GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
151                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152         {0,}
153 };
154
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162         {0x40700E11, "Smart Array 5300", &SA5A_access},
163         {0x40800E11, "Smart Array 5i", &SA5B_access},
164         {0x40820E11, "Smart Array 532", &SA5B_access},
165         {0x40830E11, "Smart Array 5312", &SA5B_access},
166         {0x409A0E11, "Smart Array 641", &SA5A_access},
167         {0x409B0E11, "Smart Array 642", &SA5A_access},
168         {0x409C0E11, "Smart Array 6400", &SA5A_access},
169         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170         {0x40910E11, "Smart Array 6i", &SA5A_access},
171         {0x3225103C, "Smart Array P600", &SA5A_access},
172         {0x3223103C, "Smart Array P800", &SA5A_access},
173         {0x3234103C, "Smart Array P400", &SA5A_access},
174         {0x3235103C, "Smart Array P400i", &SA5A_access},
175         {0x3211103C, "Smart Array E200i", &SA5A_access},
176         {0x3212103C, "Smart Array E200", &SA5A_access},
177         {0x3213103C, "Smart Array E200i", &SA5A_access},
178         {0x3214103C, "Smart Array E200i", &SA5A_access},
179         {0x3215103C, "Smart Array E200i", &SA5A_access},
180         {0x3237103C, "Smart Array E500", &SA5A_access},
181         {0x323D103C, "Smart Array P700m", &SA5A_access},
182         {0x3241103C, "Smart Array P212", &SA5_access},
183         {0x3243103C, "Smart Array P410", &SA5_access},
184         {0x3245103C, "Smart Array P410i", &SA5_access},
185         {0x3247103C, "Smart Array P411", &SA5_access},
186         {0x3249103C, "Smart Array P812", &SA5_access},
187         {0x324A103C, "Smart Array P712m", &SA5_access},
188         {0x324B103C, "Smart Array P711m", &SA5_access},
189         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190         {0x3350103C, "Smart Array P222", &SA5_access},
191         {0x3351103C, "Smart Array P420", &SA5_access},
192         {0x3352103C, "Smart Array P421", &SA5_access},
193         {0x3353103C, "Smart Array P822", &SA5_access},
194         {0x3354103C, "Smart Array P420i", &SA5_access},
195         {0x3355103C, "Smart Array P220i", &SA5_access},
196         {0x3356103C, "Smart Array P721m", &SA5_access},
197         {0x1920103C, "Smart Array P430i", &SA5_access},
198         {0x1921103C, "Smart Array P830i", &SA5_access},
199         {0x1922103C, "Smart Array P430", &SA5_access},
200         {0x1923103C, "Smart Array P431", &SA5_access},
201         {0x1924103C, "Smart Array P830", &SA5_access},
202         {0x1925103C, "Smart Array P831", &SA5_access},
203         {0x1926103C, "Smart Array P731m", &SA5_access},
204         {0x1928103C, "Smart Array P230i", &SA5_access},
205         {0x1929103C, "Smart Array P530", &SA5_access},
206         {0x21BD103C, "Smart Array P244br", &SA5_access},
207         {0x21BE103C, "Smart Array P741m", &SA5_access},
208         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209         {0x21C0103C, "Smart Array P440ar", &SA5_access},
210         {0x21C1103C, "Smart Array P840ar", &SA5_access},
211         {0x21C2103C, "Smart Array P440", &SA5_access},
212         {0x21C3103C, "Smart Array P441", &SA5_access},
213         {0x21C4103C, "Smart Array", &SA5_access},
214         {0x21C5103C, "Smart Array P841", &SA5_access},
215         {0x21C6103C, "Smart HBA H244br", &SA5_access},
216         {0x21C7103C, "Smart HBA H240", &SA5_access},
217         {0x21C8103C, "Smart HBA H241", &SA5_access},
218         {0x21C9103C, "Smart Array", &SA5_access},
219         {0x21CA103C, "Smart Array P246br", &SA5_access},
220         {0x21CB103C, "Smart Array P840", &SA5_access},
221         {0x21CC103C, "Smart Array", &SA5_access},
222         {0x21CD103C, "Smart Array", &SA5_access},
223         {0x21CE103C, "Smart HBA", &SA5_access},
224         {0x05809005, "SmartHBA-SA", &SA5_access},
225         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242                         struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246                 struct sas_rphy *rphy);
247
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257                       void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259                                IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261                                    BIG_IOCTL_Command_struct *ioc);
262
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265         void __user *arg);
266 #endif
267
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272                                             struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275         int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283         unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293         struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295         struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298         int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304                                u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306                                     unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308                                 bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310                                            unsigned char lunaddr[],
311                                            int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313                                      int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328         struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330         unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333                                struct hpsa_scsi_dev_t *dev,
334                                unsigned char *scsi3addr);
335
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338         unsigned long *priv = shost_priv(sdev->host);
339         return (struct ctlr_info *) *priv;
340 }
341
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344         unsigned long *priv = shost_priv(sh);
345         return (struct ctlr_info *) *priv;
346 }
347
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350         return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355                         u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357         struct scsi_sense_hdr sshdr;
358         bool rc;
359
360         *sense_key = -1;
361         *asc = -1;
362         *ascq = -1;
363
364         if (sense_data_len < 1)
365                 return;
366
367         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368         if (rc) {
369                 *sense_key = sshdr.sense_key;
370                 *asc = sshdr.asc;
371                 *ascq = sshdr.ascq;
372         }
373 }
374
375 static int check_for_unit_attention(struct ctlr_info *h,
376         struct CommandList *c)
377 {
378         u8 sense_key, asc, ascq;
379         int sense_len;
380
381         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382                 sense_len = sizeof(c->err_info->SenseInfo);
383         else
384                 sense_len = c->err_info->SenseLen;
385
386         decode_sense_data(c->err_info->SenseInfo, sense_len,
387                                 &sense_key, &asc, &ascq);
388         if (sense_key != UNIT_ATTENTION || asc == 0xff)
389                 return 0;
390
391         switch (asc) {
392         case STATE_CHANGED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: a state change detected, command retried\n",
395                         h->devname);
396                 break;
397         case LUN_FAILED:
398                 dev_warn(&h->pdev->dev,
399                         "%s: LUN failure detected\n", h->devname);
400                 break;
401         case REPORT_LUNS_CHANGED:
402                 dev_warn(&h->pdev->dev,
403                         "%s: report LUN data changed\n", h->devname);
404         /*
405          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406          * target (array) devices.
407          */
408                 break;
409         case POWER_OR_RESET:
410                 dev_warn(&h->pdev->dev,
411                         "%s: a power on or device reset detected\n",
412                         h->devname);
413                 break;
414         case UNIT_ATTENTION_CLEARED:
415                 dev_warn(&h->pdev->dev,
416                         "%s: unit attention cleared by another initiator\n",
417                         h->devname);
418                 break;
419         default:
420                 dev_warn(&h->pdev->dev,
421                         "%s: unknown unit attention detected\n",
422                         h->devname);
423                 break;
424         }
425         return 1;
426 }
427
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433                 return 0;
434         dev_warn(&h->pdev->dev, HPSA "device busy");
435         return 1;
436 }
437
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440                 struct device_attribute *attr, char *buf)
441 {
442         int ld;
443         struct ctlr_info *h;
444         struct Scsi_Host *shost = class_to_shost(dev);
445
446         h = shost_to_hba(shost);
447         ld = lockup_detected(h);
448
449         return sprintf(buf, "ld=%d\n", ld);
450 }
451
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453                                          struct device_attribute *attr,
454                                          const char *buf, size_t count)
455 {
456         int status, len;
457         struct ctlr_info *h;
458         struct Scsi_Host *shost = class_to_shost(dev);
459         char tmpbuf[10];
460
461         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462                 return -EACCES;
463         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464         strncpy(tmpbuf, buf, len);
465         tmpbuf[len] = '\0';
466         if (sscanf(tmpbuf, "%d", &status) != 1)
467                 return -EINVAL;
468         h = shost_to_hba(shost);
469         h->acciopath_status = !!status;
470         dev_warn(&h->pdev->dev,
471                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
472                 h->acciopath_status ? "enabled" : "disabled");
473         return count;
474 }
475
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477                                          struct device_attribute *attr,
478                                          const char *buf, size_t count)
479 {
480         int debug_level, len;
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         char tmpbuf[10];
484
485         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486                 return -EACCES;
487         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488         strncpy(tmpbuf, buf, len);
489         tmpbuf[len] = '\0';
490         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491                 return -EINVAL;
492         if (debug_level < 0)
493                 debug_level = 0;
494         h = shost_to_hba(shost);
495         h->raid_offload_debug = debug_level;
496         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497                 h->raid_offload_debug);
498         return count;
499 }
500
501 static ssize_t host_store_rescan(struct device *dev,
502                                  struct device_attribute *attr,
503                                  const char *buf, size_t count)
504 {
505         struct ctlr_info *h;
506         struct Scsi_Host *shost = class_to_shost(dev);
507         h = shost_to_hba(shost);
508         hpsa_scan_start(h->scsi_host);
509         return count;
510 }
511
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514         device->offload_enabled = 0;
515         device->offload_to_be_enabled = 0;
516 }
517
518 static ssize_t host_show_firmware_revision(struct device *dev,
519              struct device_attribute *attr, char *buf)
520 {
521         struct ctlr_info *h;
522         struct Scsi_Host *shost = class_to_shost(dev);
523         unsigned char *fwrev;
524
525         h = shost_to_hba(shost);
526         if (!h->hba_inquiry_data)
527                 return 0;
528         fwrev = &h->hba_inquiry_data[32];
529         return snprintf(buf, 20, "%c%c%c%c\n",
530                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534              struct device_attribute *attr, char *buf)
535 {
536         struct Scsi_Host *shost = class_to_shost(dev);
537         struct ctlr_info *h = shost_to_hba(shost);
538
539         return snprintf(buf, 20, "%d\n",
540                         atomic_read(&h->commands_outstanding));
541 }
542
543 static ssize_t host_show_transport_mode(struct device *dev,
544         struct device_attribute *attr, char *buf)
545 {
546         struct ctlr_info *h;
547         struct Scsi_Host *shost = class_to_shost(dev);
548
549         h = shost_to_hba(shost);
550         return snprintf(buf, 20, "%s\n",
551                 h->transMethod & CFGTBL_Trans_Performant ?
552                         "performant" : "simple");
553 }
554
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556         struct device_attribute *attr, char *buf)
557 {
558         struct ctlr_info *h;
559         struct Scsi_Host *shost = class_to_shost(dev);
560
561         h = shost_to_hba(shost);
562         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568         0x324a103C, /* Smart Array P712m */
569         0x324b103C, /* Smart Array P711m */
570         0x3223103C, /* Smart Array P800 */
571         0x3234103C, /* Smart Array P400 */
572         0x3235103C, /* Smart Array P400i */
573         0x3211103C, /* Smart Array E200i */
574         0x3212103C, /* Smart Array E200 */
575         0x3213103C, /* Smart Array E200i */
576         0x3214103C, /* Smart Array E200i */
577         0x3215103C, /* Smart Array E200i */
578         0x3237103C, /* Smart Array E500 */
579         0x323D103C, /* Smart Array P700m */
580         0x40800E11, /* Smart Array 5i */
581         0x409C0E11, /* Smart Array 6400 */
582         0x409D0E11, /* Smart Array 6400 EM */
583         0x40700E11, /* Smart Array 5300 */
584         0x40820E11, /* Smart Array 532 */
585         0x40830E11, /* Smart Array 5312 */
586         0x409A0E11, /* Smart Array 641 */
587         0x409B0E11, /* Smart Array 642 */
588         0x40910E11, /* Smart Array 6i */
589 };
590
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593         0x40800E11, /* Smart Array 5i */
594         0x40700E11, /* Smart Array 5300 */
595         0x40820E11, /* Smart Array 532 */
596         0x40830E11, /* Smart Array 5312 */
597         0x409A0E11, /* Smart Array 641 */
598         0x409B0E11, /* Smart Array 642 */
599         0x40910E11, /* Smart Array 6i */
600         /* Exclude 640x boards.  These are two pci devices in one slot
601          * which share a battery backed cache module.  One controls the
602          * cache, the other accesses the cache through the one that controls
603          * it.  If we reset the one controlling the cache, the other will
604          * likely not be happy.  Just forbid resetting this conjoined mess.
605          * The 640x isn't really supported by hpsa anyway.
606          */
607         0x409C0E11, /* Smart Array 6400 */
608         0x409D0E11, /* Smart Array 6400 EM */
609 };
610
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613         int i;
614
615         for (i = 0; i < nelems; i++)
616                 if (a[i] == board_id)
617                         return 1;
618         return 0;
619 }
620
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623         return !board_id_in_array(unresettable_controller,
624                         ARRAY_SIZE(unresettable_controller), board_id);
625 }
626
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629         return !board_id_in_array(soft_unresettable_controller,
630                         ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632
633 static int ctlr_is_resettable(u32 board_id)
634 {
635         return ctlr_is_hard_resettable(board_id) ||
636                 ctlr_is_soft_resettable(board_id);
637 }
638
639 static ssize_t host_show_resettable(struct device *dev,
640         struct device_attribute *attr, char *buf)
641 {
642         struct ctlr_info *h;
643         struct Scsi_Host *shost = class_to_shost(dev);
644
645         h = shost_to_hba(shost);
646         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651         return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0     0
658 #define HPSA_RAID_4     1
659 #define HPSA_RAID_1     2       /* also used for RAID 10 */
660 #define HPSA_RAID_5     3       /* also used for RAID 50 */
661 #define HPSA_RAID_51    4
662 #define HPSA_RAID_6     5       /* also used for RAID 60 */
663 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669         return !device->physical_device;
670 }
671
672 static ssize_t raid_level_show(struct device *dev,
673              struct device_attribute *attr, char *buf)
674 {
675         ssize_t l = 0;
676         unsigned char rlevel;
677         struct ctlr_info *h;
678         struct scsi_device *sdev;
679         struct hpsa_scsi_dev_t *hdev;
680         unsigned long flags;
681
682         sdev = to_scsi_device(dev);
683         h = sdev_to_hba(sdev);
684         spin_lock_irqsave(&h->lock, flags);
685         hdev = sdev->hostdata;
686         if (!hdev) {
687                 spin_unlock_irqrestore(&h->lock, flags);
688                 return -ENODEV;
689         }
690
691         /* Is this even a logical drive? */
692         if (!is_logical_device(hdev)) {
693                 spin_unlock_irqrestore(&h->lock, flags);
694                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
695                 return l;
696         }
697
698         rlevel = hdev->raid_level;
699         spin_unlock_irqrestore(&h->lock, flags);
700         if (rlevel > RAID_UNKNOWN)
701                 rlevel = RAID_UNKNOWN;
702         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703         return l;
704 }
705
706 static ssize_t lunid_show(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         unsigned char lunid[8];
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727
728 static ssize_t unique_id_show(struct device *dev,
729              struct device_attribute *attr, char *buf)
730 {
731         struct ctlr_info *h;
732         struct scsi_device *sdev;
733         struct hpsa_scsi_dev_t *hdev;
734         unsigned long flags;
735         unsigned char sn[16];
736
737         sdev = to_scsi_device(dev);
738         h = sdev_to_hba(sdev);
739         spin_lock_irqsave(&h->lock, flags);
740         hdev = sdev->hostdata;
741         if (!hdev) {
742                 spin_unlock_irqrestore(&h->lock, flags);
743                 return -ENODEV;
744         }
745         memcpy(sn, hdev->device_id, sizeof(sn));
746         spin_unlock_irqrestore(&h->lock, flags);
747         return snprintf(buf, 16 * 2 + 2,
748                         "%02X%02X%02X%02X%02X%02X%02X%02X"
749                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
750                         sn[0], sn[1], sn[2], sn[3],
751                         sn[4], sn[5], sn[6], sn[7],
752                         sn[8], sn[9], sn[10], sn[11],
753                         sn[12], sn[13], sn[14], sn[15]);
754 }
755
756 static ssize_t sas_address_show(struct device *dev,
757               struct device_attribute *attr, char *buf)
758 {
759         struct ctlr_info *h;
760         struct scsi_device *sdev;
761         struct hpsa_scsi_dev_t *hdev;
762         unsigned long flags;
763         u64 sas_address;
764
765         sdev = to_scsi_device(dev);
766         h = sdev_to_hba(sdev);
767         spin_lock_irqsave(&h->lock, flags);
768         hdev = sdev->hostdata;
769         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770                 spin_unlock_irqrestore(&h->lock, flags);
771                 return -ENODEV;
772         }
773         sas_address = hdev->sas_address;
774         spin_unlock_irqrestore(&h->lock, flags);
775
776         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780              struct device_attribute *attr, char *buf)
781 {
782         struct ctlr_info *h;
783         struct scsi_device *sdev;
784         struct hpsa_scsi_dev_t *hdev;
785         unsigned long flags;
786         int offload_enabled;
787
788         sdev = to_scsi_device(dev);
789         h = sdev_to_hba(sdev);
790         spin_lock_irqsave(&h->lock, flags);
791         hdev = sdev->hostdata;
792         if (!hdev) {
793                 spin_unlock_irqrestore(&h->lock, flags);
794                 return -ENODEV;
795         }
796         offload_enabled = hdev->offload_enabled;
797         spin_unlock_irqrestore(&h->lock, flags);
798
799         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800                 return snprintf(buf, 20, "%d\n", offload_enabled);
801         else
802                 return snprintf(buf, 40, "%s\n",
803                                 "Not applicable for a controller");
804 }
805
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808              struct device_attribute *attr, char *buf)
809 {
810         struct ctlr_info *h;
811         struct scsi_device *sdev;
812         struct hpsa_scsi_dev_t *hdev;
813         unsigned long flags;
814         int i;
815         int output_len = 0;
816         u8 box;
817         u8 bay;
818         u8 path_map_index = 0;
819         char *active;
820         unsigned char phys_connector[2];
821
822         sdev = to_scsi_device(dev);
823         h = sdev_to_hba(sdev);
824         spin_lock_irqsave(&h->devlock, flags);
825         hdev = sdev->hostdata;
826         if (!hdev) {
827                 spin_unlock_irqrestore(&h->devlock, flags);
828                 return -ENODEV;
829         }
830
831         bay = hdev->bay;
832         for (i = 0; i < MAX_PATHS; i++) {
833                 path_map_index = 1<<i;
834                 if (i == hdev->active_path_index)
835                         active = "Active";
836                 else if (hdev->path_map & path_map_index)
837                         active = "Inactive";
838                 else
839                         continue;
840
841                 output_len += scnprintf(buf + output_len,
842                                 PAGE_SIZE - output_len,
843                                 "[%d:%d:%d:%d] %20.20s ",
844                                 h->scsi_host->host_no,
845                                 hdev->bus, hdev->target, hdev->lun,
846                                 scsi_device_type(hdev->devtype));
847
848                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849                         output_len += scnprintf(buf + output_len,
850                                                 PAGE_SIZE - output_len,
851                                                 "%s\n", active);
852                         continue;
853                 }
854
855                 box = hdev->box[i];
856                 memcpy(&phys_connector, &hdev->phys_connector[i],
857                         sizeof(phys_connector));
858                 if (phys_connector[0] < '0')
859                         phys_connector[0] = '0';
860                 if (phys_connector[1] < '0')
861                         phys_connector[1] = '0';
862                 output_len += scnprintf(buf + output_len,
863                                 PAGE_SIZE - output_len,
864                                 "PORT: %.2s ",
865                                 phys_connector);
866                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867                         hdev->expose_device) {
868                         if (box == 0 || box == 0xFF) {
869                                 output_len += scnprintf(buf + output_len,
870                                         PAGE_SIZE - output_len,
871                                         "BAY: %hhu %s\n",
872                                         bay, active);
873                         } else {
874                                 output_len += scnprintf(buf + output_len,
875                                         PAGE_SIZE - output_len,
876                                         "BOX: %hhu BAY: %hhu %s\n",
877                                         box, bay, active);
878                         }
879                 } else if (box != 0 && box != 0xFF) {
880                         output_len += scnprintf(buf + output_len,
881                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882                                 box, active);
883                 } else
884                         output_len += scnprintf(buf + output_len,
885                                 PAGE_SIZE - output_len, "%s\n", active);
886         }
887
888         spin_unlock_irqrestore(&h->devlock, flags);
889         return output_len;
890 }
891
892 static ssize_t host_show_ctlr_num(struct device *dev,
893         struct device_attribute *attr, char *buf)
894 {
895         struct ctlr_info *h;
896         struct Scsi_Host *shost = class_to_shost(dev);
897
898         h = shost_to_hba(shost);
899         return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901
902 static ssize_t host_show_legacy_board(struct device *dev,
903         struct device_attribute *attr, char *buf)
904 {
905         struct ctlr_info *h;
906         struct Scsi_Host *shost = class_to_shost(dev);
907
908         h = shost_to_hba(shost);
909         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918                         host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921                 host_show_hp_ssd_smart_path_status,
922                 host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924                         host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926         host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928         host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930         host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932         host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934         host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936         host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938         host_show_legacy_board, NULL);
939
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941         &dev_attr_raid_level,
942         &dev_attr_lunid,
943         &dev_attr_unique_id,
944         &dev_attr_hp_ssd_smart_path_enabled,
945         &dev_attr_path_info,
946         &dev_attr_sas_address,
947         NULL,
948 };
949
950 static struct device_attribute *hpsa_shost_attrs[] = {
951         &dev_attr_rescan,
952         &dev_attr_firmware_revision,
953         &dev_attr_commands_outstanding,
954         &dev_attr_transport_mode,
955         &dev_attr_resettable,
956         &dev_attr_hp_ssd_smart_path_status,
957         &dev_attr_raid_offload_debug,
958         &dev_attr_lockup_detected,
959         &dev_attr_ctlr_num,
960         &dev_attr_legacy_board,
961         NULL,
962 };
963
964 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
965                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
966
967 static struct scsi_host_template hpsa_driver_template = {
968         .module                 = THIS_MODULE,
969         .name                   = HPSA,
970         .proc_name              = HPSA,
971         .queuecommand           = hpsa_scsi_queue_command,
972         .scan_start             = hpsa_scan_start,
973         .scan_finished          = hpsa_scan_finished,
974         .change_queue_depth     = hpsa_change_queue_depth,
975         .this_id                = -1,
976         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
977         .ioctl                  = hpsa_ioctl,
978         .slave_alloc            = hpsa_slave_alloc,
979         .slave_configure        = hpsa_slave_configure,
980         .slave_destroy          = hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982         .compat_ioctl           = hpsa_compat_ioctl,
983 #endif
984         .sdev_attrs = hpsa_sdev_attrs,
985         .shost_attrs = hpsa_shost_attrs,
986         .max_sectors = 2048,
987         .no_write_same = 1,
988 };
989
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992         u32 a;
993         struct reply_queue_buffer *rq = &h->reply_queue[q];
994
995         if (h->transMethod & CFGTBL_Trans_io_accel1)
996                 return h->access.command_completed(h, q);
997
998         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999                 return h->access.command_completed(h, q);
1000
1001         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002                 a = rq->head[rq->current_entry];
1003                 rq->current_entry++;
1004                 atomic_dec(&h->commands_outstanding);
1005         } else {
1006                 a = FIFO_EMPTY;
1007         }
1008         /* Check for wraparound */
1009         if (rq->current_entry == h->max_commands) {
1010                 rq->current_entry = 0;
1011                 rq->wraparound ^= 1;
1012         }
1013         return a;
1014 }
1015
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049                                         int reply_queue)
1050 {
1051         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053                 if (unlikely(!h->msix_vectors))
1054                         return;
1055                 c->Header.ReplyQueue = reply_queue;
1056         }
1057 }
1058
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060                                                 struct CommandList *c,
1061                                                 int reply_queue)
1062 {
1063         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064
1065         /*
1066          * Tell the controller to post the reply to the queue for this
1067          * processor.  This seems to give the best I/O throughput.
1068          */
1069         cp->ReplyQueue = reply_queue;
1070         /*
1071          * Set the bits in the address sent down to include:
1072          *  - performant mode bit (bit 0)
1073          *  - pull count (bits 1-3)
1074          *  - command type (bits 4-6)
1075          */
1076         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077                                         IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081                                                 struct CommandList *c,
1082                                                 int reply_queue)
1083 {
1084         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085                 &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087         /* Tell the controller to post the reply to the queue for this
1088          * processor.  This seems to give the best I/O throughput.
1089          */
1090         cp->reply_queue = reply_queue;
1091         /* Set the bits in the address sent down to include:
1092          *  - performant mode bit not used in ioaccel mode 2
1093          *  - pull count (bits 0-3)
1094          *  - command type isn't needed for ioaccel2
1095          */
1096         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100                                                 struct CommandList *c,
1101                                                 int reply_queue)
1102 {
1103         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104
1105         /*
1106          * Tell the controller to post the reply to the queue for this
1107          * processor.  This seems to give the best I/O throughput.
1108          */
1109         cp->reply_queue = reply_queue;
1110         /*
1111          * Set the bits in the address sent down to include:
1112          *  - performant mode bit not used in ioaccel mode 2
1113          *  - pull count (bits 0-3)
1114          *  - command type isn't needed for ioaccel2
1115          */
1116         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133                 struct CommandList *c)
1134 {
1135         if (!is_firmware_flash_cmd(c->Request.CDB))
1136                 return;
1137         atomic_inc(&h->firmware_flash_in_progress);
1138         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142                 struct CommandList *c)
1143 {
1144         if (is_firmware_flash_cmd(c->Request.CDB) &&
1145                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1146                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150         struct CommandList *c, int reply_queue)
1151 {
1152         dial_down_lockup_detection_during_fw_flash(h, c);
1153         atomic_inc(&h->commands_outstanding);
1154         if (c->device)
1155                 atomic_inc(&c->device->commands_outstanding);
1156
1157         reply_queue = h->reply_map[raw_smp_processor_id()];
1158         switch (c->cmd_type) {
1159         case CMD_IOACCEL1:
1160                 set_ioaccel1_performant_mode(h, c, reply_queue);
1161                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162                 break;
1163         case CMD_IOACCEL2:
1164                 set_ioaccel2_performant_mode(h, c, reply_queue);
1165                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166                 break;
1167         case IOACCEL2_TMF:
1168                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170                 break;
1171         default:
1172                 set_performant_mode(h, c, reply_queue);
1173                 h->access.submit_command(h, c);
1174         }
1175 }
1176
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189         if (!h->hba_inquiry_data)
1190                 return 0;
1191         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192                 return 1;
1193         return 0;
1194 }
1195
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197         unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199         /* finds an unused bus, target, lun for a new physical device
1200          * assumes h->devlock is held
1201          */
1202         int i, found = 0;
1203         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207         for (i = 0; i < h->ndevices; i++) {
1208                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209                         __set_bit(h->dev[i]->target, lun_taken);
1210         }
1211
1212         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213         if (i < HPSA_MAX_DEVICES) {
1214                 /* *bus = 1; */
1215                 *target = i;
1216                 *lun = 0;
1217                 found = 1;
1218         }
1219         return !found;
1220 }
1221
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223         struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226         char label[LABEL_SIZE];
1227
1228         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229                 return;
1230
1231         switch (dev->devtype) {
1232         case TYPE_RAID:
1233                 snprintf(label, LABEL_SIZE, "controller");
1234                 break;
1235         case TYPE_ENCLOSURE:
1236                 snprintf(label, LABEL_SIZE, "enclosure");
1237                 break;
1238         case TYPE_DISK:
1239         case TYPE_ZBC:
1240                 if (dev->external)
1241                         snprintf(label, LABEL_SIZE, "external");
1242                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243                         snprintf(label, LABEL_SIZE, "%s",
1244                                 raid_label[PHYSICAL_DRIVE]);
1245                 else
1246                         snprintf(label, LABEL_SIZE, "RAID-%s",
1247                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1248                                 raid_label[dev->raid_level]);
1249                 break;
1250         case TYPE_ROM:
1251                 snprintf(label, LABEL_SIZE, "rom");
1252                 break;
1253         case TYPE_TAPE:
1254                 snprintf(label, LABEL_SIZE, "tape");
1255                 break;
1256         case TYPE_MEDIUM_CHANGER:
1257                 snprintf(label, LABEL_SIZE, "changer");
1258                 break;
1259         default:
1260                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1261                 break;
1262         }
1263
1264         dev_printk(level, &h->pdev->dev,
1265                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267                         description,
1268                         scsi_device_type(dev->devtype),
1269                         dev->vendor,
1270                         dev->model,
1271                         label,
1272                         dev->offload_config ? '+' : '-',
1273                         dev->offload_to_be_enabled ? '+' : '-',
1274                         dev->expose_device);
1275 }
1276
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279                 struct hpsa_scsi_dev_t *device,
1280                 struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282         /* assumes h->devlock is held */
1283         int n = h->ndevices;
1284         int i;
1285         unsigned char addr1[8], addr2[8];
1286         struct hpsa_scsi_dev_t *sd;
1287
1288         if (n >= HPSA_MAX_DEVICES) {
1289                 dev_err(&h->pdev->dev, "too many devices, some will be "
1290                         "inaccessible.\n");
1291                 return -1;
1292         }
1293
1294         /* physical devices do not have lun or target assigned until now. */
1295         if (device->lun != -1)
1296                 /* Logical device, lun is already assigned. */
1297                 goto lun_assigned;
1298
1299         /* If this device a non-zero lun of a multi-lun device
1300          * byte 4 of the 8-byte LUN addr will contain the logical
1301          * unit no, zero otherwise.
1302          */
1303         if (device->scsi3addr[4] == 0) {
1304                 /* This is not a non-zero lun of a multi-lun device */
1305                 if (hpsa_find_target_lun(h, device->scsi3addr,
1306                         device->bus, &device->target, &device->lun) != 0)
1307                         return -1;
1308                 goto lun_assigned;
1309         }
1310
1311         /* This is a non-zero lun of a multi-lun device.
1312          * Search through our list and find the device which
1313          * has the same 8 byte LUN address, excepting byte 4 and 5.
1314          * Assign the same bus and target for this new LUN.
1315          * Use the logical unit number from the firmware.
1316          */
1317         memcpy(addr1, device->scsi3addr, 8);
1318         addr1[4] = 0;
1319         addr1[5] = 0;
1320         for (i = 0; i < n; i++) {
1321                 sd = h->dev[i];
1322                 memcpy(addr2, sd->scsi3addr, 8);
1323                 addr2[4] = 0;
1324                 addr2[5] = 0;
1325                 /* differ only in byte 4 and 5? */
1326                 if (memcmp(addr1, addr2, 8) == 0) {
1327                         device->bus = sd->bus;
1328                         device->target = sd->target;
1329                         device->lun = device->scsi3addr[4];
1330                         break;
1331                 }
1332         }
1333         if (device->lun == -1) {
1334                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335                         " suspect firmware bug or unsupported hardware "
1336                         "configuration.\n");
1337                 return -1;
1338         }
1339
1340 lun_assigned:
1341
1342         h->dev[n] = device;
1343         h->ndevices++;
1344         added[*nadded] = device;
1345         (*nadded)++;
1346         hpsa_show_dev_msg(KERN_INFO, h, device,
1347                 device->expose_device ? "added" : "masked");
1348         return 0;
1349 }
1350
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357         int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359         /* assumes h->devlock is held */
1360         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361
1362         /* Raid level changed. */
1363         h->dev[entry]->raid_level = new_entry->raid_level;
1364
1365         /*
1366          * ioacccel_handle may have changed for a dual domain disk
1367          */
1368         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369
1370         /* Raid offload parameters changed.  Careful about the ordering. */
1371         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372                 /*
1373                  * if drive is newly offload_enabled, we want to copy the
1374                  * raid map data first.  If previously offload_enabled and
1375                  * offload_config were set, raid map data had better be
1376                  * the same as it was before. If raid map data has changed
1377                  * then it had better be the case that
1378                  * h->dev[entry]->offload_enabled is currently 0.
1379                  */
1380                 h->dev[entry]->raid_map = new_entry->raid_map;
1381                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382         }
1383         if (new_entry->offload_to_be_enabled) {
1384                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386         }
1387         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388         h->dev[entry]->offload_config = new_entry->offload_config;
1389         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390         h->dev[entry]->queue_depth = new_entry->queue_depth;
1391
1392         /*
1393          * We can turn off ioaccel offload now, but need to delay turning
1394          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395          * can't do that until all the devices are updated.
1396          */
1397         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398
1399         /*
1400          * turn ioaccel off immediately if told to do so.
1401          */
1402         if (!new_entry->offload_to_be_enabled)
1403                 h->dev[entry]->offload_enabled = 0;
1404
1405         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410         int entry, struct hpsa_scsi_dev_t *new_entry,
1411         struct hpsa_scsi_dev_t *added[], int *nadded,
1412         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414         /* assumes h->devlock is held */
1415         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         /*
1420          * New physical devices won't have target/lun assigned yet
1421          * so we need to preserve the values in the slot we are replacing.
1422          */
1423         if (new_entry->target == -1) {
1424                 new_entry->target = h->dev[entry]->target;
1425                 new_entry->lun = h->dev[entry]->lun;
1426         }
1427
1428         h->dev[entry] = new_entry;
1429         added[*nadded] = new_entry;
1430         (*nadded)++;
1431
1432         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439         /* assumes h->devlock is held */
1440         int i;
1441         struct hpsa_scsi_dev_t *sd;
1442
1443         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444
1445         sd = h->dev[entry];
1446         removed[*nremoved] = h->dev[entry];
1447         (*nremoved)++;
1448
1449         for (i = entry; i < h->ndevices-1; i++)
1450                 h->dev[i] = h->dev[i+1];
1451         h->ndevices--;
1452         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456         (a)[7] == (b)[7] && \
1457         (a)[6] == (b)[6] && \
1458         (a)[5] == (b)[5] && \
1459         (a)[4] == (b)[4] && \
1460         (a)[3] == (b)[3] && \
1461         (a)[2] == (b)[2] && \
1462         (a)[1] == (b)[1] && \
1463         (a)[0] == (b)[0])
1464
1465 static void fixup_botched_add(struct ctlr_info *h,
1466         struct hpsa_scsi_dev_t *added)
1467 {
1468         /* called when scsi_add_device fails in order to re-adjust
1469          * h->dev[] to match the mid layer's view.
1470          */
1471         unsigned long flags;
1472         int i, j;
1473
1474         spin_lock_irqsave(&h->lock, flags);
1475         for (i = 0; i < h->ndevices; i++) {
1476                 if (h->dev[i] == added) {
1477                         for (j = i; j < h->ndevices-1; j++)
1478                                 h->dev[j] = h->dev[j+1];
1479                         h->ndevices--;
1480                         break;
1481                 }
1482         }
1483         spin_unlock_irqrestore(&h->lock, flags);
1484         kfree(added);
1485 }
1486
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488         struct hpsa_scsi_dev_t *dev2)
1489 {
1490         /* we compare everything except lun and target as these
1491          * are not yet assigned.  Compare parts likely
1492          * to differ first
1493          */
1494         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495                 sizeof(dev1->scsi3addr)) != 0)
1496                 return 0;
1497         if (memcmp(dev1->device_id, dev2->device_id,
1498                 sizeof(dev1->device_id)) != 0)
1499                 return 0;
1500         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503                 return 0;
1504         if (dev1->devtype != dev2->devtype)
1505                 return 0;
1506         if (dev1->bus != dev2->bus)
1507                 return 0;
1508         return 1;
1509 }
1510
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512         struct hpsa_scsi_dev_t *dev2)
1513 {
1514         /* Device attributes that can change, but don't mean
1515          * that the device is a different device, nor that the OS
1516          * needs to be told anything about the change.
1517          */
1518         if (dev1->raid_level != dev2->raid_level)
1519                 return 1;
1520         if (dev1->offload_config != dev2->offload_config)
1521                 return 1;
1522         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523                 return 1;
1524         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525                 if (dev1->queue_depth != dev2->queue_depth)
1526                         return 1;
1527         /*
1528          * This can happen for dual domain devices. An active
1529          * path change causes the ioaccel handle to change
1530          *
1531          * for example note the handle differences between p0 and p1
1532          * Device                    WWN               ,WWN hash,Handle
1533          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535          */
1536         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537                 return 1;
1538         return 0;
1539 }
1540
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551         int *index)
1552 {
1553         int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558         if (needle == NULL)
1559                 return DEVICE_NOT_FOUND;
1560
1561         for (i = 0; i < haystack_size; i++) {
1562                 if (haystack[i] == NULL) /* previously removed. */
1563                         continue;
1564                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565                         *index = i;
1566                         if (device_is_the_same(needle, haystack[i])) {
1567                                 if (device_updated(needle, haystack[i]))
1568                                         return DEVICE_UPDATED;
1569                                 return DEVICE_SAME;
1570                         } else {
1571                                 /* Keep offline devices offline */
1572                                 if (needle->volume_offline)
1573                                         return DEVICE_NOT_FOUND;
1574                                 return DEVICE_CHANGED;
1575                         }
1576                 }
1577         }
1578         *index = -1;
1579         return DEVICE_NOT_FOUND;
1580 }
1581
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583                                         unsigned char scsi3addr[])
1584 {
1585         struct offline_device_entry *device;
1586         unsigned long flags;
1587
1588         /* Check to see if device is already on the list */
1589         spin_lock_irqsave(&h->offline_device_lock, flags);
1590         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591                 if (memcmp(device->scsi3addr, scsi3addr,
1592                         sizeof(device->scsi3addr)) == 0) {
1593                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594                         return;
1595                 }
1596         }
1597         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598
1599         /* Device is not on the list, add it. */
1600         device = kmalloc(sizeof(*device), GFP_KERNEL);
1601         if (!device)
1602                 return;
1603
1604         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605         spin_lock_irqsave(&h->offline_device_lock, flags);
1606         list_add_tail(&device->offline_list, &h->offline_device_list);
1607         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612         struct hpsa_scsi_dev_t *sd)
1613 {
1614         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619         switch (sd->volume_offline) {
1620         case HPSA_LV_OK:
1621                 break;
1622         case HPSA_LV_UNDERGOING_ERASE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_NOT_AVAILABLE:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_UNDERGOING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_PENDING_RPI:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_ENCRYPTED_NO_KEY:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683                 dev_info(&h->pdev->dev,
1684                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685                         h->scsi_host->host_no,
1686                         sd->bus, sd->target, sd->lun);
1687                 break;
1688         }
1689 }
1690
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1697                                 struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699         struct raid_map_data *map = &logical_drive->raid_map;
1700         struct raid_map_disk_data *dd = &map->data[0];
1701         int i, j;
1702         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703                                 le16_to_cpu(map->metadata_disks_per_row);
1704         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705                                 le16_to_cpu(map->layout_map_count) *
1706                                 total_disks_per_row;
1707         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708                                 total_disks_per_row;
1709         int qdepth;
1710
1711         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713
1714         logical_drive->nphysical_disks = nraid_map_entries;
1715
1716         qdepth = 0;
1717         for (i = 0; i < nraid_map_entries; i++) {
1718                 logical_drive->phys_disk[i] = NULL;
1719                 if (!logical_drive->offload_config)
1720                         continue;
1721                 for (j = 0; j < ndevices; j++) {
1722                         if (dev[j] == NULL)
1723                                 continue;
1724                         if (dev[j]->devtype != TYPE_DISK &&
1725                             dev[j]->devtype != TYPE_ZBC)
1726                                 continue;
1727                         if (is_logical_device(dev[j]))
1728                                 continue;
1729                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730                                 continue;
1731
1732                         logical_drive->phys_disk[i] = dev[j];
1733                         if (i < nphys_disk)
1734                                 qdepth = min(h->nr_cmds, qdepth +
1735                                     logical_drive->phys_disk[i]->queue_depth);
1736                         break;
1737                 }
1738
1739                 /*
1740                  * This can happen if a physical drive is removed and
1741                  * the logical drive is degraded.  In that case, the RAID
1742                  * map data will refer to a physical disk which isn't actually
1743                  * present.  And in that case offload_enabled should already
1744                  * be 0, but we'll turn it off here just in case
1745                  */
1746                 if (!logical_drive->phys_disk[i]) {
1747                         dev_warn(&h->pdev->dev,
1748                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749                                 __func__,
1750                                 h->scsi_host->host_no, logical_drive->bus,
1751                                 logical_drive->target, logical_drive->lun);
1752                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1753                         logical_drive->queue_depth = 8;
1754                 }
1755         }
1756         if (nraid_map_entries)
1757                 /*
1758                  * This is correct for reads, too high for full stripe writes,
1759                  * way too high for partial stripe writes
1760                  */
1761                 logical_drive->queue_depth = qdepth;
1762         else {
1763                 if (logical_drive->external)
1764                         logical_drive->queue_depth = EXTERNAL_QD;
1765                 else
1766                         logical_drive->queue_depth = h->nr_cmds;
1767         }
1768 }
1769
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773         int i;
1774
1775         for (i = 0; i < ndevices; i++) {
1776                 if (dev[i] == NULL)
1777                         continue;
1778                 if (dev[i]->devtype != TYPE_DISK &&
1779                     dev[i]->devtype != TYPE_ZBC)
1780                         continue;
1781                 if (!is_logical_device(dev[i]))
1782                         continue;
1783
1784                 /*
1785                  * If offload is currently enabled, the RAID map and
1786                  * phys_disk[] assignment *better* not be changing
1787                  * because we would be changing ioaccel phsy_disk[] pointers
1788                  * on a ioaccel volume processing I/O requests.
1789                  *
1790                  * If an ioaccel volume status changed, initially because it was
1791                  * re-configured and thus underwent a transformation, or
1792                  * a drive failed, we would have received a state change
1793                  * request and ioaccel should have been turned off. When the
1794                  * transformation completes, we get another state change
1795                  * request to turn ioaccel back on. In this case, we need
1796                  * to update the ioaccel information.
1797                  *
1798                  * Thus: If it is not currently enabled, but will be after
1799                  * the scan completes, make sure the ioaccel pointers
1800                  * are up to date.
1801                  */
1802
1803                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805         }
1806 }
1807
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810         int rc = 0;
1811
1812         if (!h->scsi_host)
1813                 return 1;
1814
1815         if (is_logical_device(device)) /* RAID */
1816                 rc = scsi_add_device(h->scsi_host, device->bus,
1817                                         device->target, device->lun);
1818         else /* HBA */
1819                 rc = hpsa_add_sas_device(h->sas_host, device);
1820
1821         return rc;
1822 }
1823
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825                                                 struct hpsa_scsi_dev_t *dev)
1826 {
1827         int i;
1828         int count = 0;
1829
1830         for (i = 0; i < h->nr_cmds; i++) {
1831                 struct CommandList *c = h->cmd_pool + i;
1832                 int refcount = atomic_inc_return(&c->refcount);
1833
1834                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835                                 dev->scsi3addr)) {
1836                         unsigned long flags;
1837
1838                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1839                         if (!hpsa_is_cmd_idle(c))
1840                                 ++count;
1841                         spin_unlock_irqrestore(&h->lock, flags);
1842                 }
1843
1844                 cmd_free(h, c);
1845         }
1846
1847         return count;
1848 }
1849
1850 #define NUM_WAIT 20
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852                                                 struct hpsa_scsi_dev_t *device)
1853 {
1854         int cmds = 0;
1855         int waits = 0;
1856         int num_wait = NUM_WAIT;
1857
1858         if (device->external)
1859                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860
1861         while (1) {
1862                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863                 if (cmds == 0)
1864                         break;
1865                 if (++waits > num_wait)
1866                         break;
1867                 msleep(1000);
1868         }
1869
1870         if (waits > num_wait) {
1871                 dev_warn(&h->pdev->dev,
1872                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873                         __func__,
1874                         h->scsi_host->host_no,
1875                         device->bus, device->target, device->lun, cmds);
1876         }
1877 }
1878
1879 static void hpsa_remove_device(struct ctlr_info *h,
1880                         struct hpsa_scsi_dev_t *device)
1881 {
1882         struct scsi_device *sdev = NULL;
1883
1884         if (!h->scsi_host)
1885                 return;
1886
1887         /*
1888          * Allow for commands to drain
1889          */
1890         device->removed = 1;
1891         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892
1893         if (is_logical_device(device)) { /* RAID */
1894                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895                                                 device->target, device->lun);
1896                 if (sdev) {
1897                         scsi_remove_device(sdev);
1898                         scsi_device_put(sdev);
1899                 } else {
1900                         /*
1901                          * We don't expect to get here.  Future commands
1902                          * to this device will get a selection timeout as
1903                          * if the device were gone.
1904                          */
1905                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1906                                         "didn't find device for removal.");
1907                 }
1908         } else { /* HBA */
1909
1910                 hpsa_remove_sas_device(device);
1911         }
1912 }
1913
1914 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915         struct hpsa_scsi_dev_t *sd[], int nsds)
1916 {
1917         /* sd contains scsi3 addresses and devtypes, and inquiry
1918          * data.  This function takes what's in sd to be the current
1919          * reality and updates h->dev[] to reflect that reality.
1920          */
1921         int i, entry, device_change, changes = 0;
1922         struct hpsa_scsi_dev_t *csd;
1923         unsigned long flags;
1924         struct hpsa_scsi_dev_t **added, **removed;
1925         int nadded, nremoved;
1926
1927         /*
1928          * A reset can cause a device status to change
1929          * re-schedule the scan to see what happened.
1930          */
1931         spin_lock_irqsave(&h->reset_lock, flags);
1932         if (h->reset_in_progress) {
1933                 h->drv_req_rescan = 1;
1934                 spin_unlock_irqrestore(&h->reset_lock, flags);
1935                 return;
1936         }
1937         spin_unlock_irqrestore(&h->reset_lock, flags);
1938
1939         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941
1942         if (!added || !removed) {
1943                 dev_warn(&h->pdev->dev, "out of memory in "
1944                         "adjust_hpsa_scsi_table\n");
1945                 goto free_and_out;
1946         }
1947
1948         spin_lock_irqsave(&h->devlock, flags);
1949
1950         /* find any devices in h->dev[] that are not in
1951          * sd[] and remove them from h->dev[], and for any
1952          * devices which have changed, remove the old device
1953          * info and add the new device info.
1954          * If minor device attributes change, just update
1955          * the existing device structure.
1956          */
1957         i = 0;
1958         nremoved = 0;
1959         nadded = 0;
1960         while (i < h->ndevices) {
1961                 csd = h->dev[i];
1962                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963                 if (device_change == DEVICE_NOT_FOUND) {
1964                         changes++;
1965                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966                         continue; /* remove ^^^, hence i not incremented */
1967                 } else if (device_change == DEVICE_CHANGED) {
1968                         changes++;
1969                         hpsa_scsi_replace_entry(h, i, sd[entry],
1970                                 added, &nadded, removed, &nremoved);
1971                         /* Set it to NULL to prevent it from being freed
1972                          * at the bottom of hpsa_update_scsi_devices()
1973                          */
1974                         sd[entry] = NULL;
1975                 } else if (device_change == DEVICE_UPDATED) {
1976                         hpsa_scsi_update_entry(h, i, sd[entry]);
1977                 }
1978                 i++;
1979         }
1980
1981         /* Now, make sure every device listed in sd[] is also
1982          * listed in h->dev[], adding them if they aren't found
1983          */
1984
1985         for (i = 0; i < nsds; i++) {
1986                 if (!sd[i]) /* if already added above. */
1987                         continue;
1988
1989                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990                  * as the SCSI mid-layer does not handle such devices well.
1991                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992                  * at 160Hz, and prevents the system from coming up.
1993                  */
1994                 if (sd[i]->volume_offline) {
1995                         hpsa_show_volume_status(h, sd[i]);
1996                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997                         continue;
1998                 }
1999
2000                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001                                         h->ndevices, &entry);
2002                 if (device_change == DEVICE_NOT_FOUND) {
2003                         changes++;
2004                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005                                 break;
2006                         sd[i] = NULL; /* prevent from being freed later. */
2007                 } else if (device_change == DEVICE_CHANGED) {
2008                         /* should never happen... */
2009                         changes++;
2010                         dev_warn(&h->pdev->dev,
2011                                 "device unexpectedly changed.\n");
2012                         /* but if it does happen, we just ignore that device */
2013                 }
2014         }
2015         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016
2017         /*
2018          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019          * any logical drives that need it enabled.
2020          *
2021          * The raid map should be current by now.
2022          *
2023          * We are updating the device list used for I/O requests.
2024          */
2025         for (i = 0; i < h->ndevices; i++) {
2026                 if (h->dev[i] == NULL)
2027                         continue;
2028                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029         }
2030
2031         spin_unlock_irqrestore(&h->devlock, flags);
2032
2033         /* Monitor devices which are in one of several NOT READY states to be
2034          * brought online later. This must be done without holding h->devlock,
2035          * so don't touch h->dev[]
2036          */
2037         for (i = 0; i < nsds; i++) {
2038                 if (!sd[i]) /* if already added above. */
2039                         continue;
2040                 if (sd[i]->volume_offline)
2041                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042         }
2043
2044         /* Don't notify scsi mid layer of any changes the first time through
2045          * (or if there are no changes) scsi_scan_host will do it later the
2046          * first time through.
2047          */
2048         if (!changes)
2049                 goto free_and_out;
2050
2051         /* Notify scsi mid layer of any removed devices */
2052         for (i = 0; i < nremoved; i++) {
2053                 if (removed[i] == NULL)
2054                         continue;
2055                 if (removed[i]->expose_device)
2056                         hpsa_remove_device(h, removed[i]);
2057                 kfree(removed[i]);
2058                 removed[i] = NULL;
2059         }
2060
2061         /* Notify scsi mid layer of any added devices */
2062         for (i = 0; i < nadded; i++) {
2063                 int rc = 0;
2064
2065                 if (added[i] == NULL)
2066                         continue;
2067                 if (!(added[i]->expose_device))
2068                         continue;
2069                 rc = hpsa_add_device(h, added[i]);
2070                 if (!rc)
2071                         continue;
2072                 dev_warn(&h->pdev->dev,
2073                         "addition failed %d, device not added.", rc);
2074                 /* now we have to remove it from h->dev,
2075                  * since it didn't get added to scsi mid layer
2076                  */
2077                 fixup_botched_add(h, added[i]);
2078                 h->drv_req_rescan = 1;
2079         }
2080
2081 free_and_out:
2082         kfree(added);
2083         kfree(removed);
2084 }
2085
2086 /*
2087  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088  * Assume's h->devlock is held.
2089  */
2090 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091         int bus, int target, int lun)
2092 {
2093         int i;
2094         struct hpsa_scsi_dev_t *sd;
2095
2096         for (i = 0; i < h->ndevices; i++) {
2097                 sd = h->dev[i];
2098                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099                         return sd;
2100         }
2101         return NULL;
2102 }
2103
2104 static int hpsa_slave_alloc(struct scsi_device *sdev)
2105 {
2106         struct hpsa_scsi_dev_t *sd = NULL;
2107         unsigned long flags;
2108         struct ctlr_info *h;
2109
2110         h = sdev_to_hba(sdev);
2111         spin_lock_irqsave(&h->devlock, flags);
2112         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113                 struct scsi_target *starget;
2114                 struct sas_rphy *rphy;
2115
2116                 starget = scsi_target(sdev);
2117                 rphy = target_to_rphy(starget);
2118                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119                 if (sd) {
2120                         sd->target = sdev_id(sdev);
2121                         sd->lun = sdev->lun;
2122                 }
2123         }
2124         if (!sd)
2125                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126                                         sdev_id(sdev), sdev->lun);
2127
2128         if (sd && sd->expose_device) {
2129                 atomic_set(&sd->ioaccel_cmds_out, 0);
2130                 sdev->hostdata = sd;
2131         } else
2132                 sdev->hostdata = NULL;
2133         spin_unlock_irqrestore(&h->devlock, flags);
2134         return 0;
2135 }
2136
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device *sdev)
2140 {
2141         struct hpsa_scsi_dev_t *sd;
2142         int queue_depth;
2143
2144         sd = sdev->hostdata;
2145         sdev->no_uld_attach = !sd || !sd->expose_device;
2146
2147         if (sd) {
2148                 sd->was_removed = 0;
2149                 queue_depth = sd->queue_depth != 0 ?
2150                                 sd->queue_depth : sdev->host->can_queue;
2151                 if (sd->external) {
2152                         queue_depth = EXTERNAL_QD;
2153                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154                         blk_queue_rq_timeout(sdev->request_queue,
2155                                                 HPSA_EH_PTRAID_TIMEOUT);
2156                 }
2157                 if (is_hba_lunid(sd->scsi3addr)) {
2158                         sdev->eh_timeout = CTLR_TIMEOUT;
2159                         blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160                 }
2161         } else {
2162                 queue_depth = sdev->host->can_queue;
2163         }
2164
2165         scsi_change_queue_depth(sdev, queue_depth);
2166
2167         return 0;
2168 }
2169
2170 static void hpsa_slave_destroy(struct scsi_device *sdev)
2171 {
2172         struct hpsa_scsi_dev_t *hdev = NULL;
2173
2174         hdev = sdev->hostdata;
2175
2176         if (hdev)
2177                 hdev->was_removed = 1;
2178 }
2179
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182         int i;
2183
2184         if (!h->ioaccel2_cmd_sg_list)
2185                 return;
2186         for (i = 0; i < h->nr_cmds; i++) {
2187                 kfree(h->ioaccel2_cmd_sg_list[i]);
2188                 h->ioaccel2_cmd_sg_list[i] = NULL;
2189         }
2190         kfree(h->ioaccel2_cmd_sg_list);
2191         h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196         int i;
2197
2198         if (h->chainsize <= 0)
2199                 return 0;
2200
2201         h->ioaccel2_cmd_sg_list =
2202                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203                                         GFP_KERNEL);
2204         if (!h->ioaccel2_cmd_sg_list)
2205                 return -ENOMEM;
2206         for (i = 0; i < h->nr_cmds; i++) {
2207                 h->ioaccel2_cmd_sg_list[i] =
2208                         kmalloc_array(h->maxsgentries,
2209                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210                                       GFP_KERNEL);
2211                 if (!h->ioaccel2_cmd_sg_list[i])
2212                         goto clean;
2213         }
2214         return 0;
2215
2216 clean:
2217         hpsa_free_ioaccel2_sg_chain_blocks(h);
2218         return -ENOMEM;
2219 }
2220
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223         int i;
2224
2225         if (!h->cmd_sg_list)
2226                 return;
2227         for (i = 0; i < h->nr_cmds; i++) {
2228                 kfree(h->cmd_sg_list[i]);
2229                 h->cmd_sg_list[i] = NULL;
2230         }
2231         kfree(h->cmd_sg_list);
2232         h->cmd_sg_list = NULL;
2233 }
2234
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237         int i;
2238
2239         if (h->chainsize <= 0)
2240                 return 0;
2241
2242         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243                                  GFP_KERNEL);
2244         if (!h->cmd_sg_list)
2245                 return -ENOMEM;
2246
2247         for (i = 0; i < h->nr_cmds; i++) {
2248                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249                                                   sizeof(*h->cmd_sg_list[i]),
2250                                                   GFP_KERNEL);
2251                 if (!h->cmd_sg_list[i])
2252                         goto clean;
2253
2254         }
2255         return 0;
2256
2257 clean:
2258         hpsa_free_sg_chain_blocks(h);
2259         return -ENOMEM;
2260 }
2261
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263         struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265         struct ioaccel2_sg_element *chain_block;
2266         u64 temp64;
2267         u32 chain_size;
2268
2269         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270         chain_size = le32_to_cpu(cp->sg[0].length);
2271         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272                                 DMA_TO_DEVICE);
2273         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274                 /* prevent subsequent unmapping */
2275                 cp->sg->address = 0;
2276                 return -1;
2277         }
2278         cp->sg->address = cpu_to_le64(temp64);
2279         return 0;
2280 }
2281
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283         struct io_accel2_cmd *cp)
2284 {
2285         struct ioaccel2_sg_element *chain_sg;
2286         u64 temp64;
2287         u32 chain_size;
2288
2289         chain_sg = cp->sg;
2290         temp64 = le64_to_cpu(chain_sg->address);
2291         chain_size = le32_to_cpu(cp->sg[0].length);
2292         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296         struct CommandList *c)
2297 {
2298         struct SGDescriptor *chain_sg, *chain_block;
2299         u64 temp64;
2300         u32 chain_len;
2301
2302         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303         chain_block = h->cmd_sg_list[c->cmdindex];
2304         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305         chain_len = sizeof(*chain_sg) *
2306                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307         chain_sg->Len = cpu_to_le32(chain_len);
2308         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309                                 DMA_TO_DEVICE);
2310         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311                 /* prevent subsequent unmapping */
2312                 chain_sg->Addr = cpu_to_le64(0);
2313                 return -1;
2314         }
2315         chain_sg->Addr = cpu_to_le64(temp64);
2316         return 0;
2317 }
2318
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320         struct CommandList *c)
2321 {
2322         struct SGDescriptor *chain_sg;
2323
2324         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325                 return;
2326
2327         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331
2332
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338                                         struct CommandList *c,
2339                                         struct scsi_cmnd *cmd,
2340                                         struct io_accel2_cmd *c2,
2341                                         struct hpsa_scsi_dev_t *dev)
2342 {
2343         int data_len;
2344         int retry = 0;
2345         u32 ioaccel2_resid = 0;
2346
2347         switch (c2->error_data.serv_response) {
2348         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349                 switch (c2->error_data.status) {
2350                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351                         if (cmd)
2352                                 cmd->result = 0;
2353                         break;
2354                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2356                         if (c2->error_data.data_present !=
2357                                         IOACCEL2_SENSE_DATA_PRESENT) {
2358                                 memset(cmd->sense_buffer, 0,
2359                                         SCSI_SENSE_BUFFERSIZE);
2360                                 break;
2361                         }
2362                         /* copy the sense data */
2363                         data_len = c2->error_data.sense_data_len;
2364                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2365                                 data_len = SCSI_SENSE_BUFFERSIZE;
2366                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2367                                 data_len =
2368                                         sizeof(c2->error_data.sense_data_buff);
2369                         memcpy(cmd->sense_buffer,
2370                                 c2->error_data.sense_data_buff, data_len);
2371                         retry = 1;
2372                         break;
2373                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374                         retry = 1;
2375                         break;
2376                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377                         retry = 1;
2378                         break;
2379                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380                         retry = 1;
2381                         break;
2382                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383                         retry = 1;
2384                         break;
2385                 default:
2386                         retry = 1;
2387                         break;
2388                 }
2389                 break;
2390         case IOACCEL2_SERV_RESPONSE_FAILURE:
2391                 switch (c2->error_data.status) {
2392                 case IOACCEL2_STATUS_SR_IO_ERROR:
2393                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2394                 case IOACCEL2_STATUS_SR_OVERRUN:
2395                         retry = 1;
2396                         break;
2397                 case IOACCEL2_STATUS_SR_UNDERRUN:
2398                         cmd->result = (DID_OK << 16);           /* host byte */
2399                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2400                         ioaccel2_resid = get_unaligned_le32(
2401                                                 &c2->error_data.resid_cnt[0]);
2402                         scsi_set_resid(cmd, ioaccel2_resid);
2403                         break;
2404                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2405                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2406                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2407                         /*
2408                          * Did an HBA disk disappear? We will eventually
2409                          * get a state change event from the controller but
2410                          * in the meantime, we need to tell the OS that the
2411                          * HBA disk is no longer there and stop I/O
2412                          * from going down. This allows the potential re-insert
2413                          * of the disk to get the same device node.
2414                          */
2415                         if (dev->physical_device && dev->expose_device) {
2416                                 cmd->result = DID_NO_CONNECT << 16;
2417                                 dev->removed = 1;
2418                                 h->drv_req_rescan = 1;
2419                                 dev_warn(&h->pdev->dev,
2420                                         "%s: device is gone!\n", __func__);
2421                         } else
2422                                 /*
2423                                  * Retry by sending down the RAID path.
2424                                  * We will get an event from ctlr to
2425                                  * trigger rescan regardless.
2426                                  */
2427                                 retry = 1;
2428                         break;
2429                 default:
2430                         retry = 1;
2431                 }
2432                 break;
2433         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2434                 break;
2435         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2436                 break;
2437         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2438                 retry = 1;
2439                 break;
2440         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2441                 break;
2442         default:
2443                 retry = 1;
2444                 break;
2445         }
2446
2447         if (dev->in_reset)
2448                 retry = 0;
2449
2450         return retry;   /* retry on raid path? */
2451 }
2452
2453 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2454                 struct CommandList *c)
2455 {
2456         struct hpsa_scsi_dev_t *dev = c->device;
2457
2458         /*
2459          * Reset c->scsi_cmd here so that the reset handler will know
2460          * this command has completed.  Then, check to see if the handler is
2461          * waiting for this command, and, if so, wake it.
2462          */
2463         c->scsi_cmd = SCSI_CMD_IDLE;
2464         mb();   /* Declare command idle before checking for pending events. */
2465         if (dev) {
2466                 atomic_dec(&dev->commands_outstanding);
2467                 if (dev->in_reset &&
2468                         atomic_read(&dev->commands_outstanding) <= 0)
2469                         wake_up_all(&h->event_sync_wait_queue);
2470         }
2471 }
2472
2473 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2474                                       struct CommandList *c)
2475 {
2476         hpsa_cmd_resolve_events(h, c);
2477         cmd_tagged_free(h, c);
2478 }
2479
2480 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2481                 struct CommandList *c, struct scsi_cmnd *cmd)
2482 {
2483         hpsa_cmd_resolve_and_free(h, c);
2484         if (cmd && cmd->scsi_done)
2485                 cmd->scsi_done(cmd);
2486 }
2487
2488 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2489 {
2490         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2491         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2492 }
2493
2494 static void process_ioaccel2_completion(struct ctlr_info *h,
2495                 struct CommandList *c, struct scsi_cmnd *cmd,
2496                 struct hpsa_scsi_dev_t *dev)
2497 {
2498         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2499
2500         /* check for good status */
2501         if (likely(c2->error_data.serv_response == 0 &&
2502                         c2->error_data.status == 0)) {
2503                 cmd->result = 0;
2504                 return hpsa_cmd_free_and_done(h, c, cmd);
2505         }
2506
2507         /*
2508          * Any RAID offload error results in retry which will use
2509          * the normal I/O path so the controller can handle whatever is
2510          * wrong.
2511          */
2512         if (is_logical_device(dev) &&
2513                 c2->error_data.serv_response ==
2514                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2515                 if (c2->error_data.status ==
2516                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2517                         hpsa_turn_off_ioaccel_for_device(dev);
2518                 }
2519
2520                 if (dev->in_reset) {
2521                         cmd->result = DID_RESET << 16;
2522                         return hpsa_cmd_free_and_done(h, c, cmd);
2523                 }
2524
2525                 return hpsa_retry_cmd(h, c);
2526         }
2527
2528         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2529                 return hpsa_retry_cmd(h, c);
2530
2531         return hpsa_cmd_free_and_done(h, c, cmd);
2532 }
2533
2534 /* Returns 0 on success, < 0 otherwise. */
2535 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2536                                         struct CommandList *cp)
2537 {
2538         u8 tmf_status = cp->err_info->ScsiStatus;
2539
2540         switch (tmf_status) {
2541         case CISS_TMF_COMPLETE:
2542                 /*
2543                  * CISS_TMF_COMPLETE never happens, instead,
2544                  * ei->CommandStatus == 0 for this case.
2545                  */
2546         case CISS_TMF_SUCCESS:
2547                 return 0;
2548         case CISS_TMF_INVALID_FRAME:
2549         case CISS_TMF_NOT_SUPPORTED:
2550         case CISS_TMF_FAILED:
2551         case CISS_TMF_WRONG_LUN:
2552         case CISS_TMF_OVERLAPPED_TAG:
2553                 break;
2554         default:
2555                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2556                                 tmf_status);
2557                 break;
2558         }
2559         return -tmf_status;
2560 }
2561
2562 static void complete_scsi_command(struct CommandList *cp)
2563 {
2564         struct scsi_cmnd *cmd;
2565         struct ctlr_info *h;
2566         struct ErrorInfo *ei;
2567         struct hpsa_scsi_dev_t *dev;
2568         struct io_accel2_cmd *c2;
2569
2570         u8 sense_key;
2571         u8 asc;      /* additional sense code */
2572         u8 ascq;     /* additional sense code qualifier */
2573         unsigned long sense_data_size;
2574
2575         ei = cp->err_info;
2576         cmd = cp->scsi_cmd;
2577         h = cp->h;
2578
2579         if (!cmd->device) {
2580                 cmd->result = DID_NO_CONNECT << 16;
2581                 return hpsa_cmd_free_and_done(h, cp, cmd);
2582         }
2583
2584         dev = cmd->device->hostdata;
2585         if (!dev) {
2586                 cmd->result = DID_NO_CONNECT << 16;
2587                 return hpsa_cmd_free_and_done(h, cp, cmd);
2588         }
2589         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2590
2591         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2592         if ((cp->cmd_type == CMD_SCSI) &&
2593                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2594                 hpsa_unmap_sg_chain_block(h, cp);
2595
2596         if ((cp->cmd_type == CMD_IOACCEL2) &&
2597                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2598                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2599
2600         cmd->result = (DID_OK << 16);           /* host byte */
2601         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2602
2603         /* SCSI command has already been cleaned up in SML */
2604         if (dev->was_removed) {
2605                 hpsa_cmd_resolve_and_free(h, cp);
2606                 return;
2607         }
2608
2609         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610                 if (dev->physical_device && dev->expose_device &&
2611                         dev->removed) {
2612                         cmd->result = DID_NO_CONNECT << 16;
2613                         return hpsa_cmd_free_and_done(h, cp, cmd);
2614                 }
2615                 if (likely(cp->phys_disk != NULL))
2616                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617         }
2618
2619         /*
2620          * We check for lockup status here as it may be set for
2621          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622          * fail_all_oustanding_cmds()
2623          */
2624         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625                 /* DID_NO_CONNECT will prevent a retry */
2626                 cmd->result = DID_NO_CONNECT << 16;
2627                 return hpsa_cmd_free_and_done(h, cp, cmd);
2628         }
2629
2630         if (cp->cmd_type == CMD_IOACCEL2)
2631                 return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633         scsi_set_resid(cmd, ei->ResidualCnt);
2634         if (ei->CommandStatus == 0)
2635                 return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637         /* For I/O accelerator commands, copy over some fields to the normal
2638          * CISS header used below for error handling.
2639          */
2640         if (cp->cmd_type == CMD_IOACCEL1) {
2641                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642                 cp->Header.SGList = scsi_sg_count(cmd);
2643                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646                 cp->Header.tag = c->tag;
2647                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650                 /* Any RAID offload error results in retry which will use
2651                  * the normal I/O path so the controller can handle whatever's
2652                  * wrong.
2653                  */
2654                 if (is_logical_device(dev)) {
2655                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656                                 dev->offload_enabled = 0;
2657                         return hpsa_retry_cmd(h, cp);
2658                 }
2659         }
2660
2661         /* an error has occurred */
2662         switch (ei->CommandStatus) {
2663
2664         case CMD_TARGET_STATUS:
2665                 cmd->result |= ei->ScsiStatus;
2666                 /* copy the sense data */
2667                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669                 else
2670                         sense_data_size = sizeof(ei->SenseInfo);
2671                 if (ei->SenseLen < sense_data_size)
2672                         sense_data_size = ei->SenseLen;
2673                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674                 if (ei->ScsiStatus)
2675                         decode_sense_data(ei->SenseInfo, sense_data_size,
2676                                 &sense_key, &asc, &ascq);
2677                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678                         switch (sense_key) {
2679                         case ABORTED_COMMAND:
2680                                 cmd->result |= DID_SOFT_ERROR << 16;
2681                                 break;
2682                         case UNIT_ATTENTION:
2683                                 if (asc == 0x3F && ascq == 0x0E)
2684                                         h->drv_req_rescan = 1;
2685                                 break;
2686                         case ILLEGAL_REQUEST:
2687                                 if (asc == 0x25 && ascq == 0x00) {
2688                                         dev->removed = 1;
2689                                         cmd->result = DID_NO_CONNECT << 16;
2690                                 }
2691                                 break;
2692                         }
2693                         break;
2694                 }
2695                 /* Problem was not a check condition
2696                  * Pass it up to the upper layers...
2697                  */
2698                 if (ei->ScsiStatus) {
2699                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701                                 "Returning result: 0x%x\n",
2702                                 cp, ei->ScsiStatus,
2703                                 sense_key, asc, ascq,
2704                                 cmd->result);
2705                 } else {  /* scsi status is zero??? How??? */
2706                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707                                 "Returning no connection.\n", cp),
2708
2709                         /* Ordinarily, this case should never happen,
2710                          * but there is a bug in some released firmware
2711                          * revisions that allows it to happen if, for
2712                          * example, a 4100 backplane loses power and
2713                          * the tape drive is in it.  We assume that
2714                          * it's a fatal error of some kind because we
2715                          * can't show that it wasn't. We will make it
2716                          * look like selection timeout since that is
2717                          * the most common reason for this to occur,
2718                          * and it's severe enough.
2719                          */
2720
2721                         cmd->result = DID_NO_CONNECT << 16;
2722                 }
2723                 break;
2724
2725         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726                 break;
2727         case CMD_DATA_OVERRUN:
2728                 dev_warn(&h->pdev->dev,
2729                         "CDB %16phN data overrun\n", cp->Request.CDB);
2730                 break;
2731         case CMD_INVALID: {
2732                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2733                 print_cmd(cp); */
2734                 /* We get CMD_INVALID if you address a non-existent device
2735                  * instead of a selection timeout (no response).  You will
2736                  * see this if you yank out a drive, then try to access it.
2737                  * This is kind of a shame because it means that any other
2738                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739                  * missing target. */
2740                 cmd->result = DID_NO_CONNECT << 16;
2741         }
2742                 break;
2743         case CMD_PROTOCOL_ERR:
2744                 cmd->result = DID_ERROR << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746                                 cp->Request.CDB);
2747                 break;
2748         case CMD_HARDWARE_ERR:
2749                 cmd->result = DID_ERROR << 16;
2750                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751                         cp->Request.CDB);
2752                 break;
2753         case CMD_CONNECTION_LOST:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756                         cp->Request.CDB);
2757                 break;
2758         case CMD_ABORTED:
2759                 cmd->result = DID_ABORT << 16;
2760                 break;
2761         case CMD_ABORT_FAILED:
2762                 cmd->result = DID_ERROR << 16;
2763                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764                         cp->Request.CDB);
2765                 break;
2766         case CMD_UNSOLICITED_ABORT:
2767                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769                         cp->Request.CDB);
2770                 break;
2771         case CMD_TIMEOUT:
2772                 cmd->result = DID_TIME_OUT << 16;
2773                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774                         cp->Request.CDB);
2775                 break;
2776         case CMD_UNABORTABLE:
2777                 cmd->result = DID_ERROR << 16;
2778                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2779                 break;
2780         case CMD_TMF_STATUS:
2781                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782                         cmd->result = DID_ERROR << 16;
2783                 break;
2784         case CMD_IOACCEL_DISABLED:
2785                 /* This only handles the direct pass-through case since RAID
2786                  * offload is handled above.  Just attempt a retry.
2787                  */
2788                 cmd->result = DID_SOFT_ERROR << 16;
2789                 dev_warn(&h->pdev->dev,
2790                                 "cp %p had HP SSD Smart Path error\n", cp);
2791                 break;
2792         default:
2793                 cmd->result = DID_ERROR << 16;
2794                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795                                 cp, ei->CommandStatus);
2796         }
2797
2798         return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802                 int sg_used, enum dma_data_direction data_direction)
2803 {
2804         int i;
2805
2806         for (i = 0; i < sg_used; i++)
2807                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808                                 le32_to_cpu(c->SG[i].Len),
2809                                 data_direction);
2810 }
2811
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813                 struct CommandList *cp,
2814                 unsigned char *buf,
2815                 size_t buflen,
2816                 enum dma_data_direction data_direction)
2817 {
2818         u64 addr64;
2819
2820         if (buflen == 0 || data_direction == DMA_NONE) {
2821                 cp->Header.SGList = 0;
2822                 cp->Header.SGTotal = cpu_to_le16(0);
2823                 return 0;
2824         }
2825
2826         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827         if (dma_mapping_error(&pdev->dev, addr64)) {
2828                 /* Prevent subsequent unmap of something never mapped */
2829                 cp->Header.SGList = 0;
2830                 cp->Header.SGTotal = cpu_to_le16(0);
2831                 return -1;
2832         }
2833         cp->SG[0].Addr = cpu_to_le64(addr64);
2834         cp->SG[0].Len = cpu_to_le32(buflen);
2835         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838         return 0;
2839 }
2840
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846         DECLARE_COMPLETION_ONSTACK(wait);
2847
2848         c->waiting = &wait;
2849         __enqueue_cmd_and_start_io(h, c, reply_queue);
2850         if (timeout_msecs == NO_TIMEOUT) {
2851                 /* TODO: get rid of this no-timeout thing */
2852                 wait_for_completion_io(&wait);
2853                 return IO_OK;
2854         }
2855         if (!wait_for_completion_io_timeout(&wait,
2856                                         msecs_to_jiffies(timeout_msecs))) {
2857                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2858                 return -ETIMEDOUT;
2859         }
2860         return IO_OK;
2861 }
2862
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864                                    int reply_queue, unsigned long timeout_msecs)
2865 {
2866         if (unlikely(lockup_detected(h))) {
2867                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868                 return IO_OK;
2869         }
2870         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875         int cpu;
2876         u32 rc, *lockup_detected;
2877
2878         cpu = get_cpu();
2879         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880         rc = *lockup_detected;
2881         put_cpu();
2882         return rc;
2883 }
2884
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887                 struct CommandList *c, enum dma_data_direction data_direction,
2888                 unsigned long timeout_msecs)
2889 {
2890         int backoff_time = 10, retry_count = 0;
2891         int rc;
2892
2893         do {
2894                 memset(c->err_info, 0, sizeof(*c->err_info));
2895                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896                                                   timeout_msecs);
2897                 if (rc)
2898                         break;
2899                 retry_count++;
2900                 if (retry_count > 3) {
2901                         msleep(backoff_time);
2902                         if (backoff_time < 1000)
2903                                 backoff_time *= 2;
2904                 }
2905         } while ((check_for_unit_attention(h, c) ||
2906                         check_for_busy(h, c)) &&
2907                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2908         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910                 rc = -EIO;
2911         return rc;
2912 }
2913
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915                                 struct CommandList *c)
2916 {
2917         const u8 *cdb = c->Request.CDB;
2918         const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921                  txt, lun, cdb);
2922 }
2923
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925                         struct CommandList *cp)
2926 {
2927         const struct ErrorInfo *ei = cp->err_info;
2928         struct device *d = &cp->h->pdev->dev;
2929         u8 sense_key, asc, ascq;
2930         int sense_len;
2931
2932         switch (ei->CommandStatus) {
2933         case CMD_TARGET_STATUS:
2934                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2935                         sense_len = sizeof(ei->SenseInfo);
2936                 else
2937                         sense_len = ei->SenseLen;
2938                 decode_sense_data(ei->SenseInfo, sense_len,
2939                                         &sense_key, &asc, &ascq);
2940                 hpsa_print_cmd(h, "SCSI status", cp);
2941                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943                                 sense_key, asc, ascq);
2944                 else
2945                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946                 if (ei->ScsiStatus == 0)
2947                         dev_warn(d, "SCSI status is abnormally zero.  "
2948                         "(probably indicates selection timeout "
2949                         "reported incorrectly due to a known "
2950                         "firmware bug, circa July, 2001.)\n");
2951                 break;
2952         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953                 break;
2954         case CMD_DATA_OVERRUN:
2955                 hpsa_print_cmd(h, "overrun condition", cp);
2956                 break;
2957         case CMD_INVALID: {
2958                 /* controller unfortunately reports SCSI passthru's
2959                  * to non-existent targets as invalid commands.
2960                  */
2961                 hpsa_print_cmd(h, "invalid command", cp);
2962                 dev_warn(d, "probably means device no longer present\n");
2963                 }
2964                 break;
2965         case CMD_PROTOCOL_ERR:
2966                 hpsa_print_cmd(h, "protocol error", cp);
2967                 break;
2968         case CMD_HARDWARE_ERR:
2969                 hpsa_print_cmd(h, "hardware error", cp);
2970                 break;
2971         case CMD_CONNECTION_LOST:
2972                 hpsa_print_cmd(h, "connection lost", cp);
2973                 break;
2974         case CMD_ABORTED:
2975                 hpsa_print_cmd(h, "aborted", cp);
2976                 break;
2977         case CMD_ABORT_FAILED:
2978                 hpsa_print_cmd(h, "abort failed", cp);
2979                 break;
2980         case CMD_UNSOLICITED_ABORT:
2981                 hpsa_print_cmd(h, "unsolicited abort", cp);
2982                 break;
2983         case CMD_TIMEOUT:
2984                 hpsa_print_cmd(h, "timed out", cp);
2985                 break;
2986         case CMD_UNABORTABLE:
2987                 hpsa_print_cmd(h, "unabortable", cp);
2988                 break;
2989         case CMD_CTLR_LOCKUP:
2990                 hpsa_print_cmd(h, "controller lockup detected", cp);
2991                 break;
2992         default:
2993                 hpsa_print_cmd(h, "unknown status", cp);
2994                 dev_warn(d, "Unknown command status %x\n",
2995                                 ei->CommandStatus);
2996         }
2997 }
2998
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000                                         u8 page, u8 *buf, size_t bufsize)
3001 {
3002         int rc = IO_OK;
3003         struct CommandList *c;
3004         struct ErrorInfo *ei;
3005
3006         c = cmd_alloc(h);
3007         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008                         page, scsi3addr, TYPE_CMD)) {
3009                 rc = -1;
3010                 goto out;
3011         }
3012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013                         NO_TIMEOUT);
3014         if (rc)
3015                 goto out;
3016         ei = c->err_info;
3017         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                 hpsa_scsi_interpret_error(h, c);
3019                 rc = -1;
3020         }
3021 out:
3022         cmd_free(h, c);
3023         return rc;
3024 }
3025
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027                                                 u8 *scsi3addr)
3028 {
3029         u8 *buf;
3030         u64 sa = 0;
3031         int rc = 0;
3032
3033         buf = kzalloc(1024, GFP_KERNEL);
3034         if (!buf)
3035                 return 0;
3036
3037         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038                                         buf, 1024);
3039
3040         if (rc)
3041                 goto out;
3042
3043         sa = get_unaligned_be64(buf+12);
3044
3045 out:
3046         kfree(buf);
3047         return sa;
3048 }
3049
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051                         u16 page, unsigned char *buf,
3052                         unsigned char bufsize)
3053 {
3054         int rc = IO_OK;
3055         struct CommandList *c;
3056         struct ErrorInfo *ei;
3057
3058         c = cmd_alloc(h);
3059
3060         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061                         page, scsi3addr, TYPE_CMD)) {
3062                 rc = -1;
3063                 goto out;
3064         }
3065         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066                         NO_TIMEOUT);
3067         if (rc)
3068                 goto out;
3069         ei = c->err_info;
3070         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071                 hpsa_scsi_interpret_error(h, c);
3072                 rc = -1;
3073         }
3074 out:
3075         cmd_free(h, c);
3076         return rc;
3077 }
3078
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080         u8 reset_type, int reply_queue)
3081 {
3082         int rc = IO_OK;
3083         struct CommandList *c;
3084         struct ErrorInfo *ei;
3085
3086         c = cmd_alloc(h);
3087         c->device = dev;
3088
3089         /* fill_cmd can't fail here, no data buffer to map. */
3090         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092         if (rc) {
3093                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094                 goto out;
3095         }
3096         /* no unmap needed here because no data xfer. */
3097
3098         ei = c->err_info;
3099         if (ei->CommandStatus != 0) {
3100                 hpsa_scsi_interpret_error(h, c);
3101                 rc = -1;
3102         }
3103 out:
3104         cmd_free(h, c);
3105         return rc;
3106 }
3107
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109                                struct hpsa_scsi_dev_t *dev,
3110                                unsigned char *scsi3addr)
3111 {
3112         int i;
3113         bool match = false;
3114         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117         if (hpsa_is_cmd_idle(c))
3118                 return false;
3119
3120         switch (c->cmd_type) {
3121         case CMD_SCSI:
3122         case CMD_IOCTL_PEND:
3123                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124                                 sizeof(c->Header.LUN.LunAddrBytes));
3125                 break;
3126
3127         case CMD_IOACCEL1:
3128         case CMD_IOACCEL2:
3129                 if (c->phys_disk == dev) {
3130                         /* HBA mode match */
3131                         match = true;
3132                 } else {
3133                         /* Possible RAID mode -- check each phys dev. */
3134                         /* FIXME:  Do we need to take out a lock here?  If
3135                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136                          * instead. */
3137                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138                                 /* FIXME: an alternate test might be
3139                                  *
3140                                  * match = dev->phys_disk[i]->ioaccel_handle
3141                                  *              == c2->scsi_nexus;      */
3142                                 match = dev->phys_disk[i] == c->phys_disk;
3143                         }
3144                 }
3145                 break;
3146
3147         case IOACCEL2_TMF:
3148                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149                         match = dev->phys_disk[i]->ioaccel_handle ==
3150                                         le32_to_cpu(ac->it_nexus);
3151                 }
3152                 break;
3153
3154         case 0:         /* The command is in the middle of being initialized. */
3155                 match = false;
3156                 break;
3157
3158         default:
3159                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160                         c->cmd_type);
3161                 BUG();
3162         }
3163
3164         return match;
3165 }
3166
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168         u8 reset_type, int reply_queue)
3169 {
3170         int rc = 0;
3171
3172         /* We can really only handle one reset at a time */
3173         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175                 return -EINTR;
3176         }
3177
3178         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179         if (!rc) {
3180                 /* incremented by sending the reset request */
3181                 atomic_dec(&dev->commands_outstanding);
3182                 wait_event(h->event_sync_wait_queue,
3183                         atomic_read(&dev->commands_outstanding) <= 0 ||
3184                         lockup_detected(h));
3185         }
3186
3187         if (unlikely(lockup_detected(h))) {
3188                 dev_warn(&h->pdev->dev,
3189                          "Controller lockup detected during reset wait\n");
3190                 rc = -ENODEV;
3191         }
3192
3193         if (!rc)
3194                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196         mutex_unlock(&h->reset_mutex);
3197         return rc;
3198 }
3199
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201         unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203         int rc;
3204         unsigned char *buf;
3205
3206         *raid_level = RAID_UNKNOWN;
3207         buf = kzalloc(64, GFP_KERNEL);
3208         if (!buf)
3209                 return;
3210
3211         if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                 goto exit;
3214
3215         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218         if (rc == 0)
3219                 *raid_level = buf[8];
3220         if (*raid_level > RAID_UNKNOWN)
3221                 *raid_level = RAID_UNKNOWN;
3222 exit:
3223         kfree(buf);
3224         return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                 struct raid_map_data *map_buff)
3231 {
3232         struct raid_map_disk_data *dd = &map_buff->data[0];
3233         int map, row, col;
3234         u16 map_cnt, row_cnt, disks_per_row;
3235
3236         if (rc != 0)
3237                 return;
3238
3239         /* Show details only if debugging has been activated. */
3240         if (h->raid_offload_debug < 2)
3241                 return;
3242
3243         dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                 le32_to_cpu(map_buff->structure_size));
3245         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                         le32_to_cpu(map_buff->volume_blk_size));
3247         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                         le64_to_cpu(map_buff->volume_blk_cnt));
3249         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                         map_buff->phys_blk_shift);
3251         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                         map_buff->parity_rotation_shift);
3253         dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                         le16_to_cpu(map_buff->strip_size));
3255         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                         le64_to_cpu(map_buff->disk_starting_blk));
3257         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                         le64_to_cpu(map_buff->disk_blk_cnt));
3259         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                         le16_to_cpu(map_buff->data_disks_per_row));
3261         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                         le16_to_cpu(map_buff->metadata_disks_per_row));
3263         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                         le16_to_cpu(map_buff->row_cnt));
3265         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                         le16_to_cpu(map_buff->layout_map_count));
3267         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                         le16_to_cpu(map_buff->flags));
3269         dev_info(&h->pdev->dev, "encryption = %s\n",
3270                         le16_to_cpu(map_buff->flags) &
3271                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272         dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                         le16_to_cpu(map_buff->dekindex));
3274         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275         for (map = 0; map < map_cnt; map++) {
3276                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                 for (row = 0; row < row_cnt; row++) {
3279                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                         disks_per_row =
3281                                 le16_to_cpu(map_buff->data_disks_per_row);
3282                         for (col = 0; col < disks_per_row; col++, dd++)
3283                                 dev_info(&h->pdev->dev,
3284                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                         col, dd->ioaccel_handle,
3286                                         dd->xor_mult[0], dd->xor_mult[1]);
3287                         disks_per_row =
3288                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3289                         for (col = 0; col < disks_per_row; col++, dd++)
3290                                 dev_info(&h->pdev->dev,
3291                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                         col, dd->ioaccel_handle,
3293                                         dd->xor_mult[0], dd->xor_mult[1]);
3294                 }
3295         }
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                         __attribute__((unused)) int rc,
3300                         __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308         int rc = 0;
3309         struct CommandList *c;
3310         struct ErrorInfo *ei;
3311
3312         c = cmd_alloc(h);
3313
3314         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                         sizeof(this_device->raid_map), 0,
3316                         scsi3addr, TYPE_CMD)) {
3317                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                 cmd_free(h, c);
3319                 return -1;
3320         }
3321         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                         NO_TIMEOUT);
3323         if (rc)
3324                 goto out;
3325         ei = c->err_info;
3326         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                 hpsa_scsi_interpret_error(h, c);
3328                 rc = -1;
3329                 goto out;
3330         }
3331         cmd_free(h, c);
3332
3333         /* @todo in the future, dynamically allocate RAID map memory */
3334         if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                 sizeof(this_device->raid_map)) {
3336                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                 rc = -1;
3338         }
3339         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340         return rc;
3341 out:
3342         cmd_free(h, c);
3343         return rc;
3344 }
3345
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                 unsigned char scsi3addr[], u16 bmic_device_index,
3348                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350         int rc = IO_OK;
3351         struct CommandList *c;
3352         struct ErrorInfo *ei;
3353
3354         c = cmd_alloc(h);
3355
3356         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                 0, RAID_CTLR_LUNID, TYPE_CMD);
3358         if (rc)
3359                 goto out;
3360
3361         c->Request.CDB[2] = bmic_device_index & 0xff;
3362         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                         NO_TIMEOUT);
3366         if (rc)
3367                 goto out;
3368         ei = c->err_info;
3369         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                 hpsa_scsi_interpret_error(h, c);
3371                 rc = -1;
3372         }
3373 out:
3374         cmd_free(h, c);
3375         return rc;
3376 }
3377
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379         struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381         int rc = IO_OK;
3382         struct CommandList *c;
3383         struct ErrorInfo *ei;
3384
3385         c = cmd_alloc(h);
3386
3387         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                 0, RAID_CTLR_LUNID, TYPE_CMD);
3389         if (rc)
3390                 goto out;
3391
3392         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                         NO_TIMEOUT);
3394         if (rc)
3395                 goto out;
3396         ei = c->err_info;
3397         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                 hpsa_scsi_interpret_error(h, c);
3399                 rc = -1;
3400         }
3401 out:
3402         cmd_free(h, c);
3403         return rc;
3404 }
3405
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                 unsigned char scsi3addr[], u16 bmic_device_index,
3408                 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410         int rc = IO_OK;
3411         struct CommandList *c;
3412         struct ErrorInfo *ei;
3413
3414         c = cmd_alloc(h);
3415         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                 0, RAID_CTLR_LUNID, TYPE_CMD);
3417         if (rc)
3418                 goto out;
3419
3420         c->Request.CDB[2] = bmic_device_index & 0xff;
3421         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                 NO_TIMEOUT);
3425         ei = c->err_info;
3426         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                 hpsa_scsi_interpret_error(h, c);
3428                 rc = -1;
3429         }
3430 out:
3431         cmd_free(h, c);
3432
3433         return rc;
3434 }
3435
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                         unsigned char *scsi3addr,
3444                         struct ReportExtendedLUNdata *rlep, int rle_index,
3445                         struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447         int rc = -1;
3448         struct CommandList *c = NULL;
3449         struct ErrorInfo *ei = NULL;
3450         struct bmic_sense_storage_box_params *bssbp = NULL;
3451         struct bmic_identify_physical_device *id_phys = NULL;
3452         struct ext_report_lun_entry *rle;
3453         u16 bmic_device_index = 0;
3454
3455         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456                 return;
3457
3458         rle = &rlep->LUN[rle_index];
3459
3460         encl_dev->eli =
3461                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466                 rc = IO_OK;
3467                 goto out;
3468         }
3469
3470         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471                 rc = IO_OK;
3472                 goto out;
3473         }
3474
3475         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476         if (!bssbp)
3477                 goto out;
3478
3479         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480         if (!id_phys)
3481                 goto out;
3482
3483         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484                                                 id_phys, sizeof(*id_phys));
3485         if (rc) {
3486                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487                         __func__, encl_dev->external, bmic_device_index);
3488                 goto out;
3489         }
3490
3491         c = cmd_alloc(h);
3492
3493         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496         if (rc)
3497                 goto out;
3498
3499         if (id_phys->phys_connector[1] == 'E')
3500                 c->Request.CDB[5] = id_phys->box_index;
3501         else
3502                 c->Request.CDB[5] = 0;
3503
3504         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505                                                 NO_TIMEOUT);
3506         if (rc)
3507                 goto out;
3508
3509         ei = c->err_info;
3510         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511                 rc = -1;
3512                 goto out;
3513         }
3514
3515         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519         rc = IO_OK;
3520 out:
3521         kfree(bssbp);
3522         kfree(id_phys);
3523
3524         if (c)
3525                 cmd_free(h, c);
3526
3527         if (rc != IO_OK)
3528                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529                         "Error, could not get enclosure information");
3530 }
3531
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533                                                 unsigned char *scsi3addr)
3534 {
3535         struct ReportExtendedLUNdata *physdev;
3536         u32 nphysicals;
3537         u64 sa = 0;
3538         int i;
3539
3540         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541         if (!physdev)
3542                 return 0;
3543
3544         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546                 kfree(physdev);
3547                 return 0;
3548         }
3549         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551         for (i = 0; i < nphysicals; i++)
3552                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554                         break;
3555                 }
3556
3557         kfree(physdev);
3558
3559         return sa;
3560 }
3561
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563                                         struct hpsa_scsi_dev_t *dev)
3564 {
3565         int rc;
3566         u64 sa = 0;
3567
3568         if (is_hba_lunid(scsi3addr)) {
3569                 struct bmic_sense_subsystem_info *ssi;
3570
3571                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572                 if (!ssi)
3573                         return;
3574
3575                 rc = hpsa_bmic_sense_subsystem_information(h,
3576                                         scsi3addr, 0, ssi, sizeof(*ssi));
3577                 if (rc == 0) {
3578                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579                         h->sas_address = sa;
3580                 }
3581
3582                 kfree(ssi);
3583         } else
3584                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586         dev->sas_address = sa;
3587 }
3588
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590         struct ReportExtendedLUNdata *physdev)
3591 {
3592         u32 nphysicals;
3593         int i;
3594
3595         if (h->discovery_polling)
3596                 return;
3597
3598         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600         for (i = 0; i < nphysicals; i++) {
3601                 if (physdev->LUN[i].device_type ==
3602                         BMIC_DEVICE_TYPE_CONTROLLER
3603                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604                         dev_info(&h->pdev->dev,
3605                                 "External controller present, activate discovery polling and disable rld caching\n");
3606                         hpsa_disable_rld_caching(h);
3607                         h->discovery_polling = 1;
3608                         break;
3609                 }
3610         }
3611 }
3612
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615         unsigned char scsi3addr[], u8 page)
3616 {
3617         int rc;
3618         int i;
3619         int pages;
3620         unsigned char *buf, bufsize;
3621
3622         buf = kzalloc(256, GFP_KERNEL);
3623         if (!buf)
3624                 return false;
3625
3626         /* Get the size of the page list first */
3627         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629                                 buf, HPSA_VPD_HEADER_SZ);
3630         if (rc != 0)
3631                 goto exit_unsupported;
3632         pages = buf[3];
3633         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3635         else
3636                 bufsize = 255;
3637
3638         /* Get the whole VPD page list */
3639         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641                                 buf, bufsize);
3642         if (rc != 0)
3643                 goto exit_unsupported;
3644
3645         pages = buf[3];
3646         for (i = 1; i <= pages; i++)
3647                 if (buf[3 + i] == page)
3648                         goto exit_supported;
3649 exit_unsupported:
3650         kfree(buf);
3651         return false;
3652 exit_supported:
3653         kfree(buf);
3654         return true;
3655 }
3656
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667         int rc;
3668         unsigned char *buf;
3669         u8 ioaccel_status;
3670
3671         this_device->offload_config = 0;
3672         this_device->offload_enabled = 0;
3673         this_device->offload_to_be_enabled = 0;
3674
3675         buf = kzalloc(64, GFP_KERNEL);
3676         if (!buf)
3677                 return;
3678         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679                 goto out;
3680         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682         if (rc != 0)
3683                 goto out;
3684
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689         this_device->offload_config =
3690                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691         if (this_device->offload_config) {
3692                 bool offload_enabled =
3693                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694                 /*
3695                  * Check to see if offload can be enabled.
3696                  */
3697                 if (offload_enabled) {
3698                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699                         if (rc) /* could not load raid_map */
3700                                 goto out;
3701                         this_device->offload_to_be_enabled = 1;
3702                 }
3703         }
3704
3705 out:
3706         kfree(buf);
3707         return;
3708 }
3709
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712         unsigned char *device_id, int index, int buflen)
3713 {
3714         int rc;
3715         unsigned char *buf;
3716
3717         /* Does controller have VPD for device id? */
3718         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719                 return 1; /* not supported */
3720
3721         buf = kzalloc(64, GFP_KERNEL);
3722         if (!buf)
3723                 return -ENOMEM;
3724
3725         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727         if (rc == 0) {
3728                 if (buflen > 16)
3729                         buflen = 16;
3730                 memcpy(device_id, &buf[8], buflen);
3731         }
3732
3733         kfree(buf);
3734
3735         return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739                 void *buf, int bufsize,
3740                 int extended_response)
3741 {
3742         int rc = IO_OK;
3743         struct CommandList *c;
3744         unsigned char scsi3addr[8];
3745         struct ErrorInfo *ei;
3746
3747         c = cmd_alloc(h);
3748
3749         /* address the controller */
3750         memset(scsi3addr, 0, sizeof(scsi3addr));
3751         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753                 rc = -EAGAIN;
3754                 goto out;
3755         }
3756         if (extended_response)
3757                 c->Request.CDB[1] = extended_response;
3758         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759                         NO_TIMEOUT);
3760         if (rc)
3761                 goto out;
3762         ei = c->err_info;
3763         if (ei->CommandStatus != 0 &&
3764             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765                 hpsa_scsi_interpret_error(h, c);
3766                 rc = -EIO;
3767         } else {
3768                 struct ReportLUNdata *rld = buf;
3769
3770                 if (rld->extended_response_flag != extended_response) {
3771                         if (!h->legacy_board) {
3772                                 dev_err(&h->pdev->dev,
3773                                         "report luns requested format %u, got %u\n",
3774                                         extended_response,
3775                                         rld->extended_response_flag);
3776                                 rc = -EINVAL;
3777                         } else
3778                                 rc = -EOPNOTSUPP;
3779                 }
3780         }
3781 out:
3782         cmd_free(h, c);
3783         return rc;
3784 }
3785
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787                 struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789         int rc;
3790         struct ReportLUNdata *lbuf;
3791
3792         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793                                       HPSA_REPORT_PHYS_EXTENDED);
3794         if (!rc || rc != -EOPNOTSUPP)
3795                 return rc;
3796
3797         /* REPORT PHYS EXTENDED is not supported */
3798         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799         if (!lbuf)
3800                 return -ENOMEM;
3801
3802         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803         if (!rc) {
3804                 int i;
3805                 u32 nphys;
3806
3807                 /* Copy ReportLUNdata header */
3808                 memcpy(buf, lbuf, 8);
3809                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810                 for (i = 0; i < nphys; i++)
3811                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812         }
3813         kfree(lbuf);
3814         return rc;
3815 }
3816
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818                 struct ReportLUNdata *buf, int bufsize)
3819 {
3820         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824         int bus, int target, int lun)
3825 {
3826         device->bus = bus;
3827         device->target = target;
3828         device->lun = lun;
3829 }
3830
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833                                         unsigned char scsi3addr[])
3834 {
3835         int rc;
3836         int status;
3837         int size;
3838         unsigned char *buf;
3839
3840         buf = kzalloc(64, GFP_KERNEL);
3841         if (!buf)
3842                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844         /* Does controller have VPD for logical volume status? */
3845         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846                 goto exit_failed;
3847
3848         /* Get the size of the VPD return buffer */
3849         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850                                         buf, HPSA_VPD_HEADER_SZ);
3851         if (rc != 0)
3852                 goto exit_failed;
3853         size = buf[3];
3854
3855         /* Now get the whole VPD buffer */
3856         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857                                         buf, size + HPSA_VPD_HEADER_SZ);
3858         if (rc != 0)
3859                 goto exit_failed;
3860         status = buf[4]; /* status byte */
3861
3862         kfree(buf);
3863         return status;
3864 exit_failed:
3865         kfree(buf);
3866         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877                                         unsigned char scsi3addr[])
3878 {
3879         struct CommandList *c;
3880         unsigned char *sense;
3881         u8 sense_key, asc, ascq;
3882         int sense_len;
3883         int rc, ldstat = 0;
3884         u16 cmd_status;
3885         u8 scsi_status;
3886 #define ASC_LUN_NOT_READY 0x04
3887 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3888 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3889
3890         c = cmd_alloc(h);
3891
3892         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3893         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3894                                         NO_TIMEOUT);
3895         if (rc) {
3896                 cmd_free(h, c);
3897                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3898         }
3899         sense = c->err_info->SenseInfo;
3900         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3901                 sense_len = sizeof(c->err_info->SenseInfo);
3902         else
3903                 sense_len = c->err_info->SenseLen;
3904         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3905         cmd_status = c->err_info->CommandStatus;
3906         scsi_status = c->err_info->ScsiStatus;
3907         cmd_free(h, c);
3908
3909         /* Determine the reason for not ready state */
3910         ldstat = hpsa_get_volume_status(h, scsi3addr);
3911
3912         /* Keep volume offline in certain cases: */
3913         switch (ldstat) {
3914         case HPSA_LV_FAILED:
3915         case HPSA_LV_UNDERGOING_ERASE:
3916         case HPSA_LV_NOT_AVAILABLE:
3917         case HPSA_LV_UNDERGOING_RPI:
3918         case HPSA_LV_PENDING_RPI:
3919         case HPSA_LV_ENCRYPTED_NO_KEY:
3920         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921         case HPSA_LV_UNDERGOING_ENCRYPTION:
3922         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924                 return ldstat;
3925         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926                 /* If VPD status page isn't available,
3927                  * use ASC/ASCQ to determine state
3928                  */
3929                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931                         return ldstat;
3932                 break;
3933         default:
3934                 break;
3935         }
3936         return HPSA_LV_OK;
3937 }
3938
3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941         unsigned char *is_OBDR_device)
3942 {
3943
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948
3949         unsigned char *inq_buff;
3950         unsigned char *obdr_sig;
3951         int rc = 0;
3952
3953         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954         if (!inq_buff) {
3955                 rc = -ENOMEM;
3956                 goto bail_out;
3957         }
3958
3959         /* Do an inquiry to the device to see what it is. */
3960         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962                 dev_err(&h->pdev->dev,
3963                         "%s: inquiry failed, device will be skipped.\n",
3964                         __func__);
3965                 rc = HPSA_INQUIRY_FAILED;
3966                 goto bail_out;
3967         }
3968
3969         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971
3972         this_device->devtype = (inq_buff[0] & 0x1f);
3973         memcpy(this_device->scsi3addr, scsi3addr, 8);
3974         memcpy(this_device->vendor, &inq_buff[8],
3975                 sizeof(this_device->vendor));
3976         memcpy(this_device->model, &inq_buff[16],
3977                 sizeof(this_device->model));
3978         this_device->rev = inq_buff[2];
3979         memset(this_device->device_id, 0,
3980                 sizeof(this_device->device_id));
3981         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982                 sizeof(this_device->device_id)) < 0) {
3983                 dev_err(&h->pdev->dev,
3984                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985                         h->ctlr, __func__,
3986                         h->scsi_host->host_no,
3987                         this_device->bus, this_device->target,
3988                         this_device->lun,
3989                         scsi_device_type(this_device->devtype),
3990                         this_device->model);
3991                 rc = HPSA_LV_FAILED;
3992                 goto bail_out;
3993         }
3994
3995         if ((this_device->devtype == TYPE_DISK ||
3996                 this_device->devtype == TYPE_ZBC) &&
3997                 is_logical_dev_addr_mode(scsi3addr)) {
3998                 unsigned char volume_offline;
3999
4000                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003                 volume_offline = hpsa_volume_offline(h, scsi3addr);
4004                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005                     h->legacy_board) {
4006                         /*
4007                          * Legacy boards might not support volume status
4008                          */
4009                         dev_info(&h->pdev->dev,
4010                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4011                                  this_device->target, this_device->lun);
4012                         volume_offline = 0;
4013                 }
4014                 this_device->volume_offline = volume_offline;
4015                 if (volume_offline == HPSA_LV_FAILED) {
4016                         rc = HPSA_LV_FAILED;
4017                         dev_err(&h->pdev->dev,
4018                                 "%s: LV failed, device will be skipped.\n",
4019                                 __func__);
4020                         goto bail_out;
4021                 }
4022         } else {
4023                 this_device->raid_level = RAID_UNKNOWN;
4024                 this_device->offload_config = 0;
4025                 hpsa_turn_off_ioaccel_for_device(this_device);
4026                 this_device->hba_ioaccel_enabled = 0;
4027                 this_device->volume_offline = 0;
4028                 this_device->queue_depth = h->nr_cmds;
4029         }
4030
4031         if (this_device->external)
4032                 this_device->queue_depth = EXTERNAL_QD;
4033
4034         if (is_OBDR_device) {
4035                 /* See if this is a One-Button-Disaster-Recovery device
4036                  * by looking for "$DR-10" at offset 43 in inquiry data.
4037                  */
4038                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4041                                                 OBDR_SIG_LEN) == 0);
4042         }
4043         kfree(inq_buff);
4044         return 0;
4045
4046 bail_out:
4047         kfree(inq_buff);
4048         return rc;
4049 }
4050
4051 /*
4052  * Helper function to assign bus, target, lun mapping of devices.
4053  * Logical drive target and lun are assigned at this time, but
4054  * physical device lun and target assignment are deferred (assigned
4055  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060         u32 lunid = get_unaligned_le32(lunaddrbytes);
4061
4062         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063                 /* physical device, target and lun filled in later */
4064                 if (is_hba_lunid(lunaddrbytes)) {
4065                         int bus = HPSA_HBA_BUS;
4066
4067                         if (!device->rev)
4068                                 bus = HPSA_LEGACY_HBA_BUS;
4069                         hpsa_set_bus_target_lun(device,
4070                                         bus, 0, lunid & 0x3fff);
4071                 } else
4072                         /* defer target, lun assignment for physical devices */
4073                         hpsa_set_bus_target_lun(device,
4074                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075                 return;
4076         }
4077         /* It's a logical device */
4078         if (device->external) {
4079                 hpsa_set_bus_target_lun(device,
4080                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081                         lunid & 0x00ff);
4082                 return;
4083         }
4084         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085                                 0, lunid & 0x3fff);
4086 }
4087
4088 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089         int i, int nphysicals, int nlocal_logicals)
4090 {
4091         /* In report logicals, local logicals are listed first,
4092         * then any externals.
4093         */
4094         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095
4096         if (i == raid_ctlr_position)
4097                 return 0;
4098
4099         if (i < logicals_start)
4100                 return 0;
4101
4102         /* i is in logicals range, but still within local logicals */
4103         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104                 return 0;
4105
4106         return 1; /* it's an external lun */
4107 }
4108
4109 /*
4110  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111  * logdev.  The number of luns in physdev and logdev are returned in
4112  * *nphysicals and *nlogicals, respectively.
4113  * Returns 0 on success, -1 otherwise.
4114  */
4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117         struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121                 return -1;
4122         }
4123         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127                 *nphysicals = HPSA_MAX_PHYS_LUN;
4128         }
4129         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131                 return -1;
4132         }
4133         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134         /* Reject Logicals in excess of our max capability. */
4135         if (*nlogicals > HPSA_MAX_LUN) {
4136                 dev_warn(&h->pdev->dev,
4137                         "maximum logical LUNs (%d) exceeded.  "
4138                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139                         *nlogicals - HPSA_MAX_LUN);
4140                 *nlogicals = HPSA_MAX_LUN;
4141         }
4142         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143                 dev_warn(&h->pdev->dev,
4144                         "maximum logical + physical LUNs (%d) exceeded. "
4145                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148         }
4149         return 0;
4150 }
4151
4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153         int i, int nphysicals, int nlogicals,
4154         struct ReportExtendedLUNdata *physdev_list,
4155         struct ReportLUNdata *logdev_list)
4156 {
4157         /* Helper function, figure out where the LUN ID info is coming from
4158          * given index i, lists of physical and logical devices, where in
4159          * the list the raid controller is supposed to appear (first or last)
4160          */
4161
4162         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164
4165         if (i == raid_ctlr_position)
4166                 return RAID_CTLR_LUNID;
4167
4168         if (i < logicals_start)
4169                 return &physdev_list->LUN[i -
4170                                 (raid_ctlr_position == 0)].lunid[0];
4171
4172         if (i < last_device)
4173                 return &logdev_list->LUN[i - nphysicals -
4174                         (raid_ctlr_position == 0)][0];
4175         BUG();
4176         return NULL;
4177 }
4178
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181                 struct hpsa_scsi_dev_t *dev,
4182                 struct ReportExtendedLUNdata *rlep, int rle_index,
4183                 struct bmic_identify_physical_device *id_phys)
4184 {
4185         int rc;
4186         struct ext_report_lun_entry *rle;
4187
4188         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189                 return;
4190
4191         rle = &rlep->LUN[rle_index];
4192
4193         dev->ioaccel_handle = rle->ioaccel_handle;
4194         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195                 dev->hba_ioaccel_enabled = 1;
4196         memset(id_phys, 0, sizeof(*id_phys));
4197         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199                         sizeof(*id_phys));
4200         if (!rc)
4201                 /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204                 dev->queue_depth =
4205                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4206                                 DRIVE_CMDS_RESERVED_FOR_FW;
4207         else
4208                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212         struct ReportExtendedLUNdata *rlep, int rle_index,
4213         struct bmic_identify_physical_device *id_phys)
4214 {
4215         struct ext_report_lun_entry *rle;
4216
4217         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218                 return;
4219
4220         rle = &rlep->LUN[rle_index];
4221
4222         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223                 this_device->hba_ioaccel_enabled = 1;
4224
4225         memcpy(&this_device->active_path_index,
4226                 &id_phys->active_path_number,
4227                 sizeof(this_device->active_path_index));
4228         memcpy(&this_device->path_map,
4229                 &id_phys->redundant_path_present_map,
4230                 sizeof(this_device->path_map));
4231         memcpy(&this_device->box,
4232                 &id_phys->alternate_paths_phys_box_on_port,
4233                 sizeof(this_device->box));
4234         memcpy(&this_device->phys_connector,
4235                 &id_phys->alternate_paths_phys_connector,
4236                 sizeof(this_device->phys_connector));
4237         memcpy(&this_device->bay,
4238                 &id_phys->phys_bay_in_box,
4239                 sizeof(this_device->bay));
4240 }
4241
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244         struct bmic_identify_controller *id_ctlr,
4245         u32 *nlocals)
4246 {
4247         int rc;
4248
4249         if (!id_ctlr) {
4250                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251                         __func__);
4252                 return -ENOMEM;
4253         }
4254         memset(id_ctlr, 0, sizeof(*id_ctlr));
4255         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256         if (!rc)
4257                 if (id_ctlr->configured_logical_drive_count < 255)
4258                         *nlocals = id_ctlr->configured_logical_drive_count;
4259                 else
4260                         *nlocals = le16_to_cpu(
4261                                         id_ctlr->extended_logical_unit_count);
4262         else
4263                 *nlocals = -1;
4264         return rc;
4265 }
4266
4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269         struct bmic_identify_physical_device *id_phys;
4270         bool is_spare = false;
4271         int rc;
4272
4273         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274         if (!id_phys)
4275                 return false;
4276
4277         rc = hpsa_bmic_id_physical_device(h,
4278                                         lunaddrbytes,
4279                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280                                         id_phys, sizeof(*id_phys));
4281         if (rc == 0)
4282                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4283
4284         kfree(id_phys);
4285         return is_spare;
4286 }
4287
4288 #define RPL_DEV_FLAG_NON_DISK                           0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293
4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295                                 struct ext_report_lun_entry *rle)
4296 {
4297         u8 device_flags;
4298         u8 device_type;
4299
4300         if (!MASKED_DEVICE(lunaddrbytes))
4301                 return false;
4302
4303         device_flags = rle->device_flags;
4304         device_type = rle->device_type;
4305
4306         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308                         return false;
4309                 return true;
4310         }
4311
4312         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313                 return false;
4314
4315         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316                 return false;
4317
4318         /*
4319          * Spares may be spun down, we do not want to
4320          * do an Inquiry to a RAID set spare drive as
4321          * that would have them spun up, that is a
4322          * performance hit because I/O to the RAID device
4323          * stops while the spin up occurs which can take
4324          * over 50 seconds.
4325          */
4326         if (hpsa_is_disk_spare(h, lunaddrbytes))
4327                 return true;
4328
4329         return false;
4330 }
4331
4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334         /* the idea here is we could get notified
4335          * that some devices have changed, so we do a report
4336          * physical luns and report logical luns cmd, and adjust
4337          * our list of devices accordingly.
4338          *
4339          * The scsi3addr's of devices won't change so long as the
4340          * adapter is not reset.  That means we can rescan and
4341          * tell which devices we already know about, vs. new
4342          * devices, vs.  disappearing devices.
4343          */
4344         struct ReportExtendedLUNdata *physdev_list = NULL;
4345         struct ReportLUNdata *logdev_list = NULL;
4346         struct bmic_identify_physical_device *id_phys = NULL;
4347         struct bmic_identify_controller *id_ctlr = NULL;
4348         u32 nphysicals = 0;
4349         u32 nlogicals = 0;
4350         u32 nlocal_logicals = 0;
4351         u32 ndev_allocated = 0;
4352         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353         int ncurrent = 0;
4354         int i, n_ext_target_devs, ndevs_to_allocate;
4355         int raid_ctlr_position;
4356         bool physical_device;
4357         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4358
4359         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4360         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4361         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4362         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4363         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4364         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4365
4366         if (!currentsd || !physdev_list || !logdev_list ||
4367                 !tmpdevice || !id_phys || !id_ctlr) {
4368                 dev_err(&h->pdev->dev, "out of memory\n");
4369                 goto out;
4370         }
4371         memset(lunzerobits, 0, sizeof(lunzerobits));
4372
4373         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4374
4375         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4376                         logdev_list, &nlogicals)) {
4377                 h->drv_req_rescan = 1;
4378                 goto out;
4379         }
4380
4381         /* Set number of local logicals (non PTRAID) */
4382         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4383                 dev_warn(&h->pdev->dev,
4384                         "%s: Can't determine number of local logical devices.\n",
4385                         __func__);
4386         }
4387
4388         /* We might see up to the maximum number of logical and physical disks
4389          * plus external target devices, and a device for the local RAID
4390          * controller.
4391          */
4392         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4393
4394         hpsa_ext_ctrl_present(h, physdev_list);
4395
4396         /* Allocate the per device structures */
4397         for (i = 0; i < ndevs_to_allocate; i++) {
4398                 if (i >= HPSA_MAX_DEVICES) {
4399                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4400                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4401                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4402                         break;
4403                 }
4404
4405                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4406                 if (!currentsd[i]) {
4407                         h->drv_req_rescan = 1;
4408                         goto out;
4409                 }
4410                 ndev_allocated++;
4411         }
4412
4413         if (is_scsi_rev_5(h))
4414                 raid_ctlr_position = 0;
4415         else
4416                 raid_ctlr_position = nphysicals + nlogicals;
4417
4418         /* adjust our table of devices */
4419         n_ext_target_devs = 0;
4420         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4421                 u8 *lunaddrbytes, is_OBDR = 0;
4422                 int rc = 0;
4423                 int phys_dev_index = i - (raid_ctlr_position == 0);
4424                 bool skip_device = false;
4425
4426                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4427
4428                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4429
4430                 /* Figure out where the LUN ID info is coming from */
4431                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4432                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4433
4434                 /* Determine if this is a lun from an external target array */
4435                 tmpdevice->external =
4436                         figure_external_status(h, raid_ctlr_position, i,
4437                                                 nphysicals, nlocal_logicals);
4438
4439                 /*
4440                  * Skip over some devices such as a spare.
4441                  */
4442                 if (phys_dev_index >= 0 && !tmpdevice->external &&
4443                         physical_device) {
4444                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4445                                         &physdev_list->LUN[phys_dev_index]);
4446                         if (skip_device)
4447                                 continue;
4448                 }
4449
4450                 /* Get device type, vendor, model, device id, raid_map */
4451                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4452                                                         &is_OBDR);
4453                 if (rc == -ENOMEM) {
4454                         dev_warn(&h->pdev->dev,
4455                                 "Out of memory, rescan deferred.\n");
4456                         h->drv_req_rescan = 1;
4457                         goto out;
4458                 }
4459                 if (rc) {
4460                         h->drv_req_rescan = 1;
4461                         continue;
4462                 }
4463
4464                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4465                 this_device = currentsd[ncurrent];
4466
4467                 *this_device = *tmpdevice;
4468                 this_device->physical_device = physical_device;
4469
4470                 /*
4471                  * Expose all devices except for physical devices that
4472                  * are masked.
4473                  */
4474                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4475                         this_device->expose_device = 0;
4476                 else
4477                         this_device->expose_device = 1;
4478
4479
4480                 /*
4481                  * Get the SAS address for physical devices that are exposed.
4482                  */
4483                 if (this_device->physical_device && this_device->expose_device)
4484                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4485
4486                 switch (this_device->devtype) {
4487                 case TYPE_ROM:
4488                         /* We don't *really* support actual CD-ROM devices,
4489                          * just "One Button Disaster Recovery" tape drive
4490                          * which temporarily pretends to be a CD-ROM drive.
4491                          * So we check that the device is really an OBDR tape
4492                          * device by checking for "$DR-10" in bytes 43-48 of
4493                          * the inquiry data.
4494                          */
4495                         if (is_OBDR)
4496                                 ncurrent++;
4497                         break;
4498                 case TYPE_DISK:
4499                 case TYPE_ZBC:
4500                         if (this_device->physical_device) {
4501                                 /* The disk is in HBA mode. */
4502                                 /* Never use RAID mapper in HBA mode. */
4503                                 this_device->offload_enabled = 0;
4504                                 hpsa_get_ioaccel_drive_info(h, this_device,
4505                                         physdev_list, phys_dev_index, id_phys);
4506                                 hpsa_get_path_info(this_device,
4507                                         physdev_list, phys_dev_index, id_phys);
4508                         }
4509                         ncurrent++;
4510                         break;
4511                 case TYPE_TAPE:
4512                 case TYPE_MEDIUM_CHANGER:
4513                         ncurrent++;
4514                         break;
4515                 case TYPE_ENCLOSURE:
4516                         if (!this_device->external)
4517                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4518                                                 physdev_list, phys_dev_index,
4519                                                 this_device);
4520                         ncurrent++;
4521                         break;
4522                 case TYPE_RAID:
4523                         /* Only present the Smartarray HBA as a RAID controller.
4524                          * If it's a RAID controller other than the HBA itself
4525                          * (an external RAID controller, MSA500 or similar)
4526                          * don't present it.
4527                          */
4528                         if (!is_hba_lunid(lunaddrbytes))
4529                                 break;
4530                         ncurrent++;
4531                         break;
4532                 default:
4533                         break;
4534                 }
4535                 if (ncurrent >= HPSA_MAX_DEVICES)
4536                         break;
4537         }
4538
4539         if (h->sas_host == NULL) {
4540                 int rc = 0;
4541
4542                 rc = hpsa_add_sas_host(h);
4543                 if (rc) {
4544                         dev_warn(&h->pdev->dev,
4545                                 "Could not add sas host %d\n", rc);
4546                         goto out;
4547                 }
4548         }
4549
4550         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4551 out:
4552         kfree(tmpdevice);
4553         for (i = 0; i < ndev_allocated; i++)
4554                 kfree(currentsd[i]);
4555         kfree(currentsd);
4556         kfree(physdev_list);
4557         kfree(logdev_list);
4558         kfree(id_ctlr);
4559         kfree(id_phys);
4560 }
4561
4562 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4563                                    struct scatterlist *sg)
4564 {
4565         u64 addr64 = (u64) sg_dma_address(sg);
4566         unsigned int len = sg_dma_len(sg);
4567
4568         desc->Addr = cpu_to_le64(addr64);
4569         desc->Len = cpu_to_le32(len);
4570         desc->Ext = 0;
4571 }
4572
4573 /*
4574  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4575  * dma mapping  and fills in the scatter gather entries of the
4576  * hpsa command, cp.
4577  */
4578 static int hpsa_scatter_gather(struct ctlr_info *h,
4579                 struct CommandList *cp,
4580                 struct scsi_cmnd *cmd)
4581 {
4582         struct scatterlist *sg;
4583         int use_sg, i, sg_limit, chained, last_sg;
4584         struct SGDescriptor *curr_sg;
4585
4586         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4587
4588         use_sg = scsi_dma_map(cmd);
4589         if (use_sg < 0)
4590                 return use_sg;
4591
4592         if (!use_sg)
4593                 goto sglist_finished;
4594
4595         /*
4596          * If the number of entries is greater than the max for a single list,
4597          * then we have a chained list; we will set up all but one entry in the
4598          * first list (the last entry is saved for link information);
4599          * otherwise, we don't have a chained list and we'll set up at each of
4600          * the entries in the one list.
4601          */
4602         curr_sg = cp->SG;
4603         chained = use_sg > h->max_cmd_sg_entries;
4604         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4605         last_sg = scsi_sg_count(cmd) - 1;
4606         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4607                 hpsa_set_sg_descriptor(curr_sg, sg);
4608                 curr_sg++;
4609         }
4610
4611         if (chained) {
4612                 /*
4613                  * Continue with the chained list.  Set curr_sg to the chained
4614                  * list.  Modify the limit to the total count less the entries
4615                  * we've already set up.  Resume the scan at the list entry
4616                  * where the previous loop left off.
4617                  */
4618                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4619                 sg_limit = use_sg - sg_limit;
4620                 for_each_sg(sg, sg, sg_limit, i) {
4621                         hpsa_set_sg_descriptor(curr_sg, sg);
4622                         curr_sg++;
4623                 }
4624         }
4625
4626         /* Back the pointer up to the last entry and mark it as "last". */
4627         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4628
4629         if (use_sg + chained > h->maxSG)
4630                 h->maxSG = use_sg + chained;
4631
4632         if (chained) {
4633                 cp->Header.SGList = h->max_cmd_sg_entries;
4634                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4635                 if (hpsa_map_sg_chain_block(h, cp)) {
4636                         scsi_dma_unmap(cmd);
4637                         return -1;
4638                 }
4639                 return 0;
4640         }
4641
4642 sglist_finished:
4643
4644         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4645         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4646         return 0;
4647 }
4648
4649 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4650                                                 u8 *cdb, int cdb_len,
4651                                                 const char *func)
4652 {
4653         dev_warn(&h->pdev->dev,
4654                  "%s: Blocking zero-length request: CDB:%*phN\n",
4655                  func, cdb_len, cdb);
4656 }
4657
4658 #define IO_ACCEL_INELIGIBLE 1
4659 /* zero-length transfers trigger hardware errors. */
4660 static bool is_zero_length_transfer(u8 *cdb)
4661 {
4662         u32 block_cnt;
4663
4664         /* Block zero-length transfer sizes on certain commands. */
4665         switch (cdb[0]) {
4666         case READ_10:
4667         case WRITE_10:
4668         case VERIFY:            /* 0x2F */
4669         case WRITE_VERIFY:      /* 0x2E */
4670                 block_cnt = get_unaligned_be16(&cdb[7]);
4671                 break;
4672         case READ_12:
4673         case WRITE_12:
4674         case VERIFY_12: /* 0xAF */
4675         case WRITE_VERIFY_12:   /* 0xAE */
4676                 block_cnt = get_unaligned_be32(&cdb[6]);
4677                 break;
4678         case READ_16:
4679         case WRITE_16:
4680         case VERIFY_16:         /* 0x8F */
4681                 block_cnt = get_unaligned_be32(&cdb[10]);
4682                 break;
4683         default:
4684                 return false;
4685         }
4686
4687         return block_cnt == 0;
4688 }
4689
4690 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4691 {
4692         int is_write = 0;
4693         u32 block;
4694         u32 block_cnt;
4695
4696         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4697         switch (cdb[0]) {
4698         case WRITE_6:
4699         case WRITE_12:
4700                 is_write = 1;
4701                 fallthrough;
4702         case READ_6:
4703         case READ_12:
4704                 if (*cdb_len == 6) {
4705                         block = (((cdb[1] & 0x1F) << 16) |
4706                                 (cdb[2] << 8) |
4707                                 cdb[3]);
4708                         block_cnt = cdb[4];
4709                         if (block_cnt == 0)
4710                                 block_cnt = 256;
4711                 } else {
4712                         BUG_ON(*cdb_len != 12);
4713                         block = get_unaligned_be32(&cdb[2]);
4714                         block_cnt = get_unaligned_be32(&cdb[6]);
4715                 }
4716                 if (block_cnt > 0xffff)
4717                         return IO_ACCEL_INELIGIBLE;
4718
4719                 cdb[0] = is_write ? WRITE_10 : READ_10;
4720                 cdb[1] = 0;
4721                 cdb[2] = (u8) (block >> 24);
4722                 cdb[3] = (u8) (block >> 16);
4723                 cdb[4] = (u8) (block >> 8);
4724                 cdb[5] = (u8) (block);
4725                 cdb[6] = 0;
4726                 cdb[7] = (u8) (block_cnt >> 8);
4727                 cdb[8] = (u8) (block_cnt);
4728                 cdb[9] = 0;
4729                 *cdb_len = 10;
4730                 break;
4731         }
4732         return 0;
4733 }
4734
4735 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4736         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4737         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4738 {
4739         struct scsi_cmnd *cmd = c->scsi_cmd;
4740         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4741         unsigned int len;
4742         unsigned int total_len = 0;
4743         struct scatterlist *sg;
4744         u64 addr64;
4745         int use_sg, i;
4746         struct SGDescriptor *curr_sg;
4747         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4748
4749         /* TODO: implement chaining support */
4750         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4751                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4752                 return IO_ACCEL_INELIGIBLE;
4753         }
4754
4755         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4756
4757         if (is_zero_length_transfer(cdb)) {
4758                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4759                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4760                 return IO_ACCEL_INELIGIBLE;
4761         }
4762
4763         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4764                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4765                 return IO_ACCEL_INELIGIBLE;
4766         }
4767
4768         c->cmd_type = CMD_IOACCEL1;
4769
4770         /* Adjust the DMA address to point to the accelerated command buffer */
4771         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4772                                 (c->cmdindex * sizeof(*cp));
4773         BUG_ON(c->busaddr & 0x0000007F);
4774
4775         use_sg = scsi_dma_map(cmd);
4776         if (use_sg < 0) {
4777                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4778                 return use_sg;
4779         }
4780
4781         if (use_sg) {
4782                 curr_sg = cp->SG;
4783                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4784                         addr64 = (u64) sg_dma_address(sg);
4785                         len  = sg_dma_len(sg);
4786                         total_len += len;
4787                         curr_sg->Addr = cpu_to_le64(addr64);
4788                         curr_sg->Len = cpu_to_le32(len);
4789                         curr_sg->Ext = cpu_to_le32(0);
4790                         curr_sg++;
4791                 }
4792                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4793
4794                 switch (cmd->sc_data_direction) {
4795                 case DMA_TO_DEVICE:
4796                         control |= IOACCEL1_CONTROL_DATA_OUT;
4797                         break;
4798                 case DMA_FROM_DEVICE:
4799                         control |= IOACCEL1_CONTROL_DATA_IN;
4800                         break;
4801                 case DMA_NONE:
4802                         control |= IOACCEL1_CONTROL_NODATAXFER;
4803                         break;
4804                 default:
4805                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4806                         cmd->sc_data_direction);
4807                         BUG();
4808                         break;
4809                 }
4810         } else {
4811                 control |= IOACCEL1_CONTROL_NODATAXFER;
4812         }
4813
4814         c->Header.SGList = use_sg;
4815         /* Fill out the command structure to submit */
4816         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4817         cp->transfer_len = cpu_to_le32(total_len);
4818         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4819                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4820         cp->control = cpu_to_le32(control);
4821         memcpy(cp->CDB, cdb, cdb_len);
4822         memcpy(cp->CISS_LUN, scsi3addr, 8);
4823         /* Tag was already set at init time. */
4824         enqueue_cmd_and_start_io(h, c);
4825         return 0;
4826 }
4827
4828 /*
4829  * Queue a command directly to a device behind the controller using the
4830  * I/O accelerator path.
4831  */
4832 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4833         struct CommandList *c)
4834 {
4835         struct scsi_cmnd *cmd = c->scsi_cmd;
4836         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4837
4838         if (!dev)
4839                 return -1;
4840
4841         c->phys_disk = dev;
4842
4843         if (dev->in_reset)
4844                 return -1;
4845
4846         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4847                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4848 }
4849
4850 /*
4851  * Set encryption parameters for the ioaccel2 request
4852  */
4853 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4854         struct CommandList *c, struct io_accel2_cmd *cp)
4855 {
4856         struct scsi_cmnd *cmd = c->scsi_cmd;
4857         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4858         struct raid_map_data *map = &dev->raid_map;
4859         u64 first_block;
4860
4861         /* Are we doing encryption on this device */
4862         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4863                 return;
4864         /* Set the data encryption key index. */
4865         cp->dekindex = map->dekindex;
4866
4867         /* Set the encryption enable flag, encoded into direction field. */
4868         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4869
4870         /* Set encryption tweak values based on logical block address
4871          * If block size is 512, tweak value is LBA.
4872          * For other block sizes, tweak is (LBA * block size)/ 512)
4873          */
4874         switch (cmd->cmnd[0]) {
4875         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4876         case READ_6:
4877         case WRITE_6:
4878                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4879                                 (cmd->cmnd[2] << 8) |
4880                                 cmd->cmnd[3]);
4881                 break;
4882         case WRITE_10:
4883         case READ_10:
4884         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4885         case WRITE_12:
4886         case READ_12:
4887                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4888                 break;
4889         case WRITE_16:
4890         case READ_16:
4891                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4892                 break;
4893         default:
4894                 dev_err(&h->pdev->dev,
4895                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4896                         __func__, cmd->cmnd[0]);
4897                 BUG();
4898                 break;
4899         }
4900
4901         if (le32_to_cpu(map->volume_blk_size) != 512)
4902                 first_block = first_block *
4903                                 le32_to_cpu(map->volume_blk_size)/512;
4904
4905         cp->tweak_lower = cpu_to_le32(first_block);
4906         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4907 }
4908
4909 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4910         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4911         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4912 {
4913         struct scsi_cmnd *cmd = c->scsi_cmd;
4914         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4915         struct ioaccel2_sg_element *curr_sg;
4916         int use_sg, i;
4917         struct scatterlist *sg;
4918         u64 addr64;
4919         u32 len;
4920         u32 total_len = 0;
4921
4922         if (!cmd->device)
4923                 return -1;
4924
4925         if (!cmd->device->hostdata)
4926                 return -1;
4927
4928         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4929
4930         if (is_zero_length_transfer(cdb)) {
4931                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4932                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4933                 return IO_ACCEL_INELIGIBLE;
4934         }
4935
4936         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4937                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4938                 return IO_ACCEL_INELIGIBLE;
4939         }
4940
4941         c->cmd_type = CMD_IOACCEL2;
4942         /* Adjust the DMA address to point to the accelerated command buffer */
4943         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4944                                 (c->cmdindex * sizeof(*cp));
4945         BUG_ON(c->busaddr & 0x0000007F);
4946
4947         memset(cp, 0, sizeof(*cp));
4948         cp->IU_type = IOACCEL2_IU_TYPE;
4949
4950         use_sg = scsi_dma_map(cmd);
4951         if (use_sg < 0) {
4952                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4953                 return use_sg;
4954         }
4955
4956         if (use_sg) {
4957                 curr_sg = cp->sg;
4958                 if (use_sg > h->ioaccel_maxsg) {
4959                         addr64 = le64_to_cpu(
4960                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4961                         curr_sg->address = cpu_to_le64(addr64);
4962                         curr_sg->length = 0;
4963                         curr_sg->reserved[0] = 0;
4964                         curr_sg->reserved[1] = 0;
4965                         curr_sg->reserved[2] = 0;
4966                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4967
4968                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4969                 }
4970                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4971                         addr64 = (u64) sg_dma_address(sg);
4972                         len  = sg_dma_len(sg);
4973                         total_len += len;
4974                         curr_sg->address = cpu_to_le64(addr64);
4975                         curr_sg->length = cpu_to_le32(len);
4976                         curr_sg->reserved[0] = 0;
4977                         curr_sg->reserved[1] = 0;
4978                         curr_sg->reserved[2] = 0;
4979                         curr_sg->chain_indicator = 0;
4980                         curr_sg++;
4981                 }
4982
4983                 /*
4984                  * Set the last s/g element bit
4985                  */
4986                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4987
4988                 switch (cmd->sc_data_direction) {
4989                 case DMA_TO_DEVICE:
4990                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4992                         break;
4993                 case DMA_FROM_DEVICE:
4994                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4996                         break;
4997                 case DMA_NONE:
4998                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4999                         cp->direction |= IOACCEL2_DIR_NO_DATA;
5000                         break;
5001                 default:
5002                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5003                                 cmd->sc_data_direction);
5004                         BUG();
5005                         break;
5006                 }
5007         } else {
5008                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5009                 cp->direction |= IOACCEL2_DIR_NO_DATA;
5010         }
5011
5012         /* Set encryption parameters, if necessary */
5013         set_encrypt_ioaccel2(h, c, cp);
5014
5015         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5016         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5017         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5018
5019         cp->data_len = cpu_to_le32(total_len);
5020         cp->err_ptr = cpu_to_le64(c->busaddr +
5021                         offsetof(struct io_accel2_cmd, error_data));
5022         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5023
5024         /* fill in sg elements */
5025         if (use_sg > h->ioaccel_maxsg) {
5026                 cp->sg_count = 1;
5027                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5028                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5029                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5030                         scsi_dma_unmap(cmd);
5031                         return -1;
5032                 }
5033         } else
5034                 cp->sg_count = (u8) use_sg;
5035
5036         if (phys_disk->in_reset) {
5037                 cmd->result = DID_RESET << 16;
5038                 return -1;
5039         }
5040
5041         enqueue_cmd_and_start_io(h, c);
5042         return 0;
5043 }
5044
5045 /*
5046  * Queue a command to the correct I/O accelerator path.
5047  */
5048 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5049         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5050         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5051 {
5052         if (!c->scsi_cmd->device)
5053                 return -1;
5054
5055         if (!c->scsi_cmd->device->hostdata)
5056                 return -1;
5057
5058         if (phys_disk->in_reset)
5059                 return -1;
5060
5061         /* Try to honor the device's queue depth */
5062         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5063                                         phys_disk->queue_depth) {
5064                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5065                 return IO_ACCEL_INELIGIBLE;
5066         }
5067         if (h->transMethod & CFGTBL_Trans_io_accel1)
5068                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5069                                                 cdb, cdb_len, scsi3addr,
5070                                                 phys_disk);
5071         else
5072                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5073                                                 cdb, cdb_len, scsi3addr,
5074                                                 phys_disk);
5075 }
5076
5077 static void raid_map_helper(struct raid_map_data *map,
5078                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5079 {
5080         if (offload_to_mirror == 0)  {
5081                 /* use physical disk in the first mirrored group. */
5082                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5083                 return;
5084         }
5085         do {
5086                 /* determine mirror group that *map_index indicates */
5087                 *current_group = *map_index /
5088                         le16_to_cpu(map->data_disks_per_row);
5089                 if (offload_to_mirror == *current_group)
5090                         continue;
5091                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5092                         /* select map index from next group */
5093                         *map_index += le16_to_cpu(map->data_disks_per_row);
5094                         (*current_group)++;
5095                 } else {
5096                         /* select map index from first group */
5097                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5098                         *current_group = 0;
5099                 }
5100         } while (offload_to_mirror != *current_group);
5101 }
5102
5103 /*
5104  * Attempt to perform offload RAID mapping for a logical volume I/O.
5105  */
5106 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5107         struct CommandList *c)
5108 {
5109         struct scsi_cmnd *cmd = c->scsi_cmd;
5110         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5111         struct raid_map_data *map = &dev->raid_map;
5112         struct raid_map_disk_data *dd = &map->data[0];
5113         int is_write = 0;
5114         u32 map_index;
5115         u64 first_block, last_block;
5116         u32 block_cnt;
5117         u32 blocks_per_row;
5118         u64 first_row, last_row;
5119         u32 first_row_offset, last_row_offset;
5120         u32 first_column, last_column;
5121         u64 r0_first_row, r0_last_row;
5122         u32 r5or6_blocks_per_row;
5123         u64 r5or6_first_row, r5or6_last_row;
5124         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5125         u32 r5or6_first_column, r5or6_last_column;
5126         u32 total_disks_per_row;
5127         u32 stripesize;
5128         u32 first_group, last_group, current_group;
5129         u32 map_row;
5130         u32 disk_handle;
5131         u64 disk_block;
5132         u32 disk_block_cnt;
5133         u8 cdb[16];
5134         u8 cdb_len;
5135         u16 strip_size;
5136 #if BITS_PER_LONG == 32
5137         u64 tmpdiv;
5138 #endif
5139         int offload_to_mirror;
5140
5141         if (!dev)
5142                 return -1;
5143
5144         if (dev->in_reset)
5145                 return -1;
5146
5147         /* check for valid opcode, get LBA and block count */
5148         switch (cmd->cmnd[0]) {
5149         case WRITE_6:
5150                 is_write = 1;
5151                 fallthrough;
5152         case READ_6:
5153                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5154                                 (cmd->cmnd[2] << 8) |
5155                                 cmd->cmnd[3]);
5156                 block_cnt = cmd->cmnd[4];
5157                 if (block_cnt == 0)
5158                         block_cnt = 256;
5159                 break;
5160         case WRITE_10:
5161                 is_write = 1;
5162                 fallthrough;
5163         case READ_10:
5164                 first_block =
5165                         (((u64) cmd->cmnd[2]) << 24) |
5166                         (((u64) cmd->cmnd[3]) << 16) |
5167                         (((u64) cmd->cmnd[4]) << 8) |
5168                         cmd->cmnd[5];
5169                 block_cnt =
5170                         (((u32) cmd->cmnd[7]) << 8) |
5171                         cmd->cmnd[8];
5172                 break;
5173         case WRITE_12:
5174                 is_write = 1;
5175                 fallthrough;
5176         case READ_12:
5177                 first_block =
5178                         (((u64) cmd->cmnd[2]) << 24) |
5179                         (((u64) cmd->cmnd[3]) << 16) |
5180                         (((u64) cmd->cmnd[4]) << 8) |
5181                         cmd->cmnd[5];
5182                 block_cnt =
5183                         (((u32) cmd->cmnd[6]) << 24) |
5184                         (((u32) cmd->cmnd[7]) << 16) |
5185                         (((u32) cmd->cmnd[8]) << 8) |
5186                 cmd->cmnd[9];
5187                 break;
5188         case WRITE_16:
5189                 is_write = 1;
5190                 fallthrough;
5191         case READ_16:
5192                 first_block =
5193                         (((u64) cmd->cmnd[2]) << 56) |
5194                         (((u64) cmd->cmnd[3]) << 48) |
5195                         (((u64) cmd->cmnd[4]) << 40) |
5196                         (((u64) cmd->cmnd[5]) << 32) |
5197                         (((u64) cmd->cmnd[6]) << 24) |
5198                         (((u64) cmd->cmnd[7]) << 16) |
5199                         (((u64) cmd->cmnd[8]) << 8) |
5200                         cmd->cmnd[9];
5201                 block_cnt =
5202                         (((u32) cmd->cmnd[10]) << 24) |
5203                         (((u32) cmd->cmnd[11]) << 16) |
5204                         (((u32) cmd->cmnd[12]) << 8) |
5205                         cmd->cmnd[13];
5206                 break;
5207         default:
5208                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5209         }
5210         last_block = first_block + block_cnt - 1;
5211
5212         /* check for write to non-RAID-0 */
5213         if (is_write && dev->raid_level != 0)
5214                 return IO_ACCEL_INELIGIBLE;
5215
5216         /* check for invalid block or wraparound */
5217         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5218                 last_block < first_block)
5219                 return IO_ACCEL_INELIGIBLE;
5220
5221         /* calculate stripe information for the request */
5222         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5223                                 le16_to_cpu(map->strip_size);
5224         strip_size = le16_to_cpu(map->strip_size);
5225 #if BITS_PER_LONG == 32
5226         tmpdiv = first_block;
5227         (void) do_div(tmpdiv, blocks_per_row);
5228         first_row = tmpdiv;
5229         tmpdiv = last_block;
5230         (void) do_div(tmpdiv, blocks_per_row);
5231         last_row = tmpdiv;
5232         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5233         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5234         tmpdiv = first_row_offset;
5235         (void) do_div(tmpdiv, strip_size);
5236         first_column = tmpdiv;
5237         tmpdiv = last_row_offset;
5238         (void) do_div(tmpdiv, strip_size);
5239         last_column = tmpdiv;
5240 #else
5241         first_row = first_block / blocks_per_row;
5242         last_row = last_block / blocks_per_row;
5243         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5244         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5245         first_column = first_row_offset / strip_size;
5246         last_column = last_row_offset / strip_size;
5247 #endif
5248
5249         /* if this isn't a single row/column then give to the controller */
5250         if ((first_row != last_row) || (first_column != last_column))
5251                 return IO_ACCEL_INELIGIBLE;
5252
5253         /* proceeding with driver mapping */
5254         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5255                                 le16_to_cpu(map->metadata_disks_per_row);
5256         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5257                                 le16_to_cpu(map->row_cnt);
5258         map_index = (map_row * total_disks_per_row) + first_column;
5259
5260         switch (dev->raid_level) {
5261         case HPSA_RAID_0:
5262                 break; /* nothing special to do */
5263         case HPSA_RAID_1:
5264                 /* Handles load balance across RAID 1 members.
5265                  * (2-drive R1 and R10 with even # of drives.)
5266                  * Appropriate for SSDs, not optimal for HDDs
5267                  * Ensure we have the correct raid_map.
5268                  */
5269                 if (le16_to_cpu(map->layout_map_count) != 2) {
5270                         hpsa_turn_off_ioaccel_for_device(dev);
5271                         return IO_ACCEL_INELIGIBLE;
5272                 }
5273                 if (dev->offload_to_mirror)
5274                         map_index += le16_to_cpu(map->data_disks_per_row);
5275                 dev->offload_to_mirror = !dev->offload_to_mirror;
5276                 break;
5277         case HPSA_RAID_ADM:
5278                 /* Handles N-way mirrors  (R1-ADM)
5279                  * and R10 with # of drives divisible by 3.)
5280                  * Ensure we have the correct raid_map.
5281                  */
5282                 if (le16_to_cpu(map->layout_map_count) != 3) {
5283                         hpsa_turn_off_ioaccel_for_device(dev);
5284                         return IO_ACCEL_INELIGIBLE;
5285                 }
5286
5287                 offload_to_mirror = dev->offload_to_mirror;
5288                 raid_map_helper(map, offload_to_mirror,
5289                                 &map_index, &current_group);
5290                 /* set mirror group to use next time */
5291                 offload_to_mirror =
5292                         (offload_to_mirror >=
5293                         le16_to_cpu(map->layout_map_count) - 1)
5294                         ? 0 : offload_to_mirror + 1;
5295                 dev->offload_to_mirror = offload_to_mirror;
5296                 /* Avoid direct use of dev->offload_to_mirror within this
5297                  * function since multiple threads might simultaneously
5298                  * increment it beyond the range of dev->layout_map_count -1.
5299                  */
5300                 break;
5301         case HPSA_RAID_5:
5302         case HPSA_RAID_6:
5303                 if (le16_to_cpu(map->layout_map_count) <= 1)
5304                         break;
5305
5306                 /* Verify first and last block are in same RAID group */
5307                 r5or6_blocks_per_row =
5308                         le16_to_cpu(map->strip_size) *
5309                         le16_to_cpu(map->data_disks_per_row);
5310                 if (r5or6_blocks_per_row == 0) {
5311                         hpsa_turn_off_ioaccel_for_device(dev);
5312                         return IO_ACCEL_INELIGIBLE;
5313                 }
5314                 stripesize = r5or6_blocks_per_row *
5315                         le16_to_cpu(map->layout_map_count);
5316 #if BITS_PER_LONG == 32
5317                 tmpdiv = first_block;
5318                 first_group = do_div(tmpdiv, stripesize);
5319                 tmpdiv = first_group;
5320                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5321                 first_group = tmpdiv;
5322                 tmpdiv = last_block;
5323                 last_group = do_div(tmpdiv, stripesize);
5324                 tmpdiv = last_group;
5325                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5326                 last_group = tmpdiv;
5327 #else
5328                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5329                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5330 #endif
5331                 if (first_group != last_group)
5332                         return IO_ACCEL_INELIGIBLE;
5333
5334                 /* Verify request is in a single row of RAID 5/6 */
5335 #if BITS_PER_LONG == 32
5336                 tmpdiv = first_block;
5337                 (void) do_div(tmpdiv, stripesize);
5338                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5339                 tmpdiv = last_block;
5340                 (void) do_div(tmpdiv, stripesize);
5341                 r5or6_last_row = r0_last_row = tmpdiv;
5342 #else
5343                 first_row = r5or6_first_row = r0_first_row =
5344                                                 first_block / stripesize;
5345                 r5or6_last_row = r0_last_row = last_block / stripesize;
5346 #endif
5347                 if (r5or6_first_row != r5or6_last_row)
5348                         return IO_ACCEL_INELIGIBLE;
5349
5350
5351                 /* Verify request is in a single column */
5352 #if BITS_PER_LONG == 32
5353                 tmpdiv = first_block;
5354                 first_row_offset = do_div(tmpdiv, stripesize);
5355                 tmpdiv = first_row_offset;
5356                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5357                 r5or6_first_row_offset = first_row_offset;
5358                 tmpdiv = last_block;
5359                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5360                 tmpdiv = r5or6_last_row_offset;
5361                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5362                 tmpdiv = r5or6_first_row_offset;
5363                 (void) do_div(tmpdiv, map->strip_size);
5364                 first_column = r5or6_first_column = tmpdiv;
5365                 tmpdiv = r5or6_last_row_offset;
5366                 (void) do_div(tmpdiv, map->strip_size);
5367                 r5or6_last_column = tmpdiv;
5368 #else
5369                 first_row_offset = r5or6_first_row_offset =
5370                         (u32)((first_block % stripesize) %
5371                                                 r5or6_blocks_per_row);
5372
5373                 r5or6_last_row_offset =
5374                         (u32)((last_block % stripesize) %
5375                                                 r5or6_blocks_per_row);
5376
5377                 first_column = r5or6_first_column =
5378                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5379                 r5or6_last_column =
5380                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5381 #endif
5382                 if (r5or6_first_column != r5or6_last_column)
5383                         return IO_ACCEL_INELIGIBLE;
5384
5385                 /* Request is eligible */
5386                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5387                         le16_to_cpu(map->row_cnt);
5388
5389                 map_index = (first_group *
5390                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5391                         (map_row * total_disks_per_row) + first_column;
5392                 break;
5393         default:
5394                 return IO_ACCEL_INELIGIBLE;
5395         }
5396
5397         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5398                 return IO_ACCEL_INELIGIBLE;
5399
5400         c->phys_disk = dev->phys_disk[map_index];
5401         if (!c->phys_disk)
5402                 return IO_ACCEL_INELIGIBLE;
5403
5404         disk_handle = dd[map_index].ioaccel_handle;
5405         disk_block = le64_to_cpu(map->disk_starting_blk) +
5406                         first_row * le16_to_cpu(map->strip_size) +
5407                         (first_row_offset - first_column *
5408                         le16_to_cpu(map->strip_size));
5409         disk_block_cnt = block_cnt;
5410
5411         /* handle differing logical/physical block sizes */
5412         if (map->phys_blk_shift) {
5413                 disk_block <<= map->phys_blk_shift;
5414                 disk_block_cnt <<= map->phys_blk_shift;
5415         }
5416         BUG_ON(disk_block_cnt > 0xffff);
5417
5418         /* build the new CDB for the physical disk I/O */
5419         if (disk_block > 0xffffffff) {
5420                 cdb[0] = is_write ? WRITE_16 : READ_16;
5421                 cdb[1] = 0;
5422                 cdb[2] = (u8) (disk_block >> 56);
5423                 cdb[3] = (u8) (disk_block >> 48);
5424                 cdb[4] = (u8) (disk_block >> 40);
5425                 cdb[5] = (u8) (disk_block >> 32);
5426                 cdb[6] = (u8) (disk_block >> 24);
5427                 cdb[7] = (u8) (disk_block >> 16);
5428                 cdb[8] = (u8) (disk_block >> 8);
5429                 cdb[9] = (u8) (disk_block);
5430                 cdb[10] = (u8) (disk_block_cnt >> 24);
5431                 cdb[11] = (u8) (disk_block_cnt >> 16);
5432                 cdb[12] = (u8) (disk_block_cnt >> 8);
5433                 cdb[13] = (u8) (disk_block_cnt);
5434                 cdb[14] = 0;
5435                 cdb[15] = 0;
5436                 cdb_len = 16;
5437         } else {
5438                 cdb[0] = is_write ? WRITE_10 : READ_10;
5439                 cdb[1] = 0;
5440                 cdb[2] = (u8) (disk_block >> 24);
5441                 cdb[3] = (u8) (disk_block >> 16);
5442                 cdb[4] = (u8) (disk_block >> 8);
5443                 cdb[5] = (u8) (disk_block);
5444                 cdb[6] = 0;
5445                 cdb[7] = (u8) (disk_block_cnt >> 8);
5446                 cdb[8] = (u8) (disk_block_cnt);
5447                 cdb[9] = 0;
5448                 cdb_len = 10;
5449         }
5450         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5451                                                 dev->scsi3addr,
5452                                                 dev->phys_disk[map_index]);
5453 }
5454
5455 /*
5456  * Submit commands down the "normal" RAID stack path
5457  * All callers to hpsa_ciss_submit must check lockup_detected
5458  * beforehand, before (opt.) and after calling cmd_alloc
5459  */
5460 static int hpsa_ciss_submit(struct ctlr_info *h,
5461         struct CommandList *c, struct scsi_cmnd *cmd,
5462         struct hpsa_scsi_dev_t *dev)
5463 {
5464         cmd->host_scribble = (unsigned char *) c;
5465         c->cmd_type = CMD_SCSI;
5466         c->scsi_cmd = cmd;
5467         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5468         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5469         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5470
5471         /* Fill in the request block... */
5472
5473         c->Request.Timeout = 0;
5474         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5475         c->Request.CDBLen = cmd->cmd_len;
5476         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5477         switch (cmd->sc_data_direction) {
5478         case DMA_TO_DEVICE:
5479                 c->Request.type_attr_dir =
5480                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5481                 break;
5482         case DMA_FROM_DEVICE:
5483                 c->Request.type_attr_dir =
5484                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5485                 break;
5486         case DMA_NONE:
5487                 c->Request.type_attr_dir =
5488                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5489                 break;
5490         case DMA_BIDIRECTIONAL:
5491                 /* This can happen if a buggy application does a scsi passthru
5492                  * and sets both inlen and outlen to non-zero. ( see
5493                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5494                  */
5495
5496                 c->Request.type_attr_dir =
5497                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5498                 /* This is technically wrong, and hpsa controllers should
5499                  * reject it with CMD_INVALID, which is the most correct
5500                  * response, but non-fibre backends appear to let it
5501                  * slide by, and give the same results as if this field
5502                  * were set correctly.  Either way is acceptable for
5503                  * our purposes here.
5504                  */
5505
5506                 break;
5507
5508         default:
5509                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5510                         cmd->sc_data_direction);
5511                 BUG();
5512                 break;
5513         }
5514
5515         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5516                 hpsa_cmd_resolve_and_free(h, c);
5517                 return SCSI_MLQUEUE_HOST_BUSY;
5518         }
5519
5520         if (dev->in_reset) {
5521                 hpsa_cmd_resolve_and_free(h, c);
5522                 return SCSI_MLQUEUE_HOST_BUSY;
5523         }
5524
5525         c->device = dev;
5526
5527         enqueue_cmd_and_start_io(h, c);
5528         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5529         return 0;
5530 }
5531
5532 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5533                                 struct CommandList *c)
5534 {
5535         dma_addr_t cmd_dma_handle, err_dma_handle;
5536
5537         /* Zero out all of commandlist except the last field, refcount */
5538         memset(c, 0, offsetof(struct CommandList, refcount));
5539         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5540         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5541         c->err_info = h->errinfo_pool + index;
5542         memset(c->err_info, 0, sizeof(*c->err_info));
5543         err_dma_handle = h->errinfo_pool_dhandle
5544             + index * sizeof(*c->err_info);
5545         c->cmdindex = index;
5546         c->busaddr = (u32) cmd_dma_handle;
5547         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5548         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5549         c->h = h;
5550         c->scsi_cmd = SCSI_CMD_IDLE;
5551 }
5552
5553 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5554 {
5555         int i;
5556
5557         for (i = 0; i < h->nr_cmds; i++) {
5558                 struct CommandList *c = h->cmd_pool + i;
5559
5560                 hpsa_cmd_init(h, i, c);
5561                 atomic_set(&c->refcount, 0);
5562         }
5563 }
5564
5565 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5566                                 struct CommandList *c)
5567 {
5568         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5569
5570         BUG_ON(c->cmdindex != index);
5571
5572         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5573         memset(c->err_info, 0, sizeof(*c->err_info));
5574         c->busaddr = (u32) cmd_dma_handle;
5575 }
5576
5577 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5578                 struct CommandList *c, struct scsi_cmnd *cmd)
5579 {
5580         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5581         int rc = IO_ACCEL_INELIGIBLE;
5582
5583         if (!dev)
5584                 return SCSI_MLQUEUE_HOST_BUSY;
5585
5586         if (dev->in_reset)
5587                 return SCSI_MLQUEUE_HOST_BUSY;
5588
5589         if (hpsa_simple_mode)
5590                 return IO_ACCEL_INELIGIBLE;
5591
5592         cmd->host_scribble = (unsigned char *) c;
5593
5594         if (dev->offload_enabled) {
5595                 hpsa_cmd_init(h, c->cmdindex, c);
5596                 c->cmd_type = CMD_SCSI;
5597                 c->scsi_cmd = cmd;
5598                 c->device = dev;
5599                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5600                 if (rc < 0)     /* scsi_dma_map failed. */
5601                         rc = SCSI_MLQUEUE_HOST_BUSY;
5602         } else if (dev->hba_ioaccel_enabled) {
5603                 hpsa_cmd_init(h, c->cmdindex, c);
5604                 c->cmd_type = CMD_SCSI;
5605                 c->scsi_cmd = cmd;
5606                 c->device = dev;
5607                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5608                 if (rc < 0)     /* scsi_dma_map failed. */
5609                         rc = SCSI_MLQUEUE_HOST_BUSY;
5610         }
5611         return rc;
5612 }
5613
5614 static void hpsa_command_resubmit_worker(struct work_struct *work)
5615 {
5616         struct scsi_cmnd *cmd;
5617         struct hpsa_scsi_dev_t *dev;
5618         struct CommandList *c = container_of(work, struct CommandList, work);
5619
5620         cmd = c->scsi_cmd;
5621         dev = cmd->device->hostdata;
5622         if (!dev) {
5623                 cmd->result = DID_NO_CONNECT << 16;
5624                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5625         }
5626
5627         if (dev->in_reset) {
5628                 cmd->result = DID_RESET << 16;
5629                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5630         }
5631
5632         if (c->cmd_type == CMD_IOACCEL2) {
5633                 struct ctlr_info *h = c->h;
5634                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5635                 int rc;
5636
5637                 if (c2->error_data.serv_response ==
5638                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5639                         rc = hpsa_ioaccel_submit(h, c, cmd);
5640                         if (rc == 0)
5641                                 return;
5642                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643                                 /*
5644                                  * If we get here, it means dma mapping failed.
5645                                  * Try again via scsi mid layer, which will
5646                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5647                                  */
5648                                 cmd->result = DID_IMM_RETRY << 16;
5649                                 return hpsa_cmd_free_and_done(h, c, cmd);
5650                         }
5651                         /* else, fall thru and resubmit down CISS path */
5652                 }
5653         }
5654         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5656                 /*
5657                  * If we get here, it means dma mapping failed. Try
5658                  * again via scsi mid layer, which will then get
5659                  * SCSI_MLQUEUE_HOST_BUSY.
5660                  *
5661                  * hpsa_ciss_submit will have already freed c
5662                  * if it encountered a dma mapping failure.
5663                  */
5664                 cmd->result = DID_IMM_RETRY << 16;
5665                 cmd->scsi_done(cmd);
5666         }
5667 }
5668
5669 /* Running in struct Scsi_Host->host_lock less mode */
5670 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5671 {
5672         struct ctlr_info *h;
5673         struct hpsa_scsi_dev_t *dev;
5674         struct CommandList *c;
5675         int rc = 0;
5676
5677         /* Get the ptr to our adapter structure out of cmd->host. */
5678         h = sdev_to_hba(cmd->device);
5679
5680         BUG_ON(cmd->request->tag < 0);
5681
5682         dev = cmd->device->hostdata;
5683         if (!dev) {
5684                 cmd->result = DID_NO_CONNECT << 16;
5685                 cmd->scsi_done(cmd);
5686                 return 0;
5687         }
5688
5689         if (dev->removed) {
5690                 cmd->result = DID_NO_CONNECT << 16;
5691                 cmd->scsi_done(cmd);
5692                 return 0;
5693         }
5694
5695         if (unlikely(lockup_detected(h))) {
5696                 cmd->result = DID_NO_CONNECT << 16;
5697                 cmd->scsi_done(cmd);
5698                 return 0;
5699         }
5700
5701         if (dev->in_reset)
5702                 return SCSI_MLQUEUE_DEVICE_BUSY;
5703
5704         c = cmd_tagged_alloc(h, cmd);
5705         if (c == NULL)
5706                 return SCSI_MLQUEUE_DEVICE_BUSY;
5707
5708         /*
5709          * This is necessary because the SML doesn't zero out this field during
5710          * error recovery.
5711          */
5712         cmd->result = 0;
5713
5714         /*
5715          * Call alternate submit routine for I/O accelerated commands.
5716          * Retries always go down the normal I/O path.
5717          */
5718         if (likely(cmd->retries == 0 &&
5719                         !blk_rq_is_passthrough(cmd->request) &&
5720                         h->acciopath_status)) {
5721                 rc = hpsa_ioaccel_submit(h, c, cmd);
5722                 if (rc == 0)
5723                         return 0;
5724                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5725                         hpsa_cmd_resolve_and_free(h, c);
5726                         return SCSI_MLQUEUE_HOST_BUSY;
5727                 }
5728         }
5729         return hpsa_ciss_submit(h, c, cmd, dev);
5730 }
5731
5732 static void hpsa_scan_complete(struct ctlr_info *h)
5733 {
5734         unsigned long flags;
5735
5736         spin_lock_irqsave(&h->scan_lock, flags);
5737         h->scan_finished = 1;
5738         wake_up(&h->scan_wait_queue);
5739         spin_unlock_irqrestore(&h->scan_lock, flags);
5740 }
5741
5742 static void hpsa_scan_start(struct Scsi_Host *sh)
5743 {
5744         struct ctlr_info *h = shost_to_hba(sh);
5745         unsigned long flags;
5746
5747         /*
5748          * Don't let rescans be initiated on a controller known to be locked
5749          * up.  If the controller locks up *during* a rescan, that thread is
5750          * probably hosed, but at least we can prevent new rescan threads from
5751          * piling up on a locked up controller.
5752          */
5753         if (unlikely(lockup_detected(h)))
5754                 return hpsa_scan_complete(h);
5755
5756         /*
5757          * If a scan is already waiting to run, no need to add another
5758          */
5759         spin_lock_irqsave(&h->scan_lock, flags);
5760         if (h->scan_waiting) {
5761                 spin_unlock_irqrestore(&h->scan_lock, flags);
5762                 return;
5763         }
5764
5765         spin_unlock_irqrestore(&h->scan_lock, flags);
5766
5767         /* wait until any scan already in progress is finished. */
5768         while (1) {
5769                 spin_lock_irqsave(&h->scan_lock, flags);
5770                 if (h->scan_finished)
5771                         break;
5772                 h->scan_waiting = 1;
5773                 spin_unlock_irqrestore(&h->scan_lock, flags);
5774                 wait_event(h->scan_wait_queue, h->scan_finished);
5775                 /* Note: We don't need to worry about a race between this
5776                  * thread and driver unload because the midlayer will
5777                  * have incremented the reference count, so unload won't
5778                  * happen if we're in here.
5779                  */
5780         }
5781         h->scan_finished = 0; /* mark scan as in progress */
5782         h->scan_waiting = 0;
5783         spin_unlock_irqrestore(&h->scan_lock, flags);
5784
5785         if (unlikely(lockup_detected(h)))
5786                 return hpsa_scan_complete(h);
5787
5788         /*
5789          * Do the scan after a reset completion
5790          */
5791         spin_lock_irqsave(&h->reset_lock, flags);
5792         if (h->reset_in_progress) {
5793                 h->drv_req_rescan = 1;
5794                 spin_unlock_irqrestore(&h->reset_lock, flags);
5795                 hpsa_scan_complete(h);
5796                 return;
5797         }
5798         spin_unlock_irqrestore(&h->reset_lock, flags);
5799
5800         hpsa_update_scsi_devices(h);
5801
5802         hpsa_scan_complete(h);
5803 }
5804
5805 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5806 {
5807         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5808
5809         if (!logical_drive)
5810                 return -ENODEV;
5811
5812         if (qdepth < 1)
5813                 qdepth = 1;
5814         else if (qdepth > logical_drive->queue_depth)
5815                 qdepth = logical_drive->queue_depth;
5816
5817         return scsi_change_queue_depth(sdev, qdepth);
5818 }
5819
5820 static int hpsa_scan_finished(struct Scsi_Host *sh,
5821         unsigned long elapsed_time)
5822 {
5823         struct ctlr_info *h = shost_to_hba(sh);
5824         unsigned long flags;
5825         int finished;
5826
5827         spin_lock_irqsave(&h->scan_lock, flags);
5828         finished = h->scan_finished;
5829         spin_unlock_irqrestore(&h->scan_lock, flags);
5830         return finished;
5831 }
5832
5833 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5834 {
5835         struct Scsi_Host *sh;
5836
5837         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *));
5838         if (sh == NULL) {
5839                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5840                 return -ENOMEM;
5841         }
5842
5843         sh->io_port = 0;
5844         sh->n_io_port = 0;
5845         sh->this_id = -1;
5846         sh->max_channel = 3;
5847         sh->max_cmd_len = MAX_COMMAND_SIZE;
5848         sh->max_lun = HPSA_MAX_LUN;
5849         sh->max_id = HPSA_MAX_LUN;
5850         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5851         sh->cmd_per_lun = sh->can_queue;
5852         sh->sg_tablesize = h->maxsgentries;
5853         sh->transportt = hpsa_sas_transport_template;
5854         sh->hostdata[0] = (unsigned long) h;
5855         sh->irq = pci_irq_vector(h->pdev, 0);
5856         sh->unique_id = sh->irq;
5857
5858         h->scsi_host = sh;
5859         return 0;
5860 }
5861
5862 static int hpsa_scsi_add_host(struct ctlr_info *h)
5863 {
5864         int rv;
5865
5866         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5867         if (rv) {
5868                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5869                 return rv;
5870         }
5871         scsi_scan_host(h->scsi_host);
5872         return 0;
5873 }
5874
5875 /*
5876  * The block layer has already gone to the trouble of picking out a unique,
5877  * small-integer tag for this request.  We use an offset from that value as
5878  * an index to select our command block.  (The offset allows us to reserve the
5879  * low-numbered entries for our own uses.)
5880  */
5881 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5882 {
5883         int idx = scmd->request->tag;
5884
5885         if (idx < 0)
5886                 return idx;
5887
5888         /* Offset to leave space for internal cmds. */
5889         return idx += HPSA_NRESERVED_CMDS;
5890 }
5891
5892 /*
5893  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5894  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5895  */
5896 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5897                                 struct CommandList *c, unsigned char lunaddr[],
5898                                 int reply_queue)
5899 {
5900         int rc;
5901
5902         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5903         (void) fill_cmd(c, TEST_UNIT_READY, h,
5904                         NULL, 0, 0, lunaddr, TYPE_CMD);
5905         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5906         if (rc)
5907                 return rc;
5908         /* no unmap needed here because no data xfer. */
5909
5910         /* Check if the unit is already ready. */
5911         if (c->err_info->CommandStatus == CMD_SUCCESS)
5912                 return 0;
5913
5914         /*
5915          * The first command sent after reset will receive "unit attention" to
5916          * indicate that the LUN has been reset...this is actually what we're
5917          * looking for (but, success is good too).
5918          */
5919         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5920                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5921                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5922                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5923                 return 0;
5924
5925         return 1;
5926 }
5927
5928 /*
5929  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5930  * returns zero when the unit is ready, and non-zero when giving up.
5931  */
5932 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5933                                 struct CommandList *c,
5934                                 unsigned char lunaddr[], int reply_queue)
5935 {
5936         int rc;
5937         int count = 0;
5938         int waittime = 1; /* seconds */
5939
5940         /* Send test unit ready until device ready, or give up. */
5941         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5942
5943                 /*
5944                  * Wait for a bit.  do this first, because if we send
5945                  * the TUR right away, the reset will just abort it.
5946                  */
5947                 msleep(1000 * waittime);
5948
5949                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5950                 if (!rc)
5951                         break;
5952
5953                 /* Increase wait time with each try, up to a point. */
5954                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5955                         waittime *= 2;
5956
5957                 dev_warn(&h->pdev->dev,
5958                          "waiting %d secs for device to become ready.\n",
5959                          waittime);
5960         }
5961
5962         return rc;
5963 }
5964
5965 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5966                                            unsigned char lunaddr[],
5967                                            int reply_queue)
5968 {
5969         int first_queue;
5970         int last_queue;
5971         int rq;
5972         int rc = 0;
5973         struct CommandList *c;
5974
5975         c = cmd_alloc(h);
5976
5977         /*
5978          * If no specific reply queue was requested, then send the TUR
5979          * repeatedly, requesting a reply on each reply queue; otherwise execute
5980          * the loop exactly once using only the specified queue.
5981          */
5982         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5983                 first_queue = 0;
5984                 last_queue = h->nreply_queues - 1;
5985         } else {
5986                 first_queue = reply_queue;
5987                 last_queue = reply_queue;
5988         }
5989
5990         for (rq = first_queue; rq <= last_queue; rq++) {
5991                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5992                 if (rc)
5993                         break;
5994         }
5995
5996         if (rc)
5997                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5998         else
5999                 dev_warn(&h->pdev->dev, "device is ready.\n");
6000
6001         cmd_free(h, c);
6002         return rc;
6003 }
6004
6005 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6006  * complaining.  Doing a host- or bus-reset can't do anything good here.
6007  */
6008 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6009 {
6010         int rc = SUCCESS;
6011         int i;
6012         struct ctlr_info *h;
6013         struct hpsa_scsi_dev_t *dev = NULL;
6014         u8 reset_type;
6015         char msg[48];
6016         unsigned long flags;
6017
6018         /* find the controller to which the command to be aborted was sent */
6019         h = sdev_to_hba(scsicmd->device);
6020         if (h == NULL) /* paranoia */
6021                 return FAILED;
6022
6023         spin_lock_irqsave(&h->reset_lock, flags);
6024         h->reset_in_progress = 1;
6025         spin_unlock_irqrestore(&h->reset_lock, flags);
6026
6027         if (lockup_detected(h)) {
6028                 rc = FAILED;
6029                 goto return_reset_status;
6030         }
6031
6032         dev = scsicmd->device->hostdata;
6033         if (!dev) {
6034                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6035                 rc = FAILED;
6036                 goto return_reset_status;
6037         }
6038
6039         if (dev->devtype == TYPE_ENCLOSURE) {
6040                 rc = SUCCESS;
6041                 goto return_reset_status;
6042         }
6043
6044         /* if controller locked up, we can guarantee command won't complete */
6045         if (lockup_detected(h)) {
6046                 snprintf(msg, sizeof(msg),
6047                          "cmd %d RESET FAILED, lockup detected",
6048                          hpsa_get_cmd_index(scsicmd));
6049                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6050                 rc = FAILED;
6051                 goto return_reset_status;
6052         }
6053
6054         /* this reset request might be the result of a lockup; check */
6055         if (detect_controller_lockup(h)) {
6056                 snprintf(msg, sizeof(msg),
6057                          "cmd %d RESET FAILED, new lockup detected",
6058                          hpsa_get_cmd_index(scsicmd));
6059                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6060                 rc = FAILED;
6061                 goto return_reset_status;
6062         }
6063
6064         /* Do not attempt on controller */
6065         if (is_hba_lunid(dev->scsi3addr)) {
6066                 rc = SUCCESS;
6067                 goto return_reset_status;
6068         }
6069
6070         if (is_logical_dev_addr_mode(dev->scsi3addr))
6071                 reset_type = HPSA_DEVICE_RESET_MSG;
6072         else
6073                 reset_type = HPSA_PHYS_TARGET_RESET;
6074
6075         sprintf(msg, "resetting %s",
6076                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6077         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6078
6079         /*
6080          * wait to see if any commands will complete before sending reset
6081          */
6082         dev->in_reset = true; /* block any new cmds from OS for this device */
6083         for (i = 0; i < 10; i++) {
6084                 if (atomic_read(&dev->commands_outstanding) > 0)
6085                         msleep(1000);
6086                 else
6087                         break;
6088         }
6089
6090         /* send a reset to the SCSI LUN which the command was sent to */
6091         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6092         if (rc == 0)
6093                 rc = SUCCESS;
6094         else
6095                 rc = FAILED;
6096
6097         sprintf(msg, "reset %s %s",
6098                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6099                 rc == SUCCESS ? "completed successfully" : "failed");
6100         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6101
6102 return_reset_status:
6103         spin_lock_irqsave(&h->reset_lock, flags);
6104         h->reset_in_progress = 0;
6105         if (dev)
6106                 dev->in_reset = false;
6107         spin_unlock_irqrestore(&h->reset_lock, flags);
6108         return rc;
6109 }
6110
6111 /*
6112  * For operations with an associated SCSI command, a command block is allocated
6113  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6114  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6115  * the complement, although cmd_free() may be called instead.
6116  */
6117 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6118                                             struct scsi_cmnd *scmd)
6119 {
6120         int idx = hpsa_get_cmd_index(scmd);
6121         struct CommandList *c = h->cmd_pool + idx;
6122
6123         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6124                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6125                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6126                 /* The index value comes from the block layer, so if it's out of
6127                  * bounds, it's probably not our bug.
6128                  */
6129                 BUG();
6130         }
6131
6132         if (unlikely(!hpsa_is_cmd_idle(c))) {
6133                 /*
6134                  * We expect that the SCSI layer will hand us a unique tag
6135                  * value.  Thus, there should never be a collision here between
6136                  * two requests...because if the selected command isn't idle
6137                  * then someone is going to be very disappointed.
6138                  */
6139                 if (idx != h->last_collision_tag) { /* Print once per tag */
6140                         dev_warn(&h->pdev->dev,
6141                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6142                         if (scmd)
6143                                 scsi_print_command(scmd);
6144                         h->last_collision_tag = idx;
6145                 }
6146                 return NULL;
6147         }
6148
6149         atomic_inc(&c->refcount);
6150
6151         hpsa_cmd_partial_init(h, idx, c);
6152         return c;
6153 }
6154
6155 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6156 {
6157         /*
6158          * Release our reference to the block.  We don't need to do anything
6159          * else to free it, because it is accessed by index.
6160          */
6161         (void)atomic_dec(&c->refcount);
6162 }
6163
6164 /*
6165  * For operations that cannot sleep, a command block is allocated at init,
6166  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6167  * which ones are free or in use.  Lock must be held when calling this.
6168  * cmd_free() is the complement.
6169  * This function never gives up and returns NULL.  If it hangs,
6170  * another thread must call cmd_free() to free some tags.
6171  */
6172
6173 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6174 {
6175         struct CommandList *c;
6176         int refcount, i;
6177         int offset = 0;
6178
6179         /*
6180          * There is some *extremely* small but non-zero chance that that
6181          * multiple threads could get in here, and one thread could
6182          * be scanning through the list of bits looking for a free
6183          * one, but the free ones are always behind him, and other
6184          * threads sneak in behind him and eat them before he can
6185          * get to them, so that while there is always a free one, a
6186          * very unlucky thread might be starved anyway, never able to
6187          * beat the other threads.  In reality, this happens so
6188          * infrequently as to be indistinguishable from never.
6189          *
6190          * Note that we start allocating commands before the SCSI host structure
6191          * is initialized.  Since the search starts at bit zero, this
6192          * all works, since we have at least one command structure available;
6193          * however, it means that the structures with the low indexes have to be
6194          * reserved for driver-initiated requests, while requests from the block
6195          * layer will use the higher indexes.
6196          */
6197
6198         for (;;) {
6199                 i = find_next_zero_bit(h->cmd_pool_bits,
6200                                         HPSA_NRESERVED_CMDS,
6201                                         offset);
6202                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6203                         offset = 0;
6204                         continue;
6205                 }
6206                 c = h->cmd_pool + i;
6207                 refcount = atomic_inc_return(&c->refcount);
6208                 if (unlikely(refcount > 1)) {
6209                         cmd_free(h, c); /* already in use */
6210                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6211                         continue;
6212                 }
6213                 set_bit(i & (BITS_PER_LONG - 1),
6214                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6215                 break; /* it's ours now. */
6216         }
6217         hpsa_cmd_partial_init(h, i, c);
6218         c->device = NULL;
6219         return c;
6220 }
6221
6222 /*
6223  * This is the complementary operation to cmd_alloc().  Note, however, in some
6224  * corner cases it may also be used to free blocks allocated by
6225  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6226  * the clear-bit is harmless.
6227  */
6228 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6229 {
6230         if (atomic_dec_and_test(&c->refcount)) {
6231                 int i;
6232
6233                 i = c - h->cmd_pool;
6234                 clear_bit(i & (BITS_PER_LONG - 1),
6235                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6236         }
6237 }
6238
6239 #ifdef CONFIG_COMPAT
6240
6241 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6242         void __user *arg)
6243 {
6244         struct ctlr_info *h = sdev_to_hba(dev);
6245         IOCTL32_Command_struct __user *arg32 = arg;
6246         IOCTL_Command_struct arg64;
6247         int err;
6248         u32 cp;
6249
6250         if (!arg)
6251                 return -EINVAL;
6252
6253         memset(&arg64, 0, sizeof(arg64));
6254         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6255                 return -EFAULT;
6256         if (get_user(cp, &arg32->buf))
6257                 return -EFAULT;
6258         arg64.buf = compat_ptr(cp);
6259
6260         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6261                 return -EAGAIN;
6262         err = hpsa_passthru_ioctl(h, &arg64);
6263         atomic_inc(&h->passthru_cmds_avail);
6264         if (err)
6265                 return err;
6266         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6267                          sizeof(arg32->error_info)))
6268                 return -EFAULT;
6269         return 0;
6270 }
6271
6272 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6273         unsigned int cmd, void __user *arg)
6274 {
6275         struct ctlr_info *h = sdev_to_hba(dev);
6276         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6277         BIG_IOCTL_Command_struct arg64;
6278         int err;
6279         u32 cp;
6280
6281         if (!arg)
6282                 return -EINVAL;
6283         memset(&arg64, 0, sizeof(arg64));
6284         if (copy_from_user(&arg64, arg32,
6285                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6286                 return -EFAULT;
6287         if (get_user(cp, &arg32->buf))
6288                 return -EFAULT;
6289         arg64.buf = compat_ptr(cp);
6290
6291         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6292                 return -EAGAIN;
6293         err = hpsa_big_passthru_ioctl(h, &arg64);
6294         atomic_inc(&h->passthru_cmds_avail);
6295         if (err)
6296                 return err;
6297         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6298                          sizeof(arg32->error_info)))
6299                 return -EFAULT;
6300         return 0;
6301 }
6302
6303 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6304                              void __user *arg)
6305 {
6306         switch (cmd) {
6307         case CCISS_GETPCIINFO:
6308         case CCISS_GETINTINFO:
6309         case CCISS_SETINTINFO:
6310         case CCISS_GETNODENAME:
6311         case CCISS_SETNODENAME:
6312         case CCISS_GETHEARTBEAT:
6313         case CCISS_GETBUSTYPES:
6314         case CCISS_GETFIRMVER:
6315         case CCISS_GETDRIVVER:
6316         case CCISS_REVALIDVOLS:
6317         case CCISS_DEREGDISK:
6318         case CCISS_REGNEWDISK:
6319         case CCISS_REGNEWD:
6320         case CCISS_RESCANDISK:
6321         case CCISS_GETLUNINFO:
6322                 return hpsa_ioctl(dev, cmd, arg);
6323
6324         case CCISS_PASSTHRU32:
6325                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6326         case CCISS_BIG_PASSTHRU32:
6327                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6328
6329         default:
6330                 return -ENOIOCTLCMD;
6331         }
6332 }
6333 #endif
6334
6335 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6336 {
6337         struct hpsa_pci_info pciinfo;
6338
6339         if (!argp)
6340                 return -EINVAL;
6341         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6342         pciinfo.bus = h->pdev->bus->number;
6343         pciinfo.dev_fn = h->pdev->devfn;
6344         pciinfo.board_id = h->board_id;
6345         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6346                 return -EFAULT;
6347         return 0;
6348 }
6349
6350 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6351 {
6352         DriverVer_type DriverVer;
6353         unsigned char vmaj, vmin, vsubmin;
6354         int rc;
6355
6356         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6357                 &vmaj, &vmin, &vsubmin);
6358         if (rc != 3) {
6359                 dev_info(&h->pdev->dev, "driver version string '%s' "
6360                         "unrecognized.", HPSA_DRIVER_VERSION);
6361                 vmaj = 0;
6362                 vmin = 0;
6363                 vsubmin = 0;
6364         }
6365         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6366         if (!argp)
6367                 return -EINVAL;
6368         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6369                 return -EFAULT;
6370         return 0;
6371 }
6372
6373 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6374                                IOCTL_Command_struct *iocommand)
6375 {
6376         struct CommandList *c;
6377         char *buff = NULL;
6378         u64 temp64;
6379         int rc = 0;
6380
6381         if (!capable(CAP_SYS_RAWIO))
6382                 return -EPERM;
6383         if ((iocommand->buf_size < 1) &&
6384             (iocommand->Request.Type.Direction != XFER_NONE)) {
6385                 return -EINVAL;
6386         }
6387         if (iocommand->buf_size > 0) {
6388                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6389                 if (buff == NULL)
6390                         return -ENOMEM;
6391                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6392                         /* Copy the data into the buffer we created */
6393                         if (copy_from_user(buff, iocommand->buf,
6394                                 iocommand->buf_size)) {
6395                                 rc = -EFAULT;
6396                                 goto out_kfree;
6397                         }
6398                 } else {
6399                         memset(buff, 0, iocommand->buf_size);
6400                 }
6401         }
6402         c = cmd_alloc(h);
6403
6404         /* Fill in the command type */
6405         c->cmd_type = CMD_IOCTL_PEND;
6406         c->scsi_cmd = SCSI_CMD_BUSY;
6407         /* Fill in Command Header */
6408         c->Header.ReplyQueue = 0; /* unused in simple mode */
6409         if (iocommand->buf_size > 0) {  /* buffer to fill */
6410                 c->Header.SGList = 1;
6411                 c->Header.SGTotal = cpu_to_le16(1);
6412         } else  { /* no buffers to fill */
6413                 c->Header.SGList = 0;
6414                 c->Header.SGTotal = cpu_to_le16(0);
6415         }
6416         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6417
6418         /* Fill in Request block */
6419         memcpy(&c->Request, &iocommand->Request,
6420                 sizeof(c->Request));
6421
6422         /* Fill in the scatter gather information */
6423         if (iocommand->buf_size > 0) {
6424                 temp64 = dma_map_single(&h->pdev->dev, buff,
6425                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6426                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6427                         c->SG[0].Addr = cpu_to_le64(0);
6428                         c->SG[0].Len = cpu_to_le32(0);
6429                         rc = -ENOMEM;
6430                         goto out;
6431                 }
6432                 c->SG[0].Addr = cpu_to_le64(temp64);
6433                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6434                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6435         }
6436         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6437                                         NO_TIMEOUT);
6438         if (iocommand->buf_size > 0)
6439                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6440         check_ioctl_unit_attention(h, c);
6441         if (rc) {
6442                 rc = -EIO;
6443                 goto out;
6444         }
6445
6446         /* Copy the error information out */
6447         memcpy(&iocommand->error_info, c->err_info,
6448                 sizeof(iocommand->error_info));
6449         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6450                 iocommand->buf_size > 0) {
6451                 /* Copy the data out of the buffer we created */
6452                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6453                         rc = -EFAULT;
6454                         goto out;
6455                 }
6456         }
6457 out:
6458         cmd_free(h, c);
6459 out_kfree:
6460         kfree(buff);
6461         return rc;
6462 }
6463
6464 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6465                                    BIG_IOCTL_Command_struct *ioc)
6466 {
6467         struct CommandList *c;
6468         unsigned char **buff = NULL;
6469         int *buff_size = NULL;
6470         u64 temp64;
6471         BYTE sg_used = 0;
6472         int status = 0;
6473         u32 left;
6474         u32 sz;
6475         BYTE __user *data_ptr;
6476
6477         if (!capable(CAP_SYS_RAWIO))
6478                 return -EPERM;
6479
6480         if ((ioc->buf_size < 1) &&
6481             (ioc->Request.Type.Direction != XFER_NONE))
6482                 return -EINVAL;
6483         /* Check kmalloc limits  using all SGs */
6484         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6485                 return -EINVAL;
6486         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6487                 return -EINVAL;
6488         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6489         if (!buff) {
6490                 status = -ENOMEM;
6491                 goto cleanup1;
6492         }
6493         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6494         if (!buff_size) {
6495                 status = -ENOMEM;
6496                 goto cleanup1;
6497         }
6498         left = ioc->buf_size;
6499         data_ptr = ioc->buf;
6500         while (left) {
6501                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6502                 buff_size[sg_used] = sz;
6503                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6504                 if (buff[sg_used] == NULL) {
6505                         status = -ENOMEM;
6506                         goto cleanup1;
6507                 }
6508                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6509                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6510                                 status = -EFAULT;
6511                                 goto cleanup1;
6512                         }
6513                 } else
6514                         memset(buff[sg_used], 0, sz);
6515                 left -= sz;
6516                 data_ptr += sz;
6517                 sg_used++;
6518         }
6519         c = cmd_alloc(h);
6520
6521         c->cmd_type = CMD_IOCTL_PEND;
6522         c->scsi_cmd = SCSI_CMD_BUSY;
6523         c->Header.ReplyQueue = 0;
6524         c->Header.SGList = (u8) sg_used;
6525         c->Header.SGTotal = cpu_to_le16(sg_used);
6526         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6527         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6528         if (ioc->buf_size > 0) {
6529                 int i;
6530                 for (i = 0; i < sg_used; i++) {
6531                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6532                                     buff_size[i], DMA_BIDIRECTIONAL);
6533                         if (dma_mapping_error(&h->pdev->dev,
6534                                                         (dma_addr_t) temp64)) {
6535                                 c->SG[i].Addr = cpu_to_le64(0);
6536                                 c->SG[i].Len = cpu_to_le32(0);
6537                                 hpsa_pci_unmap(h->pdev, c, i,
6538                                         DMA_BIDIRECTIONAL);
6539                                 status = -ENOMEM;
6540                                 goto cleanup0;
6541                         }
6542                         c->SG[i].Addr = cpu_to_le64(temp64);
6543                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6544                         c->SG[i].Ext = cpu_to_le32(0);
6545                 }
6546                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6547         }
6548         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6549                                                 NO_TIMEOUT);
6550         if (sg_used)
6551                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6552         check_ioctl_unit_attention(h, c);
6553         if (status) {
6554                 status = -EIO;
6555                 goto cleanup0;
6556         }
6557
6558         /* Copy the error information out */
6559         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6560         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6561                 int i;
6562
6563                 /* Copy the data out of the buffer we created */
6564                 BYTE __user *ptr = ioc->buf;
6565                 for (i = 0; i < sg_used; i++) {
6566                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6567                                 status = -EFAULT;
6568                                 goto cleanup0;
6569                         }
6570                         ptr += buff_size[i];
6571                 }
6572         }
6573         status = 0;
6574 cleanup0:
6575         cmd_free(h, c);
6576 cleanup1:
6577         if (buff) {
6578                 int i;
6579
6580                 for (i = 0; i < sg_used; i++)
6581                         kfree(buff[i]);
6582                 kfree(buff);
6583         }
6584         kfree(buff_size);
6585         return status;
6586 }
6587
6588 static void check_ioctl_unit_attention(struct ctlr_info *h,
6589         struct CommandList *c)
6590 {
6591         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6592                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6593                 (void) check_for_unit_attention(h, c);
6594 }
6595
6596 /*
6597  * ioctl
6598  */
6599 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6600                       void __user *argp)
6601 {
6602         struct ctlr_info *h = sdev_to_hba(dev);
6603         int rc;
6604
6605         switch (cmd) {
6606         case CCISS_DEREGDISK:
6607         case CCISS_REGNEWDISK:
6608         case CCISS_REGNEWD:
6609                 hpsa_scan_start(h->scsi_host);
6610                 return 0;
6611         case CCISS_GETPCIINFO:
6612                 return hpsa_getpciinfo_ioctl(h, argp);
6613         case CCISS_GETDRIVVER:
6614                 return hpsa_getdrivver_ioctl(h, argp);
6615         case CCISS_PASSTHRU: {
6616                 IOCTL_Command_struct iocommand;
6617
6618                 if (!argp)
6619                         return -EINVAL;
6620                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6621                         return -EFAULT;
6622                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6623                         return -EAGAIN;
6624                 rc = hpsa_passthru_ioctl(h, &iocommand);
6625                 atomic_inc(&h->passthru_cmds_avail);
6626                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6627                         rc = -EFAULT;
6628                 return rc;
6629         }
6630         case CCISS_BIG_PASSTHRU: {
6631                 BIG_IOCTL_Command_struct ioc;
6632                 if (!argp)
6633                         return -EINVAL;
6634                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6635                         return -EFAULT;
6636                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6637                         return -EAGAIN;
6638                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6639                 atomic_inc(&h->passthru_cmds_avail);
6640                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6641                         rc = -EFAULT;
6642                 return rc;
6643         }
6644         default:
6645                 return -ENOTTY;
6646         }
6647 }
6648
6649 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6650 {
6651         struct CommandList *c;
6652
6653         c = cmd_alloc(h);
6654
6655         /* fill_cmd can't fail here, no data buffer to map */
6656         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6657                 RAID_CTLR_LUNID, TYPE_MSG);
6658         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6659         c->waiting = NULL;
6660         enqueue_cmd_and_start_io(h, c);
6661         /* Don't wait for completion, the reset won't complete.  Don't free
6662          * the command either.  This is the last command we will send before
6663          * re-initializing everything, so it doesn't matter and won't leak.
6664          */
6665         return;
6666 }
6667
6668 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6669         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6670         int cmd_type)
6671 {
6672         enum dma_data_direction dir = DMA_NONE;
6673
6674         c->cmd_type = CMD_IOCTL_PEND;
6675         c->scsi_cmd = SCSI_CMD_BUSY;
6676         c->Header.ReplyQueue = 0;
6677         if (buff != NULL && size > 0) {
6678                 c->Header.SGList = 1;
6679                 c->Header.SGTotal = cpu_to_le16(1);
6680         } else {
6681                 c->Header.SGList = 0;
6682                 c->Header.SGTotal = cpu_to_le16(0);
6683         }
6684         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6685
6686         if (cmd_type == TYPE_CMD) {
6687                 switch (cmd) {
6688                 case HPSA_INQUIRY:
6689                         /* are we trying to read a vital product page */
6690                         if (page_code & VPD_PAGE) {
6691                                 c->Request.CDB[1] = 0x01;
6692                                 c->Request.CDB[2] = (page_code & 0xff);
6693                         }
6694                         c->Request.CDBLen = 6;
6695                         c->Request.type_attr_dir =
6696                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697                         c->Request.Timeout = 0;
6698                         c->Request.CDB[0] = HPSA_INQUIRY;
6699                         c->Request.CDB[4] = size & 0xFF;
6700                         break;
6701                 case RECEIVE_DIAGNOSTIC:
6702                         c->Request.CDBLen = 6;
6703                         c->Request.type_attr_dir =
6704                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705                         c->Request.Timeout = 0;
6706                         c->Request.CDB[0] = cmd;
6707                         c->Request.CDB[1] = 1;
6708                         c->Request.CDB[2] = 1;
6709                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6710                         c->Request.CDB[4] = size & 0xFF;
6711                         break;
6712                 case HPSA_REPORT_LOG:
6713                 case HPSA_REPORT_PHYS:
6714                         /* Talking to controller so It's a physical command
6715                            mode = 00 target = 0.  Nothing to write.
6716                          */
6717                         c->Request.CDBLen = 12;
6718                         c->Request.type_attr_dir =
6719                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6720                         c->Request.Timeout = 0;
6721                         c->Request.CDB[0] = cmd;
6722                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6723                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6724                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6725                         c->Request.CDB[9] = size & 0xFF;
6726                         break;
6727                 case BMIC_SENSE_DIAG_OPTIONS:
6728                         c->Request.CDBLen = 16;
6729                         c->Request.type_attr_dir =
6730                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731                         c->Request.Timeout = 0;
6732                         /* Spec says this should be BMIC_WRITE */
6733                         c->Request.CDB[0] = BMIC_READ;
6734                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6735                         break;
6736                 case BMIC_SET_DIAG_OPTIONS:
6737                         c->Request.CDBLen = 16;
6738                         c->Request.type_attr_dir =
6739                                         TYPE_ATTR_DIR(cmd_type,
6740                                                 ATTR_SIMPLE, XFER_WRITE);
6741                         c->Request.Timeout = 0;
6742                         c->Request.CDB[0] = BMIC_WRITE;
6743                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6744                         break;
6745                 case HPSA_CACHE_FLUSH:
6746                         c->Request.CDBLen = 12;
6747                         c->Request.type_attr_dir =
6748                                         TYPE_ATTR_DIR(cmd_type,
6749                                                 ATTR_SIMPLE, XFER_WRITE);
6750                         c->Request.Timeout = 0;
6751                         c->Request.CDB[0] = BMIC_WRITE;
6752                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6753                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6754                         c->Request.CDB[8] = size & 0xFF;
6755                         break;
6756                 case TEST_UNIT_READY:
6757                         c->Request.CDBLen = 6;
6758                         c->Request.type_attr_dir =
6759                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760                         c->Request.Timeout = 0;
6761                         break;
6762                 case HPSA_GET_RAID_MAP:
6763                         c->Request.CDBLen = 12;
6764                         c->Request.type_attr_dir =
6765                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6766                         c->Request.Timeout = 0;
6767                         c->Request.CDB[0] = HPSA_CISS_READ;
6768                         c->Request.CDB[1] = cmd;
6769                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6770                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6771                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6772                         c->Request.CDB[9] = size & 0xFF;
6773                         break;
6774                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6775                         c->Request.CDBLen = 10;
6776                         c->Request.type_attr_dir =
6777                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6778                         c->Request.Timeout = 0;
6779                         c->Request.CDB[0] = BMIC_READ;
6780                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6781                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6782                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6783                         break;
6784                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6785                         c->Request.CDBLen = 10;
6786                         c->Request.type_attr_dir =
6787                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788                         c->Request.Timeout = 0;
6789                         c->Request.CDB[0] = BMIC_READ;
6790                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6791                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6792                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6793                         break;
6794                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6795                         c->Request.CDBLen = 10;
6796                         c->Request.type_attr_dir =
6797                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798                         c->Request.Timeout = 0;
6799                         c->Request.CDB[0] = BMIC_READ;
6800                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6801                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6802                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6803                         break;
6804                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6805                         c->Request.CDBLen = 10;
6806                         c->Request.type_attr_dir =
6807                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6808                         c->Request.Timeout = 0;
6809                         c->Request.CDB[0] = BMIC_READ;
6810                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6811                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6812                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6813                         break;
6814                 case BMIC_IDENTIFY_CONTROLLER:
6815                         c->Request.CDBLen = 10;
6816                         c->Request.type_attr_dir =
6817                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6818                         c->Request.Timeout = 0;
6819                         c->Request.CDB[0] = BMIC_READ;
6820                         c->Request.CDB[1] = 0;
6821                         c->Request.CDB[2] = 0;
6822                         c->Request.CDB[3] = 0;
6823                         c->Request.CDB[4] = 0;
6824                         c->Request.CDB[5] = 0;
6825                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6826                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6827                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6828                         c->Request.CDB[9] = 0;
6829                         break;
6830                 default:
6831                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6832                         BUG();
6833                 }
6834         } else if (cmd_type == TYPE_MSG) {
6835                 switch (cmd) {
6836
6837                 case  HPSA_PHYS_TARGET_RESET:
6838                         c->Request.CDBLen = 16;
6839                         c->Request.type_attr_dir =
6840                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6841                         c->Request.Timeout = 0; /* Don't time out */
6842                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6843                         c->Request.CDB[0] = HPSA_RESET;
6844                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6845                         /* Physical target reset needs no control bytes 4-7*/
6846                         c->Request.CDB[4] = 0x00;
6847                         c->Request.CDB[5] = 0x00;
6848                         c->Request.CDB[6] = 0x00;
6849                         c->Request.CDB[7] = 0x00;
6850                         break;
6851                 case  HPSA_DEVICE_RESET_MSG:
6852                         c->Request.CDBLen = 16;
6853                         c->Request.type_attr_dir =
6854                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6855                         c->Request.Timeout = 0; /* Don't time out */
6856                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6857                         c->Request.CDB[0] =  cmd;
6858                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6859                         /* If bytes 4-7 are zero, it means reset the */
6860                         /* LunID device */
6861                         c->Request.CDB[4] = 0x00;
6862                         c->Request.CDB[5] = 0x00;
6863                         c->Request.CDB[6] = 0x00;
6864                         c->Request.CDB[7] = 0x00;
6865                         break;
6866                 default:
6867                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6868                                 cmd);
6869                         BUG();
6870                 }
6871         } else {
6872                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6873                 BUG();
6874         }
6875
6876         switch (GET_DIR(c->Request.type_attr_dir)) {
6877         case XFER_READ:
6878                 dir = DMA_FROM_DEVICE;
6879                 break;
6880         case XFER_WRITE:
6881                 dir = DMA_TO_DEVICE;
6882                 break;
6883         case XFER_NONE:
6884                 dir = DMA_NONE;
6885                 break;
6886         default:
6887                 dir = DMA_BIDIRECTIONAL;
6888         }
6889         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6890                 return -1;
6891         return 0;
6892 }
6893
6894 /*
6895  * Map (physical) PCI mem into (virtual) kernel space
6896  */
6897 static void __iomem *remap_pci_mem(ulong base, ulong size)
6898 {
6899         ulong page_base = ((ulong) base) & PAGE_MASK;
6900         ulong page_offs = ((ulong) base) - page_base;
6901         void __iomem *page_remapped = ioremap(page_base,
6902                 page_offs + size);
6903
6904         return page_remapped ? (page_remapped + page_offs) : NULL;
6905 }
6906
6907 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6908 {
6909         return h->access.command_completed(h, q);
6910 }
6911
6912 static inline bool interrupt_pending(struct ctlr_info *h)
6913 {
6914         return h->access.intr_pending(h);
6915 }
6916
6917 static inline long interrupt_not_for_us(struct ctlr_info *h)
6918 {
6919         return (h->access.intr_pending(h) == 0) ||
6920                 (h->interrupts_enabled == 0);
6921 }
6922
6923 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6924         u32 raw_tag)
6925 {
6926         if (unlikely(tag_index >= h->nr_cmds)) {
6927                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6928                 return 1;
6929         }
6930         return 0;
6931 }
6932
6933 static inline void finish_cmd(struct CommandList *c)
6934 {
6935         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6936         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6937                         || c->cmd_type == CMD_IOACCEL2))
6938                 complete_scsi_command(c);
6939         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6940                 complete(c->waiting);
6941 }
6942
6943 /* process completion of an indexed ("direct lookup") command */
6944 static inline void process_indexed_cmd(struct ctlr_info *h,
6945         u32 raw_tag)
6946 {
6947         u32 tag_index;
6948         struct CommandList *c;
6949
6950         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6951         if (!bad_tag(h, tag_index, raw_tag)) {
6952                 c = h->cmd_pool + tag_index;
6953                 finish_cmd(c);
6954         }
6955 }
6956
6957 /* Some controllers, like p400, will give us one interrupt
6958  * after a soft reset, even if we turned interrupts off.
6959  * Only need to check for this in the hpsa_xxx_discard_completions
6960  * functions.
6961  */
6962 static int ignore_bogus_interrupt(struct ctlr_info *h)
6963 {
6964         if (likely(!reset_devices))
6965                 return 0;
6966
6967         if (likely(h->interrupts_enabled))
6968                 return 0;
6969
6970         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6971                 "(known firmware bug.)  Ignoring.\n");
6972
6973         return 1;
6974 }
6975
6976 /*
6977  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6978  * Relies on (h-q[x] == x) being true for x such that
6979  * 0 <= x < MAX_REPLY_QUEUES.
6980  */
6981 static struct ctlr_info *queue_to_hba(u8 *queue)
6982 {
6983         return container_of((queue - *queue), struct ctlr_info, q[0]);
6984 }
6985
6986 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6987 {
6988         struct ctlr_info *h = queue_to_hba(queue);
6989         u8 q = *(u8 *) queue;
6990         u32 raw_tag;
6991
6992         if (ignore_bogus_interrupt(h))
6993                 return IRQ_NONE;
6994
6995         if (interrupt_not_for_us(h))
6996                 return IRQ_NONE;
6997         h->last_intr_timestamp = get_jiffies_64();
6998         while (interrupt_pending(h)) {
6999                 raw_tag = get_next_completion(h, q);
7000                 while (raw_tag != FIFO_EMPTY)
7001                         raw_tag = next_command(h, q);
7002         }
7003         return IRQ_HANDLED;
7004 }
7005
7006 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7007 {
7008         struct ctlr_info *h = queue_to_hba(queue);
7009         u32 raw_tag;
7010         u8 q = *(u8 *) queue;
7011
7012         if (ignore_bogus_interrupt(h))
7013                 return IRQ_NONE;
7014
7015         h->last_intr_timestamp = get_jiffies_64();
7016         raw_tag = get_next_completion(h, q);
7017         while (raw_tag != FIFO_EMPTY)
7018                 raw_tag = next_command(h, q);
7019         return IRQ_HANDLED;
7020 }
7021
7022 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7023 {
7024         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7025         u32 raw_tag;
7026         u8 q = *(u8 *) queue;
7027
7028         if (interrupt_not_for_us(h))
7029                 return IRQ_NONE;
7030         h->last_intr_timestamp = get_jiffies_64();
7031         while (interrupt_pending(h)) {
7032                 raw_tag = get_next_completion(h, q);
7033                 while (raw_tag != FIFO_EMPTY) {
7034                         process_indexed_cmd(h, raw_tag);
7035                         raw_tag = next_command(h, q);
7036                 }
7037         }
7038         return IRQ_HANDLED;
7039 }
7040
7041 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7042 {
7043         struct ctlr_info *h = queue_to_hba(queue);
7044         u32 raw_tag;
7045         u8 q = *(u8 *) queue;
7046
7047         h->last_intr_timestamp = get_jiffies_64();
7048         raw_tag = get_next_completion(h, q);
7049         while (raw_tag != FIFO_EMPTY) {
7050                 process_indexed_cmd(h, raw_tag);
7051                 raw_tag = next_command(h, q);
7052         }
7053         return IRQ_HANDLED;
7054 }
7055
7056 /* Send a message CDB to the firmware. Careful, this only works
7057  * in simple mode, not performant mode due to the tag lookup.
7058  * We only ever use this immediately after a controller reset.
7059  */
7060 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7061                         unsigned char type)
7062 {
7063         struct Command {
7064                 struct CommandListHeader CommandHeader;
7065                 struct RequestBlock Request;
7066                 struct ErrDescriptor ErrorDescriptor;
7067         };
7068         struct Command *cmd;
7069         static const size_t cmd_sz = sizeof(*cmd) +
7070                                         sizeof(cmd->ErrorDescriptor);
7071         dma_addr_t paddr64;
7072         __le32 paddr32;
7073         u32 tag;
7074         void __iomem *vaddr;
7075         int i, err;
7076
7077         vaddr = pci_ioremap_bar(pdev, 0);
7078         if (vaddr == NULL)
7079                 return -ENOMEM;
7080
7081         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7082          * CCISS commands, so they must be allocated from the lower 4GiB of
7083          * memory.
7084          */
7085         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7086         if (err) {
7087                 iounmap(vaddr);
7088                 return err;
7089         }
7090
7091         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7092         if (cmd == NULL) {
7093                 iounmap(vaddr);
7094                 return -ENOMEM;
7095         }
7096
7097         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7098          * although there's no guarantee, we assume that the address is at
7099          * least 4-byte aligned (most likely, it's page-aligned).
7100          */
7101         paddr32 = cpu_to_le32(paddr64);
7102
7103         cmd->CommandHeader.ReplyQueue = 0;
7104         cmd->CommandHeader.SGList = 0;
7105         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7106         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7107         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7108
7109         cmd->Request.CDBLen = 16;
7110         cmd->Request.type_attr_dir =
7111                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7112         cmd->Request.Timeout = 0; /* Don't time out */
7113         cmd->Request.CDB[0] = opcode;
7114         cmd->Request.CDB[1] = type;
7115         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7116         cmd->ErrorDescriptor.Addr =
7117                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7118         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7119
7120         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7121
7122         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7123                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7124                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7125                         break;
7126                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7127         }
7128
7129         iounmap(vaddr);
7130
7131         /* we leak the DMA buffer here ... no choice since the controller could
7132          *  still complete the command.
7133          */
7134         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7135                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7136                         opcode, type);
7137                 return -ETIMEDOUT;
7138         }
7139
7140         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7141
7142         if (tag & HPSA_ERROR_BIT) {
7143                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7144                         opcode, type);
7145                 return -EIO;
7146         }
7147
7148         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7149                 opcode, type);
7150         return 0;
7151 }
7152
7153 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7154
7155 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7156         void __iomem *vaddr, u32 use_doorbell)
7157 {
7158
7159         if (use_doorbell) {
7160                 /* For everything after the P600, the PCI power state method
7161                  * of resetting the controller doesn't work, so we have this
7162                  * other way using the doorbell register.
7163                  */
7164                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7165                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7166
7167                 /* PMC hardware guys tell us we need a 10 second delay after
7168                  * doorbell reset and before any attempt to talk to the board
7169                  * at all to ensure that this actually works and doesn't fall
7170                  * over in some weird corner cases.
7171                  */
7172                 msleep(10000);
7173         } else { /* Try to do it the PCI power state way */
7174
7175                 /* Quoting from the Open CISS Specification: "The Power
7176                  * Management Control/Status Register (CSR) controls the power
7177                  * state of the device.  The normal operating state is D0,
7178                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7179                  * the controller, place the interface device in D3 then to D0,
7180                  * this causes a secondary PCI reset which will reset the
7181                  * controller." */
7182
7183                 int rc = 0;
7184
7185                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7186
7187                 /* enter the D3hot power management state */
7188                 rc = pci_set_power_state(pdev, PCI_D3hot);
7189                 if (rc)
7190                         return rc;
7191
7192                 msleep(500);
7193
7194                 /* enter the D0 power management state */
7195                 rc = pci_set_power_state(pdev, PCI_D0);
7196                 if (rc)
7197                         return rc;
7198
7199                 /*
7200                  * The P600 requires a small delay when changing states.
7201                  * Otherwise we may think the board did not reset and we bail.
7202                  * This for kdump only and is particular to the P600.
7203                  */
7204                 msleep(500);
7205         }
7206         return 0;
7207 }
7208
7209 static void init_driver_version(char *driver_version, int len)
7210 {
7211         memset(driver_version, 0, len);
7212         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7213 }
7214
7215 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7216 {
7217         char *driver_version;
7218         int i, size = sizeof(cfgtable->driver_version);
7219
7220         driver_version = kmalloc(size, GFP_KERNEL);
7221         if (!driver_version)
7222                 return -ENOMEM;
7223
7224         init_driver_version(driver_version, size);
7225         for (i = 0; i < size; i++)
7226                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7227         kfree(driver_version);
7228         return 0;
7229 }
7230
7231 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7232                                           unsigned char *driver_ver)
7233 {
7234         int i;
7235
7236         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7237                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7238 }
7239
7240 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7241 {
7242
7243         char *driver_ver, *old_driver_ver;
7244         int rc, size = sizeof(cfgtable->driver_version);
7245
7246         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7247         if (!old_driver_ver)
7248                 return -ENOMEM;
7249         driver_ver = old_driver_ver + size;
7250
7251         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7252          * should have been changed, otherwise we know the reset failed.
7253          */
7254         init_driver_version(old_driver_ver, size);
7255         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7256         rc = !memcmp(driver_ver, old_driver_ver, size);
7257         kfree(old_driver_ver);
7258         return rc;
7259 }
7260 /* This does a hard reset of the controller using PCI power management
7261  * states or the using the doorbell register.
7262  */
7263 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7264 {
7265         u64 cfg_offset;
7266         u32 cfg_base_addr;
7267         u64 cfg_base_addr_index;
7268         void __iomem *vaddr;
7269         unsigned long paddr;
7270         u32 misc_fw_support;
7271         int rc;
7272         struct CfgTable __iomem *cfgtable;
7273         u32 use_doorbell;
7274         u16 command_register;
7275
7276         /* For controllers as old as the P600, this is very nearly
7277          * the same thing as
7278          *
7279          * pci_save_state(pci_dev);
7280          * pci_set_power_state(pci_dev, PCI_D3hot);
7281          * pci_set_power_state(pci_dev, PCI_D0);
7282          * pci_restore_state(pci_dev);
7283          *
7284          * For controllers newer than the P600, the pci power state
7285          * method of resetting doesn't work so we have another way
7286          * using the doorbell register.
7287          */
7288
7289         if (!ctlr_is_resettable(board_id)) {
7290                 dev_warn(&pdev->dev, "Controller not resettable\n");
7291                 return -ENODEV;
7292         }
7293
7294         /* if controller is soft- but not hard resettable... */
7295         if (!ctlr_is_hard_resettable(board_id))
7296                 return -ENOTSUPP; /* try soft reset later. */
7297
7298         /* Save the PCI command register */
7299         pci_read_config_word(pdev, 4, &command_register);
7300         pci_save_state(pdev);
7301
7302         /* find the first memory BAR, so we can find the cfg table */
7303         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7304         if (rc)
7305                 return rc;
7306         vaddr = remap_pci_mem(paddr, 0x250);
7307         if (!vaddr)
7308                 return -ENOMEM;
7309
7310         /* find cfgtable in order to check if reset via doorbell is supported */
7311         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7312                                         &cfg_base_addr_index, &cfg_offset);
7313         if (rc)
7314                 goto unmap_vaddr;
7315         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7316                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7317         if (!cfgtable) {
7318                 rc = -ENOMEM;
7319                 goto unmap_vaddr;
7320         }
7321         rc = write_driver_ver_to_cfgtable(cfgtable);
7322         if (rc)
7323                 goto unmap_cfgtable;
7324
7325         /* If reset via doorbell register is supported, use that.
7326          * There are two such methods.  Favor the newest method.
7327          */
7328         misc_fw_support = readl(&cfgtable->misc_fw_support);
7329         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7330         if (use_doorbell) {
7331                 use_doorbell = DOORBELL_CTLR_RESET2;
7332         } else {
7333                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7334                 if (use_doorbell) {
7335                         dev_warn(&pdev->dev,
7336                                 "Soft reset not supported. Firmware update is required.\n");
7337                         rc = -ENOTSUPP; /* try soft reset */
7338                         goto unmap_cfgtable;
7339                 }
7340         }
7341
7342         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7343         if (rc)
7344                 goto unmap_cfgtable;
7345
7346         pci_restore_state(pdev);
7347         pci_write_config_word(pdev, 4, command_register);
7348
7349         /* Some devices (notably the HP Smart Array 5i Controller)
7350            need a little pause here */
7351         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7352
7353         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7354         if (rc) {
7355                 dev_warn(&pdev->dev,
7356                         "Failed waiting for board to become ready after hard reset\n");
7357                 goto unmap_cfgtable;
7358         }
7359
7360         rc = controller_reset_failed(vaddr);
7361         if (rc < 0)
7362                 goto unmap_cfgtable;
7363         if (rc) {
7364                 dev_warn(&pdev->dev, "Unable to successfully reset "
7365                         "controller. Will try soft reset.\n");
7366                 rc = -ENOTSUPP;
7367         } else {
7368                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7369         }
7370
7371 unmap_cfgtable:
7372         iounmap(cfgtable);
7373
7374 unmap_vaddr:
7375         iounmap(vaddr);
7376         return rc;
7377 }
7378
7379 /*
7380  *  We cannot read the structure directly, for portability we must use
7381  *   the io functions.
7382  *   This is for debug only.
7383  */
7384 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7385 {
7386 #ifdef HPSA_DEBUG
7387         int i;
7388         char temp_name[17];
7389
7390         dev_info(dev, "Controller Configuration information\n");
7391         dev_info(dev, "------------------------------------\n");
7392         for (i = 0; i < 4; i++)
7393                 temp_name[i] = readb(&(tb->Signature[i]));
7394         temp_name[4] = '\0';
7395         dev_info(dev, "   Signature = %s\n", temp_name);
7396         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7397         dev_info(dev, "   Transport methods supported = 0x%x\n",
7398                readl(&(tb->TransportSupport)));
7399         dev_info(dev, "   Transport methods active = 0x%x\n",
7400                readl(&(tb->TransportActive)));
7401         dev_info(dev, "   Requested transport Method = 0x%x\n",
7402                readl(&(tb->HostWrite.TransportRequest)));
7403         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7404                readl(&(tb->HostWrite.CoalIntDelay)));
7405         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7406                readl(&(tb->HostWrite.CoalIntCount)));
7407         dev_info(dev, "   Max outstanding commands = %d\n",
7408                readl(&(tb->CmdsOutMax)));
7409         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7410         for (i = 0; i < 16; i++)
7411                 temp_name[i] = readb(&(tb->ServerName[i]));
7412         temp_name[16] = '\0';
7413         dev_info(dev, "   Server Name = %s\n", temp_name);
7414         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7415                 readl(&(tb->HeartBeat)));
7416 #endif                          /* HPSA_DEBUG */
7417 }
7418
7419 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7420 {
7421         int i, offset, mem_type, bar_type;
7422
7423         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7424                 return 0;
7425         offset = 0;
7426         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7427                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7428                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7429                         offset += 4;
7430                 else {
7431                         mem_type = pci_resource_flags(pdev, i) &
7432                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7433                         switch (mem_type) {
7434                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7435                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7436                                 offset += 4;    /* 32 bit */
7437                                 break;
7438                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7439                                 offset += 8;
7440                                 break;
7441                         default:        /* reserved in PCI 2.2 */
7442                                 dev_warn(&pdev->dev,
7443                                        "base address is invalid\n");
7444                                 return -1;
7445                                 break;
7446                         }
7447                 }
7448                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7449                         return i + 1;
7450         }
7451         return -1;
7452 }
7453
7454 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7455 {
7456         pci_free_irq_vectors(h->pdev);
7457         h->msix_vectors = 0;
7458 }
7459
7460 static void hpsa_setup_reply_map(struct ctlr_info *h)
7461 {
7462         const struct cpumask *mask;
7463         unsigned int queue, cpu;
7464
7465         for (queue = 0; queue < h->msix_vectors; queue++) {
7466                 mask = pci_irq_get_affinity(h->pdev, queue);
7467                 if (!mask)
7468                         goto fallback;
7469
7470                 for_each_cpu(cpu, mask)
7471                         h->reply_map[cpu] = queue;
7472         }
7473         return;
7474
7475 fallback:
7476         for_each_possible_cpu(cpu)
7477                 h->reply_map[cpu] = 0;
7478 }
7479
7480 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7481  * controllers that are capable. If not, we use legacy INTx mode.
7482  */
7483 static int hpsa_interrupt_mode(struct ctlr_info *h)
7484 {
7485         unsigned int flags = PCI_IRQ_LEGACY;
7486         int ret;
7487
7488         /* Some boards advertise MSI but don't really support it */
7489         switch (h->board_id) {
7490         case 0x40700E11:
7491         case 0x40800E11:
7492         case 0x40820E11:
7493         case 0x40830E11:
7494                 break;
7495         default:
7496                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7497                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7498                 if (ret > 0) {
7499                         h->msix_vectors = ret;
7500                         return 0;
7501                 }
7502
7503                 flags |= PCI_IRQ_MSI;
7504                 break;
7505         }
7506
7507         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7508         if (ret < 0)
7509                 return ret;
7510         return 0;
7511 }
7512
7513 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7514                                 bool *legacy_board)
7515 {
7516         int i;
7517         u32 subsystem_vendor_id, subsystem_device_id;
7518
7519         subsystem_vendor_id = pdev->subsystem_vendor;
7520         subsystem_device_id = pdev->subsystem_device;
7521         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7522                     subsystem_vendor_id;
7523
7524         if (legacy_board)
7525                 *legacy_board = false;
7526         for (i = 0; i < ARRAY_SIZE(products); i++)
7527                 if (*board_id == products[i].board_id) {
7528                         if (products[i].access != &SA5A_access &&
7529                             products[i].access != &SA5B_access)
7530                                 return i;
7531                         dev_warn(&pdev->dev,
7532                                  "legacy board ID: 0x%08x\n",
7533                                  *board_id);
7534                         if (legacy_board)
7535                             *legacy_board = true;
7536                         return i;
7537                 }
7538
7539         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7540         if (legacy_board)
7541                 *legacy_board = true;
7542         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7543 }
7544
7545 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7546                                     unsigned long *memory_bar)
7547 {
7548         int i;
7549
7550         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7551                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7552                         /* addressing mode bits already removed */
7553                         *memory_bar = pci_resource_start(pdev, i);
7554                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7555                                 *memory_bar);
7556                         return 0;
7557                 }
7558         dev_warn(&pdev->dev, "no memory BAR found\n");
7559         return -ENODEV;
7560 }
7561
7562 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7563                                      int wait_for_ready)
7564 {
7565         int i, iterations;
7566         u32 scratchpad;
7567         if (wait_for_ready)
7568                 iterations = HPSA_BOARD_READY_ITERATIONS;
7569         else
7570                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7571
7572         for (i = 0; i < iterations; i++) {
7573                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7574                 if (wait_for_ready) {
7575                         if (scratchpad == HPSA_FIRMWARE_READY)
7576                                 return 0;
7577                 } else {
7578                         if (scratchpad != HPSA_FIRMWARE_READY)
7579                                 return 0;
7580                 }
7581                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7582         }
7583         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7584         return -ENODEV;
7585 }
7586
7587 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7588                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7589                                u64 *cfg_offset)
7590 {
7591         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7592         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7593         *cfg_base_addr &= (u32) 0x0000ffff;
7594         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7595         if (*cfg_base_addr_index == -1) {
7596                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7597                 return -ENODEV;
7598         }
7599         return 0;
7600 }
7601
7602 static void hpsa_free_cfgtables(struct ctlr_info *h)
7603 {
7604         if (h->transtable) {
7605                 iounmap(h->transtable);
7606                 h->transtable = NULL;
7607         }
7608         if (h->cfgtable) {
7609                 iounmap(h->cfgtable);
7610                 h->cfgtable = NULL;
7611         }
7612 }
7613
7614 /* Find and map CISS config table and transfer table
7615 + * several items must be unmapped (freed) later
7616 + * */
7617 static int hpsa_find_cfgtables(struct ctlr_info *h)
7618 {
7619         u64 cfg_offset;
7620         u32 cfg_base_addr;
7621         u64 cfg_base_addr_index;
7622         u32 trans_offset;
7623         int rc;
7624
7625         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7626                 &cfg_base_addr_index, &cfg_offset);
7627         if (rc)
7628                 return rc;
7629         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7630                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7631         if (!h->cfgtable) {
7632                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7633                 return -ENOMEM;
7634         }
7635         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7636         if (rc)
7637                 return rc;
7638         /* Find performant mode table. */
7639         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7640         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7641                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7642                                 sizeof(*h->transtable));
7643         if (!h->transtable) {
7644                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7645                 hpsa_free_cfgtables(h);
7646                 return -ENOMEM;
7647         }
7648         return 0;
7649 }
7650
7651 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7652 {
7653 #define MIN_MAX_COMMANDS 16
7654         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7655
7656         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7657
7658         /* Limit commands in memory limited kdump scenario. */
7659         if (reset_devices && h->max_commands > 32)
7660                 h->max_commands = 32;
7661
7662         if (h->max_commands < MIN_MAX_COMMANDS) {
7663                 dev_warn(&h->pdev->dev,
7664                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7665                         h->max_commands,
7666                         MIN_MAX_COMMANDS);
7667                 h->max_commands = MIN_MAX_COMMANDS;
7668         }
7669 }
7670
7671 /* If the controller reports that the total max sg entries is greater than 512,
7672  * then we know that chained SG blocks work.  (Original smart arrays did not
7673  * support chained SG blocks and would return zero for max sg entries.)
7674  */
7675 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7676 {
7677         return h->maxsgentries > 512;
7678 }
7679
7680 /* Interrogate the hardware for some limits:
7681  * max commands, max SG elements without chaining, and with chaining,
7682  * SG chain block size, etc.
7683  */
7684 static void hpsa_find_board_params(struct ctlr_info *h)
7685 {
7686         hpsa_get_max_perf_mode_cmds(h);
7687         h->nr_cmds = h->max_commands;
7688         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7689         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7690         if (hpsa_supports_chained_sg_blocks(h)) {
7691                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7692                 h->max_cmd_sg_entries = 32;
7693                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7694                 h->maxsgentries--; /* save one for chain pointer */
7695         } else {
7696                 /*
7697                  * Original smart arrays supported at most 31 s/g entries
7698                  * embedded inline in the command (trying to use more
7699                  * would lock up the controller)
7700                  */
7701                 h->max_cmd_sg_entries = 31;
7702                 h->maxsgentries = 31; /* default to traditional values */
7703                 h->chainsize = 0;
7704         }
7705
7706         /* Find out what task management functions are supported and cache */
7707         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7708         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7709                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7710         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7711                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7712         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7713                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7714 }
7715
7716 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7717 {
7718         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7719                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7720                 return false;
7721         }
7722         return true;
7723 }
7724
7725 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7726 {
7727         u32 driver_support;
7728
7729         driver_support = readl(&(h->cfgtable->driver_support));
7730         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7731 #ifdef CONFIG_X86
7732         driver_support |= ENABLE_SCSI_PREFETCH;
7733 #endif
7734         driver_support |= ENABLE_UNIT_ATTN;
7735         writel(driver_support, &(h->cfgtable->driver_support));
7736 }
7737
7738 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7739  * in a prefetch beyond physical memory.
7740  */
7741 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7742 {
7743         u32 dma_prefetch;
7744
7745         if (h->board_id != 0x3225103C)
7746                 return;
7747         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7748         dma_prefetch |= 0x8000;
7749         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7750 }
7751
7752 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7753 {
7754         int i;
7755         u32 doorbell_value;
7756         unsigned long flags;
7757         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7758         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7759                 spin_lock_irqsave(&h->lock, flags);
7760                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7761                 spin_unlock_irqrestore(&h->lock, flags);
7762                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7763                         goto done;
7764                 /* delay and try again */
7765                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7766         }
7767         return -ENODEV;
7768 done:
7769         return 0;
7770 }
7771
7772 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7773 {
7774         int i;
7775         u32 doorbell_value;
7776         unsigned long flags;
7777
7778         /* under certain very rare conditions, this can take awhile.
7779          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7780          * as we enter this code.)
7781          */
7782         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7783                 if (h->remove_in_progress)
7784                         goto done;
7785                 spin_lock_irqsave(&h->lock, flags);
7786                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7787                 spin_unlock_irqrestore(&h->lock, flags);
7788                 if (!(doorbell_value & CFGTBL_ChangeReq))
7789                         goto done;
7790                 /* delay and try again */
7791                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7792         }
7793         return -ENODEV;
7794 done:
7795         return 0;
7796 }
7797
7798 /* return -ENODEV or other reason on error, 0 on success */
7799 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7800 {
7801         u32 trans_support;
7802
7803         trans_support = readl(&(h->cfgtable->TransportSupport));
7804         if (!(trans_support & SIMPLE_MODE))
7805                 return -ENOTSUPP;
7806
7807         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7808
7809         /* Update the field, and then ring the doorbell */
7810         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7811         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7812         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7813         if (hpsa_wait_for_mode_change_ack(h))
7814                 goto error;
7815         print_cfg_table(&h->pdev->dev, h->cfgtable);
7816         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7817                 goto error;
7818         h->transMethod = CFGTBL_Trans_Simple;
7819         return 0;
7820 error:
7821         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7822         return -ENODEV;
7823 }
7824
7825 /* free items allocated or mapped by hpsa_pci_init */
7826 static void hpsa_free_pci_init(struct ctlr_info *h)
7827 {
7828         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7829         iounmap(h->vaddr);                      /* pci_init 3 */
7830         h->vaddr = NULL;
7831         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7832         /*
7833          * call pci_disable_device before pci_release_regions per
7834          * Documentation/driver-api/pci/pci.rst
7835          */
7836         pci_disable_device(h->pdev);            /* pci_init 1 */
7837         pci_release_regions(h->pdev);           /* pci_init 2 */
7838 }
7839
7840 /* several items must be freed later */
7841 static int hpsa_pci_init(struct ctlr_info *h)
7842 {
7843         int prod_index, err;
7844         bool legacy_board;
7845
7846         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7847         if (prod_index < 0)
7848                 return prod_index;
7849         h->product_name = products[prod_index].product_name;
7850         h->access = *(products[prod_index].access);
7851         h->legacy_board = legacy_board;
7852         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7853                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7854
7855         err = pci_enable_device(h->pdev);
7856         if (err) {
7857                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7858                 pci_disable_device(h->pdev);
7859                 return err;
7860         }
7861
7862         err = pci_request_regions(h->pdev, HPSA);
7863         if (err) {
7864                 dev_err(&h->pdev->dev,
7865                         "failed to obtain PCI resources\n");
7866                 pci_disable_device(h->pdev);
7867                 return err;
7868         }
7869
7870         pci_set_master(h->pdev);
7871
7872         err = hpsa_interrupt_mode(h);
7873         if (err)
7874                 goto clean1;
7875
7876         /* setup mapping between CPU and reply queue */
7877         hpsa_setup_reply_map(h);
7878
7879         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7880         if (err)
7881                 goto clean2;    /* intmode+region, pci */
7882         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7883         if (!h->vaddr) {
7884                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7885                 err = -ENOMEM;
7886                 goto clean2;    /* intmode+region, pci */
7887         }
7888         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7889         if (err)
7890                 goto clean3;    /* vaddr, intmode+region, pci */
7891         err = hpsa_find_cfgtables(h);
7892         if (err)
7893                 goto clean3;    /* vaddr, intmode+region, pci */
7894         hpsa_find_board_params(h);
7895
7896         if (!hpsa_CISS_signature_present(h)) {
7897                 err = -ENODEV;
7898                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7899         }
7900         hpsa_set_driver_support_bits(h);
7901         hpsa_p600_dma_prefetch_quirk(h);
7902         err = hpsa_enter_simple_mode(h);
7903         if (err)
7904                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7905         return 0;
7906
7907 clean4: /* cfgtables, vaddr, intmode+region, pci */
7908         hpsa_free_cfgtables(h);
7909 clean3: /* vaddr, intmode+region, pci */
7910         iounmap(h->vaddr);
7911         h->vaddr = NULL;
7912 clean2: /* intmode+region, pci */
7913         hpsa_disable_interrupt_mode(h);
7914 clean1:
7915         /*
7916          * call pci_disable_device before pci_release_regions per
7917          * Documentation/driver-api/pci/pci.rst
7918          */
7919         pci_disable_device(h->pdev);
7920         pci_release_regions(h->pdev);
7921         return err;
7922 }
7923
7924 static void hpsa_hba_inquiry(struct ctlr_info *h)
7925 {
7926         int rc;
7927
7928 #define HBA_INQUIRY_BYTE_COUNT 64
7929         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7930         if (!h->hba_inquiry_data)
7931                 return;
7932         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7933                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7934         if (rc != 0) {
7935                 kfree(h->hba_inquiry_data);
7936                 h->hba_inquiry_data = NULL;
7937         }
7938 }
7939
7940 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7941 {
7942         int rc, i;
7943         void __iomem *vaddr;
7944
7945         if (!reset_devices)
7946                 return 0;
7947
7948         /* kdump kernel is loading, we don't know in which state is
7949          * the pci interface. The dev->enable_cnt is equal zero
7950          * so we call enable+disable, wait a while and switch it on.
7951          */
7952         rc = pci_enable_device(pdev);
7953         if (rc) {
7954                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7955                 return -ENODEV;
7956         }
7957         pci_disable_device(pdev);
7958         msleep(260);                    /* a randomly chosen number */
7959         rc = pci_enable_device(pdev);
7960         if (rc) {
7961                 dev_warn(&pdev->dev, "failed to enable device.\n");
7962                 return -ENODEV;
7963         }
7964
7965         pci_set_master(pdev);
7966
7967         vaddr = pci_ioremap_bar(pdev, 0);
7968         if (vaddr == NULL) {
7969                 rc = -ENOMEM;
7970                 goto out_disable;
7971         }
7972         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7973         iounmap(vaddr);
7974
7975         /* Reset the controller with a PCI power-cycle or via doorbell */
7976         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7977
7978         /* -ENOTSUPP here means we cannot reset the controller
7979          * but it's already (and still) up and running in
7980          * "performant mode".  Or, it might be 640x, which can't reset
7981          * due to concerns about shared bbwc between 6402/6404 pair.
7982          */
7983         if (rc)
7984                 goto out_disable;
7985
7986         /* Now try to get the controller to respond to a no-op */
7987         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7988         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7989                 if (hpsa_noop(pdev) == 0)
7990                         break;
7991                 else
7992                         dev_warn(&pdev->dev, "no-op failed%s\n",
7993                                         (i < 11 ? "; re-trying" : ""));
7994         }
7995
7996 out_disable:
7997
7998         pci_disable_device(pdev);
7999         return rc;
8000 }
8001
8002 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8003 {
8004         kfree(h->cmd_pool_bits);
8005         h->cmd_pool_bits = NULL;
8006         if (h->cmd_pool) {
8007                 dma_free_coherent(&h->pdev->dev,
8008                                 h->nr_cmds * sizeof(struct CommandList),
8009                                 h->cmd_pool,
8010                                 h->cmd_pool_dhandle);
8011                 h->cmd_pool = NULL;
8012                 h->cmd_pool_dhandle = 0;
8013         }
8014         if (h->errinfo_pool) {
8015                 dma_free_coherent(&h->pdev->dev,
8016                                 h->nr_cmds * sizeof(struct ErrorInfo),
8017                                 h->errinfo_pool,
8018                                 h->errinfo_pool_dhandle);
8019                 h->errinfo_pool = NULL;
8020                 h->errinfo_pool_dhandle = 0;
8021         }
8022 }
8023
8024 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8025 {
8026         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8027                                    sizeof(unsigned long),
8028                                    GFP_KERNEL);
8029         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8030                     h->nr_cmds * sizeof(*h->cmd_pool),
8031                     &h->cmd_pool_dhandle, GFP_KERNEL);
8032         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8033                     h->nr_cmds * sizeof(*h->errinfo_pool),
8034                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8035         if ((h->cmd_pool_bits == NULL)
8036             || (h->cmd_pool == NULL)
8037             || (h->errinfo_pool == NULL)) {
8038                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8039                 goto clean_up;
8040         }
8041         hpsa_preinitialize_commands(h);
8042         return 0;
8043 clean_up:
8044         hpsa_free_cmd_pool(h);
8045         return -ENOMEM;
8046 }
8047
8048 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8049 static void hpsa_free_irqs(struct ctlr_info *h)
8050 {
8051         int i;
8052         int irq_vector = 0;
8053
8054         if (hpsa_simple_mode)
8055                 irq_vector = h->intr_mode;
8056
8057         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8058                 /* Single reply queue, only one irq to free */
8059                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8060                                 &h->q[h->intr_mode]);
8061                 h->q[h->intr_mode] = 0;
8062                 return;
8063         }
8064
8065         for (i = 0; i < h->msix_vectors; i++) {
8066                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8067                 h->q[i] = 0;
8068         }
8069         for (; i < MAX_REPLY_QUEUES; i++)
8070                 h->q[i] = 0;
8071 }
8072
8073 /* returns 0 on success; cleans up and returns -Enn on error */
8074 static int hpsa_request_irqs(struct ctlr_info *h,
8075         irqreturn_t (*msixhandler)(int, void *),
8076         irqreturn_t (*intxhandler)(int, void *))
8077 {
8078         int rc, i;
8079         int irq_vector = 0;
8080
8081         if (hpsa_simple_mode)
8082                 irq_vector = h->intr_mode;
8083
8084         /*
8085          * initialize h->q[x] = x so that interrupt handlers know which
8086          * queue to process.
8087          */
8088         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8089                 h->q[i] = (u8) i;
8090
8091         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8092                 /* If performant mode and MSI-X, use multiple reply queues */
8093                 for (i = 0; i < h->msix_vectors; i++) {
8094                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8095                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8096                                         0, h->intrname[i],
8097                                         &h->q[i]);
8098                         if (rc) {
8099                                 int j;
8100
8101                                 dev_err(&h->pdev->dev,
8102                                         "failed to get irq %d for %s\n",
8103                                        pci_irq_vector(h->pdev, i), h->devname);
8104                                 for (j = 0; j < i; j++) {
8105                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8106                                         h->q[j] = 0;
8107                                 }
8108                                 for (; j < MAX_REPLY_QUEUES; j++)
8109                                         h->q[j] = 0;
8110                                 return rc;
8111                         }
8112                 }
8113         } else {
8114                 /* Use single reply pool */
8115                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8116                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8117                                 h->msix_vectors ? "x" : "");
8118                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8119                                 msixhandler, 0,
8120                                 h->intrname[0],
8121                                 &h->q[h->intr_mode]);
8122                 } else {
8123                         sprintf(h->intrname[h->intr_mode],
8124                                 "%s-intx", h->devname);
8125                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8126                                 intxhandler, IRQF_SHARED,
8127                                 h->intrname[0],
8128                                 &h->q[h->intr_mode]);
8129                 }
8130         }
8131         if (rc) {
8132                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8133                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8134                 hpsa_free_irqs(h);
8135                 return -ENODEV;
8136         }
8137         return 0;
8138 }
8139
8140 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8141 {
8142         int rc;
8143         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8144
8145         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8146         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8147         if (rc) {
8148                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8149                 return rc;
8150         }
8151
8152         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8153         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8154         if (rc) {
8155                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8156                         "after soft reset.\n");
8157                 return rc;
8158         }
8159
8160         return 0;
8161 }
8162
8163 static void hpsa_free_reply_queues(struct ctlr_info *h)
8164 {
8165         int i;
8166
8167         for (i = 0; i < h->nreply_queues; i++) {
8168                 if (!h->reply_queue[i].head)
8169                         continue;
8170                 dma_free_coherent(&h->pdev->dev,
8171                                         h->reply_queue_size,
8172                                         h->reply_queue[i].head,
8173                                         h->reply_queue[i].busaddr);
8174                 h->reply_queue[i].head = NULL;
8175                 h->reply_queue[i].busaddr = 0;
8176         }
8177         h->reply_queue_size = 0;
8178 }
8179
8180 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8181 {
8182         hpsa_free_performant_mode(h);           /* init_one 7 */
8183         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8184         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8185         hpsa_free_irqs(h);                      /* init_one 4 */
8186         scsi_host_put(h->scsi_host);            /* init_one 3 */
8187         h->scsi_host = NULL;                    /* init_one 3 */
8188         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8189         free_percpu(h->lockup_detected);        /* init_one 2 */
8190         h->lockup_detected = NULL;              /* init_one 2 */
8191         if (h->resubmit_wq) {
8192                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8193                 h->resubmit_wq = NULL;
8194         }
8195         if (h->rescan_ctlr_wq) {
8196                 destroy_workqueue(h->rescan_ctlr_wq);
8197                 h->rescan_ctlr_wq = NULL;
8198         }
8199         if (h->monitor_ctlr_wq) {
8200                 destroy_workqueue(h->monitor_ctlr_wq);
8201                 h->monitor_ctlr_wq = NULL;
8202         }
8203
8204         kfree(h);                               /* init_one 1 */
8205 }
8206
8207 /* Called when controller lockup detected. */
8208 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8209 {
8210         int i, refcount;
8211         struct CommandList *c;
8212         int failcount = 0;
8213
8214         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8215         for (i = 0; i < h->nr_cmds; i++) {
8216                 c = h->cmd_pool + i;
8217                 refcount = atomic_inc_return(&c->refcount);
8218                 if (refcount > 1) {
8219                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8220                         finish_cmd(c);
8221                         atomic_dec(&h->commands_outstanding);
8222                         failcount++;
8223                 }
8224                 cmd_free(h, c);
8225         }
8226         dev_warn(&h->pdev->dev,
8227                 "failed %d commands in fail_all\n", failcount);
8228 }
8229
8230 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8231 {
8232         int cpu;
8233
8234         for_each_online_cpu(cpu) {
8235                 u32 *lockup_detected;
8236                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8237                 *lockup_detected = value;
8238         }
8239         wmb(); /* be sure the per-cpu variables are out to memory */
8240 }
8241
8242 static void controller_lockup_detected(struct ctlr_info *h)
8243 {
8244         unsigned long flags;
8245         u32 lockup_detected;
8246
8247         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8248         spin_lock_irqsave(&h->lock, flags);
8249         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8250         if (!lockup_detected) {
8251                 /* no heartbeat, but controller gave us a zero. */
8252                 dev_warn(&h->pdev->dev,
8253                         "lockup detected after %d but scratchpad register is zero\n",
8254                         h->heartbeat_sample_interval / HZ);
8255                 lockup_detected = 0xffffffff;
8256         }
8257         set_lockup_detected_for_all_cpus(h, lockup_detected);
8258         spin_unlock_irqrestore(&h->lock, flags);
8259         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8260                         lockup_detected, h->heartbeat_sample_interval / HZ);
8261         if (lockup_detected == 0xffff0000) {
8262                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8263                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8264         }
8265         pci_disable_device(h->pdev);
8266         fail_all_outstanding_cmds(h);
8267 }
8268
8269 static int detect_controller_lockup(struct ctlr_info *h)
8270 {
8271         u64 now;
8272         u32 heartbeat;
8273         unsigned long flags;
8274
8275         now = get_jiffies_64();
8276         /* If we've received an interrupt recently, we're ok. */
8277         if (time_after64(h->last_intr_timestamp +
8278                                 (h->heartbeat_sample_interval), now))
8279                 return false;
8280
8281         /*
8282          * If we've already checked the heartbeat recently, we're ok.
8283          * This could happen if someone sends us a signal. We
8284          * otherwise don't care about signals in this thread.
8285          */
8286         if (time_after64(h->last_heartbeat_timestamp +
8287                                 (h->heartbeat_sample_interval), now))
8288                 return false;
8289
8290         /* If heartbeat has not changed since we last looked, we're not ok. */
8291         spin_lock_irqsave(&h->lock, flags);
8292         heartbeat = readl(&h->cfgtable->HeartBeat);
8293         spin_unlock_irqrestore(&h->lock, flags);
8294         if (h->last_heartbeat == heartbeat) {
8295                 controller_lockup_detected(h);
8296                 return true;
8297         }
8298
8299         /* We're ok. */
8300         h->last_heartbeat = heartbeat;
8301         h->last_heartbeat_timestamp = now;
8302         return false;
8303 }
8304
8305 /*
8306  * Set ioaccel status for all ioaccel volumes.
8307  *
8308  * Called from monitor controller worker (hpsa_event_monitor_worker)
8309  *
8310  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8311  * transformation, so we will be turning off ioaccel for all volumes that
8312  * make up the Array.
8313  */
8314 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8315 {
8316         int rc;
8317         int i;
8318         u8 ioaccel_status;
8319         unsigned char *buf;
8320         struct hpsa_scsi_dev_t *device;
8321
8322         if (!h)
8323                 return;
8324
8325         buf = kmalloc(64, GFP_KERNEL);
8326         if (!buf)
8327                 return;
8328
8329         /*
8330          * Run through current device list used during I/O requests.
8331          */
8332         for (i = 0; i < h->ndevices; i++) {
8333                 int offload_to_be_enabled = 0;
8334                 int offload_config = 0;
8335
8336                 device = h->dev[i];
8337
8338                 if (!device)
8339                         continue;
8340                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8341                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8342                         continue;
8343
8344                 memset(buf, 0, 64);
8345
8346                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8347                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8348                                         buf, 64);
8349                 if (rc != 0)
8350                         continue;
8351
8352                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8353
8354                 /*
8355                  * Check if offload is still configured on
8356                  */
8357                 offload_config =
8358                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8359                 /*
8360                  * If offload is configured on, check to see if ioaccel
8361                  * needs to be enabled.
8362                  */
8363                 if (offload_config)
8364                         offload_to_be_enabled =
8365                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8366
8367                 /*
8368                  * If ioaccel is to be re-enabled, re-enable later during the
8369                  * scan operation so the driver can get a fresh raidmap
8370                  * before turning ioaccel back on.
8371                  */
8372                 if (offload_to_be_enabled)
8373                         continue;
8374
8375                 /*
8376                  * Immediately turn off ioaccel for any volume the
8377                  * controller tells us to. Some of the reasons could be:
8378                  *    transformation - change to the LVs of an Array.
8379                  *    degraded volume - component failure
8380                  */
8381                 hpsa_turn_off_ioaccel_for_device(device);
8382         }
8383
8384         kfree(buf);
8385 }
8386
8387 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8388 {
8389         char *event_type;
8390
8391         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8392                 return;
8393
8394         /* Ask the controller to clear the events we're handling. */
8395         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8396                         | CFGTBL_Trans_io_accel2)) &&
8397                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8398                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8399
8400                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8401                         event_type = "state change";
8402                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8403                         event_type = "configuration change";
8404                 /* Stop sending new RAID offload reqs via the IO accelerator */
8405                 scsi_block_requests(h->scsi_host);
8406                 hpsa_set_ioaccel_status(h);
8407                 hpsa_drain_accel_commands(h);
8408                 /* Set 'accelerator path config change' bit */
8409                 dev_warn(&h->pdev->dev,
8410                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8411                         h->events, event_type);
8412                 writel(h->events, &(h->cfgtable->clear_event_notify));
8413                 /* Set the "clear event notify field update" bit 6 */
8414                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8415                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8416                 hpsa_wait_for_clear_event_notify_ack(h);
8417                 scsi_unblock_requests(h->scsi_host);
8418         } else {
8419                 /* Acknowledge controller notification events. */
8420                 writel(h->events, &(h->cfgtable->clear_event_notify));
8421                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8422                 hpsa_wait_for_clear_event_notify_ack(h);
8423         }
8424         return;
8425 }
8426
8427 /* Check a register on the controller to see if there are configuration
8428  * changes (added/changed/removed logical drives, etc.) which mean that
8429  * we should rescan the controller for devices.
8430  * Also check flag for driver-initiated rescan.
8431  */
8432 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8433 {
8434         if (h->drv_req_rescan) {
8435                 h->drv_req_rescan = 0;
8436                 return 1;
8437         }
8438
8439         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8440                 return 0;
8441
8442         h->events = readl(&(h->cfgtable->event_notify));
8443         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8444 }
8445
8446 /*
8447  * Check if any of the offline devices have become ready
8448  */
8449 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8450 {
8451         unsigned long flags;
8452         struct offline_device_entry *d;
8453         struct list_head *this, *tmp;
8454
8455         spin_lock_irqsave(&h->offline_device_lock, flags);
8456         list_for_each_safe(this, tmp, &h->offline_device_list) {
8457                 d = list_entry(this, struct offline_device_entry,
8458                                 offline_list);
8459                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8460                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8461                         spin_lock_irqsave(&h->offline_device_lock, flags);
8462                         list_del(&d->offline_list);
8463                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8464                         return 1;
8465                 }
8466                 spin_lock_irqsave(&h->offline_device_lock, flags);
8467         }
8468         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8469         return 0;
8470 }
8471
8472 static int hpsa_luns_changed(struct ctlr_info *h)
8473 {
8474         int rc = 1; /* assume there are changes */
8475         struct ReportLUNdata *logdev = NULL;
8476
8477         /* if we can't find out if lun data has changed,
8478          * assume that it has.
8479          */
8480
8481         if (!h->lastlogicals)
8482                 return rc;
8483
8484         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8485         if (!logdev)
8486                 return rc;
8487
8488         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8489                 dev_warn(&h->pdev->dev,
8490                         "report luns failed, can't track lun changes.\n");
8491                 goto out;
8492         }
8493         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8494                 dev_info(&h->pdev->dev,
8495                         "Lun changes detected.\n");
8496                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8497                 goto out;
8498         } else
8499                 rc = 0; /* no changes detected. */
8500 out:
8501         kfree(logdev);
8502         return rc;
8503 }
8504
8505 static void hpsa_perform_rescan(struct ctlr_info *h)
8506 {
8507         struct Scsi_Host *sh = NULL;
8508         unsigned long flags;
8509
8510         /*
8511          * Do the scan after the reset
8512          */
8513         spin_lock_irqsave(&h->reset_lock, flags);
8514         if (h->reset_in_progress) {
8515                 h->drv_req_rescan = 1;
8516                 spin_unlock_irqrestore(&h->reset_lock, flags);
8517                 return;
8518         }
8519         spin_unlock_irqrestore(&h->reset_lock, flags);
8520
8521         sh = scsi_host_get(h->scsi_host);
8522         if (sh != NULL) {
8523                 hpsa_scan_start(sh);
8524                 scsi_host_put(sh);
8525                 h->drv_req_rescan = 0;
8526         }
8527 }
8528
8529 /*
8530  * watch for controller events
8531  */
8532 static void hpsa_event_monitor_worker(struct work_struct *work)
8533 {
8534         struct ctlr_info *h = container_of(to_delayed_work(work),
8535                                         struct ctlr_info, event_monitor_work);
8536         unsigned long flags;
8537
8538         spin_lock_irqsave(&h->lock, flags);
8539         if (h->remove_in_progress) {
8540                 spin_unlock_irqrestore(&h->lock, flags);
8541                 return;
8542         }
8543         spin_unlock_irqrestore(&h->lock, flags);
8544
8545         if (hpsa_ctlr_needs_rescan(h)) {
8546                 hpsa_ack_ctlr_events(h);
8547                 hpsa_perform_rescan(h);
8548         }
8549
8550         spin_lock_irqsave(&h->lock, flags);
8551         if (!h->remove_in_progress)
8552                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8553                                 HPSA_EVENT_MONITOR_INTERVAL);
8554         spin_unlock_irqrestore(&h->lock, flags);
8555 }
8556
8557 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8558 {
8559         unsigned long flags;
8560         struct ctlr_info *h = container_of(to_delayed_work(work),
8561                                         struct ctlr_info, rescan_ctlr_work);
8562
8563         spin_lock_irqsave(&h->lock, flags);
8564         if (h->remove_in_progress) {
8565                 spin_unlock_irqrestore(&h->lock, flags);
8566                 return;
8567         }
8568         spin_unlock_irqrestore(&h->lock, flags);
8569
8570         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8571                 hpsa_perform_rescan(h);
8572         } else if (h->discovery_polling) {
8573                 if (hpsa_luns_changed(h)) {
8574                         dev_info(&h->pdev->dev,
8575                                 "driver discovery polling rescan.\n");
8576                         hpsa_perform_rescan(h);
8577                 }
8578         }
8579         spin_lock_irqsave(&h->lock, flags);
8580         if (!h->remove_in_progress)
8581                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8582                                 h->heartbeat_sample_interval);
8583         spin_unlock_irqrestore(&h->lock, flags);
8584 }
8585
8586 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8587 {
8588         unsigned long flags;
8589         struct ctlr_info *h = container_of(to_delayed_work(work),
8590                                         struct ctlr_info, monitor_ctlr_work);
8591
8592         detect_controller_lockup(h);
8593         if (lockup_detected(h))
8594                 return;
8595
8596         spin_lock_irqsave(&h->lock, flags);
8597         if (!h->remove_in_progress)
8598                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8599                                 h->heartbeat_sample_interval);
8600         spin_unlock_irqrestore(&h->lock, flags);
8601 }
8602
8603 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8604                                                 char *name)
8605 {
8606         struct workqueue_struct *wq = NULL;
8607
8608         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8609         if (!wq)
8610                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8611
8612         return wq;
8613 }
8614
8615 static void hpda_free_ctlr_info(struct ctlr_info *h)
8616 {
8617         kfree(h->reply_map);
8618         kfree(h);
8619 }
8620
8621 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8622 {
8623         struct ctlr_info *h;
8624
8625         h = kzalloc(sizeof(*h), GFP_KERNEL);
8626         if (!h)
8627                 return NULL;
8628
8629         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8630         if (!h->reply_map) {
8631                 kfree(h);
8632                 return NULL;
8633         }
8634         return h;
8635 }
8636
8637 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8638 {
8639         int dac, rc;
8640         struct ctlr_info *h;
8641         int try_soft_reset = 0;
8642         unsigned long flags;
8643         u32 board_id;
8644
8645         if (number_of_controllers == 0)
8646                 printk(KERN_INFO DRIVER_NAME "\n");
8647
8648         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8649         if (rc < 0) {
8650                 dev_warn(&pdev->dev, "Board ID not found\n");
8651                 return rc;
8652         }
8653
8654         rc = hpsa_init_reset_devices(pdev, board_id);
8655         if (rc) {
8656                 if (rc != -ENOTSUPP)
8657                         return rc;
8658                 /* If the reset fails in a particular way (it has no way to do
8659                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8660                  * a soft reset once we get the controller configured up to the
8661                  * point that it can accept a command.
8662                  */
8663                 try_soft_reset = 1;
8664                 rc = 0;
8665         }
8666
8667 reinit_after_soft_reset:
8668
8669         /* Command structures must be aligned on a 32-byte boundary because
8670          * the 5 lower bits of the address are used by the hardware. and by
8671          * the driver.  See comments in hpsa.h for more info.
8672          */
8673         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8674         h = hpda_alloc_ctlr_info();
8675         if (!h) {
8676                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8677                 return -ENOMEM;
8678         }
8679
8680         h->pdev = pdev;
8681
8682         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8683         INIT_LIST_HEAD(&h->offline_device_list);
8684         spin_lock_init(&h->lock);
8685         spin_lock_init(&h->offline_device_lock);
8686         spin_lock_init(&h->scan_lock);
8687         spin_lock_init(&h->reset_lock);
8688         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8689
8690         /* Allocate and clear per-cpu variable lockup_detected */
8691         h->lockup_detected = alloc_percpu(u32);
8692         if (!h->lockup_detected) {
8693                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8694                 rc = -ENOMEM;
8695                 goto clean1;    /* aer/h */
8696         }
8697         set_lockup_detected_for_all_cpus(h, 0);
8698
8699         rc = hpsa_pci_init(h);
8700         if (rc)
8701                 goto clean2;    /* lu, aer/h */
8702
8703         /* relies on h-> settings made by hpsa_pci_init, including
8704          * interrupt_mode h->intr */
8705         rc = hpsa_scsi_host_alloc(h);
8706         if (rc)
8707                 goto clean2_5;  /* pci, lu, aer/h */
8708
8709         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8710         h->ctlr = number_of_controllers;
8711         number_of_controllers++;
8712
8713         /* configure PCI DMA stuff */
8714         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8715         if (rc == 0) {
8716                 dac = 1;
8717         } else {
8718                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8719                 if (rc == 0) {
8720                         dac = 0;
8721                 } else {
8722                         dev_err(&pdev->dev, "no suitable DMA available\n");
8723                         goto clean3;    /* shost, pci, lu, aer/h */
8724                 }
8725         }
8726
8727         /* make sure the board interrupts are off */
8728         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8729
8730         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8731         if (rc)
8732                 goto clean3;    /* shost, pci, lu, aer/h */
8733         rc = hpsa_alloc_cmd_pool(h);
8734         if (rc)
8735                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8736         rc = hpsa_alloc_sg_chain_blocks(h);
8737         if (rc)
8738                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8739         init_waitqueue_head(&h->scan_wait_queue);
8740         init_waitqueue_head(&h->event_sync_wait_queue);
8741         mutex_init(&h->reset_mutex);
8742         h->scan_finished = 1; /* no scan currently in progress */
8743         h->scan_waiting = 0;
8744
8745         pci_set_drvdata(pdev, h);
8746         h->ndevices = 0;
8747
8748         spin_lock_init(&h->devlock);
8749         rc = hpsa_put_ctlr_into_performant_mode(h);
8750         if (rc)
8751                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8752
8753         /* create the resubmit workqueue */
8754         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8755         if (!h->rescan_ctlr_wq) {
8756                 rc = -ENOMEM;
8757                 goto clean7;
8758         }
8759
8760         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8761         if (!h->resubmit_wq) {
8762                 rc = -ENOMEM;
8763                 goto clean7;    /* aer/h */
8764         }
8765
8766         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8767         if (!h->monitor_ctlr_wq) {
8768                 rc = -ENOMEM;
8769                 goto clean7;
8770         }
8771
8772         /*
8773          * At this point, the controller is ready to take commands.
8774          * Now, if reset_devices and the hard reset didn't work, try
8775          * the soft reset and see if that works.
8776          */
8777         if (try_soft_reset) {
8778
8779                 /* This is kind of gross.  We may or may not get a completion
8780                  * from the soft reset command, and if we do, then the value
8781                  * from the fifo may or may not be valid.  So, we wait 10 secs
8782                  * after the reset throwing away any completions we get during
8783                  * that time.  Unregister the interrupt handler and register
8784                  * fake ones to scoop up any residual completions.
8785                  */
8786                 spin_lock_irqsave(&h->lock, flags);
8787                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8788                 spin_unlock_irqrestore(&h->lock, flags);
8789                 hpsa_free_irqs(h);
8790                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8791                                         hpsa_intx_discard_completions);
8792                 if (rc) {
8793                         dev_warn(&h->pdev->dev,
8794                                 "Failed to request_irq after soft reset.\n");
8795                         /*
8796                          * cannot goto clean7 or free_irqs will be called
8797                          * again. Instead, do its work
8798                          */
8799                         hpsa_free_performant_mode(h);   /* clean7 */
8800                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8801                         hpsa_free_cmd_pool(h);          /* clean5 */
8802                         /*
8803                          * skip hpsa_free_irqs(h) clean4 since that
8804                          * was just called before request_irqs failed
8805                          */
8806                         goto clean3;
8807                 }
8808
8809                 rc = hpsa_kdump_soft_reset(h);
8810                 if (rc)
8811                         /* Neither hard nor soft reset worked, we're hosed. */
8812                         goto clean7;
8813
8814                 dev_info(&h->pdev->dev, "Board READY.\n");
8815                 dev_info(&h->pdev->dev,
8816                         "Waiting for stale completions to drain.\n");
8817                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8818                 msleep(10000);
8819                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8820
8821                 rc = controller_reset_failed(h->cfgtable);
8822                 if (rc)
8823                         dev_info(&h->pdev->dev,
8824                                 "Soft reset appears to have failed.\n");
8825
8826                 /* since the controller's reset, we have to go back and re-init
8827                  * everything.  Easiest to just forget what we've done and do it
8828                  * all over again.
8829                  */
8830                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8831                 try_soft_reset = 0;
8832                 if (rc)
8833                         /* don't goto clean, we already unallocated */
8834                         return -ENODEV;
8835
8836                 goto reinit_after_soft_reset;
8837         }
8838
8839         /* Enable Accelerated IO path at driver layer */
8840         h->acciopath_status = 1;
8841         /* Disable discovery polling.*/
8842         h->discovery_polling = 0;
8843
8844
8845         /* Turn the interrupts on so we can service requests */
8846         h->access.set_intr_mask(h, HPSA_INTR_ON);
8847
8848         hpsa_hba_inquiry(h);
8849
8850         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8851         if (!h->lastlogicals)
8852                 dev_info(&h->pdev->dev,
8853                         "Can't track change to report lun data\n");
8854
8855         /* hook into SCSI subsystem */
8856         rc = hpsa_scsi_add_host(h);
8857         if (rc)
8858                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8859
8860         /* Monitor the controller for firmware lockups */
8861         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8862         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8863         schedule_delayed_work(&h->monitor_ctlr_work,
8864                                 h->heartbeat_sample_interval);
8865         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8866         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8867                                 h->heartbeat_sample_interval);
8868         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8869         schedule_delayed_work(&h->event_monitor_work,
8870                                 HPSA_EVENT_MONITOR_INTERVAL);
8871         return 0;
8872
8873 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8874         kfree(h->lastlogicals);
8875 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8876         hpsa_free_performant_mode(h);
8877         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8878 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8879         hpsa_free_sg_chain_blocks(h);
8880 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8881         hpsa_free_cmd_pool(h);
8882 clean4: /* irq, shost, pci, lu, aer/h */
8883         hpsa_free_irqs(h);
8884 clean3: /* shost, pci, lu, aer/h */
8885         scsi_host_put(h->scsi_host);
8886         h->scsi_host = NULL;
8887 clean2_5: /* pci, lu, aer/h */
8888         hpsa_free_pci_init(h);
8889 clean2: /* lu, aer/h */
8890         if (h->lockup_detected) {
8891                 free_percpu(h->lockup_detected);
8892                 h->lockup_detected = NULL;
8893         }
8894 clean1: /* wq/aer/h */
8895         if (h->resubmit_wq) {
8896                 destroy_workqueue(h->resubmit_wq);
8897                 h->resubmit_wq = NULL;
8898         }
8899         if (h->rescan_ctlr_wq) {
8900                 destroy_workqueue(h->rescan_ctlr_wq);
8901                 h->rescan_ctlr_wq = NULL;
8902         }
8903         if (h->monitor_ctlr_wq) {
8904                 destroy_workqueue(h->monitor_ctlr_wq);
8905                 h->monitor_ctlr_wq = NULL;
8906         }
8907         hpda_free_ctlr_info(h);
8908         return rc;
8909 }
8910
8911 static void hpsa_flush_cache(struct ctlr_info *h)
8912 {
8913         char *flush_buf;
8914         struct CommandList *c;
8915         int rc;
8916
8917         if (unlikely(lockup_detected(h)))
8918                 return;
8919         flush_buf = kzalloc(4, GFP_KERNEL);
8920         if (!flush_buf)
8921                 return;
8922
8923         c = cmd_alloc(h);
8924
8925         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8926                 RAID_CTLR_LUNID, TYPE_CMD)) {
8927                 goto out;
8928         }
8929         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8930                         DEFAULT_TIMEOUT);
8931         if (rc)
8932                 goto out;
8933         if (c->err_info->CommandStatus != 0)
8934 out:
8935                 dev_warn(&h->pdev->dev,
8936                         "error flushing cache on controller\n");
8937         cmd_free(h, c);
8938         kfree(flush_buf);
8939 }
8940
8941 /* Make controller gather fresh report lun data each time we
8942  * send down a report luns request
8943  */
8944 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8945 {
8946         u32 *options;
8947         struct CommandList *c;
8948         int rc;
8949
8950         /* Don't bother trying to set diag options if locked up */
8951         if (unlikely(h->lockup_detected))
8952                 return;
8953
8954         options = kzalloc(sizeof(*options), GFP_KERNEL);
8955         if (!options)
8956                 return;
8957
8958         c = cmd_alloc(h);
8959
8960         /* first, get the current diag options settings */
8961         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8962                 RAID_CTLR_LUNID, TYPE_CMD))
8963                 goto errout;
8964
8965         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8966                         NO_TIMEOUT);
8967         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8968                 goto errout;
8969
8970         /* Now, set the bit for disabling the RLD caching */
8971         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8972
8973         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8974                 RAID_CTLR_LUNID, TYPE_CMD))
8975                 goto errout;
8976
8977         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8978                         NO_TIMEOUT);
8979         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8980                 goto errout;
8981
8982         /* Now verify that it got set: */
8983         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8984                 RAID_CTLR_LUNID, TYPE_CMD))
8985                 goto errout;
8986
8987         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8988                         NO_TIMEOUT);
8989         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8990                 goto errout;
8991
8992         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8993                 goto out;
8994
8995 errout:
8996         dev_err(&h->pdev->dev,
8997                         "Error: failed to disable report lun data caching.\n");
8998 out:
8999         cmd_free(h, c);
9000         kfree(options);
9001 }
9002
9003 static void __hpsa_shutdown(struct pci_dev *pdev)
9004 {
9005         struct ctlr_info *h;
9006
9007         h = pci_get_drvdata(pdev);
9008         /* Turn board interrupts off  and send the flush cache command
9009          * sendcmd will turn off interrupt, and send the flush...
9010          * To write all data in the battery backed cache to disks
9011          */
9012         hpsa_flush_cache(h);
9013         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9014         hpsa_free_irqs(h);                      /* init_one 4 */
9015         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9016 }
9017
9018 static void hpsa_shutdown(struct pci_dev *pdev)
9019 {
9020         __hpsa_shutdown(pdev);
9021         pci_disable_device(pdev);
9022 }
9023
9024 static void hpsa_free_device_info(struct ctlr_info *h)
9025 {
9026         int i;
9027
9028         for (i = 0; i < h->ndevices; i++) {
9029                 kfree(h->dev[i]);
9030                 h->dev[i] = NULL;
9031         }
9032 }
9033
9034 static void hpsa_remove_one(struct pci_dev *pdev)
9035 {
9036         struct ctlr_info *h;
9037         unsigned long flags;
9038
9039         if (pci_get_drvdata(pdev) == NULL) {
9040                 dev_err(&pdev->dev, "unable to remove device\n");
9041                 return;
9042         }
9043         h = pci_get_drvdata(pdev);
9044
9045         /* Get rid of any controller monitoring work items */
9046         spin_lock_irqsave(&h->lock, flags);
9047         h->remove_in_progress = 1;
9048         spin_unlock_irqrestore(&h->lock, flags);
9049         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9050         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9051         cancel_delayed_work_sync(&h->event_monitor_work);
9052         destroy_workqueue(h->rescan_ctlr_wq);
9053         destroy_workqueue(h->resubmit_wq);
9054         destroy_workqueue(h->monitor_ctlr_wq);
9055
9056         hpsa_delete_sas_host(h);
9057
9058         /*
9059          * Call before disabling interrupts.
9060          * scsi_remove_host can trigger I/O operations especially
9061          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9062          * operations which cannot complete and will hang the system.
9063          */
9064         if (h->scsi_host)
9065                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9066         /* includes hpsa_free_irqs - init_one 4 */
9067         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9068         __hpsa_shutdown(pdev);
9069
9070         hpsa_free_device_info(h);               /* scan */
9071
9072         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9073         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9074         hpsa_free_ioaccel2_sg_chain_blocks(h);
9075         hpsa_free_performant_mode(h);                   /* init_one 7 */
9076         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9077         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9078         kfree(h->lastlogicals);
9079
9080         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9081
9082         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9083         h->scsi_host = NULL;                            /* init_one 3 */
9084
9085         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9086         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9087
9088         free_percpu(h->lockup_detected);                /* init_one 2 */
9089         h->lockup_detected = NULL;                      /* init_one 2 */
9090         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9091
9092         hpda_free_ctlr_info(h);                         /* init_one 1 */
9093 }
9094
9095 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9096         __attribute__((unused)) pm_message_t state)
9097 {
9098         return -ENOSYS;
9099 }
9100
9101 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9102 {
9103         return -ENOSYS;
9104 }
9105
9106 static struct pci_driver hpsa_pci_driver = {
9107         .name = HPSA,
9108         .probe = hpsa_init_one,
9109         .remove = hpsa_remove_one,
9110         .id_table = hpsa_pci_device_id, /* id_table */
9111         .shutdown = hpsa_shutdown,
9112         .suspend = hpsa_suspend,
9113         .resume = hpsa_resume,
9114 };
9115
9116 /* Fill in bucket_map[], given nsgs (the max number of
9117  * scatter gather elements supported) and bucket[],
9118  * which is an array of 8 integers.  The bucket[] array
9119  * contains 8 different DMA transfer sizes (in 16
9120  * byte increments) which the controller uses to fetch
9121  * commands.  This function fills in bucket_map[], which
9122  * maps a given number of scatter gather elements to one of
9123  * the 8 DMA transfer sizes.  The point of it is to allow the
9124  * controller to only do as much DMA as needed to fetch the
9125  * command, with the DMA transfer size encoded in the lower
9126  * bits of the command address.
9127  */
9128 static void  calc_bucket_map(int bucket[], int num_buckets,
9129         int nsgs, int min_blocks, u32 *bucket_map)
9130 {
9131         int i, j, b, size;
9132
9133         /* Note, bucket_map must have nsgs+1 entries. */
9134         for (i = 0; i <= nsgs; i++) {
9135                 /* Compute size of a command with i SG entries */
9136                 size = i + min_blocks;
9137                 b = num_buckets; /* Assume the biggest bucket */
9138                 /* Find the bucket that is just big enough */
9139                 for (j = 0; j < num_buckets; j++) {
9140                         if (bucket[j] >= size) {
9141                                 b = j;
9142                                 break;
9143                         }
9144                 }
9145                 /* for a command with i SG entries, use bucket b. */
9146                 bucket_map[i] = b;
9147         }
9148 }
9149
9150 /*
9151  * return -ENODEV on err, 0 on success (or no action)
9152  * allocates numerous items that must be freed later
9153  */
9154 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9155 {
9156         int i;
9157         unsigned long register_value;
9158         unsigned long transMethod = CFGTBL_Trans_Performant |
9159                         (trans_support & CFGTBL_Trans_use_short_tags) |
9160                                 CFGTBL_Trans_enable_directed_msix |
9161                         (trans_support & (CFGTBL_Trans_io_accel1 |
9162                                 CFGTBL_Trans_io_accel2));
9163         struct access_method access = SA5_performant_access;
9164
9165         /* This is a bit complicated.  There are 8 registers on
9166          * the controller which we write to to tell it 8 different
9167          * sizes of commands which there may be.  It's a way of
9168          * reducing the DMA done to fetch each command.  Encoded into
9169          * each command's tag are 3 bits which communicate to the controller
9170          * which of the eight sizes that command fits within.  The size of
9171          * each command depends on how many scatter gather entries there are.
9172          * Each SG entry requires 16 bytes.  The eight registers are programmed
9173          * with the number of 16-byte blocks a command of that size requires.
9174          * The smallest command possible requires 5 such 16 byte blocks.
9175          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9176          * blocks.  Note, this only extends to the SG entries contained
9177          * within the command block, and does not extend to chained blocks
9178          * of SG elements.   bft[] contains the eight values we write to
9179          * the registers.  They are not evenly distributed, but have more
9180          * sizes for small commands, and fewer sizes for larger commands.
9181          */
9182         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9183 #define MIN_IOACCEL2_BFT_ENTRY 5
9184 #define HPSA_IOACCEL2_HEADER_SZ 4
9185         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9186                         13, 14, 15, 16, 17, 18, 19,
9187                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9188         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9189         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9190         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9191                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9192         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9193         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9194         /*  5 = 1 s/g entry or 4k
9195          *  6 = 2 s/g entry or 8k
9196          *  8 = 4 s/g entry or 16k
9197          * 10 = 6 s/g entry or 24k
9198          */
9199
9200         /* If the controller supports either ioaccel method then
9201          * we can also use the RAID stack submit path that does not
9202          * perform the superfluous readl() after each command submission.
9203          */
9204         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9205                 access = SA5_performant_access_no_read;
9206
9207         /* Controller spec: zero out this buffer. */
9208         for (i = 0; i < h->nreply_queues; i++)
9209                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9210
9211         bft[7] = SG_ENTRIES_IN_CMD + 4;
9212         calc_bucket_map(bft, ARRAY_SIZE(bft),
9213                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9214         for (i = 0; i < 8; i++)
9215                 writel(bft[i], &h->transtable->BlockFetch[i]);
9216
9217         /* size of controller ring buffer */
9218         writel(h->max_commands, &h->transtable->RepQSize);
9219         writel(h->nreply_queues, &h->transtable->RepQCount);
9220         writel(0, &h->transtable->RepQCtrAddrLow32);
9221         writel(0, &h->transtable->RepQCtrAddrHigh32);
9222
9223         for (i = 0; i < h->nreply_queues; i++) {
9224                 writel(0, &h->transtable->RepQAddr[i].upper);
9225                 writel(h->reply_queue[i].busaddr,
9226                         &h->transtable->RepQAddr[i].lower);
9227         }
9228
9229         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9230         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9231         /*
9232          * enable outbound interrupt coalescing in accelerator mode;
9233          */
9234         if (trans_support & CFGTBL_Trans_io_accel1) {
9235                 access = SA5_ioaccel_mode1_access;
9236                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9237                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9238         } else
9239                 if (trans_support & CFGTBL_Trans_io_accel2)
9240                         access = SA5_ioaccel_mode2_access;
9241         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9242         if (hpsa_wait_for_mode_change_ack(h)) {
9243                 dev_err(&h->pdev->dev,
9244                         "performant mode problem - doorbell timeout\n");
9245                 return -ENODEV;
9246         }
9247         register_value = readl(&(h->cfgtable->TransportActive));
9248         if (!(register_value & CFGTBL_Trans_Performant)) {
9249                 dev_err(&h->pdev->dev,
9250                         "performant mode problem - transport not active\n");
9251                 return -ENODEV;
9252         }
9253         /* Change the access methods to the performant access methods */
9254         h->access = access;
9255         h->transMethod = transMethod;
9256
9257         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9258                 (trans_support & CFGTBL_Trans_io_accel2)))
9259                 return 0;
9260
9261         if (trans_support & CFGTBL_Trans_io_accel1) {
9262                 /* Set up I/O accelerator mode */
9263                 for (i = 0; i < h->nreply_queues; i++) {
9264                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9265                         h->reply_queue[i].current_entry =
9266                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9267                 }
9268                 bft[7] = h->ioaccel_maxsg + 8;
9269                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9270                                 h->ioaccel1_blockFetchTable);
9271
9272                 /* initialize all reply queue entries to unused */
9273                 for (i = 0; i < h->nreply_queues; i++)
9274                         memset(h->reply_queue[i].head,
9275                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9276                                 h->reply_queue_size);
9277
9278                 /* set all the constant fields in the accelerator command
9279                  * frames once at init time to save CPU cycles later.
9280                  */
9281                 for (i = 0; i < h->nr_cmds; i++) {
9282                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9283
9284                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9285                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9286                                         (i * sizeof(struct ErrorInfo)));
9287                         cp->err_info_len = sizeof(struct ErrorInfo);
9288                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9289                         cp->host_context_flags =
9290                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9291                         cp->timeout_sec = 0;
9292                         cp->ReplyQueue = 0;
9293                         cp->tag =
9294                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9295                         cp->host_addr =
9296                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9297                                         (i * sizeof(struct io_accel1_cmd)));
9298                 }
9299         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9300                 u64 cfg_offset, cfg_base_addr_index;
9301                 u32 bft2_offset, cfg_base_addr;
9302                 int rc;
9303
9304                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9305                         &cfg_base_addr_index, &cfg_offset);
9306                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9307                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9308                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9309                                 4, h->ioaccel2_blockFetchTable);
9310                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9311                 BUILD_BUG_ON(offsetof(struct CfgTable,
9312                                 io_accel_request_size_offset) != 0xb8);
9313                 h->ioaccel2_bft2_regs =
9314                         remap_pci_mem(pci_resource_start(h->pdev,
9315                                         cfg_base_addr_index) +
9316                                         cfg_offset + bft2_offset,
9317                                         ARRAY_SIZE(bft2) *
9318                                         sizeof(*h->ioaccel2_bft2_regs));
9319                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9320                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9321         }
9322         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9323         if (hpsa_wait_for_mode_change_ack(h)) {
9324                 dev_err(&h->pdev->dev,
9325                         "performant mode problem - enabling ioaccel mode\n");
9326                 return -ENODEV;
9327         }
9328         return 0;
9329 }
9330
9331 /* Free ioaccel1 mode command blocks and block fetch table */
9332 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9333 {
9334         if (h->ioaccel_cmd_pool) {
9335                 dma_free_coherent(&h->pdev->dev,
9336                                   h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9337                                   h->ioaccel_cmd_pool,
9338                                   h->ioaccel_cmd_pool_dhandle);
9339                 h->ioaccel_cmd_pool = NULL;
9340                 h->ioaccel_cmd_pool_dhandle = 0;
9341         }
9342         kfree(h->ioaccel1_blockFetchTable);
9343         h->ioaccel1_blockFetchTable = NULL;
9344 }
9345
9346 /* Allocate ioaccel1 mode command blocks and block fetch table */
9347 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9348 {
9349         h->ioaccel_maxsg =
9350                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9351         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9352                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9353
9354         /* Command structures must be aligned on a 128-byte boundary
9355          * because the 7 lower bits of the address are used by the
9356          * hardware.
9357          */
9358         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9359                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9360         h->ioaccel_cmd_pool =
9361                 dma_alloc_coherent(&h->pdev->dev,
9362                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9363                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9364
9365         h->ioaccel1_blockFetchTable =
9366                 kmalloc(((h->ioaccel_maxsg + 1) *
9367                                 sizeof(u32)), GFP_KERNEL);
9368
9369         if ((h->ioaccel_cmd_pool == NULL) ||
9370                 (h->ioaccel1_blockFetchTable == NULL))
9371                 goto clean_up;
9372
9373         memset(h->ioaccel_cmd_pool, 0,
9374                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9375         return 0;
9376
9377 clean_up:
9378         hpsa_free_ioaccel1_cmd_and_bft(h);
9379         return -ENOMEM;
9380 }
9381
9382 /* Free ioaccel2 mode command blocks and block fetch table */
9383 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9384 {
9385         hpsa_free_ioaccel2_sg_chain_blocks(h);
9386
9387         if (h->ioaccel2_cmd_pool) {
9388                 dma_free_coherent(&h->pdev->dev,
9389                                   h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9390                                   h->ioaccel2_cmd_pool,
9391                                   h->ioaccel2_cmd_pool_dhandle);
9392                 h->ioaccel2_cmd_pool = NULL;
9393                 h->ioaccel2_cmd_pool_dhandle = 0;
9394         }
9395         kfree(h->ioaccel2_blockFetchTable);
9396         h->ioaccel2_blockFetchTable = NULL;
9397 }
9398
9399 /* Allocate ioaccel2 mode command blocks and block fetch table */
9400 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9401 {
9402         int rc;
9403
9404         /* Allocate ioaccel2 mode command blocks and block fetch table */
9405
9406         h->ioaccel_maxsg =
9407                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9408         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9409                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9410
9411         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9412                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9413         h->ioaccel2_cmd_pool =
9414                 dma_alloc_coherent(&h->pdev->dev,
9415                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9416                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9417
9418         h->ioaccel2_blockFetchTable =
9419                 kmalloc(((h->ioaccel_maxsg + 1) *
9420                                 sizeof(u32)), GFP_KERNEL);
9421
9422         if ((h->ioaccel2_cmd_pool == NULL) ||
9423                 (h->ioaccel2_blockFetchTable == NULL)) {
9424                 rc = -ENOMEM;
9425                 goto clean_up;
9426         }
9427
9428         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9429         if (rc)
9430                 goto clean_up;
9431
9432         memset(h->ioaccel2_cmd_pool, 0,
9433                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9434         return 0;
9435
9436 clean_up:
9437         hpsa_free_ioaccel2_cmd_and_bft(h);
9438         return rc;
9439 }
9440
9441 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9442 static void hpsa_free_performant_mode(struct ctlr_info *h)
9443 {
9444         kfree(h->blockFetchTable);
9445         h->blockFetchTable = NULL;
9446         hpsa_free_reply_queues(h);
9447         hpsa_free_ioaccel1_cmd_and_bft(h);
9448         hpsa_free_ioaccel2_cmd_and_bft(h);
9449 }
9450
9451 /* return -ENODEV on error, 0 on success (or no action)
9452  * allocates numerous items that must be freed later
9453  */
9454 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9455 {
9456         u32 trans_support;
9457         unsigned long transMethod = CFGTBL_Trans_Performant |
9458                                         CFGTBL_Trans_use_short_tags;
9459         int i, rc;
9460
9461         if (hpsa_simple_mode)
9462                 return 0;
9463
9464         trans_support = readl(&(h->cfgtable->TransportSupport));
9465         if (!(trans_support & PERFORMANT_MODE))
9466                 return 0;
9467
9468         /* Check for I/O accelerator mode support */
9469         if (trans_support & CFGTBL_Trans_io_accel1) {
9470                 transMethod |= CFGTBL_Trans_io_accel1 |
9471                                 CFGTBL_Trans_enable_directed_msix;
9472                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9473                 if (rc)
9474                         return rc;
9475         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9476                 transMethod |= CFGTBL_Trans_io_accel2 |
9477                                 CFGTBL_Trans_enable_directed_msix;
9478                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9479                 if (rc)
9480                         return rc;
9481         }
9482
9483         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9484         hpsa_get_max_perf_mode_cmds(h);
9485         /* Performant mode ring buffer and supporting data structures */
9486         h->reply_queue_size = h->max_commands * sizeof(u64);
9487
9488         for (i = 0; i < h->nreply_queues; i++) {
9489                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9490                                                 h->reply_queue_size,
9491                                                 &h->reply_queue[i].busaddr,
9492                                                 GFP_KERNEL);
9493                 if (!h->reply_queue[i].head) {
9494                         rc = -ENOMEM;
9495                         goto clean1;    /* rq, ioaccel */
9496                 }
9497                 h->reply_queue[i].size = h->max_commands;
9498                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9499                 h->reply_queue[i].current_entry = 0;
9500         }
9501
9502         /* Need a block fetch table for performant mode */
9503         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9504                                 sizeof(u32)), GFP_KERNEL);
9505         if (!h->blockFetchTable) {
9506                 rc = -ENOMEM;
9507                 goto clean1;    /* rq, ioaccel */
9508         }
9509
9510         rc = hpsa_enter_performant_mode(h, trans_support);
9511         if (rc)
9512                 goto clean2;    /* bft, rq, ioaccel */
9513         return 0;
9514
9515 clean2: /* bft, rq, ioaccel */
9516         kfree(h->blockFetchTable);
9517         h->blockFetchTable = NULL;
9518 clean1: /* rq, ioaccel */
9519         hpsa_free_reply_queues(h);
9520         hpsa_free_ioaccel1_cmd_and_bft(h);
9521         hpsa_free_ioaccel2_cmd_and_bft(h);
9522         return rc;
9523 }
9524
9525 static int is_accelerated_cmd(struct CommandList *c)
9526 {
9527         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9528 }
9529
9530 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9531 {
9532         struct CommandList *c = NULL;
9533         int i, accel_cmds_out;
9534         int refcount;
9535
9536         do { /* wait for all outstanding ioaccel commands to drain out */
9537                 accel_cmds_out = 0;
9538                 for (i = 0; i < h->nr_cmds; i++) {
9539                         c = h->cmd_pool + i;
9540                         refcount = atomic_inc_return(&c->refcount);
9541                         if (refcount > 1) /* Command is allocated */
9542                                 accel_cmds_out += is_accelerated_cmd(c);
9543                         cmd_free(h, c);
9544                 }
9545                 if (accel_cmds_out <= 0)
9546                         break;
9547                 msleep(100);
9548         } while (1);
9549 }
9550
9551 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9552                                 struct hpsa_sas_port *hpsa_sas_port)
9553 {
9554         struct hpsa_sas_phy *hpsa_sas_phy;
9555         struct sas_phy *phy;
9556
9557         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9558         if (!hpsa_sas_phy)
9559                 return NULL;
9560
9561         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9562                 hpsa_sas_port->next_phy_index);
9563         if (!phy) {
9564                 kfree(hpsa_sas_phy);
9565                 return NULL;
9566         }
9567
9568         hpsa_sas_port->next_phy_index++;
9569         hpsa_sas_phy->phy = phy;
9570         hpsa_sas_phy->parent_port = hpsa_sas_port;
9571
9572         return hpsa_sas_phy;
9573 }
9574
9575 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9576 {
9577         struct sas_phy *phy = hpsa_sas_phy->phy;
9578
9579         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9580         if (hpsa_sas_phy->added_to_port)
9581                 list_del(&hpsa_sas_phy->phy_list_entry);
9582         sas_phy_delete(phy);
9583         kfree(hpsa_sas_phy);
9584 }
9585
9586 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9587 {
9588         int rc;
9589         struct hpsa_sas_port *hpsa_sas_port;
9590         struct sas_phy *phy;
9591         struct sas_identify *identify;
9592
9593         hpsa_sas_port = hpsa_sas_phy->parent_port;
9594         phy = hpsa_sas_phy->phy;
9595
9596         identify = &phy->identify;
9597         memset(identify, 0, sizeof(*identify));
9598         identify->sas_address = hpsa_sas_port->sas_address;
9599         identify->device_type = SAS_END_DEVICE;
9600         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9601         identify->target_port_protocols = SAS_PROTOCOL_STP;
9602         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9603         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9604         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9605         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9606         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9607
9608         rc = sas_phy_add(hpsa_sas_phy->phy);
9609         if (rc)
9610                 return rc;
9611
9612         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9613         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9614                         &hpsa_sas_port->phy_list_head);
9615         hpsa_sas_phy->added_to_port = true;
9616
9617         return 0;
9618 }
9619
9620 static int
9621         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9622                                 struct sas_rphy *rphy)
9623 {
9624         struct sas_identify *identify;
9625
9626         identify = &rphy->identify;
9627         identify->sas_address = hpsa_sas_port->sas_address;
9628         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9629         identify->target_port_protocols = SAS_PROTOCOL_STP;
9630
9631         return sas_rphy_add(rphy);
9632 }
9633
9634 static struct hpsa_sas_port
9635         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9636                                 u64 sas_address)
9637 {
9638         int rc;
9639         struct hpsa_sas_port *hpsa_sas_port;
9640         struct sas_port *port;
9641
9642         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9643         if (!hpsa_sas_port)
9644                 return NULL;
9645
9646         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9647         hpsa_sas_port->parent_node = hpsa_sas_node;
9648
9649         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9650         if (!port)
9651                 goto free_hpsa_port;
9652
9653         rc = sas_port_add(port);
9654         if (rc)
9655                 goto free_sas_port;
9656
9657         hpsa_sas_port->port = port;
9658         hpsa_sas_port->sas_address = sas_address;
9659         list_add_tail(&hpsa_sas_port->port_list_entry,
9660                         &hpsa_sas_node->port_list_head);
9661
9662         return hpsa_sas_port;
9663
9664 free_sas_port:
9665         sas_port_free(port);
9666 free_hpsa_port:
9667         kfree(hpsa_sas_port);
9668
9669         return NULL;
9670 }
9671
9672 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9673 {
9674         struct hpsa_sas_phy *hpsa_sas_phy;
9675         struct hpsa_sas_phy *next;
9676
9677         list_for_each_entry_safe(hpsa_sas_phy, next,
9678                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9679                 hpsa_free_sas_phy(hpsa_sas_phy);
9680
9681         sas_port_delete(hpsa_sas_port->port);
9682         list_del(&hpsa_sas_port->port_list_entry);
9683         kfree(hpsa_sas_port);
9684 }
9685
9686 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9687 {
9688         struct hpsa_sas_node *hpsa_sas_node;
9689
9690         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9691         if (hpsa_sas_node) {
9692                 hpsa_sas_node->parent_dev = parent_dev;
9693                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9694         }
9695
9696         return hpsa_sas_node;
9697 }
9698
9699 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9700 {
9701         struct hpsa_sas_port *hpsa_sas_port;
9702         struct hpsa_sas_port *next;
9703
9704         if (!hpsa_sas_node)
9705                 return;
9706
9707         list_for_each_entry_safe(hpsa_sas_port, next,
9708                         &hpsa_sas_node->port_list_head, port_list_entry)
9709                 hpsa_free_sas_port(hpsa_sas_port);
9710
9711         kfree(hpsa_sas_node);
9712 }
9713
9714 static struct hpsa_scsi_dev_t
9715         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9716                                         struct sas_rphy *rphy)
9717 {
9718         int i;
9719         struct hpsa_scsi_dev_t *device;
9720
9721         for (i = 0; i < h->ndevices; i++) {
9722                 device = h->dev[i];
9723                 if (!device->sas_port)
9724                         continue;
9725                 if (device->sas_port->rphy == rphy)
9726                         return device;
9727         }
9728
9729         return NULL;
9730 }
9731
9732 static int hpsa_add_sas_host(struct ctlr_info *h)
9733 {
9734         int rc;
9735         struct device *parent_dev;
9736         struct hpsa_sas_node *hpsa_sas_node;
9737         struct hpsa_sas_port *hpsa_sas_port;
9738         struct hpsa_sas_phy *hpsa_sas_phy;
9739
9740         parent_dev = &h->scsi_host->shost_dev;
9741
9742         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9743         if (!hpsa_sas_node)
9744                 return -ENOMEM;
9745
9746         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9747         if (!hpsa_sas_port) {
9748                 rc = -ENODEV;
9749                 goto free_sas_node;
9750         }
9751
9752         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9753         if (!hpsa_sas_phy) {
9754                 rc = -ENODEV;
9755                 goto free_sas_port;
9756         }
9757
9758         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9759         if (rc)
9760                 goto free_sas_phy;
9761
9762         h->sas_host = hpsa_sas_node;
9763
9764         return 0;
9765
9766 free_sas_phy:
9767         sas_phy_free(hpsa_sas_phy->phy);
9768         kfree(hpsa_sas_phy);
9769 free_sas_port:
9770         hpsa_free_sas_port(hpsa_sas_port);
9771 free_sas_node:
9772         hpsa_free_sas_node(hpsa_sas_node);
9773
9774         return rc;
9775 }
9776
9777 static void hpsa_delete_sas_host(struct ctlr_info *h)
9778 {
9779         hpsa_free_sas_node(h->sas_host);
9780 }
9781
9782 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9783                                 struct hpsa_scsi_dev_t *device)
9784 {
9785         int rc;
9786         struct hpsa_sas_port *hpsa_sas_port;
9787         struct sas_rphy *rphy;
9788
9789         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9790         if (!hpsa_sas_port)
9791                 return -ENOMEM;
9792
9793         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9794         if (!rphy) {
9795                 rc = -ENODEV;
9796                 goto free_sas_port;
9797         }
9798
9799         hpsa_sas_port->rphy = rphy;
9800         device->sas_port = hpsa_sas_port;
9801
9802         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9803         if (rc)
9804                 goto free_sas_rphy;
9805
9806         return 0;
9807
9808 free_sas_rphy:
9809         sas_rphy_free(rphy);
9810 free_sas_port:
9811         hpsa_free_sas_port(hpsa_sas_port);
9812         device->sas_port = NULL;
9813
9814         return rc;
9815 }
9816
9817 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9818 {
9819         if (device->sas_port) {
9820                 hpsa_free_sas_port(device->sas_port);
9821                 device->sas_port = NULL;
9822         }
9823 }
9824
9825 static int
9826 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9827 {
9828         return 0;
9829 }
9830
9831 static int
9832 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9833 {
9834         struct Scsi_Host *shost = phy_to_shost(rphy);
9835         struct ctlr_info *h;
9836         struct hpsa_scsi_dev_t *sd;
9837
9838         if (!shost)
9839                 return -ENXIO;
9840
9841         h = shost_to_hba(shost);
9842
9843         if (!h)
9844                 return -ENXIO;
9845
9846         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9847         if (!sd)
9848                 return -ENXIO;
9849
9850         *identifier = sd->eli;
9851
9852         return 0;
9853 }
9854
9855 static int
9856 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9857 {
9858         return -ENXIO;
9859 }
9860
9861 static int
9862 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9863 {
9864         return 0;
9865 }
9866
9867 static int
9868 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9869 {
9870         return 0;
9871 }
9872
9873 static int
9874 hpsa_sas_phy_setup(struct sas_phy *phy)
9875 {
9876         return 0;
9877 }
9878
9879 static void
9880 hpsa_sas_phy_release(struct sas_phy *phy)
9881 {
9882 }
9883
9884 static int
9885 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9886 {
9887         return -EINVAL;
9888 }
9889
9890 static struct sas_function_template hpsa_sas_transport_functions = {
9891         .get_linkerrors = hpsa_sas_get_linkerrors,
9892         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9893         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9894         .phy_reset = hpsa_sas_phy_reset,
9895         .phy_enable = hpsa_sas_phy_enable,
9896         .phy_setup = hpsa_sas_phy_setup,
9897         .phy_release = hpsa_sas_phy_release,
9898         .set_phy_speed = hpsa_sas_phy_speed,
9899 };
9900
9901 /*
9902  *  This is it.  Register the PCI driver information for the cards we control
9903  *  the OS will call our registered routines when it finds one of our cards.
9904  */
9905 static int __init hpsa_init(void)
9906 {
9907         int rc;
9908
9909         hpsa_sas_transport_template =
9910                 sas_attach_transport(&hpsa_sas_transport_functions);
9911         if (!hpsa_sas_transport_template)
9912                 return -ENODEV;
9913
9914         rc = pci_register_driver(&hpsa_pci_driver);
9915
9916         if (rc)
9917                 sas_release_transport(hpsa_sas_transport_template);
9918
9919         return rc;
9920 }
9921
9922 static void __exit hpsa_cleanup(void)
9923 {
9924         pci_unregister_driver(&hpsa_pci_driver);
9925         sas_release_transport(hpsa_sas_transport_template);
9926 }
9927
9928 static void __attribute__((unused)) verify_offsets(void)
9929 {
9930 #define VERIFY_OFFSET(member, offset) \
9931         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9932
9933         VERIFY_OFFSET(structure_size, 0);
9934         VERIFY_OFFSET(volume_blk_size, 4);
9935         VERIFY_OFFSET(volume_blk_cnt, 8);
9936         VERIFY_OFFSET(phys_blk_shift, 16);
9937         VERIFY_OFFSET(parity_rotation_shift, 17);
9938         VERIFY_OFFSET(strip_size, 18);
9939         VERIFY_OFFSET(disk_starting_blk, 20);
9940         VERIFY_OFFSET(disk_blk_cnt, 28);
9941         VERIFY_OFFSET(data_disks_per_row, 36);
9942         VERIFY_OFFSET(metadata_disks_per_row, 38);
9943         VERIFY_OFFSET(row_cnt, 40);
9944         VERIFY_OFFSET(layout_map_count, 42);
9945         VERIFY_OFFSET(flags, 44);
9946         VERIFY_OFFSET(dekindex, 46);
9947         /* VERIFY_OFFSET(reserved, 48 */
9948         VERIFY_OFFSET(data, 64);
9949
9950 #undef VERIFY_OFFSET
9951
9952 #define VERIFY_OFFSET(member, offset) \
9953         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9954
9955         VERIFY_OFFSET(IU_type, 0);
9956         VERIFY_OFFSET(direction, 1);
9957         VERIFY_OFFSET(reply_queue, 2);
9958         /* VERIFY_OFFSET(reserved1, 3);  */
9959         VERIFY_OFFSET(scsi_nexus, 4);
9960         VERIFY_OFFSET(Tag, 8);
9961         VERIFY_OFFSET(cdb, 16);
9962         VERIFY_OFFSET(cciss_lun, 32);
9963         VERIFY_OFFSET(data_len, 40);
9964         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9965         VERIFY_OFFSET(sg_count, 45);
9966         /* VERIFY_OFFSET(reserved3 */
9967         VERIFY_OFFSET(err_ptr, 48);
9968         VERIFY_OFFSET(err_len, 56);
9969         /* VERIFY_OFFSET(reserved4  */
9970         VERIFY_OFFSET(sg, 64);
9971
9972 #undef VERIFY_OFFSET
9973
9974 #define VERIFY_OFFSET(member, offset) \
9975         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9976
9977         VERIFY_OFFSET(dev_handle, 0x00);
9978         VERIFY_OFFSET(reserved1, 0x02);
9979         VERIFY_OFFSET(function, 0x03);
9980         VERIFY_OFFSET(reserved2, 0x04);
9981         VERIFY_OFFSET(err_info, 0x0C);
9982         VERIFY_OFFSET(reserved3, 0x10);
9983         VERIFY_OFFSET(err_info_len, 0x12);
9984         VERIFY_OFFSET(reserved4, 0x13);
9985         VERIFY_OFFSET(sgl_offset, 0x14);
9986         VERIFY_OFFSET(reserved5, 0x15);
9987         VERIFY_OFFSET(transfer_len, 0x1C);
9988         VERIFY_OFFSET(reserved6, 0x20);
9989         VERIFY_OFFSET(io_flags, 0x24);
9990         VERIFY_OFFSET(reserved7, 0x26);
9991         VERIFY_OFFSET(LUN, 0x34);
9992         VERIFY_OFFSET(control, 0x3C);
9993         VERIFY_OFFSET(CDB, 0x40);
9994         VERIFY_OFFSET(reserved8, 0x50);
9995         VERIFY_OFFSET(host_context_flags, 0x60);
9996         VERIFY_OFFSET(timeout_sec, 0x62);
9997         VERIFY_OFFSET(ReplyQueue, 0x64);
9998         VERIFY_OFFSET(reserved9, 0x65);
9999         VERIFY_OFFSET(tag, 0x68);
10000         VERIFY_OFFSET(host_addr, 0x70);
10001         VERIFY_OFFSET(CISS_LUN, 0x78);
10002         VERIFY_OFFSET(SG, 0x78 + 8);
10003 #undef VERIFY_OFFSET
10004 }
10005
10006 module_init(hpsa_init);
10007 module_exit(hpsa_cleanup);