_NONE)) {
6415                 return -EINVAL;
6416         }
6417         if (iocommand->buf_size > 0) {
6418                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6419                 if (buff == NULL)
6420                         return -ENOMEM;
6421                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6422                         /* Copy the data into the buffer we created */
6423                         if (copy_from_user(buff, iocommand->buf,
6424                                 iocommand->buf_size)) {
6425                                 rc = -EFAULT;
6426                                 goto out_kfree;
6427                         }
6428                 } else {
6429                         memset(buff, 0, iocommand->buf_size);
6430                 }
6431         }
6432         c = cmd_alloc(h);
6433
6434         /* Fill in the command type */
6435         c->cmd_type = CMD_IOCTL_PEND;
6436         c->scsi_cmd = SCSI_CMD_BUSY;
6437         /* Fill in Command Header */
6438         c->Header.ReplyQueue = 0; /* unused in simple mode */
6439         if (iocommand->buf_size > 0) {  /* buffer to fill */
6440                 c->Header.SGList = 1;
6441                 c->Header.SGTotal = cpu_to_le16(1);
6442         } else  { /* no buffers to fill */
6443                 c->Header.SGList = 0;
6444                 c->Header.SGTotal = cpu_to_le16(0);
6445         }
6446         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6447
6448         /* Fill in Request block */
6449         memcpy(&c->Request, &iocommand->Request,
6450                 sizeof(c->Request));
6451
6452         /* Fill in the scatter gather information */
6453         if (iocommand->buf_size > 0) {
6454                 temp64 = dma_map_single(&h->pdev->dev, buff,
6455                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6456                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6457                         c->SG[0].Addr = cpu_to_le64(0);
6458                         c->SG[0].Len = cpu_to_le32(0);
6459                         rc = -ENOMEM;
6460                         goto out;
6461                 }
6462                 c->SG[0].Addr = cpu_to_le64(temp64);
6463                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6464                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6465         }
6466         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6467                                         NO_TIMEOUT);
6468         if (iocommand->buf_size > 0)
6469                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6470         check_ioctl_unit_attention(h, c);
6471         if (rc) {
6472                 rc = -EIO;
6473                 goto out;
6474         }
6475
6476         /* Copy the error information out */
6477         memcpy(&iocommand->error_info, c->err_info,
6478                 sizeof(iocommand->error_info));
6479         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6480                 iocommand->buf_size > 0) {
6481                 /* Copy the data out of the buffer we created */
6482                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6483                         rc = -EFAULT;
6484                         goto out;
6485                 }
6486         }
6487 out:
6488         cmd_free(h, c);
6489 out_kfree:
6490         kfree(buff);
6491         return rc;
6492 }
6493
6494 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6495                                    BIG_IOCTL_Command_struct *ioc)
6496 {
6497         struct CommandList *c;
6498         unsigned char **buff = NULL;
6499         int *buff_size = NULL;
6500         u64 temp64;
6501         BYTE sg_used = 0;
6502         int status = 0;
6503         u32 left;
6504         u32 sz;
6505         BYTE __user *data_ptr;
6506
6507         if (!capable(CAP_SYS_RAWIO))
6508                 return -EPERM;
6509
6510         if ((ioc->buf_size < 1) &&
6511             (ioc->Request.Type.Direction != XFER_NONE))
6512                 return -EINVAL;
6513         /* Check kmalloc limits  using all SGs */
6514         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6515                 return -EINVAL;
6516         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6517                 return -EINVAL;
6518         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6519         if (!buff) {
6520                 status = -ENOMEM;
6521                 goto cleanup1;
6522         }
6523         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6524         if (!buff_size) {
6525                 status = -ENOMEM;
6526                 goto cleanup1;
6527         }
6528         left = ioc->buf_size;
6529         data_ptr = ioc->buf;
6530         while (left) {
6531                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6532                 buff_size[sg_used] = sz;
6533                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6534                 if (buff[sg_used] == NULL) {
6535                         status = -ENOMEM;
6536                         goto cleanup1;
6537                 }
6538                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6539                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6540                                 status = -EFAULT;
6541                                 goto cleanup1;
6542                         }
6543                 } else
6544                         memset(buff[sg_used], 0, sz);
6545                 left -= sz;
6546                 data_ptr += sz;
6547                 sg_used++;
6548         }
6549         c = cmd_alloc(h);
6550
6551         c->cmd_type = CMD_IOCTL_PEND;
6552         c->scsi_cmd = SCSI_CMD_BUSY;
6553         c->Header.ReplyQueue = 0;
6554         c->Header.SGList = (u8) sg_used;
6555         c->Header.SGTotal = cpu_to_le16(sg_used);
6556         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6557         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6558         if (ioc->buf_size > 0) {
6559                 int i;
6560                 for (i = 0; i < sg_used; i++) {
6561                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6562                                     buff_size[i], DMA_BIDIRECTIONAL);
6563                         if (dma_mapping_error(&h->pdev->dev,
6564                                                         (dma_addr_t) temp64)) {
6565                                 c->SG[i].Addr = cpu_to_le64(0);
6566                                 c->SG[i].Len = cpu_to_le32(0);
6567                                 hpsa_pci_unmap(h->pdev, c, i,
6568                                         DMA_BIDIRECTIONAL);
6569                                 status = -ENOMEM;
6570                                 goto cleanup0;
6571                         }
6572                         c->SG[i].Addr = cpu_to_le64(temp64);
6573                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6574                         c->SG[i].Ext = cpu_to_le32(0);
6575                 }
6576                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6577         }
6578         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6579                                                 NO_TIMEOUT);
6580         if (sg_used)
6581                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6582         check_ioctl_unit_attention(h, c);
6583         if (status) {
6584                 status = -EIO;
6585                 goto cleanup0;
6586         }
6587
6588         /* Copy the error information out */
6589         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6590         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6591                 int i;
6592
6593                 /* Copy the data out of the buffer we created */
6594                 BYTE __user *ptr = ioc->buf;
6595                 for (i = 0; i < sg_used; i++) {
6596                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6597                                 status = -EFAULT;
6598                                 goto cleanup0;
6599                         }
6600                         ptr += buff_size[i];
6601                 }
6602         }
6603         status = 0;
6604 cleanup0:
6605         cmd_free(h, c);
6606 cleanup1:
6607         if (buff) {
6608                 int i;
6609
6610                 for (i = 0; i < sg_used; i++)
6611                         kfree(buff[i]);
6612                 kfree(buff);
6613         }
6614         kfree(buff_size);
6615         return status;
6616 }
6617
6618 static void check_ioctl_unit_attention(struct ctlr_info *h,
6619         struct CommandList *c)
6620 {
6621         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6622                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6623                 (void) check_for_unit_attention(h, c);
6624 }
6625
6626 /*
6627  * ioctl
6628  */
6629 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6630                       void __user *argp)
6631 {
6632         struct ctlr_info *h = sdev_to_hba(dev);
6633         int rc;
6634
6635         switch (cmd) {
6636         case CCISS_DEREGDISK:
6637         case CCISS_REGNEWDISK:
6638         case CCISS_REGNEWD:
6639                 hpsa_scan_start(h->scsi_host);
6640                 return 0;
6641         case CCISS_GETPCIINFO:
6642                 return hpsa_getpciinfo_ioctl(h, argp);
6643         case CCISS_GETDRIVVER:
6644                 return hpsa_getdrivver_ioctl(h, argp);
6645         case CCISS_PASSTHRU: {
6646                 IOCTL_Command_struct iocommand;
6647
6648                 if (!argp)
6649                         return -EINVAL;
6650                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6651                         return -EFAULT;
6652                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6653                         return -EAGAIN;
6654                 rc = hpsa_passthru_ioctl(h, &iocommand);
6655                 atomic_inc(&h->passthru_cmds_avail);
6656                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6657                         rc = -EFAULT;
6658                 return rc;
6659         }
6660         case CCISS_BIG_PASSTHRU: {
6661                 BIG_IOCTL_Command_struct ioc;
6662                 if (!argp)
6663                         return -EINVAL;
6664                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6665                         return -EFAULT;
6666                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6667                         return -EAGAIN;
6668                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6669                 atomic_inc(&h->passthru_cmds_avail);
6670                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6671                         rc = -EFAULT;
6672                 return rc;
6673         }
6674         default:
6675                 return -ENOTTY;
6676         }
6677 }
6678
6679 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6680 {
6681         struct CommandList *c;
6682
6683         c = cmd_alloc(h);
6684
6685         /* fill_cmd can't fail here, no data buffer to map */
6686         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6687                 RAID_CTLR_LUNID, TYPE_MSG);
6688         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6689         c->waiting = NULL;
6690         enqueue_cmd_and_start_io(h, c);
6691         /* Don't wait for completion, the reset won't complete.  Don't free
6692          * the command either.  This is the last command we will send before
6693          * re-initializing everything, so it doesn't matter and won't leak.
6694          */
6695         return;
6696 }
6697
6698 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6699         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6700         int cmd_type)
6701 {
6702         enum dma_data_direction dir = DMA_NONE;
6703
6704         c->cmd_type = CMD_IOCTL_PEND;
6705         c->scsi_cmd = SCSI_CMD_BUSY;
6706         c->Header.ReplyQueue = 0;
6707         if (buff != NULL && size > 0) {
6708                 c->Header.SGList = 1;
6709                 c->Header.SGTotal = cpu_to_le16(1);
6710         } else {
6711                 c->Header.SGList = 0;
6712                 c->Header.SGTotal = cpu_to_le16(0);
6713         }
6714         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6715
6716         if (cmd_type == TYPE_CMD) {
6717                 switch (cmd) {
6718                 case HPSA_INQUIRY:
6719                         /* are we trying to read a vital product page */
6720                         if (page_code & VPD_PAGE) {
6721                                 c->Request.CDB[1] = 0x01;
6722                                 c->Request.CDB[2] = (page_code & 0xff);
6723                         }
6724                         c->Request.CDBLen = 6;
6725                         c->Request.type_attr_dir =
6726                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727                         c->Request.Timeout = 0;
6728                         c->Request.CDB[0] = HPSA_INQUIRY;
6729                         c->Request.CDB[4] = size & 0xFF;
6730                         break;
6731                 case RECEIVE_DIAGNOSTIC:
6732                         c->Request.CDBLen = 6;
6733                         c->Request.type_attr_dir =
6734                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6735                         c->Request.Timeout = 0;
6736                         c->Request.CDB[0] = cmd;
6737                         c->Request.CDB[1] = 1;
6738                         c->Request.CDB[2] = 1;
6739                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6740                         c->Request.CDB[4] = size & 0xFF;
6741                         break;
6742                 case HPSA_REPORT_LOG:
6743                 case HPSA_REPORT_PHYS:
6744                         /* Talking to controller so It's a physical command
6745                            mode = 00 target = 0.  Nothing to write.
6746                          */
6747                         c->Request.CDBLen = 12;
6748                         c->Request.type_attr_dir =
6749                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6750                         c->Request.Timeout = 0;
6751                         c->Request.CDB[0] = cmd;
6752                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6753                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6754                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6755                         c->Request.CDB[9] = size & 0xFF;
6756                         break;
6757                 case BMIC_SENSE_DIAG_OPTIONS:
6758                         c->Request.CDBLen = 16;
6759                         c->Request.type_attr_dir =
6760                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6761                         c->Request.Timeout = 0;
6762                         /* Spec says this should be BMIC_WRITE */
6763                         c->Request.CDB[0] = BMIC_READ;
6764                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6765                         break;
6766                 case BMIC_SET_DIAG_OPTIONS:
6767                         c->Request.CDBLen = 16;
6768                         c->Request.type_attr_dir =
6769                                         TYPE_ATTR_DIR(cmd_type,
6770                                                 ATTR_SIMPLE, XFER_WRITE);
6771                         c->Request.Timeout = 0;
6772                         c->Request.CDB[0] = BMIC_WRITE;
6773                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6774                         break;
6775                 case HPSA_CACHE_FLUSH:
6776                         c->Request.CDBLen = 12;
6777                         c->Request.type_attr_dir =
6778                                         TYPE_ATTR_DIR(cmd_type,
6779                                                 ATTR_SIMPLE, XFER_WRITE);
6780                         c->Request.Timeout = 0;
6781                         c->Request.CDB[0] = BMIC_WRITE;
6782                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6783                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6784                         c->Request.CDB[8] = size & 0xFF;
6785                         break;
6786                 case TEST_UNIT_READY:
6787                         c->Request.CDBLen = 6;
6788                         c->Request.type_attr_dir =
6789                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6790                         c->Request.Timeout = 0;
6791                         break;
6792                 case HPSA_GET_RAID_MAP:
6793                         c->Request.CDBLen = 12;
6794                         c->Request.type_attr_dir =
6795                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6796                         c->Request.Timeout = 0;
6797                         c->Request.CDB[0] = HPSA_CISS_READ;
6798                         c->Request.CDB[1] = cmd;
6799                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6800                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6801                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6802                         c->Request.CDB[9] = size & 0xFF;
6803                         break;
6804                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6805                         c->Request.CDBLen = 10;
6806                         c->Request.type_attr_dir =
6807                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808                         c->Request.Timeout = 0;
6809                         c->Request.CDB[0] = BMIC_READ;
6810                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6811                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6812                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6813                         break;
6814                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6815                         c->Request.CDBLen = 10;
6816                         c->Request.type_attr_dir =
6817                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818                         c->Request.Timeout = 0;
6819                         c->Request.CDB[0] = BMIC_READ;
6820                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6821                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6822                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6823                         break;
6824                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6825                         c->Request.CDBLen = 10;
6826                         c->Request.type_attr_dir =
6827                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6828                         c->Request.Timeout = 0;
6829                         c->Request.CDB[0] = BMIC_READ;
6830                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6831                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6832                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6833                         break;
6834                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6835                         c->Request.CDBLen = 10;
6836                         c->Request.type_attr_dir =
6837                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6838                         c->Request.Timeout = 0;
6839                         c->Request.CDB[0] = BMIC_READ;
6840                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6841                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6842                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6843                         break;
6844                 case BMIC_IDENTIFY_CONTROLLER:
6845                         c->Request.CDBLen = 10;
6846                         c->Request.type_attr_dir =
6847                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6848                         c->Request.Timeout = 0;
6849                         c->Request.CDB[0] = BMIC_READ;
6850                         c->Request.CDB[1] = 0;
6851                         c->Request.CDB[2] = 0;
6852                         c->Request.CDB[3] = 0;
6853                         c->Request.CDB[4] = 0;
6854                         c->Request.CDB[5] = 0;
6855                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6856                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6857                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6858                         c->Request.CDB[9] = 0;
6859                         break;
6860                 default:
6861                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6862                         BUG();
6863                 }
6864         } else if (cmd_type == TYPE_MSG) {
6865                 switch (cmd) {
6866
6867                 case  HPSA_PHYS_TARGET_RESET:
6868                         c->Request.CDBLen = 16;
6869                         c->Request.type_attr_dir =
6870                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6871                         c->Request.Timeout = 0; /* Don't time out */
6872                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6873                         c->Request.CDB[0] = HPSA_RESET;
6874                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6875                         /* Physical target reset needs no control bytes 4-7*/
6876                         c->Request.CDB[4] = 0x00;
6877                         c->Request.CDB[5] = 0x00;
6878                         c->Request.CDB[6] = 0x00;
6879                         c->Request.CDB[7] = 0x00;
6880                         break;
6881                 case  HPSA_DEVICE_RESET_MSG:
6882                         c->Request.CDBLen = 16;
6883                         c->Request.type_attr_dir =
6884                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6885                         c->Request.Timeout = 0; /* Don't time out */
6886                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6887                         c->Request.CDB[0] =  cmd;
6888                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6889                         /* If bytes 4-7 are zero, it means reset the */
6890                         /* LunID device */
6891                         c->Request.CDB[4] = 0x00;
6892                         c->Request.CDB[5] = 0x00;
6893                         c->Request.CDB[6] = 0x00;
6894                         c->Request.CDB[7] = 0x00;
6895                         break;
6896                 default:
6897                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6898                                 cmd);
6899                         BUG();
6900                 }
6901         } else {
6902                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6903                 BUG();
6904         }
6905
6906         switch (GET_DIR(c->Request.type_attr_dir)) {
6907         case XFER_READ:
6908                 dir = DMA_FROM_DEVICE;
6909                 break;
6910         case XFER_WRITE:
6911                 dir = DMA_TO_DEVICE;
6912                 break;
6913         case XFER_NONE:
6914                 dir = DMA_NONE;
6915                 break;
6916         default:
6917                 dir = DMA_BIDIRECTIONAL;
6918         }
6919         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6920                 return -1;
6921         return 0;
6922 }
6923
6924 /*
6925  * Map (physical) PCI mem into (virtual) kernel space
6926  */
6927 static void __iomem *remap_pci_mem(ulong base, ulong size)
6928 {
6929         ulong page_base = ((ulong) base) & PAGE_MASK;
6930         ulong page_offs = ((ulong) base) - page_base;
6931         void __iomem *page_remapped = ioremap(page_base,
6932                 page_offs + size);
6933
6934         return page_remapped ? (page_remapped + page_offs) : NULL;
6935 }
6936
6937 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6938 {
6939         return h->access.command_completed(h, q);
6940 }
6941
6942 static inline bool interrupt_pending(struct ctlr_info *h)
6943 {
6944         return h->access.intr_pending(h);
6945 }
6946
6947 static inline long interrupt_not_for_us(struct ctlr_info *h)
6948 {
6949         return (h->access.intr_pending(h) == 0) ||
6950                 (h->interrupts_enabled == 0);
6951 }
6952
6953 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6954         u32 raw_tag)
6955 {
6956         if (unlikely(tag_index >= h->nr_cmds)) {
6957                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6958                 return 1;
6959         }
6960         return 0;
6961 }
6962
6963 static inline void finish_cmd(struct CommandList *c)
6964 {
6965         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6966         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6967                         || c->cmd_type == CMD_IOACCEL2))
6968                 complete_scsi_command(c);
6969         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6970                 complete(c->waiting);
6971 }
6972
6973 /* process completion of an indexed ("direct lookup") command */
6974 static inline void process_indexed_cmd(struct ctlr_info *h,
6975         u32 raw_tag)
6976 {
6977         u32 tag_index;
6978         struct CommandList *c;
6979
6980         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6981         if (!bad_tag(h, tag_index, raw_tag)) {
6982                 c = h->cmd_pool + tag_index;
6983                 finish_cmd(c);
6984         }
6985 }
6986
6987 /* Some controllers, like p400, will give us one interrupt
6988  * after a soft reset, even if we turned interrupts off.
6989  * Only need to check for this in the hpsa_xxx_discard_completions
6990  * functions.
6991  */
6992 static int ignore_bogus_interrupt(struct ctlr_info *h)
6993 {
6994         if (likely(!reset_devices))
6995                 return 0;
6996
6997         if (likely(h->interrupts_enabled))
6998                 return 0;
6999
7000         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7001                 "(known firmware bug.)  Ignoring.\n");
7002
7003         return 1;
7004 }
7005
7006 /*
7007  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7008  * Relies on (h-q[x] == x) being true for x such that
7009  * 0 <= x < MAX_REPLY_QUEUES.
7010  */
7011 static struct ctlr_info *queue_to_hba(u8 *queue)
7012 {
7013         return container_of((queue - *queue), struct ctlr_info, q[0]);
7014 }
7015
7016 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7017 {
7018         struct ctlr_info *h = queue_to_hba(queue);
7019         u8 q = *(u8 *) queue;
7020         u32 raw_tag;
7021
7022         if (ignore_bogus_interrupt(h))
7023                 return IRQ_NONE;
7024
7025         if (interrupt_not_for_us(h))
7026                 return IRQ_NONE;
7027         h->last_intr_timestamp = get_jiffies_64();
7028         while (interrupt_pending(h)) {
7029                 raw_tag = get_next_completion(h, q);
7030                 while (raw_tag != FIFO_EMPTY)
7031                         raw_tag = next_command(h, q);
7032         }
7033         return IRQ_HANDLED;
7034 }
7035
7036 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7037 {
7038         struct ctlr_info *h = queue_to_hba(queue);
7039         u32 raw_tag;
7040         u8 q = *(u8 *) queue;
7041
7042         if (ignore_bogus_interrupt(h))
7043                 return IRQ_NONE;
7044
7045         h->last_intr_timestamp = get_jiffies_64();
7046         raw_tag = get_next_completion(h, q);
7047         while (raw_tag != FIFO_EMPTY)
7048                 raw_tag = next_command(h, q);
7049         return IRQ_HANDLED;
7050 }
7051
7052 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7053 {
7054         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7055         u32 raw_tag;
7056         u8 q = *(u8 *) queue;
7057
7058         if (interrupt_not_for_us(h))
7059                 return IRQ_NONE;
7060         h->last_intr_timestamp = get_jiffies_64();
7061         while (interrupt_pending(h)) {
7062                 raw_tag = get_next_completion(h, q);
7063                 while (raw_tag != FIFO_EMPTY) {
7064                         process_indexed_cmd(h, raw_tag);
7065                         raw_tag = next_command(h, q);
7066                 }
7067         }
7068         return IRQ_HANDLED;
7069 }
7070
7071 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7072 {
7073         struct ctlr_info *h = queue_to_hba(queue);
7074         u32 raw_tag;
7075         u8 q = *(u8 *) queue;
7076
7077         h->last_intr_timestamp = get_jiffies_64();
7078         raw_tag = get_next_completion(h, q);
7079         while (raw_tag != FIFO_EMPTY) {
7080                 process_indexed_cmd(h, raw_tag);
7081                 raw_tag = next_command(h, q);
7082         }
7083         return IRQ_HANDLED;
7084 }
7085
7086 /* Send a message CDB to the firmware. Careful, this only works
7087  * in simple mode, not performant mode due to the tag lookup.
7088  * We only ever use this immediately after a controller reset.
7089  */
7090 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7091                         unsigned char type)
7092 {
7093         struct Command {
7094                 struct CommandListHeader CommandHeader;
7095                 struct RequestBlock Request;
7096                 struct ErrDescriptor ErrorDescriptor;
7097         };
7098         struct Command *cmd;
7099         static const size_t cmd_sz = sizeof(*cmd) +
7100                                         sizeof(cmd->ErrorDescriptor);
7101         dma_addr_t paddr64;
7102         __le32 paddr32;
7103         u32 tag;
7104         void __iomem *vaddr;
7105         int i, err;
7106
7107         vaddr = pci_ioremap_bar(pdev, 0);
7108         if (vaddr == NULL)
7109                 return -ENOMEM;
7110
7111         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7112          * CCISS commands, so they must be allocated from the lower 4GiB of
7113          * memory.
7114          */
7115         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7116         if (err) {
7117                 iounmap(vaddr);
7118                 return err;
7119         }
7120
7121         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7122         if (cmd == NULL) {
7123                 iounmap(vaddr);
7124                 return -ENOMEM;
7125         }
7126
7127         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7128          * although there's no guarantee, we assume that the address is at
7129          * least 4-byte aligned (most likely, it's page-aligned).
7130          */
7131         paddr32 = cpu_to_le32(paddr64);
7132
7133         cmd->CommandHeader.ReplyQueue = 0;
7134         cmd->CommandHeader.SGList = 0;
7135         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7136         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7137         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7138
7139         cmd->Request.CDBLen = 16;
7140         cmd->Request.type_attr_dir =
7141                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7142         cmd->Request.Timeout = 0; /* Don't time out */
7143         cmd->Request.CDB[0] = opcode;
7144         cmd->Request.CDB[1] = type;
7145         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7146         cmd->ErrorDescriptor.Addr =
7147                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7148         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7149
7150         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7151
7152         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7153                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7154                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7155                         break;
7156                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7157         }
7158
7159         iounmap(vaddr);
7160
7161         /* we leak the DMA buffer here ... no choice since the controller could
7162          *  still complete the command.
7163          */
7164         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7165                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7166                         opcode, type);
7167                 return -ETIMEDOUT;
7168         }
7169
7170         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7171
7172         if (tag & HPSA_ERROR_BIT) {
7173                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7174                         opcode, type);
7175                 return -EIO;
7176         }
7177
7178         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7179                 opcode, type);
7180         return 0;
7181 }
7182
7183 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7184
7185 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7186         void __iomem *vaddr, u32 use_doorbell)
7187 {
7188
7189         if (use_doorbell) {
7190                 /* For everything after the P600, the PCI power state method
7191                  * of resetting the controller doesn't work, so we have this
7192                  * other way using the doorbell register.
7193                  */
7194                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7195                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7196
7197                 /* PMC hardware guys tell us we need a 10 second delay after
7198                  * doorbell reset and before any attempt to talk to the board
7199                  * at all to ensure that this actually works and doesn't fall
7200                  * over in some weird corner cases.
7201                  */
7202                 msleep(10000);
7203         } else { /* Try to do it the PCI power state way */
7204
7205                 /* Quoting from the Open CISS Specification: "The Power
7206                  * Management Control/Status Register (CSR) controls the power
7207                  * state of the device.  The normal operating state is D0,
7208                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7209                  * the controller, place the interface device in D3 then to D0,
7210                  * this causes a secondary PCI reset which will reset the
7211                  * controller." */
7212
7213                 int rc = 0;
7214
7215                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7216
7217                 /* enter the D3hot power management state */
7218                 rc = pci_set_power_state(pdev, PCI_D3hot);
7219                 if (rc)
7220                         return rc;
7221
7222                 msleep(500);
7223
7224                 /* enter the D0 power management state */
7225                 rc = pci_set_power_state(pdev, PCI_D0);
7226                 if (rc)
7227                         return rc;
7228
7229                 /*
7230                  * The P600 requires a small delay when changing states.
7231                  * Otherwise we may think the board did not reset and we bail.
7232                  * This for kdump only and is particular to the P600.
7233                  */
7234                 msleep(500);
7235         }
7236         return 0;
7237 }
7238
7239 static void init_driver_version(char *driver_version, int len)
7240 {
7241         memset(driver_version, 0, len);
7242         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7243 }
7244
7245 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7246 {
7247         char *driver_version;
7248         int i, size = sizeof(cfgtable->driver_version);
7249
7250         driver_version = kmalloc(size, GFP_KERNEL);
7251         if (!driver_version)
7252                 return -ENOMEM;
7253
7254         init_driver_version(driver_version, size);
7255         for (i = 0; i < size; i++)
7256                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7257         kfree(driver_version);
7258         return 0;
7259 }
7260
7261 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7262                                           unsigned char *driver_ver)
7263 {
7264         int i;
7265
7266         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7267                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7268 }
7269
7270 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7271 {
7272
7273         char *driver_ver, *old_driver_ver;
7274         int rc, size = sizeof(cfgtable->driver_version);
7275
7276         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7277         if (!old_driver_ver)
7278                 return -ENOMEM;
7279         driver_ver = old_driver_ver + size;
7280
7281         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7282          * should have been changed, otherwise we know the reset failed.
7283          */
7284         init_driver_version(old_driver_ver, size);
7285         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7286         rc = !memcmp(driver_ver, old_driver_ver, size);
7287         kfree(old_driver_ver);
7288         return rc;
7289 }
7290 /* This does a hard reset of the controller using PCI power management
7291  * states or the using the doorbell register.
7292  */
7293 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7294 {
7295         u64 cfg_offset;
7296         u32 cfg_base_addr;
7297         u64 cfg_base_addr_index;
7298         void __iomem *vaddr;
7299         unsigned long paddr;
7300         u32 misc_fw_support;
7301         int rc;
7302         struct CfgTable __iomem *cfgtable;
7303         u32 use_doorbell;
7304         u16 command_register;
7305
7306         /* For controllers as old as the P600, this is very nearly
7307          * the same thing as
7308          *
7309          * pci_save_state(pci_dev);
7310          * pci_set_power_state(pci_dev, PCI_D3hot);
7311          * pci_set_power_state(pci_dev, PCI_D0);
7312          * pci_restore_state(pci_dev);
7313          *
7314          * For controllers newer than the P600, the pci power state
7315          * method of resetting doesn't work so we have another way
7316          * using the doorbell register.
7317          */
7318
7319         if (!ctlr_is_resettable(board_id)) {
7320                 dev_warn(&pdev->dev, "Controller not resettable\n");
7321                 return -ENODEV;
7322         }
7323
7324         /* if controller is soft- but not hard resettable... */
7325         if (!ctlr_is_hard_resettable(board_id))
7326                 return -ENOTSUPP; /* try soft reset later. */
7327
7328         /* Save the PCI command register */
7329         pci_read_config_word(pdev, 4, &command_register);
7330         pci_save_state(pdev);
7331
7332         /* find the first memory BAR, so we can find the cfg table */
7333         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7334         if (rc)
7335                 return rc;
7336         vaddr = remap_pci_mem(paddr, 0x250);
7337         if (!vaddr)
7338                 return -ENOMEM;
7339
7340         /* find cfgtable in order to check if reset via doorbell is supported */
7341         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7342                                         &cfg_base_addr_index, &cfg_offset);
7343         if (rc)
7344                 goto unmap_vaddr;
7345         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7346                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7347         if (!cfgtable) {
7348                 rc = -ENOMEM;
7349                 goto unmap_vaddr;
7350         }
7351         rc = write_driver_ver_to_cfgtable(cfgtable);
7352         if (rc)
7353                 goto unmap_cfgtable;
7354
7355         /* If reset via doorbell register is supported, use that.
7356          * There are two such methods.  Favor the newest method.
7357          */
7358         misc_fw_support = readl(&cfgtable->misc_fw_support);
7359         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7360         if (use_doorbell) {
7361                 use_doorbell = DOORBELL_CTLR_RESET2;
7362         } else {
7363                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7364                 if (use_doorbell) {
7365                         dev_warn(&pdev->dev,
7366                                 "Soft reset not supported. Firmware update is required.\n");
7367                         rc = -ENOTSUPP; /* try soft reset */
7368                         goto unmap_cfgtable;
7369                 }
7370         }
7371
7372         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7373         if (rc)
7374                 goto unmap_cfgtable;
7375
7376         pci_restore_state(pdev);
7377         pci_write_config_word(pdev, 4, command_register);
7378
7379         /* Some devices (notably the HP Smart Array 5i Controller)
7380            need a little pause here */
7381         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7382
7383         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7384         if (rc) {
7385                 dev_warn(&pdev->dev,
7386                         "Failed waiting for board to become ready after hard reset\n");
7387                 goto unmap_cfgtable;
7388         }
7389
7390         rc = controller_reset_failed(vaddr);
7391         if (rc < 0)
7392                 goto unmap_cfgtable;
7393         if (rc) {
7394                 dev_warn(&pdev->dev, "Unable to successfully reset "
7395                         "controller. Will try soft reset.\n");
7396                 rc = -ENOTSUPP;
7397         } else {
7398                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7399         }
7400
7401 unmap_cfgtable:
7402         iounmap(cfgtable);
7403
7404 unmap_vaddr:
7405         iounmap(vaddr);
7406         return rc;
7407 }
7408
7409 /*
7410  *  We cannot read the structure directly, for portability we must use
7411  *   the io functions.
7412  *   This is for debug only.
7413  */
7414 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7415 {
7416 #ifdef HPSA_DEBUG
7417         int i;
7418         char temp_name[17];
7419
7420         dev_info(dev, "Controller Configuration information\n");
7421         dev_info(dev, "------------------------------------\n");
7422         for (i = 0; i < 4; i++)
7423                 temp_name[i] = readb(&(tb->Signature[i]));
7424         temp_name[4] = '\0';
7425         dev_info(dev, "   Signature = %s\n", temp_name);
7426         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7427         dev_info(dev, "   Transport methods supported = 0x%x\n",
7428                readl(&(tb->TransportSupport)));
7429         dev_info(dev, "   Transport methods active = 0x%x\n",
7430                readl(&(tb->TransportActive)));
7431         dev_info(dev, "   Requested transport Method = 0x%x\n",
7432                readl(&(tb->HostWrite.TransportRequest)));
7433         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7434                readl(&(tb->HostWrite.CoalIntDelay)));
7435         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7436                readl(&(tb->HostWrite.CoalIntCount)));
7437         dev_info(dev, "   Max outstanding commands = %d\n",
7438                readl(&(tb->CmdsOutMax)));
7439         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7440         for (i = 0; i < 16; i++)
7441                 temp_name[i] = readb(&(tb->ServerName[i]));
7442         temp_name[16] = '\0';
7443         dev_info(dev, "   Server Name = %s\n", temp_name);
7444         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7445                 readl(&(tb->HeartBeat)));
7446 #endif                          /* HPSA_DEBUG */
7447 }
7448
7449 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7450 {
7451         int i, offset, mem_type, bar_type;
7452
7453         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7454                 return 0;
7455         offset = 0;
7456         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7457                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7458                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7459                         offset += 4;
7460                 else {
7461                         mem_type = pci_resource_flags(pdev, i) &
7462                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7463                         switch (mem_type) {
7464                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7465                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7466                                 offset += 4;    /* 32 bit */
7467                                 break;
7468                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7469                                 offset += 8;
7470                                 break;
7471                         default:        /* reserved in PCI 2.2 */
7472                                 dev_warn(&pdev->dev,
7473                                        "base address is invalid\n");
7474                                 return -1;
7475                         }
7476                 }
7477                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7478                         return i + 1;
7479         }
7480         return -1;
7481 }
7482
7483 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7484 {
7485         pci_free_irq_vectors(h->pdev);
7486         h->msix_vectors = 0;
7487 }
7488
7489 static void hpsa_setup_reply_map(struct ctlr_info *h)
7490 {
7491         const struct cpumask *mask;
7492         unsigned int queue, cpu;
7493
7494         for (queue = 0; queue < h->msix_vectors; queue++) {
7495                 mask = pci_irq_get_affinity(h->pdev, queue);
7496                 if (!mask)
7497                         goto fallback;
7498
7499                 for_each_cpu(cpu, mask)
7500                         h->reply_map[cpu] = queue;
7501         }
7502         return;
7503
7504 fallback:
7505         for_each_possible_cpu(cpu)
7506                 h->reply_map[cpu] = 0;
7507 }
7508
7509 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7510  * controllers that are capable. If not, we use legacy INTx mode.
7511  */
7512 static int hpsa_interrupt_mode(struct ctlr_info *h)
7513 {
7514         unsigned int flags = PCI_IRQ_LEGACY;
7515         int ret;
7516
7517         /* Some boards advertise MSI but don't really support it */
7518         switch (h->board_id) {
7519         case 0x40700E11:
7520         case 0x40800E11:
7521         case 0x40820E11:
7522         case 0x40830E11:
7523                 break;
7524         default:
7525                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7526                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7527                 if (ret > 0) {
7528                         h->msix_vectors = ret;
7529                         return 0;
7530                 }
7531
7532                 flags |= PCI_IRQ_MSI;
7533                 break;
7534         }
7535
7536         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7537         if (ret < 0)
7538                 return ret;
7539         return 0;
7540 }
7541
7542 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7543                                 bool *legacy_board)
7544 {
7545         int i;
7546         u32 subsystem_vendor_id, subsystem_device_id;
7547
7548         subsystem_vendor_id = pdev->subsystem_vendor;
7549         subsystem_device_id = pdev->subsystem_device;
7550         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7551                     subsystem_vendor_id;
7552
7553         if (legacy_board)
7554                 *legacy_board = false;
7555         for (i = 0; i < ARRAY_SIZE(products); i++)
7556                 if (*board_id == products[i].board_id) {
7557                         if (products[i].access != &SA5A_access &&
7558                             products[i].access != &SA5B_access)
7559                                 return i;
7560                         dev_warn(&pdev->dev,
7561                                  "legacy board ID: 0x%08x\n",
7562                                  *board_id);
7563                         if (legacy_board)
7564                             *legacy_board = true;
7565                         return i;
7566                 }
7567
7568         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7569         if (legacy_board)
7570                 *legacy_board = true;
7571         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7572 }
7573
7574 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7575                                     unsigned long *memory_bar)
7576 {
7577         int i;
7578
7579         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7580                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7581                         /* addressing mode bits already removed */
7582                         *memory_bar = pci_resource_start(pdev, i);
7583                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7584                                 *memory_bar);
7585                         return 0;
7586                 }
7587         dev_warn(&pdev->dev, "no memory BAR found\n");
7588         return -ENODEV;
7589 }
7590
7591 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7592                                      int wait_for_ready)
7593 {
7594         int i, iterations;
7595         u32 scratchpad;
7596         if (wait_for_ready)
7597                 iterations = HPSA_BOARD_READY_ITERATIONS;
7598         else
7599                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7600
7601         for (i = 0; i < iterations; i++) {
7602                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7603                 if (wait_for_ready) {
7604                         if (scratchpad == HPSA_FIRMWARE_READY)
7605                                 return 0;
7606                 } else {
7607                         if (scratchpad != HPSA_FIRMWARE_READY)
7608                                 return 0;
7609                 }
7610                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7611         }
7612         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7613         return -ENODEV;
7614 }
7615
7616 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7617                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7618                                u64 *cfg_offset)
7619 {
7620         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7621         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7622         *cfg_base_addr &= (u32) 0x0000ffff;
7623         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7624         if (*cfg_base_addr_index == -1) {
7625                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7626                 return -ENODEV;
7627         }
7628         return 0;
7629 }
7630
7631 static void hpsa_free_cfgtables(struct ctlr_info *h)
7632 {
7633         if (h->transtable) {
7634                 iounmap(h->transtable);
7635                 h->transtable = NULL;
7636         }
7637         if (h->cfgtable) {
7638                 iounmap(h->cfgtable);
7639                 h->cfgtable = NULL;
7640         }
7641 }
7642
7643 /* Find and map CISS config table and transfer table
7644 + * several items must be unmapped (freed) later
7645 + * */
7646 static int hpsa_find_cfgtables(struct ctlr_info *h)
7647 {
7648         u64 cfg_offset;
7649         u32 cfg_base_addr;
7650         u64 cfg_base_addr_index;
7651         u32 trans_offset;
7652         int rc;
7653
7654         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7655                 &cfg_base_addr_index, &cfg_offset);
7656         if (rc)
7657                 return rc;
7658         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7659                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7660         if (!h->cfgtable) {
7661                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7662                 return -ENOMEM;
7663         }
7664         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7665         if (rc)
7666                 return rc;
7667         /* Find performant mode table. */
7668         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7669         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7670                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7671                                 sizeof(*h->transtable));
7672         if (!h->transtable) {
7673                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7674                 hpsa_free_cfgtables(h);
7675                 return -ENOMEM;
7676         }
7677         return 0;
7678 }
7679
7680 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7681 {
7682 #define MIN_MAX_COMMANDS 16
7683         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7684
7685         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7686
7687         /* Limit commands in memory limited kdump scenario. */
7688         if (reset_devices && h->max_commands > 32)
7689                 h->max_commands = 32;
7690
7691         if (h->max_commands < MIN_MAX_COMMANDS) {
7692                 dev_warn(&h->pdev->dev,
7693                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7694                         h->max_commands,
7695                         MIN_MAX_COMMANDS);
7696                 h->max_commands = MIN_MAX_COMMANDS;
7697         }
7698 }
7699
7700 /* If the controller reports that the total max sg entries is greater than 512,
7701  * then we know that chained SG blocks work.  (Original smart arrays did not
7702  * support chained SG blocks and would return zero for max sg entries.)
7703  */
7704 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7705 {
7706         return h->maxsgentries > 512;
7707 }
7708
7709 /* Interrogate the hardware for some limits:
7710  * max commands, max SG elements without chaining, and with chaining,
7711  * SG chain block size, etc.
7712  */
7713 static void hpsa_find_board_params(struct ctlr_info *h)
7714 {
7715         hpsa_get_max_perf_mode_cmds(h);
7716         h->nr_cmds = h->max_commands;
7717         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7718         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7719         if (hpsa_supports_chained_sg_blocks(h)) {
7720                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7721                 h->max_cmd_sg_entries = 32;
7722                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7723                 h->maxsgentries--; /* save one for chain pointer */
7724         } else {
7725                 /*
7726                  * Original smart arrays supported at most 31 s/g entries
7727                  * embedded inline in the command (trying to use more
7728                  * would lock up the controller)
7729                  */
7730                 h->max_cmd_sg_entries = 31;
7731                 h->maxsgentries = 31; /* default to traditional values */
7732                 h->chainsize = 0;
7733         }
7734
7735         /* Find out what task management functions are supported and cache */
7736         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7737         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7738                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7739         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7740                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7741         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7742                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7743 }
7744
7745 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7746 {
7747         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7748                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7749                 return false;
7750         }
7751         return true;
7752 }
7753
7754 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7755 {
7756         u32 driver_support;
7757
7758         driver_support = readl(&(h->cfgtable->driver_support));
7759         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7760 #ifdef CONFIG_X86
7761         driver_support |= ENABLE_SCSI_PREFETCH;
7762 #endif
7763         driver_support |= ENABLE_UNIT_ATTN;
7764         writel(driver_support, &(h->cfgtable->driver_support));
7765 }
7766
7767 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7768  * in a prefetch beyond physical memory.
7769  */
7770 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7771 {
7772         u32 dma_prefetch;
7773
7774         if (h->board_id != 0x3225103C)
7775                 return;
7776         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7777         dma_prefetch |= 0x8000;
7778         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7779 }
7780
7781 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7782 {
7783         int i;
7784         u32 doorbell_value;
7785         unsigned long flags;
7786         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7787         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7788                 spin_lock_irqsave(&h->lock, flags);
7789                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7790                 spin_unlock_irqrestore(&h->lock, flags);
7791                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7792                         goto done;
7793                 /* delay and try again */
7794                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7795         }
7796         return -ENODEV;
7797 done:
7798         return 0;
7799 }
7800
7801 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7802 {
7803         int i;
7804         u32 doorbell_value;
7805         unsigned long flags;
7806
7807         /* under certain very rare conditions, this can take awhile.
7808          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7809          * as we enter this code.)
7810          */
7811         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7812                 if (h->remove_in_progress)
7813                         goto done;
7814                 spin_lock_irqsave(&h->lock, flags);
7815                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7816                 spin_unlock_irqrestore(&h->lock, flags);
7817                 if (!(doorbell_value & CFGTBL_ChangeReq))
7818                         goto done;
7819                 /* delay and try again */
7820                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7821         }
7822         return -ENODEV;
7823 done:
7824         return 0;
7825 }
7826
7827 /* return -ENODEV or other reason on error, 0 on success */
7828 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7829 {
7830         u32 trans_support;
7831
7832         trans_support = readl(&(h->cfgtable->TransportSupport));
7833         if (!(trans_support & SIMPLE_MODE))
7834                 return -ENOTSUPP;
7835
7836         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7837
7838         /* Update the field, and then ring the doorbell */
7839         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7840         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7841         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7842         if (hpsa_wait_for_mode_change_ack(h))
7843                 goto error;
7844         print_cfg_table(&h->pdev->dev, h->cfgtable);
7845         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7846                 goto error;
7847         h->transMethod = CFGTBL_Trans_Simple;
7848         return 0;
7849 error:
7850         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7851         return -ENODEV;
7852 }
7853
7854 /* free items allocated or mapped by hpsa_pci_init */
7855 static void hpsa_free_pci_init(struct ctlr_info *h)
7856 {
7857         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7858         iounmap(h->vaddr);                      /* pci_init 3 */
7859         h->vaddr = NULL;
7860         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7861         /*
7862          * call pci_disable_device before pci_release_regions per
7863          * Documentation/driver-api/pci/pci.rst
7864          */
7865         pci_disable_device(h->pdev);            /* pci_init 1 */
7866         pci_release_regions(h->pdev);           /* pci_init 2 */
7867 }
7868
7869 /* several items must be freed later */
7870 static int hpsa_pci_init(struct ctlr_info *h)
7871 {
7872         int prod_index, err;
7873         bool legacy_board;
7874
7875         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7876         if (prod_index < 0)
7877                 return prod_index;
7878         h->product_name = products[prod_index].product_name;
7879         h->access = *(products[prod_index].access);
7880         h->legacy_board = legacy_board;
7881         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7882                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7883
7884         err = pci_enable_device(h->pdev);
7885         if (err) {
7886                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7887                 pci_disable_device(h->pdev);
7888                 return err;
7889         }
7890
7891         err = pci_request_regions(h->pdev, HPSA);
7892         if (err) {
7893                 dev_err(&h->pdev->dev,
7894                         "failed to obtain PCI resources\n");
7895                 pci_disable_device(h->pdev);
7896                 return err;
7897         }
7898
7899         pci_set_master(h->pdev);
7900
7901         err = hpsa_interrupt_mode(h);
7902         if (err)
7903                 goto clean1;
7904
7905         /* setup mapping between CPU and reply queue */
7906         hpsa_setup_reply_map(h);
7907
7908         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7909         if (err)
7910                 goto clean2;    /* intmode+region, pci */
7911         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7912         if (!h->vaddr) {
7913                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7914                 err = -ENOMEM;
7915                 goto clean2;    /* intmode+region, pci */
7916         }
7917         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7918         if (err)
7919                 goto clean3;    /* vaddr, intmode+region, pci */
7920         err = hpsa_find_cfgtables(h);
7921         if (err)
7922                 goto clean3;    /* vaddr, intmode+region, pci */
7923         hpsa_find_board_params(h);
7924
7925         if (!hpsa_CISS_signature_present(h)) {
7926                 err = -ENODEV;
7927                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7928         }
7929         hpsa_set_driver_support_bits(h);
7930         hpsa_p600_dma_prefetch_quirk(h);
7931         err = hpsa_enter_simple_mode(h);
7932         if (err)
7933                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7934         return 0;
7935
7936 clean4: /* cfgtables, vaddr, intmode+region, pci */
7937         hpsa_free_cfgtables(h);
7938 clean3: /* vaddr, intmode+region, pci */
7939         iounmap(h->vaddr);
7940         h->vaddr = NULL;
7941 clean2: /* intmode+region, pci */
7942         hpsa_disable_interrupt_mode(h);
7943 clean1:
7944         /*
7945          * call pci_disable_device before pci_release_regions per
7946          * Documentation/driver-api/pci/pci.rst
7947          */
7948         pci_disable_device(h->pdev);
7949         pci_release_regions(h->pdev);
7950         return err;
7951 }
7952
7953 static void hpsa_hba_inquiry(struct ctlr_info *h)
7954 {
7955         int rc;
7956
7957 #define HBA_INQUIRY_BYTE_COUNT 64
7958         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7959         if (!h->hba_inquiry_data)
7960                 return;
7961         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7962                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7963         if (rc != 0) {
7964                 kfree(h->hba_inquiry_data);
7965                 h->hba_inquiry_data = NULL;
7966         }
7967 }
7968
7969 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7970 {
7971         int rc, i;
7972         void __iomem *vaddr;
7973
7974         if (!reset_devices)
7975                 return 0;
7976
7977         /* kdump kernel is loading, we don't know in which state is
7978          * the pci interface. The dev->enable_cnt is equal zero
7979          * so we call enable+disable, wait a while and switch it on.
7980          */
7981         rc = pci_enable_device(pdev);
7982         if (rc) {
7983                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7984                 return -ENODEV;
7985         }
7986         pci_disable_device(pdev);
7987         msleep(260);                    /* a randomly chosen number */
7988         rc = pci_enable_device(pdev);
7989         if (rc) {
7990                 dev_warn(&pdev->dev, "failed to enable device.\n");
7991                 return -ENODEV;
7992         }
7993
7994         pci_set_master(pdev);
7995
7996         vaddr = pci_ioremap_bar(pdev, 0);
7997         if (vaddr == NULL) {
7998                 rc = -ENOMEM;
7999                 goto out_disable;
8000         }
8001         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8002         iounmap(vaddr);
8003
8004         /* Reset the controller with a PCI power-cycle or via doorbell */
8005         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8006
8007         /* -ENOTSUPP here means we cannot reset the controller
8008          * but it's already (and still) up and running in
8009          * "performant mode".  Or, it might be 640x, which can't reset
8010          * due to concerns about shared bbwc between 6402/6404 pair.
8011          */
8012         if (rc)
8013                 goto out_disable;
8014
8015         /* Now try to get the controller to respond to a no-op */
8016         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8017         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8018                 if (hpsa_noop(pdev) == 0)
8019                         break;
8020                 else
8021                         dev_warn(&pdev->dev, "no-op failed%s\n",
8022                                         (i < 11 ? "; re-trying" : ""));
8023         }
8024
8025 out_disable:
8026
8027         pci_disable_device(pdev);
8028         return rc;
8029 }
8030
8031 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8032 {
8033         kfree(h->cmd_pool_bits);
8034         h->cmd_pool_bits = NULL;
8035         if (h->cmd_pool) {
8036                 dma_free_coherent(&h->pdev->dev,
8037                                 h->nr_cmds * sizeof(struct CommandList),
8038                                 h->cmd_pool,
8039                                 h->cmd_pool_dhandle);
8040                 h->cmd_pool = NULL;
8041                 h->cmd_pool_dhandle = 0;
8042         }
8043         if (h->errinfo_pool) {
8044                 dma_free_coherent(&h->pdev->dev,
8045                                 h->nr_cmds * sizeof(struct ErrorInfo),
8046                                 h->errinfo_pool,
8047                                 h->errinfo_pool_dhandle);
8048                 h->errinfo_pool = NULL;
8049                 h->errinfo_pool_dhandle = 0;
8050         }
8051 }
8052
8053 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8054 {
8055         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8056                                    sizeof(unsigned long),
8057                                    GFP_KERNEL);
8058         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8059                     h->nr_cmds * sizeof(*h->cmd_pool),
8060                     &h->cmd_pool_dhandle, GFP_KERNEL);
8061         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8062                     h->nr_cmds * sizeof(*h->errinfo_pool),
8063                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8064         if ((h->cmd_pool_bits == NULL)
8065             || (h->cmd_pool == NULL)
8066             || (h->errinfo_pool == NULL)) {
8067                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8068                 goto clean_up;
8069         }
8070         hpsa_preinitialize_commands(h);
8071         return 0;
8072 clean_up:
8073         hpsa_free_cmd_pool(h);
8074         return -ENOMEM;
8075 }
8076
8077 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8078 static void hpsa_free_irqs(struct ctlr_info *h)
8079 {
8080         int i;
8081         int irq_vector = 0;
8082
8083         if (hpsa_simple_mode)
8084                 irq_vector = h->intr_mode;
8085
8086         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8087                 /* Single reply queue, only one irq to free */
8088                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8089                                 &h->q[h->intr_mode]);
8090                 h->q[h->intr_mode] = 0;
8091                 return;
8092         }
8093
8094         for (i = 0; i < h->msix_vectors; i++) {
8095                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8096                 h->q[i] = 0;
8097         }
8098         for (; i < MAX_REPLY_QUEUES; i++)
8099                 h->q[i] = 0;
8100 }
8101
8102 /* returns 0 on success; cleans up and returns -Enn on error */
8103 static int hpsa_request_irqs(struct ctlr_info *h,
8104         irqreturn_t (*msixhandler)(int, void *),
8105         irqreturn_t (*intxhandler)(int, void *))
8106 {
8107         int rc, i;
8108         int irq_vector = 0;
8109
8110         if (hpsa_simple_mode)
8111                 irq_vector = h->intr_mode;
8112
8113         /*
8114          * initialize h->q[x] = x so that interrupt handlers know which
8115          * queue to process.
8116          */
8117         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8118                 h->q[i] = (u8) i;
8119
8120         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8121                 /* If performant mode and MSI-X, use multiple reply queues */
8122                 for (i = 0; i < h->msix_vectors; i++) {
8123                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8124                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8125                                         0, h->intrname[i],
8126                                         &h->q[i]);
8127                         if (rc) {
8128                                 int j;
8129
8130                                 dev_err(&h->pdev->dev,
8131                                         "failed to get irq %d for %s\n",
8132                                        pci_irq_vector(h->pdev, i), h->devname);
8133                                 for (j = 0; j < i; j++) {
8134                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8135                                         h->q[j] = 0;
8136                                 }
8137                                 for (; j < MAX_REPLY_QUEUES; j++)
8138                                         h->q[j] = 0;
8139                                 return rc;
8140                         }
8141                 }
8142         } else {
8143                 /* Use single reply pool */
8144                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8145                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8146                                 h->msix_vectors ? "x" : "");
8147                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8148                                 msixhandler, 0,
8149                                 h->intrname[0],
8150                                 &h->q[h->intr_mode]);
8151                 } else {
8152                         sprintf(h->intrname[h->intr_mode],
8153                                 "%s-intx", h->devname);
8154                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8155                                 intxhandler, IRQF_SHARED,
8156                                 h->intrname[0],
8157                                 &h->q[h->intr_mode]);
8158                 }
8159         }
8160         if (rc) {
8161                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8162                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8163                 hpsa_free_irqs(h);
8164                 return -ENODEV;
8165         }
8166         return 0;
8167 }
8168
8169 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8170 {
8171         int rc;
8172         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8173
8174         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8175         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8176         if (rc) {
8177                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8178                 return rc;
8179         }
8180
8181         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8182         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8183         if (rc) {
8184                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8185                         "after soft reset.\n");
8186                 return rc;
8187         }
8188
8189         return 0;
8190 }
8191
8192 static void hpsa_free_reply_queues(struct ctlr_info *h)
8193 {
8194         int i;
8195
8196         for (i = 0; i < h->nreply_queues; i++) {
8197                 if (!h->reply_queue[i].head)
8198                         continue;
8199                 dma_free_coherent(&h->pdev->dev,
8200                                         h->reply_queue_size,
8201                                         h->reply_queue[i].head,
8202                                         h->reply_queue[i].busaddr);
8203                 h->reply_queue[i].head = NULL;
8204                 h->reply_queue[i].busaddr = 0;
8205         }
8206         h->reply_queue_size = 0;
8207 }
8208
8209 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8210 {
8211         hpsa_free_performant_mode(h);           /* init_one 7 */
8212         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8213         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8214         hpsa_free_irqs(h);                      /* init_one 4 */
8215         scsi_host_put(h->scsi_host);            /* init_one 3 */
8216         h->scsi_host = NULL;                    /* init_one 3 */
8217         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8218         free_percpu(h->lockup_detected);        /* init_one 2 */
8219         h->lockup_detected = NULL;              /* init_one 2 */
8220         if (h->resubmit_wq) {
8221                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8222                 h->resubmit_wq = NULL;
8223         }
8224         if (h->rescan_ctlr_wq) {
8225                 destroy_workqueue(h->rescan_ctlr_wq);
8226                 h->rescan_ctlr_wq = NULL;
8227         }
8228         if (h->monitor_ctlr_wq) {
8229                 destroy_workqueue(h->monitor_ctlr_wq);
8230                 h->monitor_ctlr_wq = NULL;
8231         }
8232
8233         kfree(h);                               /* init_one 1 */
8234 }
8235
8236 /* Called when controller lockup detected. */
8237 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8238 {
8239         int i, refcount;
8240         struct CommandList *c;
8241         int failcount = 0;
8242
8243         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8244         for (i = 0; i < h->nr_cmds; i++) {
8245                 c = h->cmd_pool + i;
8246                 refcount = atomic_inc_return(&c->refcount);
8247                 if (refcount > 1) {
8248                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8249                         finish_cmd(c);
8250                         atomic_dec(&h->commands_outstanding);
8251                         failcount++;
8252                 }
8253                 cmd_free(h, c);
8254         }
8255         dev_warn(&h->pdev->dev,
8256                 "failed %d commands in fail_all\n", failcount);
8257 }
8258
8259 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8260 {
8261         int cpu;
8262
8263         for_each_online_cpu(cpu) {
8264                 u32 *lockup_detected;
8265                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8266                 *lockup_detected = value;
8267         }
8268         wmb(); /* be sure the per-cpu variables are out to memory */
8269 }
8270
8271 static void controller_lockup_detected(struct ctlr_info *h)
8272 {
8273         unsigned long flags;
8274         u32 lockup_detected;
8275
8276         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8277         spin_lock_irqsave(&h->lock, flags);
8278         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8279         if (!lockup_detected) {
8280                 /* no heartbeat, but controller gave us a zero. */
8281                 dev_warn(&h->pdev->dev,
8282                         "lockup detected after %d but scratchpad register is zero\n",
8283                         h->heartbeat_sample_interval / HZ);
8284                 lockup_detected = 0xffffffff;
8285         }
8286         set_lockup_detected_for_all_cpus(h, lockup_detected);
8287         spin_unlock_irqrestore(&h->lock, flags);
8288         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8289                         lockup_detected, h->heartbeat_sample_interval / HZ);
8290         if (lockup_detected == 0xffff0000) {
8291                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8292                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8293         }
8294         pci_disable_device(h->pdev);
8295         fail_all_outstanding_cmds(h);
8296 }
8297
8298 static int detect_controller_lockup(struct ctlr_info *h)
8299 {
8300         u64 now;
8301         u32 heartbeat;
8302         unsigned long flags;
8303
8304         now = get_jiffies_64();
8305         /* If we've received an interrupt recently, we're ok. */
8306         if (time_after64(h->last_intr_timestamp +
8307                                 (h->heartbeat_sample_interval), now))
8308                 return false;
8309
8310         /*
8311          * If we've already checked the heartbeat recently, we're ok.
8312          * This could happen if someone sends us a signal. We
8313          * otherwise don't care about signals in this thread.
8314          */
8315         if (time_after64(h->last_heartbeat_timestamp +
8316                                 (h->heartbeat_sample_interval), now))
8317                 return false;
8318
8319         /* If heartbeat has not changed since we last looked, we're not ok. */
8320         spin_lock_irqsave(&h->lock, flags);
8321         heartbeat = readl(&h->cfgtable->HeartBeat);
8322         spin_unlock_irqrestore(&h->lock, flags);
8323         if (h->last_heartbeat == heartbeat) {
8324                 controller_lockup_detected(h);
8325                 return true;
8326         }
8327
8328         /* We're ok. */
8329         h->last_heartbeat = heartbeat;
8330         h->last_heartbeat_timestamp = now;
8331         return false;
8332 }
8333
8334 /*
8335  * Set ioaccel status for all ioaccel volumes.
8336  *
8337  * Called from monitor controller worker (hpsa_event_monitor_worker)
8338  *
8339  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8340  * transformation, so we will be turning off ioaccel for all volumes that
8341  * make up the Array.
8342  */
8343 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8344 {
8345         int rc;
8346         int i;
8347         u8 ioaccel_status;
8348         unsigned char *buf;
8349         struct hpsa_scsi_dev_t *device;
8350
8351         if (!h)
8352                 return;
8353
8354         buf = kmalloc(64, GFP_KERNEL);
8355         if (!buf)
8356                 return;
8357
8358         /*
8359          * Run through current device list used during I/O requests.
8360          */
8361         for (i = 0; i < h->ndevices; i++) {
8362                 int offload_to_be_enabled = 0;
8363                 int offload_config = 0;
8364
8365                 device = h->dev[i];
8366
8367                 if (!device)
8368                         continue;
8369                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8370                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8371                         continue;
8372
8373                 memset(buf, 0, 64);
8374
8375                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8376                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8377                                         buf, 64);
8378                 if (rc != 0)
8379                         continue;
8380
8381                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8382
8383                 /*
8384                  * Check if offload is still configured on
8385                  */
8386                 offload_config =
8387                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8388                 /*
8389                  * If offload is configured on, check to see if ioaccel
8390                  * needs to be enabled.
8391                  */
8392                 if (offload_config)
8393                         offload_to_be_enabled =
8394                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8395
8396                 /*
8397                  * If ioaccel is to be re-enabled, re-enable later during the
8398                  * scan operation so the driver can get a fresh raidmap
8399                  * before turning ioaccel back on.
8400                  */
8401                 if (offload_to_be_enabled)
8402                         continue;
8403
8404                 /*
8405                  * Immediately turn off ioaccel for any volume the
8406                  * controller tells us to. Some of the reasons could be:
8407                  *    transformation - change to the LVs of an Array.
8408                  *    degraded volume - component failure
8409                  */
8410                 hpsa_turn_off_ioaccel_for_device(device);
8411         }
8412
8413         kfree(buf);
8414 }
8415
8416 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8417 {
8418         char *event_type;
8419
8420         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8421                 return;
8422
8423         /* Ask the controller to clear the events we're handling. */
8424         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8425                         | CFGTBL_Trans_io_accel2)) &&
8426                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8427                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8428
8429                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8430                         event_type = "state change";
8431                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8432                         event_type = "configuration change";
8433                 /* Stop sending new RAID offload reqs via the IO accelerator */
8434                 scsi_block_requests(h->scsi_host);
8435                 hpsa_set_ioaccel_status(h);
8436                 hpsa_drain_accel_commands(h);
8437                 /* Set 'accelerator path config change' bit */
8438                 dev_warn(&h->pdev->dev,
8439                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8440                         h->events, event_type);
8441                 writel(h->events, &(h->cfgtable->clear_event_notify));
8442                 /* Set the "clear event notify field update" bit 6 */
8443                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8444                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8445                 hpsa_wait_for_clear_event_notify_ack(h);
8446                 scsi_unblock_requests(h->scsi_host);
8447         } else {
8448                 /* Acknowledge controller notification events. */
8449                 writel(h->events, &(h->cfgtable->clear_event_notify));
8450                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8451                 hpsa_wait_for_clear_event_notify_ack(h);
8452         }
8453         return;
8454 }
8455
8456 /* Check a register on the controller to see if there are configuration
8457  * changes (added/changed/removed logical drives, etc.) which mean that
8458  * we should rescan the controller for devices.
8459  * Also check flag for driver-initiated rescan.
8460  */
8461 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8462 {
8463         if (h->drv_req_rescan) {
8464                 h->drv_req_rescan = 0;
8465                 return 1;
8466         }
8467
8468         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8469                 return 0;
8470
8471         h->events = readl(&(h->cfgtable->event_notify));
8472         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8473 }
8474
8475 /*
8476  * Check if any of the offline devices have become ready
8477  */
8478 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8479 {
8480         unsigned long flags;
8481         struct offline_device_entry *d;
8482         struct list_head *this, *tmp;
8483
8484         spin_lock_irqsave(&h->offline_device_lock, flags);
8485         list_for_each_safe(this, tmp, &h->offline_device_list) {
8486                 d = list_entry(this, struct offline_device_entry,
8487                                 offline_list);
8488                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8489                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8490                         spin_lock_irqsave(&h->offline_device_lock, flags);
8491                         list_del(&d->offline_list);
8492                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8493                         return 1;
8494                 }
8495                 spin_lock_irqsave(&h->offline_device_lock, flags);
8496         }
8497         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8498         return 0;
8499 }
8500
8501 static int hpsa_luns_changed(struct ctlr_info *h)
8502 {
8503         int rc = 1; /* assume there are changes */
8504         struct ReportLUNdata *logdev = NULL;
8505
8506         /* if we can't find out if lun data has changed,
8507          * assume that it has.
8508          */
8509
8510         if (!h->lastlogicals)
8511                 return rc;
8512
8513         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8514         if (!logdev)
8515                 return rc;
8516
8517         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8518                 dev_warn(&h->pdev->dev,
8519                         "report luns failed, can't track lun changes.\n");
8520                 goto out;
8521         }
8522         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8523                 dev_info(&h->pdev->dev,
8524                         "Lun changes detected.\n");
8525                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8526                 goto out;
8527         } else
8528                 rc = 0; /* no changes detected. */
8529 out:
8530         kfree(logdev);
8531         return rc;
8532 }
8533
8534 static void hpsa_perform_rescan(struct ctlr_info *h)
8535 {
8536         struct Scsi_Host *sh = NULL;
8537         unsigned long flags;
8538
8539         /*
8540          * Do the scan after the reset
8541          */
8542         spin_lock_irqsave(&h->reset_lock, flags);
8543         if (h->reset_in_progress) {
8544                 h->drv_req_rescan = 1;
8545                 spin_unlock_irqrestore(&h->reset_lock, flags);
8546                 return;
8547         }
8548         spin_unlock_irqrestore(&h->reset_lock, flags);
8549
8550         sh = scsi_host_get(h->scsi_host);
8551         if (sh != NULL) {
8552                 hpsa_scan_start(sh);
8553                 scsi_host_put(sh);
8554                 h->drv_req_rescan = 0;
8555         }
8556 }
8557
8558 /*
8559  * watch for controller events
8560  */
8561 static void hpsa_event_monitor_worker(struct work_struct *work)
8562 {
8563         struct ctlr_info *h = container_of(to_delayed_work(work),
8564                                         struct ctlr_info, event_monitor_work);
8565         unsigned long flags;
8566
8567         spin_lock_irqsave(&h->lock, flags);
8568         if (h->remove_in_progress) {
8569                 spin_unlock_irqrestore(&h->lock, flags);
8570                 return;
8571         }
8572         spin_unlock_irqrestore(&h->lock, flags);
8573
8574         if (hpsa_ctlr_needs_rescan(h)) {
8575                 hpsa_ack_ctlr_events(h);
8576                 hpsa_perform_rescan(h);
8577         }
8578
8579         spin_lock_irqsave(&h->lock, flags);
8580         if (!h->remove_in_progress)
8581                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8582                                 HPSA_EVENT_MONITOR_INTERVAL);
8583         spin_unlock_irqrestore(&h->lock, flags);
8584 }
8585
8586 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8587 {
8588         unsigned long flags;
8589         struct ctlr_info *h = container_of(to_delayed_work(work),
8590                                         struct ctlr_info, rescan_ctlr_work);
8591
8592         spin_lock_irqsave(&h->lock, flags);
8593         if (h->remove_in_progress) {
8594                 spin_unlock_irqrestore(&h->lock, flags);
8595                 return;
8596         }
8597         spin_unlock_irqrestore(&h->lock, flags);
8598
8599         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8600                 hpsa_perform_rescan(h);
8601         } else if (h->discovery_polling) {
8602                 if (hpsa_luns_changed(h)) {
8603                         dev_info(&h->pdev->dev,
8604                                 "driver discovery polling rescan.\n");
8605                         hpsa_perform_rescan(h);
8606                 }
8607         }
8608         spin_lock_irqsave(&h->lock, flags);
8609         if (!h->remove_in_progress)
8610                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8611                                 h->heartbeat_sample_interval);
8612         spin_unlock_irqrestore(&h->lock, flags);
8613 }
8614
8615 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8616 {
8617         unsigned long flags;
8618         struct ctlr_info *h = container_of(to_delayed_work(work),
8619                                         struct ctlr_info, monitor_ctlr_work);
8620
8621         detect_controller_lockup(h);
8622         if (lockup_detected(h))
8623                 return;
8624
8625         spin_lock_irqsave(&h->lock, flags);
8626         if (!h->remove_in_progress)
8627                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8628                                 h->heartbeat_sample_interval);
8629         spin_unlock_irqrestore(&h->lock, flags);
8630 }
8631
8632 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8633                                                 char *name)
8634 {
8635         struct workqueue_struct *wq = NULL;
8636
8637         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8638         if (!wq)
8639                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8640
8641         return wq;
8642 }
8643
8644 static void hpda_free_ctlr_info(struct ctlr_info *h)
8645 {
8646         kfree(h->reply_map);
8647         kfree(h);
8648 }
8649
8650 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8651 {
8652         struct ctlr_info *h;
8653
8654         h = kzalloc(sizeof(*h), GFP_KERNEL);
8655         if (!h)
8656                 return NULL;
8657
8658         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8659         if (!h->reply_map) {
8660                 kfree(h);
8661                 return NULL;
8662         }
8663         return h;
8664 }
8665
8666 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8667 {
8668         int rc;
8669         struct ctlr_info *h;
8670         int try_soft_reset = 0;
8671         unsigned long flags;
8672         u32 board_id;
8673
8674         if (number_of_controllers == 0)
8675                 printk(KERN_INFO DRIVER_NAME "\n");
8676
8677         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8678         if (rc < 0) {
8679                 dev_warn(&pdev->dev, "Board ID not found\n");
8680                 return rc;
8681         }
8682
8683         rc = hpsa_init_reset_devices(pdev, board_id);
8684         if (rc) {
8685                 if (rc != -ENOTSUPP)
8686                         return rc;
8687                 /* If the reset fails in a particular way (it has no way to do
8688                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8689                  * a soft reset once we get the controller configured up to the
8690                  * point that it can accept a command.
8691                  */
8692                 try_soft_reset = 1;
8693                 rc = 0;
8694         }
8695
8696 reinit_after_soft_reset:
8697
8698         /* Command structures must be aligned on a 32-byte boundary because
8699          * the 5 lower bits of the address are used by the hardware. and by
8700          * the driver.  See comments in hpsa.h for more info.
8701          */
8702         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8703         h = hpda_alloc_ctlr_info();
8704         if (!h) {
8705                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8706                 return -ENOMEM;
8707         }
8708
8709         h->pdev = pdev;
8710
8711         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8712         INIT_LIST_HEAD(&h->offline_device_list);
8713         spin_lock_init(&h->lock);
8714         spin_lock_init(&h->offline_device_lock);
8715         spin_lock_init(&h->scan_lock);
8716         spin_lock_init(&h->reset_lock);
8717         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8718
8719         /* Allocate and clear per-cpu variable lockup_detected */
8720         h->lockup_detected = alloc_percpu(u32);
8721         if (!h->lockup_detected) {
8722                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8723                 rc = -ENOMEM;
8724                 goto clean1;    /* aer/h */
8725         }
8726         set_lockup_detected_for_all_cpus(h, 0);
8727
8728         rc = hpsa_pci_init(h);
8729         if (rc)
8730                 goto clean2;    /* lu, aer/h */
8731
8732         /* relies on h-> settings made by hpsa_pci_init, including
8733          * interrupt_mode h->intr */
8734         rc = hpsa_scsi_host_alloc(h);
8735         if (rc)
8736                 goto clean2_5;  /* pci, lu, aer/h */
8737
8738         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8739         h->ctlr = number_of_controllers;
8740         number_of_controllers++;
8741
8742         /* configure PCI DMA stuff */
8743         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8744         if (rc != 0) {
8745                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8746                 if (rc != 0) {
8747                         dev_err(&pdev->dev, "no suitable DMA available\n");
8748                         goto clean3;    /* shost, pci, lu, aer/h */
8749                 }
8750         }
8751
8752         /* make sure the board interrupts are off */
8753         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754
8755         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8756         if (rc)
8757                 goto clean3;    /* shost, pci, lu, aer/h */
8758         rc = hpsa_alloc_cmd_pool(h);
8759         if (rc)
8760                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8761         rc = hpsa_alloc_sg_chain_blocks(h);
8762         if (rc)
8763                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8764         init_waitqueue_head(&h->scan_wait_queue);
8765         init_waitqueue_head(&h->event_sync_wait_queue);
8766         mutex_init(&h->reset_mutex);
8767         h->scan_finished = 1; /* no scan currently in progress */
8768         h->scan_waiting = 0;
8769
8770         pci_set_drvdata(pdev, h);
8771         h->ndevices = 0;
8772
8773         spin_lock_init(&h->devlock);
8774         rc = hpsa_put_ctlr_into_performant_mode(h);
8775         if (rc)
8776                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8777
8778         /* create the resubmit workqueue */
8779         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8780         if (!h->rescan_ctlr_wq) {
8781                 rc = -ENOMEM;
8782                 goto clean7;
8783         }
8784
8785         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8786         if (!h->resubmit_wq) {
8787                 rc = -ENOMEM;
8788                 goto clean7;    /* aer/h */
8789         }
8790
8791         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8792         if (!h->monitor_ctlr_wq) {
8793                 rc = -ENOMEM;
8794                 goto clean7;
8795         }
8796
8797         /*
8798          * At this point, the controller is ready to take commands.
8799          * Now, if reset_devices and the hard reset didn't work, try
8800          * the soft reset and see if that works.
8801          */
8802         if (try_soft_reset) {
8803
8804                 /* This is kind of gross.  We may or may not get a completion
8805                  * from the soft reset command, and if we do, then the value
8806                  * from the fifo may or may not be valid.  So, we wait 10 secs
8807                  * after the reset throwing away any completions we get during
8808                  * that time.  Unregister the interrupt handler and register
8809                  * fake ones to scoop up any residual completions.
8810                  */
8811                 spin_lock_irqsave(&h->lock, flags);
8812                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8813                 spin_unlock_irqrestore(&h->lock, flags);
8814                 hpsa_free_irqs(h);
8815                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8816                                         hpsa_intx_discard_completions);
8817                 if (rc) {
8818                         dev_warn(&h->pdev->dev,
8819                                 "Failed to request_irq after soft reset.\n");
8820                         /*
8821                          * cannot goto clean7 or free_irqs will be called
8822                          * again. Instead, do its work
8823                          */
8824                         hpsa_free_performant_mode(h);   /* clean7 */
8825                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8826                         hpsa_free_cmd_pool(h);          /* clean5 */
8827                         /*
8828                          * skip hpsa_free_irqs(h) clean4 since that
8829                          * was just called before request_irqs failed
8830                          */
8831                         goto clean3;
8832                 }
8833
8834                 rc = hpsa_kdump_soft_reset(h);
8835                 if (rc)
8836                         /* Neither hard nor soft reset worked, we're hosed. */
8837                         goto clean7;
8838
8839                 dev_info(&h->pdev->dev, "Board READY.\n");
8840                 dev_info(&h->pdev->dev,
8841                         "Waiting for stale completions to drain.\n");
8842                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8843                 msleep(10000);
8844                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8845
8846                 rc = controller_reset_failed(h->cfgtable);
8847                 if (rc)
8848                         dev_info(&h->pdev->dev,
8849                                 "Soft reset appears to have failed.\n");
8850
8851                 /* since the controller's reset, we have to go back and re-init
8852                  * everything.  Easiest to just forget what we've done and do it
8853                  * all over again.
8854                  */
8855                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8856                 try_soft_reset = 0;
8857                 if (rc)
8858                         /* don't goto clean, we already unallocated */
8859                         return -ENODEV;
8860
8861                 goto reinit_after_soft_reset;
8862         }
8863
8864         /* Enable Accelerated IO path at driver layer */
8865         h->acciopath_status = 1;
8866         /* Disable discovery polling.*/
8867         h->discovery_polling = 0;
8868
8869
8870         /* Turn the interrupts on so we can service requests */
8871         h->access.set_intr_mask(h, HPSA_INTR_ON);
8872
8873         hpsa_hba_inquiry(h);
8874
8875         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8876         if (!h->lastlogicals)
8877                 dev_info(&h->pdev->dev,
8878                         "Can't track change to report lun data\n");
8879
8880         /* hook into SCSI subsystem */
8881         rc = hpsa_scsi_add_host(h);
8882         if (rc)
8883                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8884
8885         /* Monitor the controller for firmware lockups */
8886         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8887         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8888         schedule_delayed_work(&h->monitor_ctlr_work,
8889                                 h->heartbeat_sample_interval);
8890         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8891         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8892                                 h->heartbeat_sample_interval);
8893         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8894         schedule_delayed_work(&h->event_monitor_work,
8895                                 HPSA_EVENT_MONITOR_INTERVAL);
8896         return 0;
8897
8898 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899         kfree(h->lastlogicals);
8900 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8901         hpsa_free_performant_mode(h);
8902         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8904         hpsa_free_sg_chain_blocks(h);
8905 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8906         hpsa_free_cmd_pool(h);
8907 clean4: /* irq, shost, pci, lu, aer/h */
8908         hpsa_free_irqs(h);
8909 clean3: /* shost, pci, lu, aer/h */
8910         scsi_host_put(h->scsi_host);
8911         h->scsi_host = NULL;
8912 clean2_5: /* pci, lu, aer/h */
8913         hpsa_free_pci_init(h);
8914 clean2: /* lu, aer/h */
8915         if (h->lockup_detected) {
8916                 free_percpu(h->lockup_detected);
8917                 h->lockup_detected = NULL;
8918         }
8919 clean1: /* wq/aer/h */
8920         if (h->resubmit_wq) {
8921                 destroy_workqueue(h->resubmit_wq);
8922                 h->resubmit_wq = NULL;
8923         }
8924         if (h->rescan_ctlr_wq) {
8925                 destroy_workqueue(h->rescan_ctlr_wq);
8926                 h->rescan_ctlr_wq = NULL;
8927         }
8928         if (h->monitor_ctlr_wq) {
8929                 destroy_workqueue(h->monitor_ctlr_wq);
8930                 h->monitor_ctlr_wq = NULL;
8931         }
8932         kfree(h);
8933         return rc;
8934 }
8935
8936 static void hpsa_flush_cache(struct ctlr_info *h)
8937 {
8938         char *flush_buf;
8939         struct CommandList *c;
8940         int rc;
8941
8942         if (unlikely(lockup_detected(h)))
8943                 return;
8944         flush_buf = kzalloc(4, GFP_KERNEL);
8945         if (!flush_buf)
8946                 return;
8947
8948         c = cmd_alloc(h);
8949
8950         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8951                 RAID_CTLR_LUNID, TYPE_CMD)) {
8952                 goto out;
8953         }
8954         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8955                         DEFAULT_TIMEOUT);
8956         if (rc)
8957                 goto out;
8958         if (c->err_info->CommandStatus != 0)
8959 out:
8960                 dev_warn(&h->pdev->dev,
8961                         "error flushing cache on controller\n");
8962         cmd_free(h, c);
8963         kfree(flush_buf);
8964 }
8965
8966 /* Make controller gather fresh report lun data each time we
8967  * send down a report luns request
8968  */
8969 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8970 {
8971         u32 *options;
8972         struct CommandList *c;
8973         int rc;
8974
8975         /* Don't bother trying to set diag options if locked up */
8976         if (unlikely(h->lockup_detected))
8977                 return;
8978
8979         options = kzalloc(sizeof(*options), GFP_KERNEL);
8980         if (!options)
8981                 return;
8982
8983         c = cmd_alloc(h);
8984
8985         /* first, get the current diag options settings */
8986         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8987                 RAID_CTLR_LUNID, TYPE_CMD))
8988                 goto errout;
8989
8990         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8991                         NO_TIMEOUT);
8992         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8993                 goto errout;
8994
8995         /* Now, set the bit for disabling the RLD caching */
8996         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8997
8998         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8999                 RAID_CTLR_LUNID, TYPE_CMD))
9000                 goto errout;
9001
9002         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9003                         NO_TIMEOUT);
9004         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9005                 goto errout;
9006
9007         /* Now verify that it got set: */
9008         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9009                 RAID_CTLR_LUNID, TYPE_CMD))
9010                 goto errout;
9011
9012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9013                         NO_TIMEOUT);
9014         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9015                 goto errout;
9016
9017         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9018                 goto out;
9019
9020 errout:
9021         dev_err(&h->pdev->dev,
9022                         "Error: failed to disable report lun data caching.\n");
9023 out:
9024         cmd_free(h, c);
9025         kfree(options);
9026 }
9027
9028 static void __hpsa_shutdown(struct pci_dev *pdev)
9029 {
9030         struct ctlr_info *h;
9031
9032         h = pci_get_drvdata(pdev);
9033         /* Turn board interrupts off  and send the flush cache command
9034          * sendcmd will turn off interrupt, and send the flush...
9035          * To write all data in the battery backed cache to disks
9036          */
9037         hpsa_flush_cache(h);
9038         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9039         hpsa_free_irqs(h);                      /* init_one 4 */
9040         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9041 }
9042
9043 static void hpsa_shutdown(struct pci_dev *pdev)
9044 {
9045         __hpsa_shutdown(pdev);
9046         pci_disable_device(pdev);
9047 }
9048
9049 static void hpsa_free_device_info(struct ctlr_info *h)
9050 {
9051         int i;
9052
9053         for (i = 0; i < h->ndevices; i++) {
9054                 kfree(h->dev[i]);
9055                 h->dev[i] = NULL;
9056         }
9057 }
9058
9059 static void hpsa_remove_one(struct pci_dev *pdev)
9060 {
9061         struct ctlr_info *h;
9062         unsigned long flags;
9063
9064         if (pci_get_drvdata(pdev) == NULL) {
9065                 dev_err(&pdev->dev, "unable to remove device\n");
9066                 return;
9067         }
9068         h = pci_get_drvdata(pdev);
9069
9070         /* Get rid of any controller monitoring work items */
9071         spin_lock_irqsave(&h->lock, flags);
9072         h->remove_in_progress = 1;
9073         spin_unlock_irqrestore(&h->lock, flags);
9074         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9075         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9076         cancel_delayed_work_sync(&h->event_monitor_work);
9077         destroy_workqueue(h->rescan_ctlr_wq);
9078         destroy_workqueue(h->resubmit_wq);
9079         destroy_workqueue(h->monitor_ctlr_wq);
9080
9081         hpsa_delete_sas_host(h);
9082
9083         /*
9084          * Call before disabling interrupts.
9085          * scsi_remove_host can trigger I/O operations especially
9086          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9087          * operations which cannot complete and will hang the system.
9088          */
9089         if (h->scsi_host)
9090                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9091         /* includes hpsa_free_irqs - init_one 4 */
9092         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9093         __hpsa_shutdown(pdev);
9094
9095         hpsa_free_device_info(h);               /* scan */
9096
9097         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9098         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9099         hpsa_free_ioaccel2_sg_chain_blocks(h);
9100         hpsa_free_performant_mode(h);                   /* init_one 7 */
9101         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9102         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9103         kfree(h->lastlogicals);
9104
9105         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9106
9107         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9108         h->scsi_host = NULL;                            /* init_one 3 */
9109
9110         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9111         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9112
9113         free_percpu(h->lockup_detected);                /* init_one 2 */
9114         h->lockup_detected = NULL;                      /* init_one 2 */
9115         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9116
9117         hpda_free_ctlr_info(h);                         /* init_one 1 */
9118 }
9119
9120 static int __maybe_unused hpsa_suspend(
9121         __attribute__((unused)) struct device *dev)
9122 {
9123         return -ENOSYS;
9124 }
9125
9126 static int __maybe_unused hpsa_resume
9127         (__attribute__((unused)) struct device *dev)
9128 {
9129         return -ENOSYS;
9130 }
9131
9132 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9133
9134 static struct pci_driver hpsa_pci_driver = {
9135         .name = HPSA,
9136         .probe = hpsa_init_one,
9137         .remove = hpsa_remove_one,
9138         .id_table = hpsa_pci_device_id, /* id_table */
9139         .shutdown = hpsa_shutdown,
9140         .driver.pm = &hpsa_pm_ops,
9141 };
9142
9143 /* Fill in bucket_map[], given nsgs (the max number of
9144  * scatter gather elements supported) and bucket[],
9145  * which is an array of 8 integers.  The bucket[] array
9146  * contains 8 different DMA transfer sizes (in 16
9147  * byte increments) which the controller uses to fetch
9148  * commands.  This function fills in bucket_map[], which
9149  * maps a given number of scatter gather elements to one of
9150  * the 8 DMA transfer sizes.  The point of it is to allow the
9151  * controller to only do as much DMA as needed to fetch the
9152  * command, with the DMA transfer size encoded in the lower
9153  * bits of the command address.
9154  */
9155 static void  calc_bucket_map(int bucket[], int num_buckets,
9156         int nsgs, int min_blocks, u32 *bucket_map)
9157 {
9158         int i, j, b, size;
9159
9160         /* Note, bucket_map must have nsgs+1 entries. */
9161         for (i = 0; i <= nsgs; i++) {
9162                 /* Compute size of a command with i SG entries */
9163                 size = i + min_blocks;
9164                 b = num_buckets; /* Assume the biggest bucket */
9165                 /* Find the bucket that is just big enough */
9166                 for (j = 0; j < num_buckets; j++) {
9167                         if (bucket[j] >= size) {
9168                                 b = j;
9169                                 break;
9170                         }
9171                 }
9172                 /* for a command with i SG entries, use bucket b. */
9173                 bucket_map[i] = b;
9174         }
9175 }
9176
9177 /*
9178  * return -ENODEV on err, 0 on success (or no action)
9179  * allocates numerous items that must be freed later
9180  */
9181 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9182 {
9183         int i;
9184         unsigned long register_value;
9185         unsigned long transMethod = CFGTBL_Trans_Performant |
9186                         (trans_support & CFGTBL_Trans_use_short_tags) |
9187                                 CFGTBL_Trans_enable_directed_msix |
9188                         (trans_support & (CFGTBL_Trans_io_accel1 |
9189                                 CFGTBL_Trans_io_accel2));
9190         struct access_method access = SA5_performant_access;
9191
9192         /* This is a bit complicated.  There are 8 registers on
9193          * the controller which we write to to tell it 8 different
9194          * sizes of commands which there may be.  It's a way of
9195          * reducing the DMA done to fetch each command.  Encoded into
9196          * each command's tag are 3 bits which communicate to the controller
9197          * which of the eight sizes that command fits within.  The size of
9198          * each command depends on how many scatter gather entries there are.
9199          * Each SG entry requires 16 bytes.  The eight registers are programmed
9200          * with the number of 16-byte blocks a command of that size requires.
9201          * The smallest command possible requires 5 such 16 byte blocks.
9202          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9203          * blocks.  Note, this only extends to the SG entries contained
9204          * within the command block, and does not extend to chained blocks
9205          * of SG elements.   bft[] contains the eight values we write to
9206          * the registers.  They are not evenly distributed, but have more
9207          * sizes for small commands, and fewer sizes for larger commands.
9208          */
9209         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9210 #define MIN_IOACCEL2_BFT_ENTRY 5
9211 #define HPSA_IOACCEL2_HEADER_SZ 4
9212         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9213                         13, 14, 15, 16, 17, 18, 19,
9214                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9215         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9216         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9217         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9218                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9219         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9220         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9221         /*  5 = 1 s/g entry or 4k
9222          *  6 = 2 s/g entry or 8k
9223          *  8 = 4 s/g entry or 16k
9224          * 10 = 6 s/g entry or 24k
9225          */
9226
9227         /* If the controller supports either ioaccel method then
9228          * we can also use the RAID stack submit path that does not
9229          * perform the superfluous readl() after each command submission.
9230          */
9231         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9232                 access = SA5_performant_access_no_read;
9233
9234         /* Controller spec: zero out this buffer. */
9235         for (i = 0; i < h->nreply_queues; i++)
9236                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9237
9238         bft[7] = SG_ENTRIES_IN_CMD + 4;
9239         calc_bucket_map(bft, ARRAY_SIZE(bft),
9240                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9241         for (i = 0; i < 8; i++)
9242                 writel(bft[i], &h->transtable->BlockFetch[i]);
9243
9244         /* size of controller ring buffer */
9245         writel(h->max_commands, &h->transtable->RepQSize);
9246         writel(h->nreply_queues, &h->transtable->RepQCount);
9247         writel(0, &h->transtable->RepQCtrAddrLow32);
9248         writel(0, &h->transtable->RepQCtrAddrHigh32);
9249
9250         for (i = 0; i < h->nreply_queues; i++) {
9251                 writel(0, &h->transtable->RepQAddr[i].upper);
9252                 writel(h->reply_queue[i].busaddr,
9253                         &h->transtable->RepQAddr[i].lower);
9254         }
9255
9256         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9257         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9258         /*
9259          * enable outbound interrupt coalescing in accelerator mode;
9260          */
9261         if (trans_support & CFGTBL_Trans_io_accel1) {
9262                 access = SA5_ioaccel_mode1_access;
9263                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9264                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9265         } else
9266                 if (trans_support & CFGTBL_Trans_io_accel2)
9267                         access = SA5_ioaccel_mode2_access;
9268         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9269         if (hpsa_wait_for_mode_change_ack(h)) {
9270                 dev_err(&h->pdev->dev,
9271                         "performant mode problem - doorbell timeout\n");
9272                 return -ENODEV;
9273         }
9274         register_value = readl(&(h->cfgtable->TransportActive));
9275         if (!(register_value & CFGTBL_Trans_Performant)) {
9276                 dev_err(&h->pdev->dev,
9277                         "performant mode problem - transport not active\n");
9278                 return -ENODEV;
9279         }
9280         /* Change the access methods to the performant access methods */
9281         h->access = access;
9282         h->transMethod = transMethod;
9283
9284         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9285                 (trans_support & CFGTBL_Trans_io_accel2)))
9286                 return 0;
9287
9288         if (trans_support & CFGTBL_Trans_io_accel1) {
9289                 /* Set up I/O accelerator mode */
9290                 for (i = 0; i < h->nreply_queues; i++) {
9291                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9292                         h->reply_queue[i].current_entry =
9293                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9294                 }
9295                 bft[7] = h->ioaccel_maxsg + 8;
9296                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9297                                 h->ioaccel1_blockFetchTable);
9298
9299                 /* initialize all reply queue entries to unused */
9300                 for (i = 0; i < h->nreply_queues; i++)
9301                         memset(h->reply_queue[i].head,
9302                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9303                                 h->reply_queue_size);
9304
9305                 /* set all the constant fields in the accelerator command
9306                  * frames once at init time to save CPU cycles later.
9307                  */
9308                 for (i = 0; i < h->nr_cmds; i++) {
9309                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9310
9311                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9312                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9313                                         (i * sizeof(struct ErrorInfo)));
9314                         cp->err_info_len = sizeof(struct ErrorInfo);
9315                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9316                         cp->host_context_flags =
9317                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9318                         cp->timeout_sec = 0;
9319                         cp->ReplyQueue = 0;
9320                         cp->tag =
9321                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9322                         cp->host_addr =
9323                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9324                                         (i * sizeof(struct io_accel1_cmd)));
9325                 }
9326         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9327                 u64 cfg_offset, cfg_base_addr_index;
9328                 u32 bft2_offset, cfg_base_addr;
9329
9330                 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9331                                     &cfg_base_addr_index, &cfg_offset);
9332                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9333                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9334                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9335                                 4, h->ioaccel2_blockFetchTable);
9336                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9337                 BUILD_BUG_ON(offsetof(struct CfgTable,
9338                                 io_accel_request_size_offset) != 0xb8);
9339                 h->ioaccel2_bft2_regs =
9340                         remap_pci_mem(pci_resource_start(h->pdev,
9341                                         cfg_base_addr_index) +
9342                                         cfg_offset + bft2_offset,
9343                                         ARRAY_SIZE(bft2) *
9344                                         sizeof(*h->ioaccel2_bft2_regs));
9345                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9346                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9347         }
9348         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9349         if (hpsa_wait_for_mode_change_ack(h)) {
9350                 dev_err(&h->pdev->dev,
9351                         "performant mode problem - enabling ioaccel mode\n");
9352                 return -ENODEV;
9353         }
9354         return 0;
9355 }
9356
9357 /* Free ioaccel1 mode command blocks and block fetch table */
9358 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9359 {
9360         if (h->ioaccel_cmd_pool) {
9361                 dma_free_coherent(&h->pdev->dev,
9362                                   h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363                                   h->ioaccel_cmd_pool,
9364                                   h->ioaccel_cmd_pool_dhandle);
9365                 h->ioaccel_cmd_pool = NULL;
9366                 h->ioaccel_cmd_pool_dhandle = 0;
9367         }
9368         kfree(h->ioaccel1_blockFetchTable);
9369         h->ioaccel1_blockFetchTable = NULL;
9370 }
9371
9372 /* Allocate ioaccel1 mode command blocks and block fetch table */
9373 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9374 {
9375         h->ioaccel_maxsg =
9376                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9377         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9378                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9379
9380         /* Command structures must be aligned on a 128-byte boundary
9381          * because the 7 lower bits of the address are used by the
9382          * hardware.
9383          */
9384         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9385                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9386         h->ioaccel_cmd_pool =
9387                 dma_alloc_coherent(&h->pdev->dev,
9388                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9389                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9390
9391         h->ioaccel1_blockFetchTable =
9392                 kmalloc(((h->ioaccel_maxsg + 1) *
9393                                 sizeof(u32)), GFP_KERNEL);
9394
9395         if ((h->ioaccel_cmd_pool == NULL) ||
9396                 (h->ioaccel1_blockFetchTable == NULL))
9397                 goto clean_up;
9398
9399         memset(h->ioaccel_cmd_pool, 0,
9400                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9401         return 0;
9402
9403 clean_up:
9404         hpsa_free_ioaccel1_cmd_and_bft(h);
9405         return -ENOMEM;
9406 }
9407
9408 /* Free ioaccel2 mode command blocks and block fetch table */
9409 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9410 {
9411         hpsa_free_ioaccel2_sg_chain_blocks(h);
9412
9413         if (h->ioaccel2_cmd_pool) {
9414                 dma_free_coherent(&h->pdev->dev,
9415                                   h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416                                   h->ioaccel2_cmd_pool,
9417                                   h->ioaccel2_cmd_pool_dhandle);
9418                 h->ioaccel2_cmd_pool = NULL;
9419                 h->ioaccel2_cmd_pool_dhandle = 0;
9420         }
9421         kfree(h->ioaccel2_blockFetchTable);
9422         h->ioaccel2_blockFetchTable = NULL;
9423 }
9424
9425 /* Allocate ioaccel2 mode command blocks and block fetch table */
9426 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9427 {
9428         int rc;
9429
9430         /* Allocate ioaccel2 mode command blocks and block fetch table */
9431
9432         h->ioaccel_maxsg =
9433                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9434         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9435                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9436
9437         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9438                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9439         h->ioaccel2_cmd_pool =
9440                 dma_alloc_coherent(&h->pdev->dev,
9441                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9442                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9443
9444         h->ioaccel2_blockFetchTable =
9445                 kmalloc(((h->ioaccel_maxsg + 1) *
9446                                 sizeof(u32)), GFP_KERNEL);
9447
9448         if ((h->ioaccel2_cmd_pool == NULL) ||
9449                 (h->ioaccel2_blockFetchTable == NULL)) {
9450                 rc = -ENOMEM;
9451                 goto clean_up;
9452         }
9453
9454         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9455         if (rc)
9456                 goto clean_up;
9457
9458         memset(h->ioaccel2_cmd_pool, 0,
9459                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9460         return 0;
9461
9462 clean_up:
9463         hpsa_free_ioaccel2_cmd_and_bft(h);
9464         return rc;
9465 }
9466
9467 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9468 static void hpsa_free_performant_mode(struct ctlr_info *h)
9469 {
9470         kfree(h->blockFetchTable);
9471         h->blockFetchTable = NULL;
9472         hpsa_free_reply_queues(h);
9473         hpsa_free_ioaccel1_cmd_and_bft(h);
9474         hpsa_free_ioaccel2_cmd_and_bft(h);
9475 }
9476
9477 /* return -ENODEV on error, 0 on success (or no action)
9478  * allocates numerous items that must be freed later
9479  */
9480 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9481 {
9482         u32 trans_support;
9483         unsigned long transMethod = CFGTBL_Trans_Performant |
9484                                         CFGTBL_Trans_use_short_tags;
9485         int i, rc;
9486
9487         if (hpsa_simple_mode)
9488                 return 0;
9489
9490         trans_support = readl(&(h->cfgtable->TransportSupport));
9491         if (!(trans_support & PERFORMANT_MODE))
9492                 return 0;
9493
9494         /* Check for I/O accelerator mode support */
9495         if (trans_support & CFGTBL_Trans_io_accel1) {
9496                 transMethod |= CFGTBL_Trans_io_accel1 |
9497                                 CFGTBL_Trans_enable_directed_msix;
9498                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9499                 if (rc)
9500                         return rc;
9501         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9502                 transMethod |= CFGTBL_Trans_io_accel2 |
9503                                 CFGTBL_Trans_enable_directed_msix;
9504                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9505                 if (rc)
9506                         return rc;
9507         }
9508
9509         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9510         hpsa_get_max_perf_mode_cmds(h);
9511         /* Performant mode ring buffer and supporting data structures */
9512         h->reply_queue_size = h->max_commands * sizeof(u64);
9513
9514         for (i = 0; i < h->nreply_queues; i++) {
9515                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9516                                                 h->reply_queue_size,
9517                                                 &h->reply_queue[i].busaddr,
9518                                                 GFP_KERNEL);
9519                 if (!h->reply_queue[i].head) {
9520                         rc = -ENOMEM;
9521                         goto clean1;    /* rq, ioaccel */
9522                 }
9523                 h->reply_queue[i].size = h->max_commands;
9524                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9525                 h->reply_queue[i].current_entry = 0;
9526         }
9527
9528         /* Need a block fetch table for performant mode */
9529         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9530                                 sizeof(u32)), GFP_KERNEL);
9531         if (!h->blockFetchTable) {
9532                 rc = -ENOMEM;
9533                 goto clean1;    /* rq, ioaccel */
9534         }
9535
9536         rc = hpsa_enter_performant_mode(h, trans_support);
9537         if (rc)
9538                 goto clean2;    /* bft, rq, ioaccel */
9539         return 0;
9540
9541 clean2: /* bft, rq, ioaccel */
9542         kfree(h->blockFetchTable);
9543         h->blockFetchTable = NULL;
9544 clean1: /* rq, ioaccel */
9545         hpsa_free_reply_queues(h);
9546         hpsa_free_ioaccel1_cmd_and_bft(h);
9547         hpsa_free_ioaccel2_cmd_and_bft(h);
9548         return rc;
9549 }
9550
9551 static int is_accelerated_cmd(struct CommandList *c)
9552 {
9553         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9554 }
9555
9556 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9557 {
9558         struct CommandList *c = NULL;
9559         int i, accel_cmds_out;
9560         int refcount;
9561
9562         do { /* wait for all outstanding ioaccel commands to drain out */
9563                 accel_cmds_out = 0;
9564                 for (i = 0; i < h->nr_cmds; i++) {
9565                         c = h->cmd_pool + i;
9566                         refcount = atomic_inc_return(&c->refcount);
9567                         if (refcount > 1) /* Command is allocated */
9568                                 accel_cmds_out += is_accelerated_cmd(c);
9569                         cmd_free(h, c);
9570                 }
9571                 if (accel_cmds_out <= 0)
9572                         break;
9573                 msleep(100);
9574         } while (1);
9575 }
9576
9577 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9578                                 struct hpsa_sas_port *hpsa_sas_port)
9579 {
9580         struct hpsa_sas_phy *hpsa_sas_phy;
9581         struct sas_phy *phy;
9582
9583         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9584         if (!hpsa_sas_phy)
9585                 return NULL;
9586
9587         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9588                 hpsa_sas_port->next_phy_index);
9589         if (!phy) {
9590                 kfree(hpsa_sas_phy);
9591                 return NULL;
9592         }
9593
9594         hpsa_sas_port->next_phy_index++;
9595         hpsa_sas_phy->phy = phy;
9596         hpsa_sas_phy->parent_port = hpsa_sas_port;
9597
9598         return hpsa_sas_phy;
9599 }
9600
9601 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602 {
9603         struct sas_phy *phy = hpsa_sas_phy->phy;
9604
9605         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9606         if (hpsa_sas_phy->added_to_port)
9607                 list_del(&hpsa_sas_phy->phy_list_entry);
9608         sas_phy_delete(phy);
9609         kfree(hpsa_sas_phy);
9610 }
9611
9612 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9613 {
9614         int rc;
9615         struct hpsa_sas_port *hpsa_sas_port;
9616         struct sas_phy *phy;
9617         struct sas_identify *identify;
9618
9619         hpsa_sas_port = hpsa_sas_phy->parent_port;
9620         phy = hpsa_sas_phy->phy;
9621
9622         identify = &phy->identify;
9623         memset(identify, 0, sizeof(*identify));
9624         identify->sas_address = hpsa_sas_port->sas_address;
9625         identify->device_type = SAS_END_DEVICE;
9626         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9627         identify->target_port_protocols = SAS_PROTOCOL_STP;
9628         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9629         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9630         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9631         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9632         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9633
9634         rc = sas_phy_add(hpsa_sas_phy->phy);
9635         if (rc)
9636                 return rc;
9637
9638         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9639         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9640                         &hpsa_sas_port->phy_list_head);
9641         hpsa_sas_phy->added_to_port = true;
9642
9643         return 0;
9644 }
9645
9646 static int
9647         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9648                                 struct sas_rphy *rphy)
9649 {
9650         struct sas_identify *identify;
9651
9652         identify = &rphy->identify;
9653         identify->sas_address = hpsa_sas_port->sas_address;
9654         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9655         identify->target_port_protocols = SAS_PROTOCOL_STP;
9656
9657         return sas_rphy_add(rphy);
9658 }
9659
9660 static struct hpsa_sas_port
9661         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9662                                 u64 sas_address)
9663 {
9664         int rc;
9665         struct hpsa_sas_port *hpsa_sas_port;
9666         struct sas_port *port;
9667
9668         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9669         if (!hpsa_sas_port)
9670                 return NULL;
9671
9672         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9673         hpsa_sas_port->parent_node = hpsa_sas_node;
9674
9675         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9676         if (!port)
9677                 goto free_hpsa_port;
9678
9679         rc = sas_port_add(port);
9680         if (rc)
9681                 goto free_sas_port;
9682
9683         hpsa_sas_port->port = port;
9684         hpsa_sas_port->sas_address = sas_address;
9685         list_add_tail(&hpsa_sas_port->port_list_entry,
9686                         &hpsa_sas_node->port_list_head);
9687
9688         return hpsa_sas_port;
9689
9690 free_sas_port:
9691         sas_port_free(port);
9692 free_hpsa_port:
9693         kfree(hpsa_sas_port);
9694
9695         return NULL;
9696 }
9697
9698 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9699 {
9700         struct hpsa_sas_phy *hpsa_sas_phy;
9701         struct hpsa_sas_phy *next;
9702
9703         list_for_each_entry_safe(hpsa_sas_phy, next,
9704                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9705                 hpsa_free_sas_phy(hpsa_sas_phy);
9706
9707         sas_port_delete(hpsa_sas_port->port);
9708         list_del(&hpsa_sas_port->port_list_entry);
9709         kfree(hpsa_sas_port);
9710 }
9711
9712 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9713 {
9714         struct hpsa_sas_node *hpsa_sas_node;
9715
9716         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9717         if (hpsa_sas_node) {
9718                 hpsa_sas_node->parent_dev = parent_dev;
9719                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9720         }
9721
9722         return hpsa_sas_node;
9723 }
9724
9725 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9726 {
9727         struct hpsa_sas_port *hpsa_sas_port;
9728         struct hpsa_sas_port *next;
9729
9730         if (!hpsa_sas_node)
9731                 return;
9732
9733         list_for_each_entry_safe(hpsa_sas_port, next,
9734                         &hpsa_sas_node->port_list_head, port_list_entry)
9735                 hpsa_free_sas_port(hpsa_sas_port);
9736
9737         kfree(hpsa_sas_node);
9738 }
9739
9740 static struct hpsa_scsi_dev_t
9741         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9742                                         struct sas_rphy *rphy)
9743 {
9744         int i;
9745         struct hpsa_scsi_dev_t *device;
9746
9747         for (i = 0; i < h->ndevices; i++) {
9748                 device = h->dev[i];
9749                 if (!device->sas_port)
9750                         continue;
9751                 if (device->sas_port->rphy == rphy)
9752                         return device;
9753         }
9754
9755         return NULL;
9756 }
9757
9758 static int hpsa_add_sas_host(struct ctlr_info *h)
9759 {
9760         int rc;
9761         struct device *parent_dev;
9762         struct hpsa_sas_node *hpsa_sas_node;
9763         struct hpsa_sas_port *hpsa_sas_port;
9764         struct hpsa_sas_phy *hpsa_sas_phy;
9765
9766         parent_dev = &h->scsi_host->shost_dev;
9767
9768         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9769         if (!hpsa_sas_node)
9770                 return -ENOMEM;
9771
9772         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9773         if (!hpsa_sas_port) {
9774                 rc = -ENODEV;
9775                 goto free_sas_node;
9776         }
9777
9778         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9779         if (!hpsa_sas_phy) {
9780                 rc = -ENODEV;
9781                 goto free_sas_port;
9782         }
9783
9784         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9785         if (rc)
9786                 goto free_sas_phy;
9787
9788         h->sas_host = hpsa_sas_node;
9789
9790         return 0;
9791
9792 free_sas_phy:
9793         hpsa_free_sas_phy(hpsa_sas_phy);
9794 free_sas_port:
9795         hpsa_free_sas_port(hpsa_sas_port);
9796 free_sas_node:
9797         hpsa_free_sas_node(hpsa_sas_node);
9798
9799         return rc;
9800 }
9801
9802 static void hpsa_delete_sas_host(struct ctlr_info *h)
9803 {
9804         hpsa_free_sas_node(h->sas_host);
9805 }
9806
9807 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9808                                 struct hpsa_scsi_dev_t *device)
9809 {
9810         int rc;
9811         struct hpsa_sas_port *hpsa_sas_port;
9812         struct sas_rphy *rphy;
9813
9814         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9815         if (!hpsa_sas_port)
9816                 return -ENOMEM;
9817
9818         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9819         if (!rphy) {
9820                 rc = -ENODEV;
9821                 goto free_sas_port;
9822         }
9823
9824         hpsa_sas_port->rphy = rphy;
9825         device->sas_port = hpsa_sas_port;
9826
9827         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9828         if (rc)
9829                 goto free_sas_port;
9830
9831         return 0;
9832
9833 free_sas_port:
9834         hpsa_free_sas_port(hpsa_sas_port);
9835         device->sas_port = NULL;
9836
9837         return rc;
9838 }
9839
9840 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9841 {
9842         if (device->sas_port) {
9843                 hpsa_free_sas_port(device->sas_port);
9844                 device->sas_port = NULL;
9845         }
9846 }
9847
9848 static int
9849 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9850 {
9851         return 0;
9852 }
9853
9854 static int
9855 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9856 {
9857         struct Scsi_Host *shost = phy_to_shost(rphy);
9858         struct ctlr_info *h;
9859         struct hpsa_scsi_dev_t *sd;
9860
9861         if (!shost)
9862                 return -ENXIO;
9863
9864         h = shost_to_hba(shost);
9865
9866         if (!h)
9867                 return -ENXIO;
9868
9869         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9870         if (!sd)
9871                 return -ENXIO;
9872
9873         *identifier = sd->eli;
9874
9875         return 0;
9876 }
9877
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881         return -ENXIO;
9882 }
9883
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887         return 0;
9888 }
9889
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893         return 0;
9894 }
9895
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899         return 0;
9900 }
9901
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910         return -EINVAL;
9911 }
9912
9913 static struct sas_function_template hpsa_sas_transport_functions = {
9914         .get_linkerrors = hpsa_sas_get_linkerrors,
9915         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9916         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9917         .phy_reset = hpsa_sas_phy_reset,
9918         .phy_enable = hpsa_sas_phy_enable,
9919         .phy_setup = hpsa_sas_phy_setup,
9920         .phy_release = hpsa_sas_phy_release,
9921         .set_phy_speed = hpsa_sas_phy_speed,
9922 };
9923
9924 /*
9925  *  This is it.  Register the PCI driver information for the cards we control
9926  *  the OS will call our registered routines when it finds one of our cards.
9927  */
9928 static int __init hpsa_init(void)
9929 {
9930         int rc;
9931
9932         hpsa_sas_transport_template =
9933                 sas_attach_transport(&hpsa_sas_transport_functions);
9934         if (!hpsa_sas_transport_template)
9935                 return -ENODEV;
9936
9937         rc = pci_register_driver(&hpsa_pci_driver);
9938
9939         if (rc)
9940                 sas_release_transport(hpsa_sas_transport_template);
9941
9942         return rc;
9943 }
9944
9945 static void __exit hpsa_cleanup(void)
9946 {
9947         pci_unregister_driver(&hpsa_pci_driver);
9948         sas_release_transport(hpsa_sas_transport_template);
9949 }
9950
9951 static void __attribute__((unused)) verify_offsets(void)
9952 {
9953 #define VERIFY_OFFSET(member, offset) \
9954         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9955
9956         VERIFY_OFFSET(structure_size, 0);
9957         VERIFY_OFFSET(volume_blk_size, 4);
9958         VERIFY_OFFSET(volume_blk_cnt, 8);
9959         VERIFY_OFFSET(phys_blk_shift, 16);
9960         VERIFY_OFFSET(parity_rotation_shift, 17);
9961         VERIFY_OFFSET(strip_size, 18);
9962         VERIFY_OFFSET(disk_starting_blk, 20);
9963         VERIFY_OFFSET(disk_blk_cnt, 28);
9964         VERIFY_OFFSET(data_disks_per_row, 36);
9965         VERIFY_OFFSET(metadata_disks_per_row, 38);
9966         VERIFY_OFFSET(row_cnt, 40);
9967         VERIFY_OFFSET(layout_map_count, 42);
9968         VERIFY_OFFSET(flags, 44);
9969         VERIFY_OFFSET(dekindex, 46);
9970         /* VERIFY_OFFSET(reserved, 48 */
9971         VERIFY_OFFSET(data, 64);
9972
9973 #undef VERIFY_OFFSET
9974
9975 #define VERIFY_OFFSET(member, offset) \
9976         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9977
9978         VERIFY_OFFSET(IU_type, 0);
9979         VERIFY_OFFSET(direction, 1);
9980         VERIFY_OFFSET(reply_queue, 2);
9981         /* VERIFY_OFFSET(reserved1, 3);  */
9982         VERIFY_OFFSET(scsi_nexus, 4);
9983         VERIFY_OFFSET(Tag, 8);
9984         VERIFY_OFFSET(cdb, 16);
9985         VERIFY_OFFSET(cciss_lun, 32);
9986         VERIFY_OFFSET(data_len, 40);
9987         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9988         VERIFY_OFFSET(sg_count, 45);
9989         /* VERIFY_OFFSET(reserved3 */
9990         VERIFY_OFFSET(err_ptr, 48);
9991         VERIFY_OFFSET(err_len, 56);
9992         /* VERIFY_OFFSET(reserved4  */
9993         VERIFY_OFFSET(sg, 64);
9994
9995 #undef VERIFY_OFFSET
9996
9997 #define VERIFY_OFFSET(member, offset) \
9998         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9999
10000         VERIFY_OFFSET(dev_handle, 0x00);
10001         VERIFY_OFFSET(reserved1, 0x02);
10002         VERIFY_OFFSET(function, 0x03);
10003         VERIFY_OFFSET(reserved2, 0x04);
10004         VERIFY_OFFSET(err_info, 0x0C);
10005         VERIFY_OFFSET(reserved3, 0x10);
10006         VERIFY_OFFSET(err_info_len, 0x12);
10007         VERIFY_OFFSET(reserved4, 0x13);
10008         VERIFY_OFFSET(sgl_offset, 0x14);
10009         VERIFY_OFFSET(reserved5, 0x15);
10010         VERIFY_OFFSET(transfer_len, 0x1C);
10011         VERIFY_OFFSET(reserved6, 0x20);
10012         VERIFY_OFFSET(io_flags, 0x24);
10013         VERIFY_OFFSET(reserved7, 0x26);
10014         VERIFY_OFFSET(LUN, 0x34);
10015         VERIFY_OFFSET(control, 0x3C);
10016         VERIFY_OFFSET(CDB, 0x40);
10017         VERIFY_OFFSET(reserved8, 0x50);
10018         VERIFY_OFFSET(host_context_flags, 0x60);
10019         VERIFY_OFFSET(timeout_sec, 0x62);
10020         VERIFY_OFFSET(ReplyQueue, 0x64);
10021         VERIFY_OFFSET(reserved9, 0x65);
10022         VERIFY_OFFSET(tag, 0x68);
10023         VERIFY_OFFSET(host_addr, 0x70);
10024         VERIFY_OFFSET(CISS_LUN, 0x78);
10025         VERIFY_OFFSET(SG, 0x78 + 8);
10026 #undef VERIFY_OFFSET
10027 }
10028
10029 module_init(hpsa_init);
10030 module_exit(hpsa_cleanup);