GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
511 {
512         device->offload_enabled = 0;
513         device->offload_to_be_enabled = 0;
514 }
515
516 static ssize_t host_show_firmware_revision(struct device *dev,
517              struct device_attribute *attr, char *buf)
518 {
519         struct ctlr_info *h;
520         struct Scsi_Host *shost = class_to_shost(dev);
521         unsigned char *fwrev;
522
523         h = shost_to_hba(shost);
524         if (!h->hba_inquiry_data)
525                 return 0;
526         fwrev = &h->hba_inquiry_data[32];
527         return snprintf(buf, 20, "%c%c%c%c\n",
528                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
529 }
530
531 static ssize_t host_show_commands_outstanding(struct device *dev,
532              struct device_attribute *attr, char *buf)
533 {
534         struct Scsi_Host *shost = class_to_shost(dev);
535         struct ctlr_info *h = shost_to_hba(shost);
536
537         return snprintf(buf, 20, "%d\n",
538                         atomic_read(&h->commands_outstanding));
539 }
540
541 static ssize_t host_show_transport_mode(struct device *dev,
542         struct device_attribute *attr, char *buf)
543 {
544         struct ctlr_info *h;
545         struct Scsi_Host *shost = class_to_shost(dev);
546
547         h = shost_to_hba(shost);
548         return snprintf(buf, 20, "%s\n",
549                 h->transMethod & CFGTBL_Trans_Performant ?
550                         "performant" : "simple");
551 }
552
553 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
554         struct device_attribute *attr, char *buf)
555 {
556         struct ctlr_info *h;
557         struct Scsi_Host *shost = class_to_shost(dev);
558
559         h = shost_to_hba(shost);
560         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
561                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
562 }
563
564 /* List of controllers which cannot be hard reset on kexec with reset_devices */
565 static u32 unresettable_controller[] = {
566         0x324a103C, /* Smart Array P712m */
567         0x324b103C, /* Smart Array P711m */
568         0x3223103C, /* Smart Array P800 */
569         0x3234103C, /* Smart Array P400 */
570         0x3235103C, /* Smart Array P400i */
571         0x3211103C, /* Smart Array E200i */
572         0x3212103C, /* Smart Array E200 */
573         0x3213103C, /* Smart Array E200i */
574         0x3214103C, /* Smart Array E200i */
575         0x3215103C, /* Smart Array E200i */
576         0x3237103C, /* Smart Array E500 */
577         0x323D103C, /* Smart Array P700m */
578         0x40800E11, /* Smart Array 5i */
579         0x409C0E11, /* Smart Array 6400 */
580         0x409D0E11, /* Smart Array 6400 EM */
581         0x40700E11, /* Smart Array 5300 */
582         0x40820E11, /* Smart Array 532 */
583         0x40830E11, /* Smart Array 5312 */
584         0x409A0E11, /* Smart Array 641 */
585         0x409B0E11, /* Smart Array 642 */
586         0x40910E11, /* Smart Array 6i */
587 };
588
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591         0x40800E11, /* Smart Array 5i */
592         0x40700E11, /* Smart Array 5300 */
593         0x40820E11, /* Smart Array 532 */
594         0x40830E11, /* Smart Array 5312 */
595         0x409A0E11, /* Smart Array 641 */
596         0x409B0E11, /* Smart Array 642 */
597         0x40910E11, /* Smart Array 6i */
598         /* Exclude 640x boards.  These are two pci devices in one slot
599          * which share a battery backed cache module.  One controls the
600          * cache, the other accesses the cache through the one that controls
601          * it.  If we reset the one controlling the cache, the other will
602          * likely not be happy.  Just forbid resetting this conjoined mess.
603          * The 640x isn't really supported by hpsa anyway.
604          */
605         0x409C0E11, /* Smart Array 6400 */
606         0x409D0E11, /* Smart Array 6400 EM */
607 };
608
609 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
610 {
611         int i;
612
613         for (i = 0; i < nelems; i++)
614                 if (a[i] == board_id)
615                         return 1;
616         return 0;
617 }
618
619 static int ctlr_is_hard_resettable(u32 board_id)
620 {
621         return !board_id_in_array(unresettable_controller,
622                         ARRAY_SIZE(unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_soft_resettable(u32 board_id)
626 {
627         return !board_id_in_array(soft_unresettable_controller,
628                         ARRAY_SIZE(soft_unresettable_controller), board_id);
629 }
630
631 static int ctlr_is_resettable(u32 board_id)
632 {
633         return ctlr_is_hard_resettable(board_id) ||
634                 ctlr_is_soft_resettable(board_id);
635 }
636
637 static ssize_t host_show_resettable(struct device *dev,
638         struct device_attribute *attr, char *buf)
639 {
640         struct ctlr_info *h;
641         struct Scsi_Host *shost = class_to_shost(dev);
642
643         h = shost_to_hba(shost);
644         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
645 }
646
647 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
648 {
649         return (scsi3addr[3] & 0xC0) == 0x40;
650 }
651
652 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
653         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
654 };
655 #define HPSA_RAID_0     0
656 #define HPSA_RAID_4     1
657 #define HPSA_RAID_1     2       /* also used for RAID 10 */
658 #define HPSA_RAID_5     3       /* also used for RAID 50 */
659 #define HPSA_RAID_51    4
660 #define HPSA_RAID_6     5       /* also used for RAID 60 */
661 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
662 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
663 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
664
665 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
666 {
667         return !device->physical_device;
668 }
669
670 static ssize_t raid_level_show(struct device *dev,
671              struct device_attribute *attr, char *buf)
672 {
673         ssize_t l = 0;
674         unsigned char rlevel;
675         struct ctlr_info *h;
676         struct scsi_device *sdev;
677         struct hpsa_scsi_dev_t *hdev;
678         unsigned long flags;
679
680         sdev = to_scsi_device(dev);
681         h = sdev_to_hba(sdev);
682         spin_lock_irqsave(&h->lock, flags);
683         hdev = sdev->hostdata;
684         if (!hdev) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 return -ENODEV;
687         }
688
689         /* Is this even a logical drive? */
690         if (!is_logical_device(hdev)) {
691                 spin_unlock_irqrestore(&h->lock, flags);
692                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
693                 return l;
694         }
695
696         rlevel = hdev->raid_level;
697         spin_unlock_irqrestore(&h->lock, flags);
698         if (rlevel > RAID_UNKNOWN)
699                 rlevel = RAID_UNKNOWN;
700         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
701         return l;
702 }
703
704 static ssize_t lunid_show(struct device *dev,
705              struct device_attribute *attr, char *buf)
706 {
707         struct ctlr_info *h;
708         struct scsi_device *sdev;
709         struct hpsa_scsi_dev_t *hdev;
710         unsigned long flags;
711         unsigned char lunid[8];
712
713         sdev = to_scsi_device(dev);
714         h = sdev_to_hba(sdev);
715         spin_lock_irqsave(&h->lock, flags);
716         hdev = sdev->hostdata;
717         if (!hdev) {
718                 spin_unlock_irqrestore(&h->lock, flags);
719                 return -ENODEV;
720         }
721         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
722         spin_unlock_irqrestore(&h->lock, flags);
723         return snprintf(buf, 20, "0x%8phN\n", lunid);
724 }
725
726 static ssize_t unique_id_show(struct device *dev,
727              struct device_attribute *attr, char *buf)
728 {
729         struct ctlr_info *h;
730         struct scsi_device *sdev;
731         struct hpsa_scsi_dev_t *hdev;
732         unsigned long flags;
733         unsigned char sn[16];
734
735         sdev = to_scsi_device(dev);
736         h = sdev_to_hba(sdev);
737         spin_lock_irqsave(&h->lock, flags);
738         hdev = sdev->hostdata;
739         if (!hdev) {
740                 spin_unlock_irqrestore(&h->lock, flags);
741                 return -ENODEV;
742         }
743         memcpy(sn, hdev->device_id, sizeof(sn));
744         spin_unlock_irqrestore(&h->lock, flags);
745         return snprintf(buf, 16 * 2 + 2,
746                         "%02X%02X%02X%02X%02X%02X%02X%02X"
747                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
748                         sn[0], sn[1], sn[2], sn[3],
749                         sn[4], sn[5], sn[6], sn[7],
750                         sn[8], sn[9], sn[10], sn[11],
751                         sn[12], sn[13], sn[14], sn[15]);
752 }
753
754 static ssize_t sas_address_show(struct device *dev,
755               struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         u64 sas_address;
762
763         sdev = to_scsi_device(dev);
764         h = sdev_to_hba(sdev);
765         spin_lock_irqsave(&h->lock, flags);
766         hdev = sdev->hostdata;
767         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
768                 spin_unlock_irqrestore(&h->lock, flags);
769                 return -ENODEV;
770         }
771         sas_address = hdev->sas_address;
772         spin_unlock_irqrestore(&h->lock, flags);
773
774         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
775 }
776
777 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
778              struct device_attribute *attr, char *buf)
779 {
780         struct ctlr_info *h;
781         struct scsi_device *sdev;
782         struct hpsa_scsi_dev_t *hdev;
783         unsigned long flags;
784         int offload_enabled;
785
786         sdev = to_scsi_device(dev);
787         h = sdev_to_hba(sdev);
788         spin_lock_irqsave(&h->lock, flags);
789         hdev = sdev->hostdata;
790         if (!hdev) {
791                 spin_unlock_irqrestore(&h->lock, flags);
792                 return -ENODEV;
793         }
794         offload_enabled = hdev->offload_enabled;
795         spin_unlock_irqrestore(&h->lock, flags);
796
797         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
798                 return snprintf(buf, 20, "%d\n", offload_enabled);
799         else
800                 return snprintf(buf, 40, "%s\n",
801                                 "Not applicable for a controller");
802 }
803
804 #define MAX_PATHS 8
805 static ssize_t path_info_show(struct device *dev,
806              struct device_attribute *attr, char *buf)
807 {
808         struct ctlr_info *h;
809         struct scsi_device *sdev;
810         struct hpsa_scsi_dev_t *hdev;
811         unsigned long flags;
812         int i;
813         int output_len = 0;
814         u8 box;
815         u8 bay;
816         u8 path_map_index = 0;
817         char *active;
818         unsigned char phys_connector[2];
819
820         sdev = to_scsi_device(dev);
821         h = sdev_to_hba(sdev);
822         spin_lock_irqsave(&h->devlock, flags);
823         hdev = sdev->hostdata;
824         if (!hdev) {
825                 spin_unlock_irqrestore(&h->devlock, flags);
826                 return -ENODEV;
827         }
828
829         bay = hdev->bay;
830         for (i = 0; i < MAX_PATHS; i++) {
831                 path_map_index = 1<<i;
832                 if (i == hdev->active_path_index)
833                         active = "Active";
834                 else if (hdev->path_map & path_map_index)
835                         active = "Inactive";
836                 else
837                         continue;
838
839                 output_len += scnprintf(buf + output_len,
840                                 PAGE_SIZE - output_len,
841                                 "[%d:%d:%d:%d] %20.20s ",
842                                 h->scsi_host->host_no,
843                                 hdev->bus, hdev->target, hdev->lun,
844                                 scsi_device_type(hdev->devtype));
845
846                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
847                         output_len += scnprintf(buf + output_len,
848                                                 PAGE_SIZE - output_len,
849                                                 "%s\n", active);
850                         continue;
851                 }
852
853                 box = hdev->box[i];
854                 memcpy(&phys_connector, &hdev->phys_connector[i],
855                         sizeof(phys_connector));
856                 if (phys_connector[0] < '0')
857                         phys_connector[0] = '0';
858                 if (phys_connector[1] < '0')
859                         phys_connector[1] = '0';
860                 output_len += scnprintf(buf + output_len,
861                                 PAGE_SIZE - output_len,
862                                 "PORT: %.2s ",
863                                 phys_connector);
864                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
865                         hdev->expose_device) {
866                         if (box == 0 || box == 0xFF) {
867                                 output_len += scnprintf(buf + output_len,
868                                         PAGE_SIZE - output_len,
869                                         "BAY: %hhu %s\n",
870                                         bay, active);
871                         } else {
872                                 output_len += scnprintf(buf + output_len,
873                                         PAGE_SIZE - output_len,
874                                         "BOX: %hhu BAY: %hhu %s\n",
875                                         box, bay, active);
876                         }
877                 } else if (box != 0 && box != 0xFF) {
878                         output_len += scnprintf(buf + output_len,
879                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
880                                 box, active);
881                 } else
882                         output_len += scnprintf(buf + output_len,
883                                 PAGE_SIZE - output_len, "%s\n", active);
884         }
885
886         spin_unlock_irqrestore(&h->devlock, flags);
887         return output_len;
888 }
889
890 static ssize_t host_show_ctlr_num(struct device *dev,
891         struct device_attribute *attr, char *buf)
892 {
893         struct ctlr_info *h;
894         struct Scsi_Host *shost = class_to_shost(dev);
895
896         h = shost_to_hba(shost);
897         return snprintf(buf, 20, "%d\n", h->ctlr);
898 }
899
900 static ssize_t host_show_legacy_board(struct device *dev,
901         struct device_attribute *attr, char *buf)
902 {
903         struct ctlr_info *h;
904         struct Scsi_Host *shost = class_to_shost(dev);
905
906         h = shost_to_hba(shost);
907         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
908 }
909
910 static DEVICE_ATTR_RO(raid_level);
911 static DEVICE_ATTR_RO(lunid);
912 static DEVICE_ATTR_RO(unique_id);
913 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
914 static DEVICE_ATTR_RO(sas_address);
915 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
916                         host_show_hp_ssd_smart_path_enabled, NULL);
917 static DEVICE_ATTR_RO(path_info);
918 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
919                 host_show_hp_ssd_smart_path_status,
920                 host_store_hp_ssd_smart_path_status);
921 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
922                         host_store_raid_offload_debug);
923 static DEVICE_ATTR(firmware_revision, S_IRUGO,
924         host_show_firmware_revision, NULL);
925 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
926         host_show_commands_outstanding, NULL);
927 static DEVICE_ATTR(transport_mode, S_IRUGO,
928         host_show_transport_mode, NULL);
929 static DEVICE_ATTR(resettable, S_IRUGO,
930         host_show_resettable, NULL);
931 static DEVICE_ATTR(lockup_detected, S_IRUGO,
932         host_show_lockup_detected, NULL);
933 static DEVICE_ATTR(ctlr_num, S_IRUGO,
934         host_show_ctlr_num, NULL);
935 static DEVICE_ATTR(legacy_board, S_IRUGO,
936         host_show_legacy_board, NULL);
937
938 static struct device_attribute *hpsa_sdev_attrs[] = {
939         &dev_attr_raid_level,
940         &dev_attr_lunid,
941         &dev_attr_unique_id,
942         &dev_attr_hp_ssd_smart_path_enabled,
943         &dev_attr_path_info,
944         &dev_attr_sas_address,
945         NULL,
946 };
947
948 static struct device_attribute *hpsa_shost_attrs[] = {
949         &dev_attr_rescan,
950         &dev_attr_firmware_revision,
951         &dev_attr_commands_outstanding,
952         &dev_attr_transport_mode,
953         &dev_attr_resettable,
954         &dev_attr_hp_ssd_smart_path_status,
955         &dev_attr_raid_offload_debug,
956         &dev_attr_lockup_detected,
957         &dev_attr_ctlr_num,
958         &dev_attr_legacy_board,
959         NULL,
960 };
961
962 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
963                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
964
965 static struct scsi_host_template hpsa_driver_template = {
966         .module                 = THIS_MODULE,
967         .name                   = HPSA,
968         .proc_name              = HPSA,
969         .queuecommand           = hpsa_scsi_queue_command,
970         .scan_start             = hpsa_scan_start,
971         .scan_finished          = hpsa_scan_finished,
972         .change_queue_depth     = hpsa_change_queue_depth,
973         .this_id                = -1,
974         .use_clustering         = ENABLE_CLUSTERING,
975         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
976         .ioctl                  = hpsa_ioctl,
977         .slave_alloc            = hpsa_slave_alloc,
978         .slave_configure        = hpsa_slave_configure,
979         .slave_destroy          = hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981         .compat_ioctl           = hpsa_compat_ioctl,
982 #endif
983         .sdev_attrs = hpsa_sdev_attrs,
984         .shost_attrs = hpsa_shost_attrs,
985         .max_sectors = 2048,
986         .no_write_same = 1,
987 };
988
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991         u32 a;
992         struct reply_queue_buffer *rq = &h->reply_queue[q];
993
994         if (h->transMethod & CFGTBL_Trans_io_accel1)
995                 return h->access.command_completed(h, q);
996
997         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998                 return h->access.command_completed(h, q);
999
1000         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001                 a = rq->head[rq->current_entry];
1002                 rq->current_entry++;
1003                 atomic_dec(&h->commands_outstanding);
1004         } else {
1005                 a = FIFO_EMPTY;
1006         }
1007         /* Check for wraparound */
1008         if (rq->current_entry == h->max_commands) {
1009                 rq->current_entry = 0;
1010                 rq->wraparound ^= 1;
1011         }
1012         return a;
1013 }
1014
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048                                         int reply_queue)
1049 {
1050         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052                 if (unlikely(!h->msix_vectors))
1053                         return;
1054                 c->Header.ReplyQueue = reply_queue;
1055         }
1056 }
1057
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         cp->ReplyQueue = reply_queue;
1069         /*
1070          * Set the bits in the address sent down to include:
1071          *  - performant mode bit (bit 0)
1072          *  - pull count (bits 1-3)
1073          *  - command type (bits 4-6)
1074          */
1075         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076                                         IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080                                                 struct CommandList *c,
1081                                                 int reply_queue)
1082 {
1083         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084                 &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086         /* Tell the controller to post the reply to the queue for this
1087          * processor.  This seems to give the best I/O throughput.
1088          */
1089         cp->reply_queue = reply_queue;
1090         /* Set the bits in the address sent down to include:
1091          *  - performant mode bit not used in ioaccel mode 2
1092          *  - pull count (bits 0-3)
1093          *  - command type isn't needed for ioaccel2
1094          */
1095         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099                                                 struct CommandList *c,
1100                                                 int reply_queue)
1101 {
1102         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104         /*
1105          * Tell the controller to post the reply to the queue for this
1106          * processor.  This seems to give the best I/O throughput.
1107          */
1108         cp->reply_queue = reply_queue;
1109         /*
1110          * Set the bits in the address sent down to include:
1111          *  - performant mode bit not used in ioaccel mode 2
1112          *  - pull count (bits 0-3)
1113          *  - command type isn't needed for ioaccel2
1114          */
1115         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (!is_firmware_flash_cmd(c->Request.CDB))
1135                 return;
1136         atomic_inc(&h->firmware_flash_in_progress);
1137         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141                 struct CommandList *c)
1142 {
1143         if (is_firmware_flash_cmd(c->Request.CDB) &&
1144                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1145                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149         struct CommandList *c, int reply_queue)
1150 {
1151         dial_down_lockup_detection_during_fw_flash(h, c);
1152         atomic_inc(&h->commands_outstanding);
1153
1154         reply_queue = h->reply_map[raw_smp_processor_id()];
1155         switch (c->cmd_type) {
1156         case CMD_IOACCEL1:
1157                 set_ioaccel1_performant_mode(h, c, reply_queue);
1158                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1159                 break;
1160         case CMD_IOACCEL2:
1161                 set_ioaccel2_performant_mode(h, c, reply_queue);
1162                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1163                 break;
1164         case IOACCEL2_TMF:
1165                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1166                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1167                 break;
1168         default:
1169                 set_performant_mode(h, c, reply_queue);
1170                 h->access.submit_command(h, c);
1171         }
1172 }
1173
1174 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1175 {
1176         if (unlikely(hpsa_is_pending_event(c)))
1177                 return finish_cmd(c);
1178
1179         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189         if (!h->hba_inquiry_data)
1190                 return 0;
1191         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192                 return 1;
1193         return 0;
1194 }
1195
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197         unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199         /* finds an unused bus, target, lun for a new physical device
1200          * assumes h->devlock is held
1201          */
1202         int i, found = 0;
1203         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207         for (i = 0; i < h->ndevices; i++) {
1208                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209                         __set_bit(h->dev[i]->target, lun_taken);
1210         }
1211
1212         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213         if (i < HPSA_MAX_DEVICES) {
1214                 /* *bus = 1; */
1215                 *target = i;
1216                 *lun = 0;
1217                 found = 1;
1218         }
1219         return !found;
1220 }
1221
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223         struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226         char label[LABEL_SIZE];
1227
1228         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229                 return;
1230
1231         switch (dev->devtype) {
1232         case TYPE_RAID:
1233                 snprintf(label, LABEL_SIZE, "controller");
1234                 break;
1235         case TYPE_ENCLOSURE:
1236                 snprintf(label, LABEL_SIZE, "enclosure");
1237                 break;
1238         case TYPE_DISK:
1239         case TYPE_ZBC:
1240                 if (dev->external)
1241                         snprintf(label, LABEL_SIZE, "external");
1242                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243                         snprintf(label, LABEL_SIZE, "%s",
1244                                 raid_label[PHYSICAL_DRIVE]);
1245                 else
1246                         snprintf(label, LABEL_SIZE, "RAID-%s",
1247                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1248                                 raid_label[dev->raid_level]);
1249                 break;
1250         case TYPE_ROM:
1251                 snprintf(label, LABEL_SIZE, "rom");
1252                 break;
1253         case TYPE_TAPE:
1254                 snprintf(label, LABEL_SIZE, "tape");
1255                 break;
1256         case TYPE_MEDIUM_CHANGER:
1257                 snprintf(label, LABEL_SIZE, "changer");
1258                 break;
1259         default:
1260                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1261                 break;
1262         }
1263
1264         dev_printk(level, &h->pdev->dev,
1265                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267                         description,
1268                         scsi_device_type(dev->devtype),
1269                         dev->vendor,
1270                         dev->model,
1271                         label,
1272                         dev->offload_config ? '+' : '-',
1273                         dev->offload_to_be_enabled ? '+' : '-',
1274                         dev->expose_device);
1275 }
1276
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279                 struct hpsa_scsi_dev_t *device,
1280                 struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282         /* assumes h->devlock is held */
1283         int n = h->ndevices;
1284         int i;
1285         unsigned char addr1[8], addr2[8];
1286         struct hpsa_scsi_dev_t *sd;
1287
1288         if (n >= HPSA_MAX_DEVICES) {
1289                 dev_err(&h->pdev->dev, "too many devices, some will be "
1290                         "inaccessible.\n");
1291                 return -1;
1292         }
1293
1294         /* physical devices do not have lun or target assigned until now. */
1295         if (device->lun != -1)
1296                 /* Logical device, lun is already assigned. */
1297                 goto lun_assigned;
1298
1299         /* If this device a non-zero lun of a multi-lun device
1300          * byte 4 of the 8-byte LUN addr will contain the logical
1301          * unit no, zero otherwise.
1302          */
1303         if (device->scsi3addr[4] == 0) {
1304                 /* This is not a non-zero lun of a multi-lun device */
1305                 if (hpsa_find_target_lun(h, device->scsi3addr,
1306                         device->bus, &device->target, &device->lun) != 0)
1307                         return -1;
1308                 goto lun_assigned;
1309         }
1310
1311         /* This is a non-zero lun of a multi-lun device.
1312          * Search through our list and find the device which
1313          * has the same 8 byte LUN address, excepting byte 4 and 5.
1314          * Assign the same bus and target for this new LUN.
1315          * Use the logical unit number from the firmware.
1316          */
1317         memcpy(addr1, device->scsi3addr, 8);
1318         addr1[4] = 0;
1319         addr1[5] = 0;
1320         for (i = 0; i < n; i++) {
1321                 sd = h->dev[i];
1322                 memcpy(addr2, sd->scsi3addr, 8);
1323                 addr2[4] = 0;
1324                 addr2[5] = 0;
1325                 /* differ only in byte 4 and 5? */
1326                 if (memcmp(addr1, addr2, 8) == 0) {
1327                         device->bus = sd->bus;
1328                         device->target = sd->target;
1329                         device->lun = device->scsi3addr[4];
1330                         break;
1331                 }
1332         }
1333         if (device->lun == -1) {
1334                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335                         " suspect firmware bug or unsupported hardware "
1336                         "configuration.\n");
1337                         return -1;
1338         }
1339
1340 lun_assigned:
1341
1342         h->dev[n] = device;
1343         h->ndevices++;
1344         added[*nadded] = device;
1345         (*nadded)++;
1346         hpsa_show_dev_msg(KERN_INFO, h, device,
1347                 device->expose_device ? "added" : "masked");
1348         return 0;
1349 }
1350
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357         int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359         /* assumes h->devlock is held */
1360         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361
1362         /* Raid level changed. */
1363         h->dev[entry]->raid_level = new_entry->raid_level;
1364
1365         /*
1366          * ioacccel_handle may have changed for a dual domain disk
1367          */
1368         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369
1370         /* Raid offload parameters changed.  Careful about the ordering. */
1371         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372                 /*
1373                  * if drive is newly offload_enabled, we want to copy the
1374                  * raid map data first.  If previously offload_enabled and
1375                  * offload_config were set, raid map data had better be
1376                  * the same as it was before. If raid map data has changed
1377                  * then it had better be the case that
1378                  * h->dev[entry]->offload_enabled is currently 0.
1379                  */
1380                 h->dev[entry]->raid_map = new_entry->raid_map;
1381                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382         }
1383         if (new_entry->offload_to_be_enabled) {
1384                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386         }
1387         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388         h->dev[entry]->offload_config = new_entry->offload_config;
1389         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390         h->dev[entry]->queue_depth = new_entry->queue_depth;
1391
1392         /*
1393          * We can turn off ioaccel offload now, but need to delay turning
1394          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395          * can't do that until all the devices are updated.
1396          */
1397         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398
1399         /*
1400          * turn ioaccel off immediately if told to do so.
1401          */
1402         if (!new_entry->offload_to_be_enabled)
1403                 h->dev[entry]->offload_enabled = 0;
1404
1405         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410         int entry, struct hpsa_scsi_dev_t *new_entry,
1411         struct hpsa_scsi_dev_t *added[], int *nadded,
1412         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414         /* assumes h->devlock is held */
1415         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         /*
1420          * New physical devices won't have target/lun assigned yet
1421          * so we need to preserve the values in the slot we are replacing.
1422          */
1423         if (new_entry->target == -1) {
1424                 new_entry->target = h->dev[entry]->target;
1425                 new_entry->lun = h->dev[entry]->lun;
1426         }
1427
1428         h->dev[entry] = new_entry;
1429         added[*nadded] = new_entry;
1430         (*nadded)++;
1431
1432         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439         /* assumes h->devlock is held */
1440         int i;
1441         struct hpsa_scsi_dev_t *sd;
1442
1443         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444
1445         sd = h->dev[entry];
1446         removed[*nremoved] = h->dev[entry];
1447         (*nremoved)++;
1448
1449         for (i = entry; i < h->ndevices-1; i++)
1450                 h->dev[i] = h->dev[i+1];
1451         h->ndevices--;
1452         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456         (a)[7] == (b)[7] && \
1457         (a)[6] == (b)[6] && \
1458         (a)[5] == (b)[5] && \
1459         (a)[4] == (b)[4] && \
1460         (a)[3] == (b)[3] && \
1461         (a)[2] == (b)[2] && \
1462         (a)[1] == (b)[1] && \
1463         (a)[0] == (b)[0])
1464
1465 static void fixup_botched_add(struct ctlr_info *h,
1466         struct hpsa_scsi_dev_t *added)
1467 {
1468         /* called when scsi_add_device fails in order to re-adjust
1469          * h->dev[] to match the mid layer's view.
1470          */
1471         unsigned long flags;
1472         int i, j;
1473
1474         spin_lock_irqsave(&h->lock, flags);
1475         for (i = 0; i < h->ndevices; i++) {
1476                 if (h->dev[i] == added) {
1477                         for (j = i; j < h->ndevices-1; j++)
1478                                 h->dev[j] = h->dev[j+1];
1479                         h->ndevices--;
1480                         break;
1481                 }
1482         }
1483         spin_unlock_irqrestore(&h->lock, flags);
1484         kfree(added);
1485 }
1486
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488         struct hpsa_scsi_dev_t *dev2)
1489 {
1490         /* we compare everything except lun and target as these
1491          * are not yet assigned.  Compare parts likely
1492          * to differ first
1493          */
1494         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495                 sizeof(dev1->scsi3addr)) != 0)
1496                 return 0;
1497         if (memcmp(dev1->device_id, dev2->device_id,
1498                 sizeof(dev1->device_id)) != 0)
1499                 return 0;
1500         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503                 return 0;
1504         if (dev1->devtype != dev2->devtype)
1505                 return 0;
1506         if (dev1->bus != dev2->bus)
1507                 return 0;
1508         return 1;
1509 }
1510
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512         struct hpsa_scsi_dev_t *dev2)
1513 {
1514         /* Device attributes that can change, but don't mean
1515          * that the device is a different device, nor that the OS
1516          * needs to be told anything about the change.
1517          */
1518         if (dev1->raid_level != dev2->raid_level)
1519                 return 1;
1520         if (dev1->offload_config != dev2->offload_config)
1521                 return 1;
1522         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523                 return 1;
1524         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525                 if (dev1->queue_depth != dev2->queue_depth)
1526                         return 1;
1527         /*
1528          * This can happen for dual domain devices. An active
1529          * path change causes the ioaccel handle to change
1530          *
1531          * for example note the handle differences between p0 and p1
1532          * Device                    WWN               ,WWN hash,Handle
1533          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535          */
1536         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537                 return 1;
1538         return 0;
1539 }
1540
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551         int *index)
1552 {
1553         int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558         if (needle == NULL)
1559                 return DEVICE_NOT_FOUND;
1560
1561         for (i = 0; i < haystack_size; i++) {
1562                 if (haystack[i] == NULL) /* previously removed. */
1563                         continue;
1564                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565                         *index = i;
1566                         if (device_is_the_same(needle, haystack[i])) {
1567                                 if (device_updated(needle, haystack[i]))
1568                                         return DEVICE_UPDATED;
1569                                 return DEVICE_SAME;
1570                         } else {
1571                                 /* Keep offline devices offline */
1572                                 if (needle->volume_offline)
1573                                         return DEVICE_NOT_FOUND;
1574                                 return DEVICE_CHANGED;
1575                         }
1576                 }
1577         }
1578         *index = -1;
1579         return DEVICE_NOT_FOUND;
1580 }
1581
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583                                         unsigned char scsi3addr[])
1584 {
1585         struct offline_device_entry *device;
1586         unsigned long flags;
1587
1588         /* Check to see if device is already on the list */
1589         spin_lock_irqsave(&h->offline_device_lock, flags);
1590         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591                 if (memcmp(device->scsi3addr, scsi3addr,
1592                         sizeof(device->scsi3addr)) == 0) {
1593                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594                         return;
1595                 }
1596         }
1597         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598
1599         /* Device is not on the list, add it. */
1600         device = kmalloc(sizeof(*device), GFP_KERNEL);
1601         if (!device)
1602                 return;
1603
1604         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605         spin_lock_irqsave(&h->offline_device_lock, flags);
1606         list_add_tail(&device->offline_list, &h->offline_device_list);
1607         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612         struct hpsa_scsi_dev_t *sd)
1613 {
1614         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619         switch (sd->volume_offline) {
1620         case HPSA_LV_OK:
1621                 break;
1622         case HPSA_LV_UNDERGOING_ERASE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_NOT_AVAILABLE:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_UNDERGOING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_PENDING_RPI:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_ENCRYPTED_NO_KEY:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683                 dev_info(&h->pdev->dev,
1684                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685                         h->scsi_host->host_no,
1686                         sd->bus, sd->target, sd->lun);
1687                 break;
1688         }
1689 }
1690
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1697                                 struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699         struct raid_map_data *map = &logical_drive->raid_map;
1700         struct raid_map_disk_data *dd = &map->data[0];
1701         int i, j;
1702         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703                                 le16_to_cpu(map->metadata_disks_per_row);
1704         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705                                 le16_to_cpu(map->layout_map_count) *
1706                                 total_disks_per_row;
1707         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708                                 total_disks_per_row;
1709         int qdepth;
1710
1711         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713
1714         logical_drive->nphysical_disks = nraid_map_entries;
1715
1716         qdepth = 0;
1717         for (i = 0; i < nraid_map_entries; i++) {
1718                 logical_drive->phys_disk[i] = NULL;
1719                 if (!logical_drive->offload_config)
1720                         continue;
1721                 for (j = 0; j < ndevices; j++) {
1722                         if (dev[j] == NULL)
1723                                 continue;
1724                         if (dev[j]->devtype != TYPE_DISK &&
1725                             dev[j]->devtype != TYPE_ZBC)
1726                                 continue;
1727                         if (is_logical_device(dev[j]))
1728                                 continue;
1729                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730                                 continue;
1731
1732                         logical_drive->phys_disk[i] = dev[j];
1733                         if (i < nphys_disk)
1734                                 qdepth = min(h->nr_cmds, qdepth +
1735                                     logical_drive->phys_disk[i]->queue_depth);
1736                         break;
1737                 }
1738
1739                 /*
1740                  * This can happen if a physical drive is removed and
1741                  * the logical drive is degraded.  In that case, the RAID
1742                  * map data will refer to a physical disk which isn't actually
1743                  * present.  And in that case offload_enabled should already
1744                  * be 0, but we'll turn it off here just in case
1745                  */
1746                 if (!logical_drive->phys_disk[i]) {
1747                         dev_warn(&h->pdev->dev,
1748                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749                                 __func__,
1750                                 h->scsi_host->host_no, logical_drive->bus,
1751                                 logical_drive->target, logical_drive->lun);
1752                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1753                         logical_drive->queue_depth = 8;
1754                 }
1755         }
1756         if (nraid_map_entries)
1757                 /*
1758                  * This is correct for reads, too high for full stripe writes,
1759                  * way too high for partial stripe writes
1760                  */
1761                 logical_drive->queue_depth = qdepth;
1762         else {
1763                 if (logical_drive->external)
1764                         logical_drive->queue_depth = EXTERNAL_QD;
1765                 else
1766                         logical_drive->queue_depth = h->nr_cmds;
1767         }
1768 }
1769
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773         int i;
1774
1775         for (i = 0; i < ndevices; i++) {
1776                 if (dev[i] == NULL)
1777                         continue;
1778                 if (dev[i]->devtype != TYPE_DISK &&
1779                     dev[i]->devtype != TYPE_ZBC)
1780                         continue;
1781                 if (!is_logical_device(dev[i]))
1782                         continue;
1783
1784                 /*
1785                  * If offload is currently enabled, the RAID map and
1786                  * phys_disk[] assignment *better* not be changing
1787                  * because we would be changing ioaccel phsy_disk[] pointers
1788                  * on a ioaccel volume processing I/O requests.
1789                  *
1790                  * If an ioaccel volume status changed, initially because it was
1791                  * re-configured and thus underwent a transformation, or
1792                  * a drive failed, we would have received a state change
1793                  * request and ioaccel should have been turned off. When the
1794                  * transformation completes, we get another state change
1795                  * request to turn ioaccel back on. In this case, we need
1796                  * to update the ioaccel information.
1797                  *
1798                  * Thus: If it is not currently enabled, but will be after
1799                  * the scan completes, make sure the ioaccel pointers
1800                  * are up to date.
1801                  */
1802
1803                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805         }
1806 }
1807
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810         int rc = 0;
1811
1812         if (!h->scsi_host)
1813                 return 1;
1814
1815         if (is_logical_device(device)) /* RAID */
1816                 rc = scsi_add_device(h->scsi_host, device->bus,
1817                                         device->target, device->lun);
1818         else /* HBA */
1819                 rc = hpsa_add_sas_device(h->sas_host, device);
1820
1821         return rc;
1822 }
1823
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825                                                 struct hpsa_scsi_dev_t *dev)
1826 {
1827         int i;
1828         int count = 0;
1829
1830         for (i = 0; i < h->nr_cmds; i++) {
1831                 struct CommandList *c = h->cmd_pool + i;
1832                 int refcount = atomic_inc_return(&c->refcount);
1833
1834                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835                                 dev->scsi3addr)) {
1836                         unsigned long flags;
1837
1838                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1839                         if (!hpsa_is_cmd_idle(c))
1840                                 ++count;
1841                         spin_unlock_irqrestore(&h->lock, flags);
1842                 }
1843
1844                 cmd_free(h, c);
1845         }
1846
1847         return count;
1848 }
1849
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851                                                 struct hpsa_scsi_dev_t *device)
1852 {
1853         int cmds = 0;
1854         int waits = 0;
1855
1856         while (1) {
1857                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1858                 if (cmds == 0)
1859                         break;
1860                 if (++waits > 20)
1861                         break;
1862                 msleep(1000);
1863         }
1864
1865         if (waits > 20)
1866                 dev_warn(&h->pdev->dev,
1867                         "%s: removing device with %d outstanding commands!\n",
1868                         __func__, cmds);
1869 }
1870
1871 static void hpsa_remove_device(struct ctlr_info *h,
1872                         struct hpsa_scsi_dev_t *device)
1873 {
1874         struct scsi_device *sdev = NULL;
1875
1876         if (!h->scsi_host)
1877                 return;
1878
1879         /*
1880          * Allow for commands to drain
1881          */
1882         device->removed = 1;
1883         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1884
1885         if (is_logical_device(device)) { /* RAID */
1886                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1887                                                 device->target, device->lun);
1888                 if (sdev) {
1889                         scsi_remove_device(sdev);
1890                         scsi_device_put(sdev);
1891                 } else {
1892                         /*
1893                          * We don't expect to get here.  Future commands
1894                          * to this device will get a selection timeout as
1895                          * if the device were gone.
1896                          */
1897                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1898                                         "didn't find device for removal.");
1899                 }
1900         } else { /* HBA */
1901
1902                 hpsa_remove_sas_device(device);
1903         }
1904 }
1905
1906 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1907         struct hpsa_scsi_dev_t *sd[], int nsds)
1908 {
1909         /* sd contains scsi3 addresses and devtypes, and inquiry
1910          * data.  This function takes what's in sd to be the current
1911          * reality and updates h->dev[] to reflect that reality.
1912          */
1913         int i, entry, device_change, changes = 0;
1914         struct hpsa_scsi_dev_t *csd;
1915         unsigned long flags;
1916         struct hpsa_scsi_dev_t **added, **removed;
1917         int nadded, nremoved;
1918
1919         /*
1920          * A reset can cause a device status to change
1921          * re-schedule the scan to see what happened.
1922          */
1923         spin_lock_irqsave(&h->reset_lock, flags);
1924         if (h->reset_in_progress) {
1925                 h->drv_req_rescan = 1;
1926                 spin_unlock_irqrestore(&h->reset_lock, flags);
1927                 return;
1928         }
1929         spin_unlock_irqrestore(&h->reset_lock, flags);
1930
1931         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1932         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1933
1934         if (!added || !removed) {
1935                 dev_warn(&h->pdev->dev, "out of memory in "
1936                         "adjust_hpsa_scsi_table\n");
1937                 goto free_and_out;
1938         }
1939
1940         spin_lock_irqsave(&h->devlock, flags);
1941
1942         /* find any devices in h->dev[] that are not in
1943          * sd[] and remove them from h->dev[], and for any
1944          * devices which have changed, remove the old device
1945          * info and add the new device info.
1946          * If minor device attributes change, just update
1947          * the existing device structure.
1948          */
1949         i = 0;
1950         nremoved = 0;
1951         nadded = 0;
1952         while (i < h->ndevices) {
1953                 csd = h->dev[i];
1954                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1955                 if (device_change == DEVICE_NOT_FOUND) {
1956                         changes++;
1957                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1958                         continue; /* remove ^^^, hence i not incremented */
1959                 } else if (device_change == DEVICE_CHANGED) {
1960                         changes++;
1961                         hpsa_scsi_replace_entry(h, i, sd[entry],
1962                                 added, &nadded, removed, &nremoved);
1963                         /* Set it to NULL to prevent it from being freed
1964                          * at the bottom of hpsa_update_scsi_devices()
1965                          */
1966                         sd[entry] = NULL;
1967                 } else if (device_change == DEVICE_UPDATED) {
1968                         hpsa_scsi_update_entry(h, i, sd[entry]);
1969                 }
1970                 i++;
1971         }
1972
1973         /* Now, make sure every device listed in sd[] is also
1974          * listed in h->dev[], adding them if they aren't found
1975          */
1976
1977         for (i = 0; i < nsds; i++) {
1978                 if (!sd[i]) /* if already added above. */
1979                         continue;
1980
1981                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1982                  * as the SCSI mid-layer does not handle such devices well.
1983                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1984                  * at 160Hz, and prevents the system from coming up.
1985                  */
1986                 if (sd[i]->volume_offline) {
1987                         hpsa_show_volume_status(h, sd[i]);
1988                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1989                         continue;
1990                 }
1991
1992                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1993                                         h->ndevices, &entry);
1994                 if (device_change == DEVICE_NOT_FOUND) {
1995                         changes++;
1996                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1997                                 break;
1998                         sd[i] = NULL; /* prevent from being freed later. */
1999                 } else if (device_change == DEVICE_CHANGED) {
2000                         /* should never happen... */
2001                         changes++;
2002                         dev_warn(&h->pdev->dev,
2003                                 "device unexpectedly changed.\n");
2004                         /* but if it does happen, we just ignore that device */
2005                 }
2006         }
2007         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2008
2009         /*
2010          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2011          * any logical drives that need it enabled.
2012          *
2013          * The raid map should be current by now.
2014          *
2015          * We are updating the device list used for I/O requests.
2016          */
2017         for (i = 0; i < h->ndevices; i++) {
2018                 if (h->dev[i] == NULL)
2019                         continue;
2020                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2021         }
2022
2023         spin_unlock_irqrestore(&h->devlock, flags);
2024
2025         /* Monitor devices which are in one of several NOT READY states to be
2026          * brought online later. This must be done without holding h->devlock,
2027          * so don't touch h->dev[]
2028          */
2029         for (i = 0; i < nsds; i++) {
2030                 if (!sd[i]) /* if already added above. */
2031                         continue;
2032                 if (sd[i]->volume_offline)
2033                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2034         }
2035
2036         /* Don't notify scsi mid layer of any changes the first time through
2037          * (or if there are no changes) scsi_scan_host will do it later the
2038          * first time through.
2039          */
2040         if (!changes)
2041                 goto free_and_out;
2042
2043         /* Notify scsi mid layer of any removed devices */
2044         for (i = 0; i < nremoved; i++) {
2045                 if (removed[i] == NULL)
2046                         continue;
2047                 if (removed[i]->expose_device)
2048                         hpsa_remove_device(h, removed[i]);
2049                 kfree(removed[i]);
2050                 removed[i] = NULL;
2051         }
2052
2053         /* Notify scsi mid layer of any added devices */
2054         for (i = 0; i < nadded; i++) {
2055                 int rc = 0;
2056
2057                 if (added[i] == NULL)
2058                         continue;
2059                 if (!(added[i]->expose_device))
2060                         continue;
2061                 rc = hpsa_add_device(h, added[i]);
2062                 if (!rc)
2063                         continue;
2064                 dev_warn(&h->pdev->dev,
2065                         "addition failed %d, device not added.", rc);
2066                 /* now we have to remove it from h->dev,
2067                  * since it didn't get added to scsi mid layer
2068                  */
2069                 fixup_botched_add(h, added[i]);
2070                 h->drv_req_rescan = 1;
2071         }
2072
2073 free_and_out:
2074         kfree(added);
2075         kfree(removed);
2076 }
2077
2078 /*
2079  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2080  * Assume's h->devlock is held.
2081  */
2082 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2083         int bus, int target, int lun)
2084 {
2085         int i;
2086         struct hpsa_scsi_dev_t *sd;
2087
2088         for (i = 0; i < h->ndevices; i++) {
2089                 sd = h->dev[i];
2090                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2091                         return sd;
2092         }
2093         return NULL;
2094 }
2095
2096 static int hpsa_slave_alloc(struct scsi_device *sdev)
2097 {
2098         struct hpsa_scsi_dev_t *sd = NULL;
2099         unsigned long flags;
2100         struct ctlr_info *h;
2101
2102         h = sdev_to_hba(sdev);
2103         spin_lock_irqsave(&h->devlock, flags);
2104         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2105                 struct scsi_target *starget;
2106                 struct sas_rphy *rphy;
2107
2108                 starget = scsi_target(sdev);
2109                 rphy = target_to_rphy(starget);
2110                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2111                 if (sd) {
2112                         sd->target = sdev_id(sdev);
2113                         sd->lun = sdev->lun;
2114                 }
2115         }
2116         if (!sd)
2117                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2118                                         sdev_id(sdev), sdev->lun);
2119
2120         if (sd && sd->expose_device) {
2121                 atomic_set(&sd->ioaccel_cmds_out, 0);
2122                 sdev->hostdata = sd;
2123         } else
2124                 sdev->hostdata = NULL;
2125         spin_unlock_irqrestore(&h->devlock, flags);
2126         return 0;
2127 }
2128
2129 /* configure scsi device based on internal per-device structure */
2130 static int hpsa_slave_configure(struct scsi_device *sdev)
2131 {
2132         struct hpsa_scsi_dev_t *sd;
2133         int queue_depth;
2134
2135         sd = sdev->hostdata;
2136         sdev->no_uld_attach = !sd || !sd->expose_device;
2137
2138         if (sd) {
2139                 if (sd->external)
2140                         queue_depth = EXTERNAL_QD;
2141                 else
2142                         queue_depth = sd->queue_depth != 0 ?
2143                                         sd->queue_depth : sdev->host->can_queue;
2144         } else
2145                 queue_depth = sdev->host->can_queue;
2146
2147         scsi_change_queue_depth(sdev, queue_depth);
2148
2149         return 0;
2150 }
2151
2152 static void hpsa_slave_destroy(struct scsi_device *sdev)
2153 {
2154         /* nothing to do. */
2155 }
2156
2157 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2158 {
2159         int i;
2160
2161         if (!h->ioaccel2_cmd_sg_list)
2162                 return;
2163         for (i = 0; i < h->nr_cmds; i++) {
2164                 kfree(h->ioaccel2_cmd_sg_list[i]);
2165                 h->ioaccel2_cmd_sg_list[i] = NULL;
2166         }
2167         kfree(h->ioaccel2_cmd_sg_list);
2168         h->ioaccel2_cmd_sg_list = NULL;
2169 }
2170
2171 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2172 {
2173         int i;
2174
2175         if (h->chainsize <= 0)
2176                 return 0;
2177
2178         h->ioaccel2_cmd_sg_list =
2179                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2180                                         GFP_KERNEL);
2181         if (!h->ioaccel2_cmd_sg_list)
2182                 return -ENOMEM;
2183         for (i = 0; i < h->nr_cmds; i++) {
2184                 h->ioaccel2_cmd_sg_list[i] =
2185                         kmalloc_array(h->maxsgentries,
2186                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2187                                       GFP_KERNEL);
2188                 if (!h->ioaccel2_cmd_sg_list[i])
2189                         goto clean;
2190         }
2191         return 0;
2192
2193 clean:
2194         hpsa_free_ioaccel2_sg_chain_blocks(h);
2195         return -ENOMEM;
2196 }
2197
2198 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2199 {
2200         int i;
2201
2202         if (!h->cmd_sg_list)
2203                 return;
2204         for (i = 0; i < h->nr_cmds; i++) {
2205                 kfree(h->cmd_sg_list[i]);
2206                 h->cmd_sg_list[i] = NULL;
2207         }
2208         kfree(h->cmd_sg_list);
2209         h->cmd_sg_list = NULL;
2210 }
2211
2212 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2213 {
2214         int i;
2215
2216         if (h->chainsize <= 0)
2217                 return 0;
2218
2219         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2220                                  GFP_KERNEL);
2221         if (!h->cmd_sg_list)
2222                 return -ENOMEM;
2223
2224         for (i = 0; i < h->nr_cmds; i++) {
2225                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2226                                                   sizeof(*h->cmd_sg_list[i]),
2227                                                   GFP_KERNEL);
2228                 if (!h->cmd_sg_list[i])
2229                         goto clean;
2230
2231         }
2232         return 0;
2233
2234 clean:
2235         hpsa_free_sg_chain_blocks(h);
2236         return -ENOMEM;
2237 }
2238
2239 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2240         struct io_accel2_cmd *cp, struct CommandList *c)
2241 {
2242         struct ioaccel2_sg_element *chain_block;
2243         u64 temp64;
2244         u32 chain_size;
2245
2246         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2247         chain_size = le32_to_cpu(cp->sg[0].length);
2248         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2249                                 PCI_DMA_TODEVICE);
2250         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2251                 /* prevent subsequent unmapping */
2252                 cp->sg->address = 0;
2253                 return -1;
2254         }
2255         cp->sg->address = cpu_to_le64(temp64);
2256         return 0;
2257 }
2258
2259 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2260         struct io_accel2_cmd *cp)
2261 {
2262         struct ioaccel2_sg_element *chain_sg;
2263         u64 temp64;
2264         u32 chain_size;
2265
2266         chain_sg = cp->sg;
2267         temp64 = le64_to_cpu(chain_sg->address);
2268         chain_size = le32_to_cpu(cp->sg[0].length);
2269         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2270 }
2271
2272 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2273         struct CommandList *c)
2274 {
2275         struct SGDescriptor *chain_sg, *chain_block;
2276         u64 temp64;
2277         u32 chain_len;
2278
2279         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2280         chain_block = h->cmd_sg_list[c->cmdindex];
2281         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2282         chain_len = sizeof(*chain_sg) *
2283                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2284         chain_sg->Len = cpu_to_le32(chain_len);
2285         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2286                                 PCI_DMA_TODEVICE);
2287         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2288                 /* prevent subsequent unmapping */
2289                 chain_sg->Addr = cpu_to_le64(0);
2290                 return -1;
2291         }
2292         chain_sg->Addr = cpu_to_le64(temp64);
2293         return 0;
2294 }
2295
2296 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2297         struct CommandList *c)
2298 {
2299         struct SGDescriptor *chain_sg;
2300
2301         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2302                 return;
2303
2304         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2305         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2306                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2307 }
2308
2309
2310 /* Decode the various types of errors on ioaccel2 path.
2311  * Return 1 for any error that should generate a RAID path retry.
2312  * Return 0 for errors that don't require a RAID path retry.
2313  */
2314 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2315                                         struct CommandList *c,
2316                                         struct scsi_cmnd *cmd,
2317                                         struct io_accel2_cmd *c2,
2318                                         struct hpsa_scsi_dev_t *dev)
2319 {
2320         int data_len;
2321         int retry = 0;
2322         u32 ioaccel2_resid = 0;
2323
2324         switch (c2->error_data.serv_response) {
2325         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2326                 switch (c2->error_data.status) {
2327                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2328                         if (cmd)
2329                                 cmd->result = 0;
2330                         break;
2331                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2332                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2333                         if (c2->error_data.data_present !=
2334                                         IOACCEL2_SENSE_DATA_PRESENT) {
2335                                 memset(cmd->sense_buffer, 0,
2336                                         SCSI_SENSE_BUFFERSIZE);
2337                                 break;
2338                         }
2339                         /* copy the sense data */
2340                         data_len = c2->error_data.sense_data_len;
2341                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2342                                 data_len = SCSI_SENSE_BUFFERSIZE;
2343                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2344                                 data_len =
2345                                         sizeof(c2->error_data.sense_data_buff);
2346                         memcpy(cmd->sense_buffer,
2347                                 c2->error_data.sense_data_buff, data_len);
2348                         retry = 1;
2349                         break;
2350                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2351                         retry = 1;
2352                         break;
2353                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2354                         retry = 1;
2355                         break;
2356                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2357                         retry = 1;
2358                         break;
2359                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2360                         retry = 1;
2361                         break;
2362                 default:
2363                         retry = 1;
2364                         break;
2365                 }
2366                 break;
2367         case IOACCEL2_SERV_RESPONSE_FAILURE:
2368                 switch (c2->error_data.status) {
2369                 case IOACCEL2_STATUS_SR_IO_ERROR:
2370                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2371                 case IOACCEL2_STATUS_SR_OVERRUN:
2372                         retry = 1;
2373                         break;
2374                 case IOACCEL2_STATUS_SR_UNDERRUN:
2375                         cmd->result = (DID_OK << 16);           /* host byte */
2376                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2377                         ioaccel2_resid = get_unaligned_le32(
2378                                                 &c2->error_data.resid_cnt[0]);
2379                         scsi_set_resid(cmd, ioaccel2_resid);
2380                         break;
2381                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2382                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2383                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2384                         /*
2385                          * Did an HBA disk disappear? We will eventually
2386                          * get a state change event from the controller but
2387                          * in the meantime, we need to tell the OS that the
2388                          * HBA disk is no longer there and stop I/O
2389                          * from going down. This allows the potential re-insert
2390                          * of the disk to get the same device node.
2391                          */
2392                         if (dev->physical_device && dev->expose_device) {
2393                                 cmd->result = DID_NO_CONNECT << 16;
2394                                 dev->removed = 1;
2395                                 h->drv_req_rescan = 1;
2396                                 dev_warn(&h->pdev->dev,
2397                                         "%s: device is gone!\n", __func__);
2398                         } else
2399                                 /*
2400                                  * Retry by sending down the RAID path.
2401                                  * We will get an event from ctlr to
2402                                  * trigger rescan regardless.
2403                                  */
2404                                 retry = 1;
2405                         break;
2406                 default:
2407                         retry = 1;
2408                 }
2409                 break;
2410         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2411                 break;
2412         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2413                 break;
2414         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2415                 retry = 1;
2416                 break;
2417         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2418                 break;
2419         default:
2420                 retry = 1;
2421                 break;
2422         }
2423
2424         return retry;   /* retry on raid path? */
2425 }
2426
2427 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2428                 struct CommandList *c)
2429 {
2430         bool do_wake = false;
2431
2432         /*
2433          * Reset c->scsi_cmd here so that the reset handler will know
2434          * this command has completed.  Then, check to see if the handler is
2435          * waiting for this command, and, if so, wake it.
2436          */
2437         c->scsi_cmd = SCSI_CMD_IDLE;
2438         mb();   /* Declare command idle before checking for pending events. */
2439         if (c->reset_pending) {
2440                 unsigned long flags;
2441                 struct hpsa_scsi_dev_t *dev;
2442
2443                 /*
2444                  * There appears to be a reset pending; lock the lock and
2445                  * reconfirm.  If so, then decrement the count of outstanding
2446                  * commands and wake the reset command if this is the last one.
2447                  */
2448                 spin_lock_irqsave(&h->lock, flags);
2449                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2450                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2451                         do_wake = true;
2452                 c->reset_pending = NULL;
2453                 spin_unlock_irqrestore(&h->lock, flags);
2454         }
2455
2456         if (do_wake)
2457                 wake_up_all(&h->event_sync_wait_queue);
2458 }
2459
2460 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2461                                       struct CommandList *c)
2462 {
2463         hpsa_cmd_resolve_events(h, c);
2464         cmd_tagged_free(h, c);
2465 }
2466
2467 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2468                 struct CommandList *c, struct scsi_cmnd *cmd)
2469 {
2470         hpsa_cmd_resolve_and_free(h, c);
2471         if (cmd && cmd->scsi_done)
2472                 cmd->scsi_done(cmd);
2473 }
2474
2475 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2476 {
2477         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2478         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2479 }
2480
2481 static void process_ioaccel2_completion(struct ctlr_info *h,
2482                 struct CommandList *c, struct scsi_cmnd *cmd,
2483                 struct hpsa_scsi_dev_t *dev)
2484 {
2485         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2486
2487         /* check for good status */
2488         if (likely(c2->error_data.serv_response == 0 &&
2489                         c2->error_data.status == 0)) {
2490                 cmd->result = 0;
2491                 return hpsa_cmd_free_and_done(h, c, cmd);
2492         }
2493
2494         /*
2495          * Any RAID offload error results in retry which will use
2496          * the normal I/O path so the controller can handle whatever is
2497          * wrong.
2498          */
2499         if (is_logical_device(dev) &&
2500                 c2->error_data.serv_response ==
2501                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2502                 if (c2->error_data.status ==
2503                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504                         hpsa_turn_off_ioaccel_for_device(dev);
2505                 }
2506
2507                 return hpsa_retry_cmd(h, c);
2508         }
2509
2510         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2511                 return hpsa_retry_cmd(h, c);
2512
2513         return hpsa_cmd_free_and_done(h, c, cmd);
2514 }
2515
2516 /* Returns 0 on success, < 0 otherwise. */
2517 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2518                                         struct CommandList *cp)
2519 {
2520         u8 tmf_status = cp->err_info->ScsiStatus;
2521
2522         switch (tmf_status) {
2523         case CISS_TMF_COMPLETE:
2524                 /*
2525                  * CISS_TMF_COMPLETE never happens, instead,
2526                  * ei->CommandStatus == 0 for this case.
2527                  */
2528         case CISS_TMF_SUCCESS:
2529                 return 0;
2530         case CISS_TMF_INVALID_FRAME:
2531         case CISS_TMF_NOT_SUPPORTED:
2532         case CISS_TMF_FAILED:
2533         case CISS_TMF_WRONG_LUN:
2534         case CISS_TMF_OVERLAPPED_TAG:
2535                 break;
2536         default:
2537                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2538                                 tmf_status);
2539                 break;
2540         }
2541         return -tmf_status;
2542 }
2543
2544 static void complete_scsi_command(struct CommandList *cp)
2545 {
2546         struct scsi_cmnd *cmd;
2547         struct ctlr_info *h;
2548         struct ErrorInfo *ei;
2549         struct hpsa_scsi_dev_t *dev;
2550         struct io_accel2_cmd *c2;
2551
2552         u8 sense_key;
2553         u8 asc;      /* additional sense code */
2554         u8 ascq;     /* additional sense code qualifier */
2555         unsigned long sense_data_size;
2556
2557         ei = cp->err_info;
2558         cmd = cp->scsi_cmd;
2559         h = cp->h;
2560
2561         if (!cmd->device) {
2562                 cmd->result = DID_NO_CONNECT << 16;
2563                 return hpsa_cmd_free_and_done(h, cp, cmd);
2564         }
2565
2566         dev = cmd->device->hostdata;
2567         if (!dev) {
2568                 cmd->result = DID_NO_CONNECT << 16;
2569                 return hpsa_cmd_free_and_done(h, cp, cmd);
2570         }
2571         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2572
2573         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2574         if ((cp->cmd_type == CMD_SCSI) &&
2575                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2576                 hpsa_unmap_sg_chain_block(h, cp);
2577
2578         if ((cp->cmd_type == CMD_IOACCEL2) &&
2579                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2580                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2581
2582         cmd->result = (DID_OK << 16);           /* host byte */
2583         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2584
2585         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2586                 if (dev->physical_device && dev->expose_device &&
2587                         dev->removed) {
2588                         cmd->result = DID_NO_CONNECT << 16;
2589                         return hpsa_cmd_free_and_done(h, cp, cmd);
2590                 }
2591                 if (likely(cp->phys_disk != NULL))
2592                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2593         }
2594
2595         /*
2596          * We check for lockup status here as it may be set for
2597          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2598          * fail_all_oustanding_cmds()
2599          */
2600         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2601                 /* DID_NO_CONNECT will prevent a retry */
2602                 cmd->result = DID_NO_CONNECT << 16;
2603                 return hpsa_cmd_free_and_done(h, cp, cmd);
2604         }
2605
2606         if ((unlikely(hpsa_is_pending_event(cp))))
2607                 if (cp->reset_pending)
2608                         return hpsa_cmd_free_and_done(h, cp, cmd);
2609
2610         if (cp->cmd_type == CMD_IOACCEL2)
2611                 return process_ioaccel2_completion(h, cp, cmd, dev);
2612
2613         scsi_set_resid(cmd, ei->ResidualCnt);
2614         if (ei->CommandStatus == 0)
2615                 return hpsa_cmd_free_and_done(h, cp, cmd);
2616
2617         /* For I/O accelerator commands, copy over some fields to the normal
2618          * CISS header used below for error handling.
2619          */
2620         if (cp->cmd_type == CMD_IOACCEL1) {
2621                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2622                 cp->Header.SGList = scsi_sg_count(cmd);
2623                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2624                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2625                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2626                 cp->Header.tag = c->tag;
2627                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2628                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2629
2630                 /* Any RAID offload error results in retry which will use
2631                  * the normal I/O path so the controller can handle whatever's
2632                  * wrong.
2633                  */
2634                 if (is_logical_device(dev)) {
2635                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2636                                 dev->offload_enabled = 0;
2637                         return hpsa_retry_cmd(h, cp);
2638                 }
2639         }
2640
2641         /* an error has occurred */
2642         switch (ei->CommandStatus) {
2643
2644         case CMD_TARGET_STATUS:
2645                 cmd->result |= ei->ScsiStatus;
2646                 /* copy the sense data */
2647                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2648                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2649                 else
2650                         sense_data_size = sizeof(ei->SenseInfo);
2651                 if (ei->SenseLen < sense_data_size)
2652                         sense_data_size = ei->SenseLen;
2653                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2654                 if (ei->ScsiStatus)
2655                         decode_sense_data(ei->SenseInfo, sense_data_size,
2656                                 &sense_key, &asc, &ascq);
2657                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2658                         if (sense_key == ABORTED_COMMAND) {
2659                                 cmd->result |= DID_SOFT_ERROR << 16;
2660                                 break;
2661                         }
2662                         break;
2663                 }
2664                 /* Problem was not a check condition
2665                  * Pass it up to the upper layers...
2666                  */
2667                 if (ei->ScsiStatus) {
2668                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2669                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2670                                 "Returning result: 0x%x\n",
2671                                 cp, ei->ScsiStatus,
2672                                 sense_key, asc, ascq,
2673                                 cmd->result);
2674                 } else {  /* scsi status is zero??? How??? */
2675                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2676                                 "Returning no connection.\n", cp),
2677
2678                         /* Ordinarily, this case should never happen,
2679                          * but there is a bug in some released firmware
2680                          * revisions that allows it to happen if, for
2681                          * example, a 4100 backplane loses power and
2682                          * the tape drive is in it.  We assume that
2683                          * it's a fatal error of some kind because we
2684                          * can't show that it wasn't. We will make it
2685                          * look like selection timeout since that is
2686                          * the most common reason for this to occur,
2687                          * and it's severe enough.
2688                          */
2689
2690                         cmd->result = DID_NO_CONNECT << 16;
2691                 }
2692                 break;
2693
2694         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2695                 break;
2696         case CMD_DATA_OVERRUN:
2697                 dev_warn(&h->pdev->dev,
2698                         "CDB %16phN data overrun\n", cp->Request.CDB);
2699                 break;
2700         case CMD_INVALID: {
2701                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2702                 print_cmd(cp); */
2703                 /* We get CMD_INVALID if you address a non-existent device
2704                  * instead of a selection timeout (no response).  You will
2705                  * see this if you yank out a drive, then try to access it.
2706                  * This is kind of a shame because it means that any other
2707                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2708                  * missing target. */
2709                 cmd->result = DID_NO_CONNECT << 16;
2710         }
2711                 break;
2712         case CMD_PROTOCOL_ERR:
2713                 cmd->result = DID_ERROR << 16;
2714                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2715                                 cp->Request.CDB);
2716                 break;
2717         case CMD_HARDWARE_ERR:
2718                 cmd->result = DID_ERROR << 16;
2719                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2720                         cp->Request.CDB);
2721                 break;
2722         case CMD_CONNECTION_LOST:
2723                 cmd->result = DID_ERROR << 16;
2724                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2725                         cp->Request.CDB);
2726                 break;
2727         case CMD_ABORTED:
2728                 cmd->result = DID_ABORT << 16;
2729                 break;
2730         case CMD_ABORT_FAILED:
2731                 cmd->result = DID_ERROR << 16;
2732                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2733                         cp->Request.CDB);
2734                 break;
2735         case CMD_UNSOLICITED_ABORT:
2736                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2737                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2738                         cp->Request.CDB);
2739                 break;
2740         case CMD_TIMEOUT:
2741                 cmd->result = DID_TIME_OUT << 16;
2742                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2743                         cp->Request.CDB);
2744                 break;
2745         case CMD_UNABORTABLE:
2746                 cmd->result = DID_ERROR << 16;
2747                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2748                 break;
2749         case CMD_TMF_STATUS:
2750                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2751                         cmd->result = DID_ERROR << 16;
2752                 break;
2753         case CMD_IOACCEL_DISABLED:
2754                 /* This only handles the direct pass-through case since RAID
2755                  * offload is handled above.  Just attempt a retry.
2756                  */
2757                 cmd->result = DID_SOFT_ERROR << 16;
2758                 dev_warn(&h->pdev->dev,
2759                                 "cp %p had HP SSD Smart Path error\n", cp);
2760                 break;
2761         default:
2762                 cmd->result = DID_ERROR << 16;
2763                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2764                                 cp, ei->CommandStatus);
2765         }
2766
2767         return hpsa_cmd_free_and_done(h, cp, cmd);
2768 }
2769
2770 static void hpsa_pci_unmap(struct pci_dev *pdev,
2771         struct CommandList *c, int sg_used, int data_direction)
2772 {
2773         int i;
2774
2775         for (i = 0; i < sg_used; i++)
2776                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2777                                 le32_to_cpu(c->SG[i].Len),
2778                                 data_direction);
2779 }
2780
2781 static int hpsa_map_one(struct pci_dev *pdev,
2782                 struct CommandList *cp,
2783                 unsigned char *buf,
2784                 size_t buflen,
2785                 int data_direction)
2786 {
2787         u64 addr64;
2788
2789         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2790                 cp->Header.SGList = 0;
2791                 cp->Header.SGTotal = cpu_to_le16(0);
2792                 return 0;
2793         }
2794
2795         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2796         if (dma_mapping_error(&pdev->dev, addr64)) {
2797                 /* Prevent subsequent unmap of something never mapped */
2798                 cp->Header.SGList = 0;
2799                 cp->Header.SGTotal = cpu_to_le16(0);
2800                 return -1;
2801         }
2802         cp->SG[0].Addr = cpu_to_le64(addr64);
2803         cp->SG[0].Len = cpu_to_le32(buflen);
2804         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2805         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2806         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2807         return 0;
2808 }
2809
2810 #define NO_TIMEOUT ((unsigned long) -1)
2811 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2812 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2813         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2814 {
2815         DECLARE_COMPLETION_ONSTACK(wait);
2816
2817         c->waiting = &wait;
2818         __enqueue_cmd_and_start_io(h, c, reply_queue);
2819         if (timeout_msecs == NO_TIMEOUT) {
2820                 /* TODO: get rid of this no-timeout thing */
2821                 wait_for_completion_io(&wait);
2822                 return IO_OK;
2823         }
2824         if (!wait_for_completion_io_timeout(&wait,
2825                                         msecs_to_jiffies(timeout_msecs))) {
2826                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2827                 return -ETIMEDOUT;
2828         }
2829         return IO_OK;
2830 }
2831
2832 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2833                                    int reply_queue, unsigned long timeout_msecs)
2834 {
2835         if (unlikely(lockup_detected(h))) {
2836                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2837                 return IO_OK;
2838         }
2839         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2840 }
2841
2842 static u32 lockup_detected(struct ctlr_info *h)
2843 {
2844         int cpu;
2845         u32 rc, *lockup_detected;
2846
2847         cpu = get_cpu();
2848         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2849         rc = *lockup_detected;
2850         put_cpu();
2851         return rc;
2852 }
2853
2854 #define MAX_DRIVER_CMD_RETRIES 25
2855 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2856         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2857 {
2858         int backoff_time = 10, retry_count = 0;
2859         int rc;
2860
2861         do {
2862                 memset(c->err_info, 0, sizeof(*c->err_info));
2863                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2864                                                   timeout_msecs);
2865                 if (rc)
2866                         break;
2867                 retry_count++;
2868                 if (retry_count > 3) {
2869                         msleep(backoff_time);
2870                         if (backoff_time < 1000)
2871                                 backoff_time *= 2;
2872                 }
2873         } while ((check_for_unit_attention(h, c) ||
2874                         check_for_busy(h, c)) &&
2875                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2876         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2877         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2878                 rc = -EIO;
2879         return rc;
2880 }
2881
2882 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2883                                 struct CommandList *c)
2884 {
2885         const u8 *cdb = c->Request.CDB;
2886         const u8 *lun = c->Header.LUN.LunAddrBytes;
2887
2888         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2889                  txt, lun, cdb);
2890 }
2891
2892 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2893                         struct CommandList *cp)
2894 {
2895         const struct ErrorInfo *ei = cp->err_info;
2896         struct device *d = &cp->h->pdev->dev;
2897         u8 sense_key, asc, ascq;
2898         int sense_len;
2899
2900         switch (ei->CommandStatus) {
2901         case CMD_TARGET_STATUS:
2902                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2903                         sense_len = sizeof(ei->SenseInfo);
2904                 else
2905                         sense_len = ei->SenseLen;
2906                 decode_sense_data(ei->SenseInfo, sense_len,
2907                                         &sense_key, &asc, &ascq);
2908                 hpsa_print_cmd(h, "SCSI status", cp);
2909                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2910                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2911                                 sense_key, asc, ascq);
2912                 else
2913                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2914                 if (ei->ScsiStatus == 0)
2915                         dev_warn(d, "SCSI status is abnormally zero.  "
2916                         "(probably indicates selection timeout "
2917                         "reported incorrectly due to a known "
2918                         "firmware bug, circa July, 2001.)\n");
2919                 break;
2920         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2921                 break;
2922         case CMD_DATA_OVERRUN:
2923                 hpsa_print_cmd(h, "overrun condition", cp);
2924                 break;
2925         case CMD_INVALID: {
2926                 /* controller unfortunately reports SCSI passthru's
2927                  * to non-existent targets as invalid commands.
2928                  */
2929                 hpsa_print_cmd(h, "invalid command", cp);
2930                 dev_warn(d, "probably means device no longer present\n");
2931                 }
2932                 break;
2933         case CMD_PROTOCOL_ERR:
2934                 hpsa_print_cmd(h, "protocol error", cp);
2935                 break;
2936         case CMD_HARDWARE_ERR:
2937                 hpsa_print_cmd(h, "hardware error", cp);
2938                 break;
2939         case CMD_CONNECTION_LOST:
2940                 hpsa_print_cmd(h, "connection lost", cp);
2941                 break;
2942         case CMD_ABORTED:
2943                 hpsa_print_cmd(h, "aborted", cp);
2944                 break;
2945         case CMD_ABORT_FAILED:
2946                 hpsa_print_cmd(h, "abort failed", cp);
2947                 break;
2948         case CMD_UNSOLICITED_ABORT:
2949                 hpsa_print_cmd(h, "unsolicited abort", cp);
2950                 break;
2951         case CMD_TIMEOUT:
2952                 hpsa_print_cmd(h, "timed out", cp);
2953                 break;
2954         case CMD_UNABORTABLE:
2955                 hpsa_print_cmd(h, "unabortable", cp);
2956                 break;
2957         case CMD_CTLR_LOCKUP:
2958                 hpsa_print_cmd(h, "controller lockup detected", cp);
2959                 break;
2960         default:
2961                 hpsa_print_cmd(h, "unknown status", cp);
2962                 dev_warn(d, "Unknown command status %x\n",
2963                                 ei->CommandStatus);
2964         }
2965 }
2966
2967 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2968                                         u8 page, u8 *buf, size_t bufsize)
2969 {
2970         int rc = IO_OK;
2971         struct CommandList *c;
2972         struct ErrorInfo *ei;
2973
2974         c = cmd_alloc(h);
2975         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2976                         page, scsi3addr, TYPE_CMD)) {
2977                 rc = -1;
2978                 goto out;
2979         }
2980         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2981                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2982         if (rc)
2983                 goto out;
2984         ei = c->err_info;
2985         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2986                 hpsa_scsi_interpret_error(h, c);
2987                 rc = -1;
2988         }
2989 out:
2990         cmd_free(h, c);
2991         return rc;
2992 }
2993
2994 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2995                                                 u8 *scsi3addr)
2996 {
2997         u8 *buf;
2998         u64 sa = 0;
2999         int rc = 0;
3000
3001         buf = kzalloc(1024, GFP_KERNEL);
3002         if (!buf)
3003                 return 0;
3004
3005         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3006                                         buf, 1024);
3007
3008         if (rc)
3009                 goto out;
3010
3011         sa = get_unaligned_be64(buf+12);
3012
3013 out:
3014         kfree(buf);
3015         return sa;
3016 }
3017
3018 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3019                         u16 page, unsigned char *buf,
3020                         unsigned char bufsize)
3021 {
3022         int rc = IO_OK;
3023         struct CommandList *c;
3024         struct ErrorInfo *ei;
3025
3026         c = cmd_alloc(h);
3027
3028         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3029                         page, scsi3addr, TYPE_CMD)) {
3030                 rc = -1;
3031                 goto out;
3032         }
3033         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3034                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3035         if (rc)
3036                 goto out;
3037         ei = c->err_info;
3038         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3039                 hpsa_scsi_interpret_error(h, c);
3040                 rc = -1;
3041         }
3042 out:
3043         cmd_free(h, c);
3044         return rc;
3045 }
3046
3047 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3048         u8 reset_type, int reply_queue)
3049 {
3050         int rc = IO_OK;
3051         struct CommandList *c;
3052         struct ErrorInfo *ei;
3053
3054         c = cmd_alloc(h);
3055
3056
3057         /* fill_cmd can't fail here, no data buffer to map. */
3058         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3059                         scsi3addr, TYPE_MSG);
3060         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3061         if (rc) {
3062                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3063                 goto out;
3064         }
3065         /* no unmap needed here because no data xfer. */
3066
3067         ei = c->err_info;
3068         if (ei->CommandStatus != 0) {
3069                 hpsa_scsi_interpret_error(h, c);
3070                 rc = -1;
3071         }
3072 out:
3073         cmd_free(h, c);
3074         return rc;
3075 }
3076
3077 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3078                                struct hpsa_scsi_dev_t *dev,
3079                                unsigned char *scsi3addr)
3080 {
3081         int i;
3082         bool match = false;
3083         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3084         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3085
3086         if (hpsa_is_cmd_idle(c))
3087                 return false;
3088
3089         switch (c->cmd_type) {
3090         case CMD_SCSI:
3091         case CMD_IOCTL_PEND:
3092                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3093                                 sizeof(c->Header.LUN.LunAddrBytes));
3094                 break;
3095
3096         case CMD_IOACCEL1:
3097         case CMD_IOACCEL2:
3098                 if (c->phys_disk == dev) {
3099                         /* HBA mode match */
3100                         match = true;
3101                 } else {
3102                         /* Possible RAID mode -- check each phys dev. */
3103                         /* FIXME:  Do we need to take out a lock here?  If
3104                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3105                          * instead. */
3106                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3107                                 /* FIXME: an alternate test might be
3108                                  *
3109                                  * match = dev->phys_disk[i]->ioaccel_handle
3110                                  *              == c2->scsi_nexus;      */
3111                                 match = dev->phys_disk[i] == c->phys_disk;
3112                         }
3113                 }
3114                 break;
3115
3116         case IOACCEL2_TMF:
3117                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3118                         match = dev->phys_disk[i]->ioaccel_handle ==
3119                                         le32_to_cpu(ac->it_nexus);
3120                 }
3121                 break;
3122
3123         case 0:         /* The command is in the middle of being initialized. */
3124                 match = false;
3125                 break;
3126
3127         default:
3128                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3129                         c->cmd_type);
3130                 BUG();
3131         }
3132
3133         return match;
3134 }
3135
3136 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3137         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3138 {
3139         int i;
3140         int rc = 0;
3141
3142         /* We can really only handle one reset at a time */
3143         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3144                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3145                 return -EINTR;
3146         }
3147
3148         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3149
3150         for (i = 0; i < h->nr_cmds; i++) {
3151                 struct CommandList *c = h->cmd_pool + i;
3152                 int refcount = atomic_inc_return(&c->refcount);
3153
3154                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3155                         unsigned long flags;
3156
3157                         /*
3158                          * Mark the target command as having a reset pending,
3159                          * then lock a lock so that the command cannot complete
3160                          * while we're considering it.  If the command is not
3161                          * idle then count it; otherwise revoke the event.
3162                          */
3163                         c->reset_pending = dev;
3164                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3165                         if (!hpsa_is_cmd_idle(c))
3166                                 atomic_inc(&dev->reset_cmds_out);
3167                         else
3168                                 c->reset_pending = NULL;
3169                         spin_unlock_irqrestore(&h->lock, flags);
3170                 }
3171
3172                 cmd_free(h, c);
3173         }
3174
3175         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3176         if (!rc)
3177                 wait_event(h->event_sync_wait_queue,
3178                         atomic_read(&dev->reset_cmds_out) == 0 ||
3179                         lockup_detected(h));
3180
3181         if (unlikely(lockup_detected(h))) {
3182                 dev_warn(&h->pdev->dev,
3183                          "Controller lockup detected during reset wait\n");
3184                 rc = -ENODEV;
3185         }
3186
3187         if (unlikely(rc))
3188                 atomic_set(&dev->reset_cmds_out, 0);
3189         else
3190                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3191
3192         mutex_unlock(&h->reset_mutex);
3193         return rc;
3194 }
3195
3196 static void hpsa_get_raid_level(struct ctlr_info *h,
3197         unsigned char *scsi3addr, unsigned char *raid_level)
3198 {
3199         int rc;
3200         unsigned char *buf;
3201
3202         *raid_level = RAID_UNKNOWN;
3203         buf = kzalloc(64, GFP_KERNEL);
3204         if (!buf)
3205                 return;
3206
3207         if (!hpsa_vpd_page_supported(h, scsi3addr,
3208                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3209                 goto exit;
3210
3211         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3212                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3213
3214         if (rc == 0)
3215                 *raid_level = buf[8];
3216         if (*raid_level > RAID_UNKNOWN)
3217                 *raid_level = RAID_UNKNOWN;
3218 exit:
3219         kfree(buf);
3220         return;
3221 }
3222
3223 #define HPSA_MAP_DEBUG
3224 #ifdef HPSA_MAP_DEBUG
3225 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3226                                 struct raid_map_data *map_buff)
3227 {
3228         struct raid_map_disk_data *dd = &map_buff->data[0];
3229         int map, row, col;
3230         u16 map_cnt, row_cnt, disks_per_row;
3231
3232         if (rc != 0)
3233                 return;
3234
3235         /* Show details only if debugging has been activated. */
3236         if (h->raid_offload_debug < 2)
3237                 return;
3238
3239         dev_info(&h->pdev->dev, "structure_size = %u\n",
3240                                 le32_to_cpu(map_buff->structure_size));
3241         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3242                         le32_to_cpu(map_buff->volume_blk_size));
3243         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3244                         le64_to_cpu(map_buff->volume_blk_cnt));
3245         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3246                         map_buff->phys_blk_shift);
3247         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3248                         map_buff->parity_rotation_shift);
3249         dev_info(&h->pdev->dev, "strip_size = %u\n",
3250                         le16_to_cpu(map_buff->strip_size));
3251         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3252                         le64_to_cpu(map_buff->disk_starting_blk));
3253         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3254                         le64_to_cpu(map_buff->disk_blk_cnt));
3255         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3256                         le16_to_cpu(map_buff->data_disks_per_row));
3257         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3258                         le16_to_cpu(map_buff->metadata_disks_per_row));
3259         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3260                         le16_to_cpu(map_buff->row_cnt));
3261         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3262                         le16_to_cpu(map_buff->layout_map_count));
3263         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3264                         le16_to_cpu(map_buff->flags));
3265         dev_info(&h->pdev->dev, "encryption = %s\n",
3266                         le16_to_cpu(map_buff->flags) &
3267                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3268         dev_info(&h->pdev->dev, "dekindex = %u\n",
3269                         le16_to_cpu(map_buff->dekindex));
3270         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3271         for (map = 0; map < map_cnt; map++) {
3272                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3273                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3274                 for (row = 0; row < row_cnt; row++) {
3275                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3276                         disks_per_row =
3277                                 le16_to_cpu(map_buff->data_disks_per_row);
3278                         for (col = 0; col < disks_per_row; col++, dd++)
3279                                 dev_info(&h->pdev->dev,
3280                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3281                                         col, dd->ioaccel_handle,
3282                                         dd->xor_mult[0], dd->xor_mult[1]);
3283                         disks_per_row =
3284                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3285                         for (col = 0; col < disks_per_row; col++, dd++)
3286                                 dev_info(&h->pdev->dev,
3287                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3288                                         col, dd->ioaccel_handle,
3289                                         dd->xor_mult[0], dd->xor_mult[1]);
3290                 }
3291         }
3292 }
3293 #else
3294 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3295                         __attribute__((unused)) int rc,
3296                         __attribute__((unused)) struct raid_map_data *map_buff)
3297 {
3298 }
3299 #endif
3300
3301 static int hpsa_get_raid_map(struct ctlr_info *h,
3302         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3303 {
3304         int rc = 0;
3305         struct CommandList *c;
3306         struct ErrorInfo *ei;
3307
3308         c = cmd_alloc(h);
3309
3310         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3311                         sizeof(this_device->raid_map), 0,
3312                         scsi3addr, TYPE_CMD)) {
3313                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3314                 cmd_free(h, c);
3315                 return -1;
3316         }
3317         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3318                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3319         if (rc)
3320                 goto out;
3321         ei = c->err_info;
3322         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3323                 hpsa_scsi_interpret_error(h, c);
3324                 rc = -1;
3325                 goto out;
3326         }
3327         cmd_free(h, c);
3328
3329         /* @todo in the future, dynamically allocate RAID map memory */
3330         if (le32_to_cpu(this_device->raid_map.structure_size) >
3331                                 sizeof(this_device->raid_map)) {
3332                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3333                 rc = -1;
3334         }
3335         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3336         return rc;
3337 out:
3338         cmd_free(h, c);
3339         return rc;
3340 }
3341
3342 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3343                 unsigned char scsi3addr[], u16 bmic_device_index,
3344                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3345 {
3346         int rc = IO_OK;
3347         struct CommandList *c;
3348         struct ErrorInfo *ei;
3349
3350         c = cmd_alloc(h);
3351
3352         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3353                 0, RAID_CTLR_LUNID, TYPE_CMD);
3354         if (rc)
3355                 goto out;
3356
3357         c->Request.CDB[2] = bmic_device_index & 0xff;
3358         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3359
3360         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3361                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3362         if (rc)
3363                 goto out;
3364         ei = c->err_info;
3365         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3366                 hpsa_scsi_interpret_error(h, c);
3367                 rc = -1;
3368         }
3369 out:
3370         cmd_free(h, c);
3371         return rc;
3372 }
3373
3374 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3375         struct bmic_identify_controller *buf, size_t bufsize)
3376 {
3377         int rc = IO_OK;
3378         struct CommandList *c;
3379         struct ErrorInfo *ei;
3380
3381         c = cmd_alloc(h);
3382
3383         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3384                 0, RAID_CTLR_LUNID, TYPE_CMD);
3385         if (rc)
3386                 goto out;
3387
3388         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3389                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3390         if (rc)
3391                 goto out;
3392         ei = c->err_info;
3393         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3394                 hpsa_scsi_interpret_error(h, c);
3395                 rc = -1;
3396         }
3397 out:
3398         cmd_free(h, c);
3399         return rc;
3400 }
3401
3402 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3403                 unsigned char scsi3addr[], u16 bmic_device_index,
3404                 struct bmic_identify_physical_device *buf, size_t bufsize)
3405 {
3406         int rc = IO_OK;
3407         struct CommandList *c;
3408         struct ErrorInfo *ei;
3409
3410         c = cmd_alloc(h);
3411         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3412                 0, RAID_CTLR_LUNID, TYPE_CMD);
3413         if (rc)
3414                 goto out;
3415
3416         c->Request.CDB[2] = bmic_device_index & 0xff;
3417         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3418
3419         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3420                                                 NO_TIMEOUT);
3421         ei = c->err_info;
3422         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3423                 hpsa_scsi_interpret_error(h, c);
3424                 rc = -1;
3425         }
3426 out:
3427         cmd_free(h, c);
3428
3429         return rc;
3430 }
3431
3432 /*
3433  * get enclosure information
3434  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3435  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3436  * Uses id_physical_device to determine the box_index.
3437  */
3438 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3439                         unsigned char *scsi3addr,
3440                         struct ReportExtendedLUNdata *rlep, int rle_index,
3441                         struct hpsa_scsi_dev_t *encl_dev)
3442 {
3443         int rc = -1;
3444         struct CommandList *c = NULL;
3445         struct ErrorInfo *ei = NULL;
3446         struct bmic_sense_storage_box_params *bssbp = NULL;
3447         struct bmic_identify_physical_device *id_phys = NULL;
3448         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3449         u16 bmic_device_index = 0;
3450
3451         encl_dev->eli =
3452                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3453
3454         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3455
3456         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3457                 rc = IO_OK;
3458                 goto out;
3459         }
3460
3461         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3462                 rc = IO_OK;
3463                 goto out;
3464         }
3465
3466         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3467         if (!bssbp)
3468                 goto out;
3469
3470         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3471         if (!id_phys)
3472                 goto out;
3473
3474         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3475                                                 id_phys, sizeof(*id_phys));
3476         if (rc) {
3477                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3478                         __func__, encl_dev->external, bmic_device_index);
3479                 goto out;
3480         }
3481
3482         c = cmd_alloc(h);
3483
3484         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3485                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3486
3487         if (rc)
3488                 goto out;
3489
3490         if (id_phys->phys_connector[1] == 'E')
3491                 c->Request.CDB[5] = id_phys->box_index;
3492         else
3493                 c->Request.CDB[5] = 0;
3494
3495         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3496                                                 NO_TIMEOUT);
3497         if (rc)
3498                 goto out;
3499
3500         ei = c->err_info;
3501         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3502                 rc = -1;
3503                 goto out;
3504         }
3505
3506         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3507         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3508                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3509
3510         rc = IO_OK;
3511 out:
3512         kfree(bssbp);
3513         kfree(id_phys);
3514
3515         if (c)
3516                 cmd_free(h, c);
3517
3518         if (rc != IO_OK)
3519                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3520                         "Error, could not get enclosure information");
3521 }
3522
3523 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3524                                                 unsigned char *scsi3addr)
3525 {
3526         struct ReportExtendedLUNdata *physdev;
3527         u32 nphysicals;
3528         u64 sa = 0;
3529         int i;
3530
3531         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3532         if (!physdev)
3533                 return 0;
3534
3535         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3536                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3537                 kfree(physdev);
3538                 return 0;
3539         }
3540         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3541
3542         for (i = 0; i < nphysicals; i++)
3543                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3544                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3545                         break;
3546                 }
3547
3548         kfree(physdev);
3549
3550         return sa;
3551 }
3552
3553 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3554                                         struct hpsa_scsi_dev_t *dev)
3555 {
3556         int rc;
3557         u64 sa = 0;
3558
3559         if (is_hba_lunid(scsi3addr)) {
3560                 struct bmic_sense_subsystem_info *ssi;
3561
3562                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3563                 if (!ssi)
3564                         return;
3565
3566                 rc = hpsa_bmic_sense_subsystem_information(h,
3567                                         scsi3addr, 0, ssi, sizeof(*ssi));
3568                 if (rc == 0) {
3569                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3570                         h->sas_address = sa;
3571                 }
3572
3573                 kfree(ssi);
3574         } else
3575                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3576
3577         dev->sas_address = sa;
3578 }
3579
3580 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3581         struct ReportExtendedLUNdata *physdev)
3582 {
3583         u32 nphysicals;
3584         int i;
3585
3586         if (h->discovery_polling)
3587                 return;
3588
3589         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3590
3591         for (i = 0; i < nphysicals; i++) {
3592                 if (physdev->LUN[i].device_type ==
3593                         BMIC_DEVICE_TYPE_CONTROLLER
3594                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3595                         dev_info(&h->pdev->dev,
3596                                 "External controller present, activate discovery polling and disable rld caching\n");
3597                         hpsa_disable_rld_caching(h);
3598                         h->discovery_polling = 1;
3599                         break;
3600                 }
3601         }
3602 }
3603
3604 /* Get a device id from inquiry page 0x83 */
3605 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3606         unsigned char scsi3addr[], u8 page)
3607 {
3608         int rc;
3609         int i;
3610         int pages;
3611         unsigned char *buf, bufsize;
3612
3613         buf = kzalloc(256, GFP_KERNEL);
3614         if (!buf)
3615                 return false;
3616
3617         /* Get the size of the page list first */
3618         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3619                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3620                                 buf, HPSA_VPD_HEADER_SZ);
3621         if (rc != 0)
3622                 goto exit_unsupported;
3623         pages = buf[3];
3624         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3625                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3626         else
3627                 bufsize = 255;
3628
3629         /* Get the whole VPD page list */
3630         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3631                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3632                                 buf, bufsize);
3633         if (rc != 0)
3634                 goto exit_unsupported;
3635
3636         pages = buf[3];
3637         for (i = 1; i <= pages; i++)
3638                 if (buf[3 + i] == page)
3639                         goto exit_supported;
3640 exit_unsupported:
3641         kfree(buf);
3642         return false;
3643 exit_supported:
3644         kfree(buf);
3645         return true;
3646 }
3647
3648 /*
3649  * Called during a scan operation.
3650  * Sets ioaccel status on the new device list, not the existing device list
3651  *
3652  * The device list used during I/O will be updated later in
3653  * adjust_hpsa_scsi_table.
3654  */
3655 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3656         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3657 {
3658         int rc;
3659         unsigned char *buf;
3660         u8 ioaccel_status;
3661
3662         this_device->offload_config = 0;
3663         this_device->offload_enabled = 0;
3664         this_device->offload_to_be_enabled = 0;
3665
3666         buf = kzalloc(64, GFP_KERNEL);
3667         if (!buf)
3668                 return;
3669         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3670                 goto out;
3671         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3672                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3673         if (rc != 0)
3674                 goto out;
3675
3676 #define IOACCEL_STATUS_BYTE 4
3677 #define OFFLOAD_CONFIGURED_BIT 0x01
3678 #define OFFLOAD_ENABLED_BIT 0x02
3679         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3680         this_device->offload_config =
3681                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3682         if (this_device->offload_config) {
3683                 bool offload_enabled =
3684                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3685                 /*
3686                  * Check to see if offload can be enabled.
3687                  */
3688                 if (offload_enabled) {
3689                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3690                         if (rc) /* could not load raid_map */
3691                                 goto out;
3692                         this_device->offload_to_be_enabled = 1;
3693                 }
3694         }
3695
3696 out:
3697         kfree(buf);
3698         return;
3699 }
3700
3701 /* Get the device id from inquiry page 0x83 */
3702 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3703         unsigned char *device_id, int index, int buflen)
3704 {
3705         int rc;
3706         unsigned char *buf;
3707
3708         /* Does controller have VPD for device id? */
3709         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3710                 return 1; /* not supported */
3711
3712         buf = kzalloc(64, GFP_KERNEL);
3713         if (!buf)
3714                 return -ENOMEM;
3715
3716         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3717                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3718         if (rc == 0) {
3719                 if (buflen > 16)
3720                         buflen = 16;
3721                 memcpy(device_id, &buf[8], buflen);
3722         }
3723
3724         kfree(buf);
3725
3726         return rc; /*0 - got id,  otherwise, didn't */
3727 }
3728
3729 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3730                 void *buf, int bufsize,
3731                 int extended_response)
3732 {
3733         int rc = IO_OK;
3734         struct CommandList *c;
3735         unsigned char scsi3addr[8];
3736         struct ErrorInfo *ei;
3737
3738         c = cmd_alloc(h);
3739
3740         /* address the controller */
3741         memset(scsi3addr, 0, sizeof(scsi3addr));
3742         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3743                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3744                 rc = -EAGAIN;
3745                 goto out;
3746         }
3747         if (extended_response)
3748                 c->Request.CDB[1] = extended_response;
3749         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3750                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3751         if (rc)
3752                 goto out;
3753         ei = c->err_info;
3754         if (ei->CommandStatus != 0 &&
3755             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3756                 hpsa_scsi_interpret_error(h, c);
3757                 rc = -EIO;
3758         } else {
3759                 struct ReportLUNdata *rld = buf;
3760
3761                 if (rld->extended_response_flag != extended_response) {
3762                         if (!h->legacy_board) {
3763                                 dev_err(&h->pdev->dev,
3764                                         "report luns requested format %u, got %u\n",
3765                                         extended_response,
3766                                         rld->extended_response_flag);
3767                                 rc = -EINVAL;
3768                         } else
3769                                 rc = -EOPNOTSUPP;
3770                 }
3771         }
3772 out:
3773         cmd_free(h, c);
3774         return rc;
3775 }
3776
3777 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3778                 struct ReportExtendedLUNdata *buf, int bufsize)
3779 {
3780         int rc;
3781         struct ReportLUNdata *lbuf;
3782
3783         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3784                                       HPSA_REPORT_PHYS_EXTENDED);
3785         if (!rc || rc != -EOPNOTSUPP)
3786                 return rc;
3787
3788         /* REPORT PHYS EXTENDED is not supported */
3789         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3790         if (!lbuf)
3791                 return -ENOMEM;
3792
3793         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3794         if (!rc) {
3795                 int i;
3796                 u32 nphys;
3797
3798                 /* Copy ReportLUNdata header */
3799                 memcpy(buf, lbuf, 8);
3800                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3801                 for (i = 0; i < nphys; i++)
3802                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3803         }
3804         kfree(lbuf);
3805         return rc;
3806 }
3807
3808 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3809                 struct ReportLUNdata *buf, int bufsize)
3810 {
3811         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3812 }
3813
3814 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3815         int bus, int target, int lun)
3816 {
3817         device->bus = bus;
3818         device->target = target;
3819         device->lun = lun;
3820 }
3821
3822 /* Use VPD inquiry to get details of volume status */
3823 static int hpsa_get_volume_status(struct ctlr_info *h,
3824                                         unsigned char scsi3addr[])
3825 {
3826         int rc;
3827         int status;
3828         int size;
3829         unsigned char *buf;
3830
3831         buf = kzalloc(64, GFP_KERNEL);
3832         if (!buf)
3833                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3834
3835         /* Does controller have VPD for logical volume status? */
3836         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3837                 goto exit_failed;
3838
3839         /* Get the size of the VPD return buffer */
3840         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3841                                         buf, HPSA_VPD_HEADER_SZ);
3842         if (rc != 0)
3843                 goto exit_failed;
3844         size = buf[3];
3845
3846         /* Now get the whole VPD buffer */
3847         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3848                                         buf, size + HPSA_VPD_HEADER_SZ);
3849         if (rc != 0)
3850                 goto exit_failed;
3851         status = buf[4]; /* status byte */
3852
3853         kfree(buf);
3854         return status;
3855 exit_failed:
3856         kfree(buf);
3857         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3858 }
3859
3860 /* Determine offline status of a volume.
3861  * Return either:
3862  *  0 (not offline)
3863  *  0xff (offline for unknown reasons)
3864  *  # (integer code indicating one of several NOT READY states
3865  *     describing why a volume is to be kept offline)
3866  */
3867 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3868                                         unsigned char scsi3addr[])
3869 {
3870         struct CommandList *c;
3871         unsigned char *sense;
3872         u8 sense_key, asc, ascq;
3873         int sense_len;
3874         int rc, ldstat = 0;
3875         u16 cmd_status;
3876         u8 scsi_status;
3877 #define ASC_LUN_NOT_READY 0x04
3878 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3879 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3880
3881         c = cmd_alloc(h);
3882
3883         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3884         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3885                                         NO_TIMEOUT);
3886         if (rc) {
3887                 cmd_free(h, c);
3888                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3889         }
3890         sense = c->err_info->SenseInfo;
3891         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3892                 sense_len = sizeof(c->err_info->SenseInfo);
3893         else
3894                 sense_len = c->err_info->SenseLen;
3895         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3896         cmd_status = c->err_info->CommandStatus;
3897         scsi_status = c->err_info->ScsiStatus;
3898         cmd_free(h, c);
3899
3900         /* Determine the reason for not ready state */
3901         ldstat = hpsa_get_volume_status(h, scsi3addr);
3902
3903         /* Keep volume offline in certain cases: */
3904         switch (ldstat) {
3905         case HPSA_LV_FAILED:
3906         case HPSA_LV_UNDERGOING_ERASE:
3907         case HPSA_LV_NOT_AVAILABLE:
3908         case HPSA_LV_UNDERGOING_RPI:
3909         case HPSA_LV_PENDING_RPI:
3910         case HPSA_LV_ENCRYPTED_NO_KEY:
3911         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3912         case HPSA_LV_UNDERGOING_ENCRYPTION:
3913         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3914         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3915                 return ldstat;
3916         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3917                 /* If VPD status page isn't available,
3918                  * use ASC/ASCQ to determine state
3919                  */
3920                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3921                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3922                         return ldstat;
3923                 break;
3924         default:
3925                 break;
3926         }
3927         return HPSA_LV_OK;
3928 }
3929
3930 static int hpsa_update_device_info(struct ctlr_info *h,
3931         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3932         unsigned char *is_OBDR_device)
3933 {
3934
3935 #define OBDR_SIG_OFFSET 43
3936 #define OBDR_TAPE_SIG "$DR-10"
3937 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3938 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3939
3940         unsigned char *inq_buff;
3941         unsigned char *obdr_sig;
3942         int rc = 0;
3943
3944         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3945         if (!inq_buff) {
3946                 rc = -ENOMEM;
3947                 goto bail_out;
3948         }
3949
3950         /* Do an inquiry to the device to see what it is. */
3951         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3952                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3953                 dev_err(&h->pdev->dev,
3954                         "%s: inquiry failed, device will be skipped.\n",
3955                         __func__);
3956                 rc = HPSA_INQUIRY_FAILED;
3957                 goto bail_out;
3958         }
3959
3960         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3961         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3962
3963         this_device->devtype = (inq_buff[0] & 0x1f);
3964         memcpy(this_device->scsi3addr, scsi3addr, 8);
3965         memcpy(this_device->vendor, &inq_buff[8],
3966                 sizeof(this_device->vendor));
3967         memcpy(this_device->model, &inq_buff[16],
3968                 sizeof(this_device->model));
3969         this_device->rev = inq_buff[2];
3970         memset(this_device->device_id, 0,
3971                 sizeof(this_device->device_id));
3972         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3973                 sizeof(this_device->device_id)) < 0)
3974                 dev_err(&h->pdev->dev,
3975                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3976                         h->ctlr, __func__,
3977                         h->scsi_host->host_no,
3978                         this_device->target, this_device->lun,
3979                         scsi_device_type(this_device->devtype),
3980                         this_device->model);
3981
3982         if ((this_device->devtype == TYPE_DISK ||
3983                 this_device->devtype == TYPE_ZBC) &&
3984                 is_logical_dev_addr_mode(scsi3addr)) {
3985                 unsigned char volume_offline;
3986
3987                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3988                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3989                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3990                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3991                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3992                     h->legacy_board) {
3993                         /*
3994                          * Legacy boards might not support volume status
3995                          */
3996                         dev_info(&h->pdev->dev,
3997                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3998                                  this_device->target, this_device->lun);
3999                         volume_offline = 0;
4000                 }
4001                 this_device->volume_offline = volume_offline;
4002                 if (volume_offline == HPSA_LV_FAILED) {
4003                         rc = HPSA_LV_FAILED;
4004                         dev_err(&h->pdev->dev,
4005                                 "%s: LV failed, device will be skipped.\n",
4006                                 __func__);
4007                         goto bail_out;
4008                 }
4009         } else {
4010                 this_device->raid_level = RAID_UNKNOWN;
4011                 this_device->offload_config = 0;
4012                 hpsa_turn_off_ioaccel_for_device(this_device);
4013                 this_device->hba_ioaccel_enabled = 0;
4014                 this_device->volume_offline = 0;
4015                 this_device->queue_depth = h->nr_cmds;
4016         }
4017
4018         if (this_device->external)
4019                 this_device->queue_depth = EXTERNAL_QD;
4020
4021         if (is_OBDR_device) {
4022                 /* See if this is a One-Button-Disaster-Recovery device
4023                  * by looking for "$DR-10" at offset 43 in inquiry data.
4024                  */
4025                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4026                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4027                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4028                                                 OBDR_SIG_LEN) == 0);
4029         }
4030         kfree(inq_buff);
4031         return 0;
4032
4033 bail_out:
4034         kfree(inq_buff);
4035         return rc;
4036 }
4037
4038 /*
4039  * Helper function to assign bus, target, lun mapping of devices.
4040  * Logical drive target and lun are assigned at this time, but
4041  * physical device lun and target assignment are deferred (assigned
4042  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4043 */
4044 static void figure_bus_target_lun(struct ctlr_info *h,
4045         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4046 {
4047         u32 lunid = get_unaligned_le32(lunaddrbytes);
4048
4049         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4050                 /* physical device, target and lun filled in later */
4051                 if (is_hba_lunid(lunaddrbytes)) {
4052                         int bus = HPSA_HBA_BUS;
4053
4054                         if (!device->rev)
4055                                 bus = HPSA_LEGACY_HBA_BUS;
4056                         hpsa_set_bus_target_lun(device,
4057                                         bus, 0, lunid & 0x3fff);
4058                 } else
4059                         /* defer target, lun assignment for physical devices */
4060                         hpsa_set_bus_target_lun(device,
4061                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4062                 return;
4063         }
4064         /* It's a logical device */
4065         if (device->external) {
4066                 hpsa_set_bus_target_lun(device,
4067                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4068                         lunid & 0x00ff);
4069                 return;
4070         }
4071         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4072                                 0, lunid & 0x3fff);
4073 }
4074
4075 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4076         int i, int nphysicals, int nlocal_logicals)
4077 {
4078         /* In report logicals, local logicals are listed first,
4079         * then any externals.
4080         */
4081         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4082
4083         if (i == raid_ctlr_position)
4084                 return 0;
4085
4086         if (i < logicals_start)
4087                 return 0;
4088
4089         /* i is in logicals range, but still within local logicals */
4090         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4091                 return 0;
4092
4093         return 1; /* it's an external lun */
4094 }
4095
4096 /*
4097  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4098  * logdev.  The number of luns in physdev and logdev are returned in
4099  * *nphysicals and *nlogicals, respectively.
4100  * Returns 0 on success, -1 otherwise.
4101  */
4102 static int hpsa_gather_lun_info(struct ctlr_info *h,
4103         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4104         struct ReportLUNdata *logdev, u32 *nlogicals)
4105 {
4106         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4107                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4108                 return -1;
4109         }
4110         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4111         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4112                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4113                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4114                 *nphysicals = HPSA_MAX_PHYS_LUN;
4115         }
4116         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4117                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4118                 return -1;
4119         }
4120         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4121         /* Reject Logicals in excess of our max capability. */
4122         if (*nlogicals > HPSA_MAX_LUN) {
4123                 dev_warn(&h->pdev->dev,
4124                         "maximum logical LUNs (%d) exceeded.  "
4125                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4126                         *nlogicals - HPSA_MAX_LUN);
4127                         *nlogicals = HPSA_MAX_LUN;
4128         }
4129         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4130                 dev_warn(&h->pdev->dev,
4131                         "maximum logical + physical LUNs (%d) exceeded. "
4132                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4133                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4134                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4135         }
4136         return 0;
4137 }
4138
4139 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4140         int i, int nphysicals, int nlogicals,
4141         struct ReportExtendedLUNdata *physdev_list,
4142         struct ReportLUNdata *logdev_list)
4143 {
4144         /* Helper function, figure out where the LUN ID info is coming from
4145          * given index i, lists of physical and logical devices, where in
4146          * the list the raid controller is supposed to appear (first or last)
4147          */
4148
4149         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4150         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4151
4152         if (i == raid_ctlr_position)
4153                 return RAID_CTLR_LUNID;
4154
4155         if (i < logicals_start)
4156                 return &physdev_list->LUN[i -
4157                                 (raid_ctlr_position == 0)].lunid[0];
4158
4159         if (i < last_device)
4160                 return &logdev_list->LUN[i - nphysicals -
4161                         (raid_ctlr_position == 0)][0];
4162         BUG();
4163         return NULL;
4164 }
4165
4166 /* get physical drive ioaccel handle and queue depth */
4167 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4168                 struct hpsa_scsi_dev_t *dev,
4169                 struct ReportExtendedLUNdata *rlep, int rle_index,
4170                 struct bmic_identify_physical_device *id_phys)
4171 {
4172         int rc;
4173         struct ext_report_lun_entry *rle;
4174
4175         rle = &rlep->LUN[rle_index];
4176
4177         dev->ioaccel_handle = rle->ioaccel_handle;
4178         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4179                 dev->hba_ioaccel_enabled = 1;
4180         memset(id_phys, 0, sizeof(*id_phys));
4181         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4182                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4183                         sizeof(*id_phys));
4184         if (!rc)
4185                 /* Reserve space for FW operations */
4186 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4187 #define DRIVE_QUEUE_DEPTH 7
4188                 dev->queue_depth =
4189                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4190                                 DRIVE_CMDS_RESERVED_FOR_FW;
4191         else
4192                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4193 }
4194
4195 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4196         struct ReportExtendedLUNdata *rlep, int rle_index,
4197         struct bmic_identify_physical_device *id_phys)
4198 {
4199         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4200
4201         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4202                 this_device->hba_ioaccel_enabled = 1;
4203
4204         memcpy(&this_device->active_path_index,
4205                 &id_phys->active_path_number,
4206                 sizeof(this_device->active_path_index));
4207         memcpy(&this_device->path_map,
4208                 &id_phys->redundant_path_present_map,
4209                 sizeof(this_device->path_map));
4210         memcpy(&this_device->box,
4211                 &id_phys->alternate_paths_phys_box_on_port,
4212                 sizeof(this_device->box));
4213         memcpy(&this_device->phys_connector,
4214                 &id_phys->alternate_paths_phys_connector,
4215                 sizeof(this_device->phys_connector));
4216         memcpy(&this_device->bay,
4217                 &id_phys->phys_bay_in_box,
4218                 sizeof(this_device->bay));
4219 }
4220
4221 /* get number of local logical disks. */
4222 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4223         struct bmic_identify_controller *id_ctlr,
4224         u32 *nlocals)
4225 {
4226         int rc;
4227
4228         if (!id_ctlr) {
4229                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4230                         __func__);
4231                 return -ENOMEM;
4232         }
4233         memset(id_ctlr, 0, sizeof(*id_ctlr));
4234         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4235         if (!rc)
4236                 if (id_ctlr->configured_logical_drive_count < 255)
4237                         *nlocals = id_ctlr->configured_logical_drive_count;
4238                 else
4239                         *nlocals = le16_to_cpu(
4240                                         id_ctlr->extended_logical_unit_count);
4241         else
4242                 *nlocals = -1;
4243         return rc;
4244 }
4245
4246 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4247 {
4248         struct bmic_identify_physical_device *id_phys;
4249         bool is_spare = false;
4250         int rc;
4251
4252         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4253         if (!id_phys)
4254                 return false;
4255
4256         rc = hpsa_bmic_id_physical_device(h,
4257                                         lunaddrbytes,
4258                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4259                                         id_phys, sizeof(*id_phys));
4260         if (rc == 0)
4261                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4262
4263         kfree(id_phys);
4264         return is_spare;
4265 }
4266
4267 #define RPL_DEV_FLAG_NON_DISK                           0x1
4268 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4269 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4270
4271 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4272
4273 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4274                                 struct ext_report_lun_entry *rle)
4275 {
4276         u8 device_flags;
4277         u8 device_type;
4278
4279         if (!MASKED_DEVICE(lunaddrbytes))
4280                 return false;
4281
4282         device_flags = rle->device_flags;
4283         device_type = rle->device_type;
4284
4285         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4286                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4287                         return false;
4288                 return true;
4289         }
4290
4291         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4292                 return false;
4293
4294         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4295                 return false;
4296
4297         /*
4298          * Spares may be spun down, we do not want to
4299          * do an Inquiry to a RAID set spare drive as
4300          * that would have them spun up, that is a
4301          * performance hit because I/O to the RAID device
4302          * stops while the spin up occurs which can take
4303          * over 50 seconds.
4304          */
4305         if (hpsa_is_disk_spare(h, lunaddrbytes))
4306                 return true;
4307
4308         return false;
4309 }
4310
4311 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4312 {
4313         /* the idea here is we could get notified
4314          * that some devices have changed, so we do a report
4315          * physical luns and report logical luns cmd, and adjust
4316          * our list of devices accordingly.
4317          *
4318          * The scsi3addr's of devices won't change so long as the
4319          * adapter is not reset.  That means we can rescan and
4320          * tell which devices we already know about, vs. new
4321          * devices, vs.  disappearing devices.
4322          */
4323         struct ReportExtendedLUNdata *physdev_list = NULL;
4324         struct ReportLUNdata *logdev_list = NULL;
4325         struct bmic_identify_physical_device *id_phys = NULL;
4326         struct bmic_identify_controller *id_ctlr = NULL;
4327         u32 nphysicals = 0;
4328         u32 nlogicals = 0;
4329         u32 nlocal_logicals = 0;
4330         u32 ndev_allocated = 0;
4331         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4332         int ncurrent = 0;
4333         int i, n_ext_target_devs, ndevs_to_allocate;
4334         int raid_ctlr_position;
4335         bool physical_device;
4336         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4337
4338         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4339         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4340         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4341         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4342         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4343         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4344
4345         if (!currentsd || !physdev_list || !logdev_list ||
4346                 !tmpdevice || !id_phys || !id_ctlr) {
4347                 dev_err(&h->pdev->dev, "out of memory\n");
4348                 goto out;
4349         }
4350         memset(lunzerobits, 0, sizeof(lunzerobits));
4351
4352         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4353
4354         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4355                         logdev_list, &nlogicals)) {
4356                 h->drv_req_rescan = 1;
4357                 goto out;
4358         }
4359
4360         /* Set number of local logicals (non PTRAID) */
4361         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4362                 dev_warn(&h->pdev->dev,
4363                         "%s: Can't determine number of local logical devices.\n",
4364                         __func__);
4365         }
4366
4367         /* We might see up to the maximum number of logical and physical disks
4368          * plus external target devices, and a device for the local RAID
4369          * controller.
4370          */
4371         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4372
4373         hpsa_ext_ctrl_present(h, physdev_list);
4374
4375         /* Allocate the per device structures */
4376         for (i = 0; i < ndevs_to_allocate; i++) {
4377                 if (i >= HPSA_MAX_DEVICES) {
4378                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4379                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4380                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4381                         break;
4382                 }
4383
4384                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4385                 if (!currentsd[i]) {
4386                         h->drv_req_rescan = 1;
4387                         goto out;
4388                 }
4389                 ndev_allocated++;
4390         }
4391
4392         if (is_scsi_rev_5(h))
4393                 raid_ctlr_position = 0;
4394         else
4395                 raid_ctlr_position = nphysicals + nlogicals;
4396
4397         /* adjust our table of devices */
4398         n_ext_target_devs = 0;
4399         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4400                 u8 *lunaddrbytes, is_OBDR = 0;
4401                 int rc = 0;
4402                 int phys_dev_index = i - (raid_ctlr_position == 0);
4403                 bool skip_device = false;
4404
4405                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4406
4407                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4408
4409                 /* Figure out where the LUN ID info is coming from */
4410                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4411                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4412
4413                 /* Determine if this is a lun from an external target array */
4414                 tmpdevice->external =
4415                         figure_external_status(h, raid_ctlr_position, i,
4416                                                 nphysicals, nlocal_logicals);
4417
4418                 /*
4419                  * Skip over some devices such as a spare.
4420                  */
4421                 if (!tmpdevice->external && physical_device) {
4422                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4423                                         &physdev_list->LUN[phys_dev_index]);
4424                         if (skip_device)
4425                                 continue;
4426                 }
4427
4428                 /* Get device type, vendor, model, device id, raid_map */
4429                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4430                                                         &is_OBDR);
4431                 if (rc == -ENOMEM) {
4432                         dev_warn(&h->pdev->dev,
4433                                 "Out of memory, rescan deferred.\n");
4434                         h->drv_req_rescan = 1;
4435                         goto out;
4436                 }
4437                 if (rc) {
4438                         h->drv_req_rescan = 1;
4439                         continue;
4440                 }
4441
4442                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4443                 this_device = currentsd[ncurrent];
4444
4445                 *this_device = *tmpdevice;
4446                 this_device->physical_device = physical_device;
4447
4448                 /*
4449                  * Expose all devices except for physical devices that
4450                  * are masked.
4451                  */
4452                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4453                         this_device->expose_device = 0;
4454                 else
4455                         this_device->expose_device = 1;
4456
4457
4458                 /*
4459                  * Get the SAS address for physical devices that are exposed.
4460                  */
4461                 if (this_device->physical_device && this_device->expose_device)
4462                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4463
4464                 switch (this_device->devtype) {
4465                 case TYPE_ROM:
4466                         /* We don't *really* support actual CD-ROM devices,
4467                          * just "One Button Disaster Recovery" tape drive
4468                          * which temporarily pretends to be a CD-ROM drive.
4469                          * So we check that the device is really an OBDR tape
4470                          * device by checking for "$DR-10" in bytes 43-48 of
4471                          * the inquiry data.
4472                          */
4473                         if (is_OBDR)
4474                                 ncurrent++;
4475                         break;
4476                 case TYPE_DISK:
4477                 case TYPE_ZBC:
4478                         if (this_device->physical_device) {
4479                                 /* The disk is in HBA mode. */
4480                                 /* Never use RAID mapper in HBA mode. */
4481                                 this_device->offload_enabled = 0;
4482                                 hpsa_get_ioaccel_drive_info(h, this_device,
4483                                         physdev_list, phys_dev_index, id_phys);
4484                                 hpsa_get_path_info(this_device,
4485                                         physdev_list, phys_dev_index, id_phys);
4486                         }
4487                         ncurrent++;
4488                         break;
4489                 case TYPE_TAPE:
4490                 case TYPE_MEDIUM_CHANGER:
4491                         ncurrent++;
4492                         break;
4493                 case TYPE_ENCLOSURE:
4494                         if (!this_device->external)
4495                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4496                                                 physdev_list, phys_dev_index,
4497                                                 this_device);
4498                         ncurrent++;
4499                         break;
4500                 case TYPE_RAID:
4501                         /* Only present the Smartarray HBA as a RAID controller.
4502                          * If it's a RAID controller other than the HBA itself
4503                          * (an external RAID controller, MSA500 or similar)
4504                          * don't present it.
4505                          */
4506                         if (!is_hba_lunid(lunaddrbytes))
4507                                 break;
4508                         ncurrent++;
4509                         break;
4510                 default:
4511                         break;
4512                 }
4513                 if (ncurrent >= HPSA_MAX_DEVICES)
4514                         break;
4515         }
4516
4517         if (h->sas_host == NULL) {
4518                 int rc = 0;
4519
4520                 rc = hpsa_add_sas_host(h);
4521                 if (rc) {
4522                         dev_warn(&h->pdev->dev,
4523                                 "Could not add sas host %d\n", rc);
4524                         goto out;
4525                 }
4526         }
4527
4528         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4529 out:
4530         kfree(tmpdevice);
4531         for (i = 0; i < ndev_allocated; i++)
4532                 kfree(currentsd[i]);
4533         kfree(currentsd);
4534         kfree(physdev_list);
4535         kfree(logdev_list);
4536         kfree(id_ctlr);
4537         kfree(id_phys);
4538 }
4539
4540 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4541                                    struct scatterlist *sg)
4542 {
4543         u64 addr64 = (u64) sg_dma_address(sg);
4544         unsigned int len = sg_dma_len(sg);
4545
4546         desc->Addr = cpu_to_le64(addr64);
4547         desc->Len = cpu_to_le32(len);
4548         desc->Ext = 0;
4549 }
4550
4551 /*
4552  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4553  * dma mapping  and fills in the scatter gather entries of the
4554  * hpsa command, cp.
4555  */
4556 static int hpsa_scatter_gather(struct ctlr_info *h,
4557                 struct CommandList *cp,
4558                 struct scsi_cmnd *cmd)
4559 {
4560         struct scatterlist *sg;
4561         int use_sg, i, sg_limit, chained, last_sg;
4562         struct SGDescriptor *curr_sg;
4563
4564         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4565
4566         use_sg = scsi_dma_map(cmd);
4567         if (use_sg < 0)
4568                 return use_sg;
4569
4570         if (!use_sg)
4571                 goto sglist_finished;
4572
4573         /*
4574          * If the number of entries is greater than the max for a single list,
4575          * then we have a chained list; we will set up all but one entry in the
4576          * first list (the last entry is saved for link information);
4577          * otherwise, we don't have a chained list and we'll set up at each of
4578          * the entries in the one list.
4579          */
4580         curr_sg = cp->SG;
4581         chained = use_sg > h->max_cmd_sg_entries;
4582         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4583         last_sg = scsi_sg_count(cmd) - 1;
4584         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4585                 hpsa_set_sg_descriptor(curr_sg, sg);
4586                 curr_sg++;
4587         }
4588
4589         if (chained) {
4590                 /*
4591                  * Continue with the chained list.  Set curr_sg to the chained
4592                  * list.  Modify the limit to the total count less the entries
4593                  * we've already set up.  Resume the scan at the list entry
4594                  * where the previous loop left off.
4595                  */
4596                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4597                 sg_limit = use_sg - sg_limit;
4598                 for_each_sg(sg, sg, sg_limit, i) {
4599                         hpsa_set_sg_descriptor(curr_sg, sg);
4600                         curr_sg++;
4601                 }
4602         }
4603
4604         /* Back the pointer up to the last entry and mark it as "last". */
4605         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4606
4607         if (use_sg + chained > h->maxSG)
4608                 h->maxSG = use_sg + chained;
4609
4610         if (chained) {
4611                 cp->Header.SGList = h->max_cmd_sg_entries;
4612                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4613                 if (hpsa_map_sg_chain_block(h, cp)) {
4614                         scsi_dma_unmap(cmd);
4615                         return -1;
4616                 }
4617                 return 0;
4618         }
4619
4620 sglist_finished:
4621
4622         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4623         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4624         return 0;
4625 }
4626
4627 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4628                                                 u8 *cdb, int cdb_len,
4629                                                 const char *func)
4630 {
4631         dev_warn(&h->pdev->dev,
4632                  "%s: Blocking zero-length request: CDB:%*phN\n",
4633                  func, cdb_len, cdb);
4634 }
4635
4636 #define IO_ACCEL_INELIGIBLE 1
4637 /* zero-length transfers trigger hardware errors. */
4638 static bool is_zero_length_transfer(u8 *cdb)
4639 {
4640         u32 block_cnt;
4641
4642         /* Block zero-length transfer sizes on certain commands. */
4643         switch (cdb[0]) {
4644         case READ_10:
4645         case WRITE_10:
4646         case VERIFY:            /* 0x2F */
4647         case WRITE_VERIFY:      /* 0x2E */
4648                 block_cnt = get_unaligned_be16(&cdb[7]);
4649                 break;
4650         case READ_12:
4651         case WRITE_12:
4652         case VERIFY_12: /* 0xAF */
4653         case WRITE_VERIFY_12:   /* 0xAE */
4654                 block_cnt = get_unaligned_be32(&cdb[6]);
4655                 break;
4656         case READ_16:
4657         case WRITE_16:
4658         case VERIFY_16:         /* 0x8F */
4659                 block_cnt = get_unaligned_be32(&cdb[10]);
4660                 break;
4661         default:
4662                 return false;
4663         }
4664
4665         return block_cnt == 0;
4666 }
4667
4668 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4669 {
4670         int is_write = 0;
4671         u32 block;
4672         u32 block_cnt;
4673
4674         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4675         switch (cdb[0]) {
4676         case WRITE_6:
4677         case WRITE_12:
4678                 is_write = 1;
4679         case READ_6:
4680         case READ_12:
4681                 if (*cdb_len == 6) {
4682                         block = (((cdb[1] & 0x1F) << 16) |
4683                                 (cdb[2] << 8) |
4684                                 cdb[3]);
4685                         block_cnt = cdb[4];
4686                         if (block_cnt == 0)
4687                                 block_cnt = 256;
4688                 } else {
4689                         BUG_ON(*cdb_len != 12);
4690                         block = get_unaligned_be32(&cdb[2]);
4691                         block_cnt = get_unaligned_be32(&cdb[6]);
4692                 }
4693                 if (block_cnt > 0xffff)
4694                         return IO_ACCEL_INELIGIBLE;
4695
4696                 cdb[0] = is_write ? WRITE_10 : READ_10;
4697                 cdb[1] = 0;
4698                 cdb[2] = (u8) (block >> 24);
4699                 cdb[3] = (u8) (block >> 16);
4700                 cdb[4] = (u8) (block >> 8);
4701                 cdb[5] = (u8) (block);
4702                 cdb[6] = 0;
4703                 cdb[7] = (u8) (block_cnt >> 8);
4704                 cdb[8] = (u8) (block_cnt);
4705                 cdb[9] = 0;
4706                 *cdb_len = 10;
4707                 break;
4708         }
4709         return 0;
4710 }
4711
4712 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4713         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4714         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4715 {
4716         struct scsi_cmnd *cmd = c->scsi_cmd;
4717         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4718         unsigned int len;
4719         unsigned int total_len = 0;
4720         struct scatterlist *sg;
4721         u64 addr64;
4722         int use_sg, i;
4723         struct SGDescriptor *curr_sg;
4724         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4725
4726         /* TODO: implement chaining support */
4727         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4728                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4729                 return IO_ACCEL_INELIGIBLE;
4730         }
4731
4732         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4733
4734         if (is_zero_length_transfer(cdb)) {
4735                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4736                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4737                 return IO_ACCEL_INELIGIBLE;
4738         }
4739
4740         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4741                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4742                 return IO_ACCEL_INELIGIBLE;
4743         }
4744
4745         c->cmd_type = CMD_IOACCEL1;
4746
4747         /* Adjust the DMA address to point to the accelerated command buffer */
4748         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4749                                 (c->cmdindex * sizeof(*cp));
4750         BUG_ON(c->busaddr & 0x0000007F);
4751
4752         use_sg = scsi_dma_map(cmd);
4753         if (use_sg < 0) {
4754                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4755                 return use_sg;
4756         }
4757
4758         if (use_sg) {
4759                 curr_sg = cp->SG;
4760                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4761                         addr64 = (u64) sg_dma_address(sg);
4762                         len  = sg_dma_len(sg);
4763                         total_len += len;
4764                         curr_sg->Addr = cpu_to_le64(addr64);
4765                         curr_sg->Len = cpu_to_le32(len);
4766                         curr_sg->Ext = cpu_to_le32(0);
4767                         curr_sg++;
4768                 }
4769                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4770
4771                 switch (cmd->sc_data_direction) {
4772                 case DMA_TO_DEVICE:
4773                         control |= IOACCEL1_CONTROL_DATA_OUT;
4774                         break;
4775                 case DMA_FROM_DEVICE:
4776                         control |= IOACCEL1_CONTROL_DATA_IN;
4777                         break;
4778                 case DMA_NONE:
4779                         control |= IOACCEL1_CONTROL_NODATAXFER;
4780                         break;
4781                 default:
4782                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4783                         cmd->sc_data_direction);
4784                         BUG();
4785                         break;
4786                 }
4787         } else {
4788                 control |= IOACCEL1_CONTROL_NODATAXFER;
4789         }
4790
4791         c->Header.SGList = use_sg;
4792         /* Fill out the command structure to submit */
4793         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4794         cp->transfer_len = cpu_to_le32(total_len);
4795         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4796                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4797         cp->control = cpu_to_le32(control);
4798         memcpy(cp->CDB, cdb, cdb_len);
4799         memcpy(cp->CISS_LUN, scsi3addr, 8);
4800         /* Tag was already set at init time. */
4801         enqueue_cmd_and_start_io(h, c);
4802         return 0;
4803 }
4804
4805 /*
4806  * Queue a command directly to a device behind the controller using the
4807  * I/O accelerator path.
4808  */
4809 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4810         struct CommandList *c)
4811 {
4812         struct scsi_cmnd *cmd = c->scsi_cmd;
4813         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4814
4815         if (!dev)
4816                 return -1;
4817
4818         c->phys_disk = dev;
4819
4820         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4821                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4822 }
4823
4824 /*
4825  * Set encryption parameters for the ioaccel2 request
4826  */
4827 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4828         struct CommandList *c, struct io_accel2_cmd *cp)
4829 {
4830         struct scsi_cmnd *cmd = c->scsi_cmd;
4831         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4832         struct raid_map_data *map = &dev->raid_map;
4833         u64 first_block;
4834
4835         /* Are we doing encryption on this device */
4836         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4837                 return;
4838         /* Set the data encryption key index. */
4839         cp->dekindex = map->dekindex;
4840
4841         /* Set the encryption enable flag, encoded into direction field. */
4842         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4843
4844         /* Set encryption tweak values based on logical block address
4845          * If block size is 512, tweak value is LBA.
4846          * For other block sizes, tweak is (LBA * block size)/ 512)
4847          */
4848         switch (cmd->cmnd[0]) {
4849         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4850         case READ_6:
4851         case WRITE_6:
4852                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4853                                 (cmd->cmnd[2] << 8) |
4854                                 cmd->cmnd[3]);
4855                 break;
4856         case WRITE_10:
4857         case READ_10:
4858         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4859         case WRITE_12:
4860         case READ_12:
4861                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4862                 break;
4863         case WRITE_16:
4864         case READ_16:
4865                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4866                 break;
4867         default:
4868                 dev_err(&h->pdev->dev,
4869                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4870                         __func__, cmd->cmnd[0]);
4871                 BUG();
4872                 break;
4873         }
4874
4875         if (le32_to_cpu(map->volume_blk_size) != 512)
4876                 first_block = first_block *
4877                                 le32_to_cpu(map->volume_blk_size)/512;
4878
4879         cp->tweak_lower = cpu_to_le32(first_block);
4880         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4881 }
4882
4883 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4884         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4885         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4886 {
4887         struct scsi_cmnd *cmd = c->scsi_cmd;
4888         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4889         struct ioaccel2_sg_element *curr_sg;
4890         int use_sg, i;
4891         struct scatterlist *sg;
4892         u64 addr64;
4893         u32 len;
4894         u32 total_len = 0;
4895
4896         if (!cmd->device)
4897                 return -1;
4898
4899         if (!cmd->device->hostdata)
4900                 return -1;
4901
4902         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4903
4904         if (is_zero_length_transfer(cdb)) {
4905                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4906                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4907                 return IO_ACCEL_INELIGIBLE;
4908         }
4909
4910         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4911                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4912                 return IO_ACCEL_INELIGIBLE;
4913         }
4914
4915         c->cmd_type = CMD_IOACCEL2;
4916         /* Adjust the DMA address to point to the accelerated command buffer */
4917         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4918                                 (c->cmdindex * sizeof(*cp));
4919         BUG_ON(c->busaddr & 0x0000007F);
4920
4921         memset(cp, 0, sizeof(*cp));
4922         cp->IU_type = IOACCEL2_IU_TYPE;
4923
4924         use_sg = scsi_dma_map(cmd);
4925         if (use_sg < 0) {
4926                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4927                 return use_sg;
4928         }
4929
4930         if (use_sg) {
4931                 curr_sg = cp->sg;
4932                 if (use_sg > h->ioaccel_maxsg) {
4933                         addr64 = le64_to_cpu(
4934                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4935                         curr_sg->address = cpu_to_le64(addr64);
4936                         curr_sg->length = 0;
4937                         curr_sg->reserved[0] = 0;
4938                         curr_sg->reserved[1] = 0;
4939                         curr_sg->reserved[2] = 0;
4940                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4941
4942                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4943                 }
4944                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4945                         addr64 = (u64) sg_dma_address(sg);
4946                         len  = sg_dma_len(sg);
4947                         total_len += len;
4948                         curr_sg->address = cpu_to_le64(addr64);
4949                         curr_sg->length = cpu_to_le32(len);
4950                         curr_sg->reserved[0] = 0;
4951                         curr_sg->reserved[1] = 0;
4952                         curr_sg->reserved[2] = 0;
4953                         curr_sg->chain_indicator = 0;
4954                         curr_sg++;
4955                 }
4956
4957                 /*
4958                  * Set the last s/g element bit
4959                  */
4960                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4961
4962                 switch (cmd->sc_data_direction) {
4963                 case DMA_TO_DEVICE:
4964                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4966                         break;
4967                 case DMA_FROM_DEVICE:
4968                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4969                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4970                         break;
4971                 case DMA_NONE:
4972                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4973                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4974                         break;
4975                 default:
4976                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4977                                 cmd->sc_data_direction);
4978                         BUG();
4979                         break;
4980                 }
4981         } else {
4982                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4983                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4984         }
4985
4986         /* Set encryption parameters, if necessary */
4987         set_encrypt_ioaccel2(h, c, cp);
4988
4989         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4990         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4991         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4992
4993         cp->data_len = cpu_to_le32(total_len);
4994         cp->err_ptr = cpu_to_le64(c->busaddr +
4995                         offsetof(struct io_accel2_cmd, error_data));
4996         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4997
4998         /* fill in sg elements */
4999         if (use_sg > h->ioaccel_maxsg) {
5000                 cp->sg_count = 1;
5001                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5002                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5003                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5004                         scsi_dma_unmap(cmd);
5005                         return -1;
5006                 }
5007         } else
5008                 cp->sg_count = (u8) use_sg;
5009
5010         enqueue_cmd_and_start_io(h, c);
5011         return 0;
5012 }
5013
5014 /*
5015  * Queue a command to the correct I/O accelerator path.
5016  */
5017 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5018         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5019         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5020 {
5021         if (!c->scsi_cmd->device)
5022                 return -1;
5023
5024         if (!c->scsi_cmd->device->hostdata)
5025                 return -1;
5026
5027         /* Try to honor the device's queue depth */
5028         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5029                                         phys_disk->queue_depth) {
5030                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5031                 return IO_ACCEL_INELIGIBLE;
5032         }
5033         if (h->transMethod & CFGTBL_Trans_io_accel1)
5034                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5035                                                 cdb, cdb_len, scsi3addr,
5036                                                 phys_disk);
5037         else
5038                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5039                                                 cdb, cdb_len, scsi3addr,
5040                                                 phys_disk);
5041 }
5042
5043 static void raid_map_helper(struct raid_map_data *map,
5044                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5045 {
5046         if (offload_to_mirror == 0)  {
5047                 /* use physical disk in the first mirrored group. */
5048                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5049                 return;
5050         }
5051         do {
5052                 /* determine mirror group that *map_index indicates */
5053                 *current_group = *map_index /
5054                         le16_to_cpu(map->data_disks_per_row);
5055                 if (offload_to_mirror == *current_group)
5056                         continue;
5057                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5058                         /* select map index from next group */
5059                         *map_index += le16_to_cpu(map->data_disks_per_row);
5060                         (*current_group)++;
5061                 } else {
5062                         /* select map index from first group */
5063                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5064                         *current_group = 0;
5065                 }
5066         } while (offload_to_mirror != *current_group);
5067 }
5068
5069 /*
5070  * Attempt to perform offload RAID mapping for a logical volume I/O.
5071  */
5072 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5073         struct CommandList *c)
5074 {
5075         struct scsi_cmnd *cmd = c->scsi_cmd;
5076         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5077         struct raid_map_data *map = &dev->raid_map;
5078         struct raid_map_disk_data *dd = &map->data[0];
5079         int is_write = 0;
5080         u32 map_index;
5081         u64 first_block, last_block;
5082         u32 block_cnt;
5083         u32 blocks_per_row;
5084         u64 first_row, last_row;
5085         u32 first_row_offset, last_row_offset;
5086         u32 first_column, last_column;
5087         u64 r0_first_row, r0_last_row;
5088         u32 r5or6_blocks_per_row;
5089         u64 r5or6_first_row, r5or6_last_row;
5090         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5091         u32 r5or6_first_column, r5or6_last_column;
5092         u32 total_disks_per_row;
5093         u32 stripesize;
5094         u32 first_group, last_group, current_group;
5095         u32 map_row;
5096         u32 disk_handle;
5097         u64 disk_block;
5098         u32 disk_block_cnt;
5099         u8 cdb[16];
5100         u8 cdb_len;
5101         u16 strip_size;
5102 #if BITS_PER_LONG == 32
5103         u64 tmpdiv;
5104 #endif
5105         int offload_to_mirror;
5106
5107         if (!dev)
5108                 return -1;
5109
5110         /* check for valid opcode, get LBA and block count */
5111         switch (cmd->cmnd[0]) {
5112         case WRITE_6:
5113                 is_write = 1;
5114         case READ_6:
5115                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5116                                 (cmd->cmnd[2] << 8) |
5117                                 cmd->cmnd[3]);
5118                 block_cnt = cmd->cmnd[4];
5119                 if (block_cnt == 0)
5120                         block_cnt = 256;
5121                 break;
5122         case WRITE_10:
5123                 is_write = 1;
5124         case READ_10:
5125                 first_block =
5126                         (((u64) cmd->cmnd[2]) << 24) |
5127                         (((u64) cmd->cmnd[3]) << 16) |
5128                         (((u64) cmd->cmnd[4]) << 8) |
5129                         cmd->cmnd[5];
5130                 block_cnt =
5131                         (((u32) cmd->cmnd[7]) << 8) |
5132                         cmd->cmnd[8];
5133                 break;
5134         case WRITE_12:
5135                 is_write = 1;
5136         case READ_12:
5137                 first_block =
5138                         (((u64) cmd->cmnd[2]) << 24) |
5139                         (((u64) cmd->cmnd[3]) << 16) |
5140                         (((u64) cmd->cmnd[4]) << 8) |
5141                         cmd->cmnd[5];
5142                 block_cnt =
5143                         (((u32) cmd->cmnd[6]) << 24) |
5144                         (((u32) cmd->cmnd[7]) << 16) |
5145                         (((u32) cmd->cmnd[8]) << 8) |
5146                 cmd->cmnd[9];
5147                 break;
5148         case WRITE_16:
5149                 is_write = 1;
5150         case READ_16:
5151                 first_block =
5152                         (((u64) cmd->cmnd[2]) << 56) |
5153                         (((u64) cmd->cmnd[3]) << 48) |
5154                         (((u64) cmd->cmnd[4]) << 40) |
5155                         (((u64) cmd->cmnd[5]) << 32) |
5156                         (((u64) cmd->cmnd[6]) << 24) |
5157                         (((u64) cmd->cmnd[7]) << 16) |
5158                         (((u64) cmd->cmnd[8]) << 8) |
5159                         cmd->cmnd[9];
5160                 block_cnt =
5161                         (((u32) cmd->cmnd[10]) << 24) |
5162                         (((u32) cmd->cmnd[11]) << 16) |
5163                         (((u32) cmd->cmnd[12]) << 8) |
5164                         cmd->cmnd[13];
5165                 break;
5166         default:
5167                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5168         }
5169         last_block = first_block + block_cnt - 1;
5170
5171         /* check for write to non-RAID-0 */
5172         if (is_write && dev->raid_level != 0)
5173                 return IO_ACCEL_INELIGIBLE;
5174
5175         /* check for invalid block or wraparound */
5176         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5177                 last_block < first_block)
5178                 return IO_ACCEL_INELIGIBLE;
5179
5180         /* calculate stripe information for the request */
5181         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5182                                 le16_to_cpu(map->strip_size);
5183         strip_size = le16_to_cpu(map->strip_size);
5184 #if BITS_PER_LONG == 32
5185         tmpdiv = first_block;
5186         (void) do_div(tmpdiv, blocks_per_row);
5187         first_row = tmpdiv;
5188         tmpdiv = last_block;
5189         (void) do_div(tmpdiv, blocks_per_row);
5190         last_row = tmpdiv;
5191         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5192         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5193         tmpdiv = first_row_offset;
5194         (void) do_div(tmpdiv, strip_size);
5195         first_column = tmpdiv;
5196         tmpdiv = last_row_offset;
5197         (void) do_div(tmpdiv, strip_size);
5198         last_column = tmpdiv;
5199 #else
5200         first_row = first_block / blocks_per_row;
5201         last_row = last_block / blocks_per_row;
5202         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5203         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5204         first_column = first_row_offset / strip_size;
5205         last_column = last_row_offset / strip_size;
5206 #endif
5207
5208         /* if this isn't a single row/column then give to the controller */
5209         if ((first_row != last_row) || (first_column != last_column))
5210                 return IO_ACCEL_INELIGIBLE;
5211
5212         /* proceeding with driver mapping */
5213         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5214                                 le16_to_cpu(map->metadata_disks_per_row);
5215         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5216                                 le16_to_cpu(map->row_cnt);
5217         map_index = (map_row * total_disks_per_row) + first_column;
5218
5219         switch (dev->raid_level) {
5220         case HPSA_RAID_0:
5221                 break; /* nothing special to do */
5222         case HPSA_RAID_1:
5223                 /* Handles load balance across RAID 1 members.
5224                  * (2-drive R1 and R10 with even # of drives.)
5225                  * Appropriate for SSDs, not optimal for HDDs
5226                  * Ensure we have the correct raid_map.
5227                  */
5228                 if (le16_to_cpu(map->layout_map_count) != 2) {
5229                         hpsa_turn_off_ioaccel_for_device(dev);
5230                         return IO_ACCEL_INELIGIBLE;
5231                 }
5232                 if (dev->offload_to_mirror)
5233                         map_index += le16_to_cpu(map->data_disks_per_row);
5234                 dev->offload_to_mirror = !dev->offload_to_mirror;
5235                 break;
5236         case HPSA_RAID_ADM:
5237                 /* Handles N-way mirrors  (R1-ADM)
5238                  * and R10 with # of drives divisible by 3.)
5239                  * Ensure we have the correct raid_map.
5240                  */
5241                 if (le16_to_cpu(map->layout_map_count) != 3) {
5242                         hpsa_turn_off_ioaccel_for_device(dev);
5243                         return IO_ACCEL_INELIGIBLE;
5244                 }
5245
5246                 offload_to_mirror = dev->offload_to_mirror;
5247                 raid_map_helper(map, offload_to_mirror,
5248                                 &map_index, &current_group);
5249                 /* set mirror group to use next time */
5250                 offload_to_mirror =
5251                         (offload_to_mirror >=
5252                         le16_to_cpu(map->layout_map_count) - 1)
5253                         ? 0 : offload_to_mirror + 1;
5254                 dev->offload_to_mirror = offload_to_mirror;
5255                 /* Avoid direct use of dev->offload_to_mirror within this
5256                  * function since multiple threads might simultaneously
5257                  * increment it beyond the range of dev->layout_map_count -1.
5258                  */
5259                 break;
5260         case HPSA_RAID_5:
5261         case HPSA_RAID_6:
5262                 if (le16_to_cpu(map->layout_map_count) <= 1)
5263                         break;
5264
5265                 /* Verify first and last block are in same RAID group */
5266                 r5or6_blocks_per_row =
5267                         le16_to_cpu(map->strip_size) *
5268                         le16_to_cpu(map->data_disks_per_row);
5269                 if (r5or6_blocks_per_row == 0) {
5270                         hpsa_turn_off_ioaccel_for_device(dev);
5271                         return IO_ACCEL_INELIGIBLE;
5272                 }
5273                 stripesize = r5or6_blocks_per_row *
5274                         le16_to_cpu(map->layout_map_count);
5275 #if BITS_PER_LONG == 32
5276                 tmpdiv = first_block;
5277                 first_group = do_div(tmpdiv, stripesize);
5278                 tmpdiv = first_group;
5279                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5280                 first_group = tmpdiv;
5281                 tmpdiv = last_block;
5282                 last_group = do_div(tmpdiv, stripesize);
5283                 tmpdiv = last_group;
5284                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5285                 last_group = tmpdiv;
5286 #else
5287                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5288                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5289 #endif
5290                 if (first_group != last_group)
5291                         return IO_ACCEL_INELIGIBLE;
5292
5293                 /* Verify request is in a single row of RAID 5/6 */
5294 #if BITS_PER_LONG == 32
5295                 tmpdiv = first_block;
5296                 (void) do_div(tmpdiv, stripesize);
5297                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5298                 tmpdiv = last_block;
5299                 (void) do_div(tmpdiv, stripesize);
5300                 r5or6_last_row = r0_last_row = tmpdiv;
5301 #else
5302                 first_row = r5or6_first_row = r0_first_row =
5303                                                 first_block / stripesize;
5304                 r5or6_last_row = r0_last_row = last_block / stripesize;
5305 #endif
5306                 if (r5or6_first_row != r5or6_last_row)
5307                         return IO_ACCEL_INELIGIBLE;
5308
5309
5310                 /* Verify request is in a single column */
5311 #if BITS_PER_LONG == 32
5312                 tmpdiv = first_block;
5313                 first_row_offset = do_div(tmpdiv, stripesize);
5314                 tmpdiv = first_row_offset;
5315                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5316                 r5or6_first_row_offset = first_row_offset;
5317                 tmpdiv = last_block;
5318                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5319                 tmpdiv = r5or6_last_row_offset;
5320                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5321                 tmpdiv = r5or6_first_row_offset;
5322                 (void) do_div(tmpdiv, map->strip_size);
5323                 first_column = r5or6_first_column = tmpdiv;
5324                 tmpdiv = r5or6_last_row_offset;
5325                 (void) do_div(tmpdiv, map->strip_size);
5326                 r5or6_last_column = tmpdiv;
5327 #else
5328                 first_row_offset = r5or6_first_row_offset =
5329                         (u32)((first_block % stripesize) %
5330                                                 r5or6_blocks_per_row);
5331
5332                 r5or6_last_row_offset =
5333                         (u32)((last_block % stripesize) %
5334                                                 r5or6_blocks_per_row);
5335
5336                 first_column = r5or6_first_column =
5337                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5338                 r5or6_last_column =
5339                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5340 #endif
5341                 if (r5or6_first_column != r5or6_last_column)
5342                         return IO_ACCEL_INELIGIBLE;
5343
5344                 /* Request is eligible */
5345                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5346                         le16_to_cpu(map->row_cnt);
5347
5348                 map_index = (first_group *
5349                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5350                         (map_row * total_disks_per_row) + first_column;
5351                 break;
5352         default:
5353                 return IO_ACCEL_INELIGIBLE;
5354         }
5355
5356         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5357                 return IO_ACCEL_INELIGIBLE;
5358
5359         c->phys_disk = dev->phys_disk[map_index];
5360         if (!c->phys_disk)
5361                 return IO_ACCEL_INELIGIBLE;
5362
5363         disk_handle = dd[map_index].ioaccel_handle;
5364         disk_block = le64_to_cpu(map->disk_starting_blk) +
5365                         first_row * le16_to_cpu(map->strip_size) +
5366                         (first_row_offset - first_column *
5367                         le16_to_cpu(map->strip_size));
5368         disk_block_cnt = block_cnt;
5369
5370         /* handle differing logical/physical block sizes */
5371         if (map->phys_blk_shift) {
5372                 disk_block <<= map->phys_blk_shift;
5373                 disk_block_cnt <<= map->phys_blk_shift;
5374         }
5375         BUG_ON(disk_block_cnt > 0xffff);
5376
5377         /* build the new CDB for the physical disk I/O */
5378         if (disk_block > 0xffffffff) {
5379                 cdb[0] = is_write ? WRITE_16 : READ_16;
5380                 cdb[1] = 0;
5381                 cdb[2] = (u8) (disk_block >> 56);
5382                 cdb[3] = (u8) (disk_block >> 48);
5383                 cdb[4] = (u8) (disk_block >> 40);
5384                 cdb[5] = (u8) (disk_block >> 32);
5385                 cdb[6] = (u8) (disk_block >> 24);
5386                 cdb[7] = (u8) (disk_block >> 16);
5387                 cdb[8] = (u8) (disk_block >> 8);
5388                 cdb[9] = (u8) (disk_block);
5389                 cdb[10] = (u8) (disk_block_cnt >> 24);
5390                 cdb[11] = (u8) (disk_block_cnt >> 16);
5391                 cdb[12] = (u8) (disk_block_cnt >> 8);
5392                 cdb[13] = (u8) (disk_block_cnt);
5393                 cdb[14] = 0;
5394                 cdb[15] = 0;
5395                 cdb_len = 16;
5396         } else {
5397                 cdb[0] = is_write ? WRITE_10 : READ_10;
5398                 cdb[1] = 0;
5399                 cdb[2] = (u8) (disk_block >> 24);
5400                 cdb[3] = (u8) (disk_block >> 16);
5401                 cdb[4] = (u8) (disk_block >> 8);
5402                 cdb[5] = (u8) (disk_block);
5403                 cdb[6] = 0;
5404                 cdb[7] = (u8) (disk_block_cnt >> 8);
5405                 cdb[8] = (u8) (disk_block_cnt);
5406                 cdb[9] = 0;
5407                 cdb_len = 10;
5408         }
5409         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5410                                                 dev->scsi3addr,
5411                                                 dev->phys_disk[map_index]);
5412 }
5413
5414 /*
5415  * Submit commands down the "normal" RAID stack path
5416  * All callers to hpsa_ciss_submit must check lockup_detected
5417  * beforehand, before (opt.) and after calling cmd_alloc
5418  */
5419 static int hpsa_ciss_submit(struct ctlr_info *h,
5420         struct CommandList *c, struct scsi_cmnd *cmd,
5421         unsigned char scsi3addr[])
5422 {
5423         cmd->host_scribble = (unsigned char *) c;
5424         c->cmd_type = CMD_SCSI;
5425         c->scsi_cmd = cmd;
5426         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5427         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5428         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5429
5430         /* Fill in the request block... */
5431
5432         c->Request.Timeout = 0;
5433         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5434         c->Request.CDBLen = cmd->cmd_len;
5435         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5436         switch (cmd->sc_data_direction) {
5437         case DMA_TO_DEVICE:
5438                 c->Request.type_attr_dir =
5439                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5440                 break;
5441         case DMA_FROM_DEVICE:
5442                 c->Request.type_attr_dir =
5443                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5444                 break;
5445         case DMA_NONE:
5446                 c->Request.type_attr_dir =
5447                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5448                 break;
5449         case DMA_BIDIRECTIONAL:
5450                 /* This can happen if a buggy application does a scsi passthru
5451                  * and sets both inlen and outlen to non-zero. ( see
5452                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5453                  */
5454
5455                 c->Request.type_attr_dir =
5456                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5457                 /* This is technically wrong, and hpsa controllers should
5458                  * reject it with CMD_INVALID, which is the most correct
5459                  * response, but non-fibre backends appear to let it
5460                  * slide by, and give the same results as if this field
5461                  * were set correctly.  Either way is acceptable for
5462                  * our purposes here.
5463                  */
5464
5465                 break;
5466
5467         default:
5468                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5469                         cmd->sc_data_direction);
5470                 BUG();
5471                 break;
5472         }
5473
5474         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5475                 hpsa_cmd_resolve_and_free(h, c);
5476                 return SCSI_MLQUEUE_HOST_BUSY;
5477         }
5478         enqueue_cmd_and_start_io(h, c);
5479         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5480         return 0;
5481 }
5482
5483 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5484                                 struct CommandList *c)
5485 {
5486         dma_addr_t cmd_dma_handle, err_dma_handle;
5487
5488         /* Zero out all of commandlist except the last field, refcount */
5489         memset(c, 0, offsetof(struct CommandList, refcount));
5490         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5491         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5492         c->err_info = h->errinfo_pool + index;
5493         memset(c->err_info, 0, sizeof(*c->err_info));
5494         err_dma_handle = h->errinfo_pool_dhandle
5495             + index * sizeof(*c->err_info);
5496         c->cmdindex = index;
5497         c->busaddr = (u32) cmd_dma_handle;
5498         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5499         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5500         c->h = h;
5501         c->scsi_cmd = SCSI_CMD_IDLE;
5502 }
5503
5504 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5505 {
5506         int i;
5507
5508         for (i = 0; i < h->nr_cmds; i++) {
5509                 struct CommandList *c = h->cmd_pool + i;
5510
5511                 hpsa_cmd_init(h, i, c);
5512                 atomic_set(&c->refcount, 0);
5513         }
5514 }
5515
5516 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5517                                 struct CommandList *c)
5518 {
5519         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5520
5521         BUG_ON(c->cmdindex != index);
5522
5523         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5524         memset(c->err_info, 0, sizeof(*c->err_info));
5525         c->busaddr = (u32) cmd_dma_handle;
5526 }
5527
5528 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5529                 struct CommandList *c, struct scsi_cmnd *cmd,
5530                 unsigned char *scsi3addr)
5531 {
5532         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5533         int rc = IO_ACCEL_INELIGIBLE;
5534
5535         if (!dev)
5536                 return SCSI_MLQUEUE_HOST_BUSY;
5537
5538         cmd->host_scribble = (unsigned char *) c;
5539
5540         if (dev->offload_enabled) {
5541                 hpsa_cmd_init(h, c->cmdindex, c);
5542                 c->cmd_type = CMD_SCSI;
5543                 c->scsi_cmd = cmd;
5544                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5545                 if (rc < 0)     /* scsi_dma_map failed. */
5546                         rc = SCSI_MLQUEUE_HOST_BUSY;
5547         } else if (dev->hba_ioaccel_enabled) {
5548                 hpsa_cmd_init(h, c->cmdindex, c);
5549                 c->cmd_type = CMD_SCSI;
5550                 c->scsi_cmd = cmd;
5551                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5552                 if (rc < 0)     /* scsi_dma_map failed. */
5553                         rc = SCSI_MLQUEUE_HOST_BUSY;
5554         }
5555         return rc;
5556 }
5557
5558 static void hpsa_command_resubmit_worker(struct work_struct *work)
5559 {
5560         struct scsi_cmnd *cmd;
5561         struct hpsa_scsi_dev_t *dev;
5562         struct CommandList *c = container_of(work, struct CommandList, work);
5563
5564         cmd = c->scsi_cmd;
5565         dev = cmd->device->hostdata;
5566         if (!dev) {
5567                 cmd->result = DID_NO_CONNECT << 16;
5568                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5569         }
5570         if (c->reset_pending)
5571                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5572         if (c->cmd_type == CMD_IOACCEL2) {
5573                 struct ctlr_info *h = c->h;
5574                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5575                 int rc;
5576
5577                 if (c2->error_data.serv_response ==
5578                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5579                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5580                         if (rc == 0)
5581                                 return;
5582                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5583                                 /*
5584                                  * If we get here, it means dma mapping failed.
5585                                  * Try again via scsi mid layer, which will
5586                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5587                                  */
5588                                 cmd->result = DID_IMM_RETRY << 16;
5589                                 return hpsa_cmd_free_and_done(h, c, cmd);
5590                         }
5591                         /* else, fall thru and resubmit down CISS path */
5592                 }
5593         }
5594         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5595         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5596                 /*
5597                  * If we get here, it means dma mapping failed. Try
5598                  * again via scsi mid layer, which will then get
5599                  * SCSI_MLQUEUE_HOST_BUSY.
5600                  *
5601                  * hpsa_ciss_submit will have already freed c
5602                  * if it encountered a dma mapping failure.
5603                  */
5604                 cmd->result = DID_IMM_RETRY << 16;
5605                 cmd->scsi_done(cmd);
5606         }
5607 }
5608
5609 /* Running in struct Scsi_Host->host_lock less mode */
5610 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5611 {
5612         struct ctlr_info *h;
5613         struct hpsa_scsi_dev_t *dev;
5614         unsigned char scsi3addr[8];
5615         struct CommandList *c;
5616         int rc = 0;
5617
5618         /* Get the ptr to our adapter structure out of cmd->host. */
5619         h = sdev_to_hba(cmd->device);
5620
5621         BUG_ON(cmd->request->tag < 0);
5622
5623         dev = cmd->device->hostdata;
5624         if (!dev) {
5625                 cmd->result = DID_NO_CONNECT << 16;
5626                 cmd->scsi_done(cmd);
5627                 return 0;
5628         }
5629
5630         if (dev->removed) {
5631                 cmd->result = DID_NO_CONNECT << 16;
5632                 cmd->scsi_done(cmd);
5633                 return 0;
5634         }
5635
5636         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5637
5638         if (unlikely(lockup_detected(h))) {
5639                 cmd->result = DID_NO_CONNECT << 16;
5640                 cmd->scsi_done(cmd);
5641                 return 0;
5642         }
5643         c = cmd_tagged_alloc(h, cmd);
5644
5645         /*
5646          * This is necessary because the SML doesn't zero out this field during
5647          * error recovery.
5648          */
5649         cmd->result = 0;
5650
5651         /*
5652          * Call alternate submit routine for I/O accelerated commands.
5653          * Retries always go down the normal I/O path.
5654          */
5655         if (likely(cmd->retries == 0 &&
5656                         !blk_rq_is_passthrough(cmd->request) &&
5657                         h->acciopath_status)) {
5658                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5659                 if (rc == 0)
5660                         return 0;
5661                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5662                         hpsa_cmd_resolve_and_free(h, c);
5663                         return SCSI_MLQUEUE_HOST_BUSY;
5664                 }
5665         }
5666         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5667 }
5668
5669 static void hpsa_scan_complete(struct ctlr_info *h)
5670 {
5671         unsigned long flags;
5672
5673         spin_lock_irqsave(&h->scan_lock, flags);
5674         h->scan_finished = 1;
5675         wake_up(&h->scan_wait_queue);
5676         spin_unlock_irqrestore(&h->scan_lock, flags);
5677 }
5678
5679 static void hpsa_scan_start(struct Scsi_Host *sh)
5680 {
5681         struct ctlr_info *h = shost_to_hba(sh);
5682         unsigned long flags;
5683
5684         /*
5685          * Don't let rescans be initiated on a controller known to be locked
5686          * up.  If the controller locks up *during* a rescan, that thread is
5687          * probably hosed, but at least we can prevent new rescan threads from
5688          * piling up on a locked up controller.
5689          */
5690         if (unlikely(lockup_detected(h)))
5691                 return hpsa_scan_complete(h);
5692
5693         /*
5694          * If a scan is already waiting to run, no need to add another
5695          */
5696         spin_lock_irqsave(&h->scan_lock, flags);
5697         if (h->scan_waiting) {
5698                 spin_unlock_irqrestore(&h->scan_lock, flags);
5699                 return;
5700         }
5701
5702         spin_unlock_irqrestore(&h->scan_lock, flags);
5703
5704         /* wait until any scan already in progress is finished. */
5705         while (1) {
5706                 spin_lock_irqsave(&h->scan_lock, flags);
5707                 if (h->scan_finished)
5708                         break;
5709                 h->scan_waiting = 1;
5710                 spin_unlock_irqrestore(&h->scan_lock, flags);
5711                 wait_event(h->scan_wait_queue, h->scan_finished);
5712                 /* Note: We don't need to worry about a race between this
5713                  * thread and driver unload because the midlayer will
5714                  * have incremented the reference count, so unload won't
5715                  * happen if we're in here.
5716                  */
5717         }
5718         h->scan_finished = 0; /* mark scan as in progress */
5719         h->scan_waiting = 0;
5720         spin_unlock_irqrestore(&h->scan_lock, flags);
5721
5722         if (unlikely(lockup_detected(h)))
5723                 return hpsa_scan_complete(h);
5724
5725         /*
5726          * Do the scan after a reset completion
5727          */
5728         spin_lock_irqsave(&h->reset_lock, flags);
5729         if (h->reset_in_progress) {
5730                 h->drv_req_rescan = 1;
5731                 spin_unlock_irqrestore(&h->reset_lock, flags);
5732                 hpsa_scan_complete(h);
5733                 return;
5734         }
5735         spin_unlock_irqrestore(&h->reset_lock, flags);
5736
5737         hpsa_update_scsi_devices(h);
5738
5739         hpsa_scan_complete(h);
5740 }
5741
5742 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5743 {
5744         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5745
5746         if (!logical_drive)
5747                 return -ENODEV;
5748
5749         if (qdepth < 1)
5750                 qdepth = 1;
5751         else if (qdepth > logical_drive->queue_depth)
5752                 qdepth = logical_drive->queue_depth;
5753
5754         return scsi_change_queue_depth(sdev, qdepth);
5755 }
5756
5757 static int hpsa_scan_finished(struct Scsi_Host *sh,
5758         unsigned long elapsed_time)
5759 {
5760         struct ctlr_info *h = shost_to_hba(sh);
5761         unsigned long flags;
5762         int finished;
5763
5764         spin_lock_irqsave(&h->scan_lock, flags);
5765         finished = h->scan_finished;
5766         spin_unlock_irqrestore(&h->scan_lock, flags);
5767         return finished;
5768 }
5769
5770 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5771 {
5772         struct Scsi_Host *sh;
5773
5774         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5775         if (sh == NULL) {
5776                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5777                 return -ENOMEM;
5778         }
5779
5780         sh->io_port = 0;
5781         sh->n_io_port = 0;
5782         sh->this_id = -1;
5783         sh->max_channel = 3;
5784         sh->max_cmd_len = MAX_COMMAND_SIZE;
5785         sh->max_lun = HPSA_MAX_LUN;
5786         sh->max_id = HPSA_MAX_LUN;
5787         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5788         sh->cmd_per_lun = sh->can_queue;
5789         sh->sg_tablesize = h->maxsgentries;
5790         sh->transportt = hpsa_sas_transport_template;
5791         sh->hostdata[0] = (unsigned long) h;
5792         sh->irq = pci_irq_vector(h->pdev, 0);
5793         sh->unique_id = sh->irq;
5794
5795         h->scsi_host = sh;
5796         return 0;
5797 }
5798
5799 static int hpsa_scsi_add_host(struct ctlr_info *h)
5800 {
5801         int rv;
5802
5803         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5804         if (rv) {
5805                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5806                 return rv;
5807         }
5808         scsi_scan_host(h->scsi_host);
5809         return 0;
5810 }
5811
5812 /*
5813  * The block layer has already gone to the trouble of picking out a unique,
5814  * small-integer tag for this request.  We use an offset from that value as
5815  * an index to select our command block.  (The offset allows us to reserve the
5816  * low-numbered entries for our own uses.)
5817  */
5818 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5819 {
5820         int idx = scmd->request->tag;
5821
5822         if (idx < 0)
5823                 return idx;
5824
5825         /* Offset to leave space for internal cmds. */
5826         return idx += HPSA_NRESERVED_CMDS;
5827 }
5828
5829 /*
5830  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5831  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5832  */
5833 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5834                                 struct CommandList *c, unsigned char lunaddr[],
5835                                 int reply_queue)
5836 {
5837         int rc;
5838
5839         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5840         (void) fill_cmd(c, TEST_UNIT_READY, h,
5841                         NULL, 0, 0, lunaddr, TYPE_CMD);
5842         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5843         if (rc)
5844                 return rc;
5845         /* no unmap needed here because no data xfer. */
5846
5847         /* Check if the unit is already ready. */
5848         if (c->err_info->CommandStatus == CMD_SUCCESS)
5849                 return 0;
5850
5851         /*
5852          * The first command sent after reset will receive "unit attention" to
5853          * indicate that the LUN has been reset...this is actually what we're
5854          * looking for (but, success is good too).
5855          */
5856         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5857                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5858                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5859                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5860                 return 0;
5861
5862         return 1;
5863 }
5864
5865 /*
5866  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5867  * returns zero when the unit is ready, and non-zero when giving up.
5868  */
5869 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5870                                 struct CommandList *c,
5871                                 unsigned char lunaddr[], int reply_queue)
5872 {
5873         int rc;
5874         int count = 0;
5875         int waittime = 1; /* seconds */
5876
5877         /* Send test unit ready until device ready, or give up. */
5878         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5879
5880                 /*
5881                  * Wait for a bit.  do this first, because if we send
5882                  * the TUR right away, the reset will just abort it.
5883                  */
5884                 msleep(1000 * waittime);
5885
5886                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5887                 if (!rc)
5888                         break;
5889
5890                 /* Increase wait time with each try, up to a point. */
5891                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5892                         waittime *= 2;
5893
5894                 dev_warn(&h->pdev->dev,
5895                          "waiting %d secs for device to become ready.\n",
5896                          waittime);
5897         }
5898
5899         return rc;
5900 }
5901
5902 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5903                                            unsigned char lunaddr[],
5904                                            int reply_queue)
5905 {
5906         int first_queue;
5907         int last_queue;
5908         int rq;
5909         int rc = 0;
5910         struct CommandList *c;
5911
5912         c = cmd_alloc(h);
5913
5914         /*
5915          * If no specific reply queue was requested, then send the TUR
5916          * repeatedly, requesting a reply on each reply queue; otherwise execute
5917          * the loop exactly once using only the specified queue.
5918          */
5919         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5920                 first_queue = 0;
5921                 last_queue = h->nreply_queues - 1;
5922         } else {
5923                 first_queue = reply_queue;
5924                 last_queue = reply_queue;
5925         }
5926
5927         for (rq = first_queue; rq <= last_queue; rq++) {
5928                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5929                 if (rc)
5930                         break;
5931         }
5932
5933         if (rc)
5934                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5935         else
5936                 dev_warn(&h->pdev->dev, "device is ready.\n");
5937
5938         cmd_free(h, c);
5939         return rc;
5940 }
5941
5942 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5943  * complaining.  Doing a host- or bus-reset can't do anything good here.
5944  */
5945 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5946 {
5947         int rc = SUCCESS;
5948         struct ctlr_info *h;
5949         struct hpsa_scsi_dev_t *dev;
5950         u8 reset_type;
5951         char msg[48];
5952         unsigned long flags;
5953
5954         /* find the controller to which the command to be aborted was sent */
5955         h = sdev_to_hba(scsicmd->device);
5956         if (h == NULL) /* paranoia */
5957                 return FAILED;
5958
5959         spin_lock_irqsave(&h->reset_lock, flags);
5960         h->reset_in_progress = 1;
5961         spin_unlock_irqrestore(&h->reset_lock, flags);
5962
5963         if (lockup_detected(h)) {
5964                 rc = FAILED;
5965                 goto return_reset_status;
5966         }
5967
5968         dev = scsicmd->device->hostdata;
5969         if (!dev) {
5970                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5971                 rc = FAILED;
5972                 goto return_reset_status;
5973         }
5974
5975         if (dev->devtype == TYPE_ENCLOSURE) {
5976                 rc = SUCCESS;
5977                 goto return_reset_status;
5978         }
5979
5980         /* if controller locked up, we can guarantee command won't complete */
5981         if (lockup_detected(h)) {
5982                 snprintf(msg, sizeof(msg),
5983                          "cmd %d RESET FAILED, lockup detected",
5984                          hpsa_get_cmd_index(scsicmd));
5985                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5986                 rc = FAILED;
5987                 goto return_reset_status;
5988         }
5989
5990         /* this reset request might be the result of a lockup; check */
5991         if (detect_controller_lockup(h)) {
5992                 snprintf(msg, sizeof(msg),
5993                          "cmd %d RESET FAILED, new lockup detected",
5994                          hpsa_get_cmd_index(scsicmd));
5995                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5996                 rc = FAILED;
5997                 goto return_reset_status;
5998         }
5999
6000         /* Do not attempt on controller */
6001         if (is_hba_lunid(dev->scsi3addr)) {
6002                 rc = SUCCESS;
6003                 goto return_reset_status;
6004         }
6005
6006         if (is_logical_dev_addr_mode(dev->scsi3addr))
6007                 reset_type = HPSA_DEVICE_RESET_MSG;
6008         else
6009                 reset_type = HPSA_PHYS_TARGET_RESET;
6010
6011         sprintf(msg, "resetting %s",
6012                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6013         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6014
6015         /* send a reset to the SCSI LUN which the command was sent to */
6016         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6017                            DEFAULT_REPLY_QUEUE);
6018         if (rc == 0)
6019                 rc = SUCCESS;
6020         else
6021                 rc = FAILED;
6022
6023         sprintf(msg, "reset %s %s",
6024                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6025                 rc == SUCCESS ? "completed successfully" : "failed");
6026         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6027
6028 return_reset_status:
6029         spin_lock_irqsave(&h->reset_lock, flags);
6030         h->reset_in_progress = 0;
6031         spin_unlock_irqrestore(&h->reset_lock, flags);
6032         return rc;
6033 }
6034
6035 /*
6036  * For operations with an associated SCSI command, a command block is allocated
6037  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6038  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6039  * the complement, although cmd_free() may be called instead.
6040  */
6041 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6042                                             struct scsi_cmnd *scmd)
6043 {
6044         int idx = hpsa_get_cmd_index(scmd);
6045         struct CommandList *c = h->cmd_pool + idx;
6046
6047         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6048                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6049                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6050                 /* The index value comes from the block layer, so if it's out of
6051                  * bounds, it's probably not our bug.
6052                  */
6053                 BUG();
6054         }
6055
6056         atomic_inc(&c->refcount);
6057         if (unlikely(!hpsa_is_cmd_idle(c))) {
6058                 /*
6059                  * We expect that the SCSI layer will hand us a unique tag
6060                  * value.  Thus, there should never be a collision here between
6061                  * two requests...because if the selected command isn't idle
6062                  * then someone is going to be very disappointed.
6063                  */
6064                 dev_err(&h->pdev->dev,
6065                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6066                         idx);
6067                 if (c->scsi_cmd != NULL)
6068                         scsi_print_command(c->scsi_cmd);
6069                 scsi_print_command(scmd);
6070         }
6071
6072         hpsa_cmd_partial_init(h, idx, c);
6073         return c;
6074 }
6075
6076 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6077 {
6078         /*
6079          * Release our reference to the block.  We don't need to do anything
6080          * else to free it, because it is accessed by index.
6081          */
6082         (void)atomic_dec(&c->refcount);
6083 }
6084
6085 /*
6086  * For operations that cannot sleep, a command block is allocated at init,
6087  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6088  * which ones are free or in use.  Lock must be held when calling this.
6089  * cmd_free() is the complement.
6090  * This function never gives up and returns NULL.  If it hangs,
6091  * another thread must call cmd_free() to free some tags.
6092  */
6093
6094 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6095 {
6096         struct CommandList *c;
6097         int refcount, i;
6098         int offset = 0;
6099
6100         /*
6101          * There is some *extremely* small but non-zero chance that that
6102          * multiple threads could get in here, and one thread could
6103          * be scanning through the list of bits looking for a free
6104          * one, but the free ones are always behind him, and other
6105          * threads sneak in behind him and eat them before he can
6106          * get to them, so that while there is always a free one, a
6107          * very unlucky thread might be starved anyway, never able to
6108          * beat the other threads.  In reality, this happens so
6109          * infrequently as to be indistinguishable from never.
6110          *
6111          * Note that we start allocating commands before the SCSI host structure
6112          * is initialized.  Since the search starts at bit zero, this
6113          * all works, since we have at least one command structure available;
6114          * however, it means that the structures with the low indexes have to be
6115          * reserved for driver-initiated requests, while requests from the block
6116          * layer will use the higher indexes.
6117          */
6118
6119         for (;;) {
6120                 i = find_next_zero_bit(h->cmd_pool_bits,
6121                                         HPSA_NRESERVED_CMDS,
6122                                         offset);
6123                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6124                         offset = 0;
6125                         continue;
6126                 }
6127                 c = h->cmd_pool + i;
6128                 refcount = atomic_inc_return(&c->refcount);
6129                 if (unlikely(refcount > 1)) {
6130                         cmd_free(h, c); /* already in use */
6131                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6132                         continue;
6133                 }
6134                 set_bit(i & (BITS_PER_LONG - 1),
6135                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6136                 break; /* it's ours now. */
6137         }
6138         hpsa_cmd_partial_init(h, i, c);
6139         return c;
6140 }
6141
6142 /*
6143  * This is the complementary operation to cmd_alloc().  Note, however, in some
6144  * corner cases it may also be used to free blocks allocated by
6145  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6146  * the clear-bit is harmless.
6147  */
6148 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6149 {
6150         if (atomic_dec_and_test(&c->refcount)) {
6151                 int i;
6152
6153                 i = c - h->cmd_pool;
6154                 clear_bit(i & (BITS_PER_LONG - 1),
6155                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6156         }
6157 }
6158
6159 #ifdef CONFIG_COMPAT
6160
6161 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6162         void __user *arg)
6163 {
6164         IOCTL32_Command_struct __user *arg32 =
6165             (IOCTL32_Command_struct __user *) arg;
6166         IOCTL_Command_struct arg64;
6167         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6168         int err;
6169         u32 cp;
6170
6171         memset(&arg64, 0, sizeof(arg64));
6172         err = 0;
6173         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6174                            sizeof(arg64.LUN_info));
6175         err |= copy_from_user(&arg64.Request, &arg32->Request,
6176                            sizeof(arg64.Request));
6177         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6178                            sizeof(arg64.error_info));
6179         err |= get_user(arg64.buf_size, &arg32->buf_size);
6180         err |= get_user(cp, &arg32->buf);
6181         arg64.buf = compat_ptr(cp);
6182         err |= copy_to_user(p, &arg64, sizeof(arg64));
6183
6184         if (err)
6185                 return -EFAULT;
6186
6187         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6188         if (err)
6189                 return err;
6190         err |= copy_in_user(&arg32->error_info, &p->error_info,
6191                          sizeof(arg32->error_info));
6192         if (err)
6193                 return -EFAULT;
6194         return err;
6195 }
6196
6197 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6198         int cmd, void __user *arg)
6199 {
6200         BIG_IOCTL32_Command_struct __user *arg32 =
6201             (BIG_IOCTL32_Command_struct __user *) arg;
6202         BIG_IOCTL_Command_struct arg64;
6203         BIG_IOCTL_Command_struct __user *p =
6204             compat_alloc_user_space(sizeof(arg64));
6205         int err;
6206         u32 cp;
6207
6208         memset(&arg64, 0, sizeof(arg64));
6209         err = 0;
6210         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6211                            sizeof(arg64.LUN_info));
6212         err |= copy_from_user(&arg64.Request, &arg32->Request,
6213                            sizeof(arg64.Request));
6214         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6215                            sizeof(arg64.error_info));
6216         err |= get_user(arg64.buf_size, &arg32->buf_size);
6217         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6218         err |= get_user(cp, &arg32->buf);
6219         arg64.buf = compat_ptr(cp);
6220         err |= copy_to_user(p, &arg64, sizeof(arg64));
6221
6222         if (err)
6223                 return -EFAULT;
6224
6225         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6226         if (err)
6227                 return err;
6228         err |= copy_in_user(&arg32->error_info, &p->error_info,
6229                          sizeof(arg32->error_info));
6230         if (err)
6231                 return -EFAULT;
6232         return err;
6233 }
6234
6235 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6236 {
6237         switch (cmd) {
6238         case CCISS_GETPCIINFO:
6239         case CCISS_GETINTINFO:
6240         case CCISS_SETINTINFO:
6241         case CCISS_GETNODENAME:
6242         case CCISS_SETNODENAME:
6243         case CCISS_GETHEARTBEAT:
6244         case CCISS_GETBUSTYPES:
6245         case CCISS_GETFIRMVER:
6246         case CCISS_GETDRIVVER:
6247         case CCISS_REVALIDVOLS:
6248         case CCISS_DEREGDISK:
6249         case CCISS_REGNEWDISK:
6250         case CCISS_REGNEWD:
6251         case CCISS_RESCANDISK:
6252         case CCISS_GETLUNINFO:
6253                 return hpsa_ioctl(dev, cmd, arg);
6254
6255         case CCISS_PASSTHRU32:
6256                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6257         case CCISS_BIG_PASSTHRU32:
6258                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6259
6260         default:
6261                 return -ENOIOCTLCMD;
6262         }
6263 }
6264 #endif
6265
6266 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6267 {
6268         struct hpsa_pci_info pciinfo;
6269
6270         if (!argp)
6271                 return -EINVAL;
6272         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6273         pciinfo.bus = h->pdev->bus->number;
6274         pciinfo.dev_fn = h->pdev->devfn;
6275         pciinfo.board_id = h->board_id;
6276         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6277                 return -EFAULT;
6278         return 0;
6279 }
6280
6281 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6282 {
6283         DriverVer_type DriverVer;
6284         unsigned char vmaj, vmin, vsubmin;
6285         int rc;
6286
6287         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6288                 &vmaj, &vmin, &vsubmin);
6289         if (rc != 3) {
6290                 dev_info(&h->pdev->dev, "driver version string '%s' "
6291                         "unrecognized.", HPSA_DRIVER_VERSION);
6292                 vmaj = 0;
6293                 vmin = 0;
6294                 vsubmin = 0;
6295         }
6296         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6297         if (!argp)
6298                 return -EINVAL;
6299         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6300                 return -EFAULT;
6301         return 0;
6302 }
6303
6304 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6305 {
6306         IOCTL_Command_struct iocommand;
6307         struct CommandList *c;
6308         char *buff = NULL;
6309         u64 temp64;
6310         int rc = 0;
6311
6312         if (!argp)
6313                 return -EINVAL;
6314         if (!capable(CAP_SYS_RAWIO))
6315                 return -EPERM;
6316         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6317                 return -EFAULT;
6318         if ((iocommand.buf_size < 1) &&
6319             (iocommand.Request.Type.Direction != XFER_NONE)) {
6320                 return -EINVAL;
6321         }
6322         if (iocommand.buf_size > 0) {
6323                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6324                 if (buff == NULL)
6325                         return -ENOMEM;
6326                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6327                         /* Copy the data into the buffer we created */
6328                         if (copy_from_user(buff, iocommand.buf,
6329                                 iocommand.buf_size)) {
6330                                 rc = -EFAULT;
6331                                 goto out_kfree;
6332                         }
6333                 } else {
6334                         memset(buff, 0, iocommand.buf_size);
6335                 }
6336         }
6337         c = cmd_alloc(h);
6338
6339         /* Fill in the command type */
6340         c->cmd_type = CMD_IOCTL_PEND;
6341         c->scsi_cmd = SCSI_CMD_BUSY;
6342         /* Fill in Command Header */
6343         c->Header.ReplyQueue = 0; /* unused in simple mode */
6344         if (iocommand.buf_size > 0) {   /* buffer to fill */
6345                 c->Header.SGList = 1;
6346                 c->Header.SGTotal = cpu_to_le16(1);
6347         } else  { /* no buffers to fill */
6348                 c->Header.SGList = 0;
6349                 c->Header.SGTotal = cpu_to_le16(0);
6350         }
6351         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6352
6353         /* Fill in Request block */
6354         memcpy(&c->Request, &iocommand.Request,
6355                 sizeof(c->Request));
6356
6357         /* Fill in the scatter gather information */
6358         if (iocommand.buf_size > 0) {
6359                 temp64 = pci_map_single(h->pdev, buff,
6360                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6361                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6362                         c->SG[0].Addr = cpu_to_le64(0);
6363                         c->SG[0].Len = cpu_to_le32(0);
6364                         rc = -ENOMEM;
6365                         goto out;
6366                 }
6367                 c->SG[0].Addr = cpu_to_le64(temp64);
6368                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6369                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6370         }
6371         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6372                                         NO_TIMEOUT);
6373         if (iocommand.buf_size > 0)
6374                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6375         check_ioctl_unit_attention(h, c);
6376         if (rc) {
6377                 rc = -EIO;
6378                 goto out;
6379         }
6380
6381         /* Copy the error information out */
6382         memcpy(&iocommand.error_info, c->err_info,
6383                 sizeof(iocommand.error_info));
6384         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6385                 rc = -EFAULT;
6386                 goto out;
6387         }
6388         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6389                 iocommand.buf_size > 0) {
6390                 /* Copy the data out of the buffer we created */
6391                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6392                         rc = -EFAULT;
6393                         goto out;
6394                 }
6395         }
6396 out:
6397         cmd_free(h, c);
6398 out_kfree:
6399         kfree(buff);
6400         return rc;
6401 }
6402
6403 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6404 {
6405         BIG_IOCTL_Command_struct *ioc;
6406         struct CommandList *c;
6407         unsigned char **buff = NULL;
6408         int *buff_size = NULL;
6409         u64 temp64;
6410         BYTE sg_used = 0;
6411         int status = 0;
6412         u32 left;
6413         u32 sz;
6414         BYTE __user *data_ptr;
6415
6416         if (!argp)
6417                 return -EINVAL;
6418         if (!capable(CAP_SYS_RAWIO))
6419                 return -EPERM;
6420         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6421         if (!ioc) {
6422                 status = -ENOMEM;
6423                 goto cleanup1;
6424         }
6425         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6426                 status = -EFAULT;
6427                 goto cleanup1;
6428         }
6429         if ((ioc->buf_size < 1) &&
6430             (ioc->Request.Type.Direction != XFER_NONE)) {
6431                 status = -EINVAL;
6432                 goto cleanup1;
6433         }
6434         /* Check kmalloc limits  using all SGs */
6435         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6436                 status = -EINVAL;
6437                 goto cleanup1;
6438         }
6439         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6440                 status = -EINVAL;
6441                 goto cleanup1;
6442         }
6443         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6444         if (!buff) {
6445                 status = -ENOMEM;
6446                 goto cleanup1;
6447         }
6448         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6449         if (!buff_size) {
6450                 status = -ENOMEM;
6451                 goto cleanup1;
6452         }
6453         left = ioc->buf_size;
6454         data_ptr = ioc->buf;
6455         while (left) {
6456                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6457                 buff_size[sg_used] = sz;
6458                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6459                 if (buff[sg_used] == NULL) {
6460                         status = -ENOMEM;
6461                         goto cleanup1;
6462                 }
6463                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6464                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6465                                 status = -EFAULT;
6466                                 goto cleanup1;
6467                         }
6468                 } else
6469                         memset(buff[sg_used], 0, sz);
6470                 left -= sz;
6471                 data_ptr += sz;
6472                 sg_used++;
6473         }
6474         c = cmd_alloc(h);
6475
6476         c->cmd_type = CMD_IOCTL_PEND;
6477         c->scsi_cmd = SCSI_CMD_BUSY;
6478         c->Header.ReplyQueue = 0;
6479         c->Header.SGList = (u8) sg_used;
6480         c->Header.SGTotal = cpu_to_le16(sg_used);
6481         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6482         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6483         if (ioc->buf_size > 0) {
6484                 int i;
6485                 for (i = 0; i < sg_used; i++) {
6486                         temp64 = pci_map_single(h->pdev, buff[i],
6487                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6488                         if (dma_mapping_error(&h->pdev->dev,
6489                                                         (dma_addr_t) temp64)) {
6490                                 c->SG[i].Addr = cpu_to_le64(0);
6491                                 c->SG[i].Len = cpu_to_le32(0);
6492                                 hpsa_pci_unmap(h->pdev, c, i,
6493                                         PCI_DMA_BIDIRECTIONAL);
6494                                 status = -ENOMEM;
6495                                 goto cleanup0;
6496                         }
6497                         c->SG[i].Addr = cpu_to_le64(temp64);
6498                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6499                         c->SG[i].Ext = cpu_to_le32(0);
6500                 }
6501                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6502         }
6503         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6504                                                 NO_TIMEOUT);
6505         if (sg_used)
6506                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6507         check_ioctl_unit_attention(h, c);
6508         if (status) {
6509                 status = -EIO;
6510                 goto cleanup0;
6511         }
6512
6513         /* Copy the error information out */
6514         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6515         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6516                 status = -EFAULT;
6517                 goto cleanup0;
6518         }
6519         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6520                 int i;
6521
6522                 /* Copy the data out of the buffer we created */
6523                 BYTE __user *ptr = ioc->buf;
6524                 for (i = 0; i < sg_used; i++) {
6525                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6526                                 status = -EFAULT;
6527                                 goto cleanup0;
6528                         }
6529                         ptr += buff_size[i];
6530                 }
6531         }
6532         status = 0;
6533 cleanup0:
6534         cmd_free(h, c);
6535 cleanup1:
6536         if (buff) {
6537                 int i;
6538
6539                 for (i = 0; i < sg_used; i++)
6540                         kfree(buff[i]);
6541                 kfree(buff);
6542         }
6543         kfree(buff_size);
6544         kfree(ioc);
6545         return status;
6546 }
6547
6548 static void check_ioctl_unit_attention(struct ctlr_info *h,
6549         struct CommandList *c)
6550 {
6551         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6552                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6553                 (void) check_for_unit_attention(h, c);
6554 }
6555
6556 /*
6557  * ioctl
6558  */
6559 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6560 {
6561         struct ctlr_info *h;
6562         void __user *argp = (void __user *)arg;
6563         int rc;
6564
6565         h = sdev_to_hba(dev);
6566
6567         switch (cmd) {
6568         case CCISS_DEREGDISK:
6569         case CCISS_REGNEWDISK:
6570         case CCISS_REGNEWD:
6571                 hpsa_scan_start(h->scsi_host);
6572                 return 0;
6573         case CCISS_GETPCIINFO:
6574                 return hpsa_getpciinfo_ioctl(h, argp);
6575         case CCISS_GETDRIVVER:
6576                 return hpsa_getdrivver_ioctl(h, argp);
6577         case CCISS_PASSTHRU:
6578                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6579                         return -EAGAIN;
6580                 rc = hpsa_passthru_ioctl(h, argp);
6581                 atomic_inc(&h->passthru_cmds_avail);
6582                 return rc;
6583         case CCISS_BIG_PASSTHRU:
6584                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6585                         return -EAGAIN;
6586                 rc = hpsa_big_passthru_ioctl(h, argp);
6587                 atomic_inc(&h->passthru_cmds_avail);
6588                 return rc;
6589         default:
6590                 return -ENOTTY;
6591         }
6592 }
6593
6594 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6595                                 u8 reset_type)
6596 {
6597         struct CommandList *c;
6598
6599         c = cmd_alloc(h);
6600
6601         /* fill_cmd can't fail here, no data buffer to map */
6602         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6603                 RAID_CTLR_LUNID, TYPE_MSG);
6604         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6605         c->waiting = NULL;
6606         enqueue_cmd_and_start_io(h, c);
6607         /* Don't wait for completion, the reset won't complete.  Don't free
6608          * the command either.  This is the last command we will send before
6609          * re-initializing everything, so it doesn't matter and won't leak.
6610          */
6611         return;
6612 }
6613
6614 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6615         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6616         int cmd_type)
6617 {
6618         int pci_dir = XFER_NONE;
6619
6620         c->cmd_type = CMD_IOCTL_PEND;
6621         c->scsi_cmd = SCSI_CMD_BUSY;
6622         c->Header.ReplyQueue = 0;
6623         if (buff != NULL && size > 0) {
6624                 c->Header.SGList = 1;
6625                 c->Header.SGTotal = cpu_to_le16(1);
6626         } else {
6627                 c->Header.SGList = 0;
6628                 c->Header.SGTotal = cpu_to_le16(0);
6629         }
6630         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6631
6632         if (cmd_type == TYPE_CMD) {
6633                 switch (cmd) {
6634                 case HPSA_INQUIRY:
6635                         /* are we trying to read a vital product page */
6636                         if (page_code & VPD_PAGE) {
6637                                 c->Request.CDB[1] = 0x01;
6638                                 c->Request.CDB[2] = (page_code & 0xff);
6639                         }
6640                         c->Request.CDBLen = 6;
6641                         c->Request.type_attr_dir =
6642                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6643                         c->Request.Timeout = 0;
6644                         c->Request.CDB[0] = HPSA_INQUIRY;
6645                         c->Request.CDB[4] = size & 0xFF;
6646                         break;
6647                 case RECEIVE_DIAGNOSTIC:
6648                         c->Request.CDBLen = 6;
6649                         c->Request.type_attr_dir =
6650                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6651                         c->Request.Timeout = 0;
6652                         c->Request.CDB[0] = cmd;
6653                         c->Request.CDB[1] = 1;
6654                         c->Request.CDB[2] = 1;
6655                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6656                         c->Request.CDB[4] = size & 0xFF;
6657                         break;
6658                 case HPSA_REPORT_LOG:
6659                 case HPSA_REPORT_PHYS:
6660                         /* Talking to controller so It's a physical command
6661                            mode = 00 target = 0.  Nothing to write.
6662                          */
6663                         c->Request.CDBLen = 12;
6664                         c->Request.type_attr_dir =
6665                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6666                         c->Request.Timeout = 0;
6667                         c->Request.CDB[0] = cmd;
6668                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6669                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6670                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6671                         c->Request.CDB[9] = size & 0xFF;
6672                         break;
6673                 case BMIC_SENSE_DIAG_OPTIONS:
6674                         c->Request.CDBLen = 16;
6675                         c->Request.type_attr_dir =
6676                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677                         c->Request.Timeout = 0;
6678                         /* Spec says this should be BMIC_WRITE */
6679                         c->Request.CDB[0] = BMIC_READ;
6680                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6681                         break;
6682                 case BMIC_SET_DIAG_OPTIONS:
6683                         c->Request.CDBLen = 16;
6684                         c->Request.type_attr_dir =
6685                                         TYPE_ATTR_DIR(cmd_type,
6686                                                 ATTR_SIMPLE, XFER_WRITE);
6687                         c->Request.Timeout = 0;
6688                         c->Request.CDB[0] = BMIC_WRITE;
6689                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6690                         break;
6691                 case HPSA_CACHE_FLUSH:
6692                         c->Request.CDBLen = 12;
6693                         c->Request.type_attr_dir =
6694                                         TYPE_ATTR_DIR(cmd_type,
6695                                                 ATTR_SIMPLE, XFER_WRITE);
6696                         c->Request.Timeout = 0;
6697                         c->Request.CDB[0] = BMIC_WRITE;
6698                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6699                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6700                         c->Request.CDB[8] = size & 0xFF;
6701                         break;
6702                 case TEST_UNIT_READY:
6703                         c->Request.CDBLen = 6;
6704                         c->Request.type_attr_dir =
6705                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6706                         c->Request.Timeout = 0;
6707                         break;
6708                 case HPSA_GET_RAID_MAP:
6709                         c->Request.CDBLen = 12;
6710                         c->Request.type_attr_dir =
6711                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712                         c->Request.Timeout = 0;
6713                         c->Request.CDB[0] = HPSA_CISS_READ;
6714                         c->Request.CDB[1] = cmd;
6715                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6716                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6717                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6718                         c->Request.CDB[9] = size & 0xFF;
6719                         break;
6720                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6721                         c->Request.CDBLen = 10;
6722                         c->Request.type_attr_dir =
6723                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6724                         c->Request.Timeout = 0;
6725                         c->Request.CDB[0] = BMIC_READ;
6726                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6727                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6728                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6729                         break;
6730                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6731                         c->Request.CDBLen = 10;
6732                         c->Request.type_attr_dir =
6733                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6734                         c->Request.Timeout = 0;
6735                         c->Request.CDB[0] = BMIC_READ;
6736                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6737                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6738                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6739                         break;
6740                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6741                         c->Request.CDBLen = 10;
6742                         c->Request.type_attr_dir =
6743                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6744                         c->Request.Timeout = 0;
6745                         c->Request.CDB[0] = BMIC_READ;
6746                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6747                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6748                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6749                         break;
6750                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6751                         c->Request.CDBLen = 10;
6752                         c->Request.type_attr_dir =
6753                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754                         c->Request.Timeout = 0;
6755                         c->Request.CDB[0] = BMIC_READ;
6756                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6757                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6758                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6759                         break;
6760                 case BMIC_IDENTIFY_CONTROLLER:
6761                         c->Request.CDBLen = 10;
6762                         c->Request.type_attr_dir =
6763                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6764                         c->Request.Timeout = 0;
6765                         c->Request.CDB[0] = BMIC_READ;
6766                         c->Request.CDB[1] = 0;
6767                         c->Request.CDB[2] = 0;
6768                         c->Request.CDB[3] = 0;
6769                         c->Request.CDB[4] = 0;
6770                         c->Request.CDB[5] = 0;
6771                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6772                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6773                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6774                         c->Request.CDB[9] = 0;
6775                         break;
6776                 default:
6777                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6778                         BUG();
6779                 }
6780         } else if (cmd_type == TYPE_MSG) {
6781                 switch (cmd) {
6782
6783                 case  HPSA_PHYS_TARGET_RESET:
6784                         c->Request.CDBLen = 16;
6785                         c->Request.type_attr_dir =
6786                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6787                         c->Request.Timeout = 0; /* Don't time out */
6788                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6789                         c->Request.CDB[0] = HPSA_RESET;
6790                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6791                         /* Physical target reset needs no control bytes 4-7*/
6792                         c->Request.CDB[4] = 0x00;
6793                         c->Request.CDB[5] = 0x00;
6794                         c->Request.CDB[6] = 0x00;
6795                         c->Request.CDB[7] = 0x00;
6796                         break;
6797                 case  HPSA_DEVICE_RESET_MSG:
6798                         c->Request.CDBLen = 16;
6799                         c->Request.type_attr_dir =
6800                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6801                         c->Request.Timeout = 0; /* Don't time out */
6802                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6803                         c->Request.CDB[0] =  cmd;
6804                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6805                         /* If bytes 4-7 are zero, it means reset the */
6806                         /* LunID device */
6807                         c->Request.CDB[4] = 0x00;
6808                         c->Request.CDB[5] = 0x00;
6809                         c->Request.CDB[6] = 0x00;
6810                         c->Request.CDB[7] = 0x00;
6811                         break;
6812                 default:
6813                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6814                                 cmd);
6815                         BUG();
6816                 }
6817         } else {
6818                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6819                 BUG();
6820         }
6821
6822         switch (GET_DIR(c->Request.type_attr_dir)) {
6823         case XFER_READ:
6824                 pci_dir = PCI_DMA_FROMDEVICE;
6825                 break;
6826         case XFER_WRITE:
6827                 pci_dir = PCI_DMA_TODEVICE;
6828                 break;
6829         case XFER_NONE:
6830                 pci_dir = PCI_DMA_NONE;
6831                 break;
6832         default:
6833                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6834         }
6835         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6836                 return -1;
6837         return 0;
6838 }
6839
6840 /*
6841  * Map (physical) PCI mem into (virtual) kernel space
6842  */
6843 static void __iomem *remap_pci_mem(ulong base, ulong size)
6844 {
6845         ulong page_base = ((ulong) base) & PAGE_MASK;
6846         ulong page_offs = ((ulong) base) - page_base;
6847         void __iomem *page_remapped = ioremap_nocache(page_base,
6848                 page_offs + size);
6849
6850         return page_remapped ? (page_remapped + page_offs) : NULL;
6851 }
6852
6853 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6854 {
6855         return h->access.command_completed(h, q);
6856 }
6857
6858 static inline bool interrupt_pending(struct ctlr_info *h)
6859 {
6860         return h->access.intr_pending(h);
6861 }
6862
6863 static inline long interrupt_not_for_us(struct ctlr_info *h)
6864 {
6865         return (h->access.intr_pending(h) == 0) ||
6866                 (h->interrupts_enabled == 0);
6867 }
6868
6869 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6870         u32 raw_tag)
6871 {
6872         if (unlikely(tag_index >= h->nr_cmds)) {
6873                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6874                 return 1;
6875         }
6876         return 0;
6877 }
6878
6879 static inline void finish_cmd(struct CommandList *c)
6880 {
6881         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6882         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6883                         || c->cmd_type == CMD_IOACCEL2))
6884                 complete_scsi_command(c);
6885         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6886                 complete(c->waiting);
6887 }
6888
6889 /* process completion of an indexed ("direct lookup") command */
6890 static inline void process_indexed_cmd(struct ctlr_info *h,
6891         u32 raw_tag)
6892 {
6893         u32 tag_index;
6894         struct CommandList *c;
6895
6896         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6897         if (!bad_tag(h, tag_index, raw_tag)) {
6898                 c = h->cmd_pool + tag_index;
6899                 finish_cmd(c);
6900         }
6901 }
6902
6903 /* Some controllers, like p400, will give us one interrupt
6904  * after a soft reset, even if we turned interrupts off.
6905  * Only need to check for this in the hpsa_xxx_discard_completions
6906  * functions.
6907  */
6908 static int ignore_bogus_interrupt(struct ctlr_info *h)
6909 {
6910         if (likely(!reset_devices))
6911                 return 0;
6912
6913         if (likely(h->interrupts_enabled))
6914                 return 0;
6915
6916         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6917                 "(known firmware bug.)  Ignoring.\n");
6918
6919         return 1;
6920 }
6921
6922 /*
6923  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6924  * Relies on (h-q[x] == x) being true for x such that
6925  * 0 <= x < MAX_REPLY_QUEUES.
6926  */
6927 static struct ctlr_info *queue_to_hba(u8 *queue)
6928 {
6929         return container_of((queue - *queue), struct ctlr_info, q[0]);
6930 }
6931
6932 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6933 {
6934         struct ctlr_info *h = queue_to_hba(queue);
6935         u8 q = *(u8 *) queue;
6936         u32 raw_tag;
6937
6938         if (ignore_bogus_interrupt(h))
6939                 return IRQ_NONE;
6940
6941         if (interrupt_not_for_us(h))
6942                 return IRQ_NONE;
6943         h->last_intr_timestamp = get_jiffies_64();
6944         while (interrupt_pending(h)) {
6945                 raw_tag = get_next_completion(h, q);
6946                 while (raw_tag != FIFO_EMPTY)
6947                         raw_tag = next_command(h, q);
6948         }
6949         return IRQ_HANDLED;
6950 }
6951
6952 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6953 {
6954         struct ctlr_info *h = queue_to_hba(queue);
6955         u32 raw_tag;
6956         u8 q = *(u8 *) queue;
6957
6958         if (ignore_bogus_interrupt(h))
6959                 return IRQ_NONE;
6960
6961         h->last_intr_timestamp = get_jiffies_64();
6962         raw_tag = get_next_completion(h, q);
6963         while (raw_tag != FIFO_EMPTY)
6964                 raw_tag = next_command(h, q);
6965         return IRQ_HANDLED;
6966 }
6967
6968 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6969 {
6970         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6971         u32 raw_tag;
6972         u8 q = *(u8 *) queue;
6973
6974         if (interrupt_not_for_us(h))
6975                 return IRQ_NONE;
6976         h->last_intr_timestamp = get_jiffies_64();
6977         while (interrupt_pending(h)) {
6978                 raw_tag = get_next_completion(h, q);
6979                 while (raw_tag != FIFO_EMPTY) {
6980                         process_indexed_cmd(h, raw_tag);
6981                         raw_tag = next_command(h, q);
6982                 }
6983         }
6984         return IRQ_HANDLED;
6985 }
6986
6987 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6988 {
6989         struct ctlr_info *h = queue_to_hba(queue);
6990         u32 raw_tag;
6991         u8 q = *(u8 *) queue;
6992
6993         h->last_intr_timestamp = get_jiffies_64();
6994         raw_tag = get_next_completion(h, q);
6995         while (raw_tag != FIFO_EMPTY) {
6996                 process_indexed_cmd(h, raw_tag);
6997                 raw_tag = next_command(h, q);
6998         }
6999         return IRQ_HANDLED;
7000 }
7001
7002 /* Send a message CDB to the firmware. Careful, this only works
7003  * in simple mode, not performant mode due to the tag lookup.
7004  * We only ever use this immediately after a controller reset.
7005  */
7006 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7007                         unsigned char type)
7008 {
7009         struct Command {
7010                 struct CommandListHeader CommandHeader;
7011                 struct RequestBlock Request;
7012                 struct ErrDescriptor ErrorDescriptor;
7013         };
7014         struct Command *cmd;
7015         static const size_t cmd_sz = sizeof(*cmd) +
7016                                         sizeof(cmd->ErrorDescriptor);
7017         dma_addr_t paddr64;
7018         __le32 paddr32;
7019         u32 tag;
7020         void __iomem *vaddr;
7021         int i, err;
7022
7023         vaddr = pci_ioremap_bar(pdev, 0);
7024         if (vaddr == NULL)
7025                 return -ENOMEM;
7026
7027         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7028          * CCISS commands, so they must be allocated from the lower 4GiB of
7029          * memory.
7030          */
7031         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7032         if (err) {
7033                 iounmap(vaddr);
7034                 return err;
7035         }
7036
7037         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7038         if (cmd == NULL) {
7039                 iounmap(vaddr);
7040                 return -ENOMEM;
7041         }
7042
7043         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7044          * although there's no guarantee, we assume that the address is at
7045          * least 4-byte aligned (most likely, it's page-aligned).
7046          */
7047         paddr32 = cpu_to_le32(paddr64);
7048
7049         cmd->CommandHeader.ReplyQueue = 0;
7050         cmd->CommandHeader.SGList = 0;
7051         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7052         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7053         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7054
7055         cmd->Request.CDBLen = 16;
7056         cmd->Request.type_attr_dir =
7057                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7058         cmd->Request.Timeout = 0; /* Don't time out */
7059         cmd->Request.CDB[0] = opcode;
7060         cmd->Request.CDB[1] = type;
7061         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7062         cmd->ErrorDescriptor.Addr =
7063                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7064         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7065
7066         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7067
7068         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7069                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7070                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7071                         break;
7072                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7073         }
7074
7075         iounmap(vaddr);
7076
7077         /* we leak the DMA buffer here ... no choice since the controller could
7078          *  still complete the command.
7079          */
7080         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7081                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7082                         opcode, type);
7083                 return -ETIMEDOUT;
7084         }
7085
7086         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7087
7088         if (tag & HPSA_ERROR_BIT) {
7089                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7090                         opcode, type);
7091                 return -EIO;
7092         }
7093
7094         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7095                 opcode, type);
7096         return 0;
7097 }
7098
7099 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7100
7101 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7102         void __iomem *vaddr, u32 use_doorbell)
7103 {
7104
7105         if (use_doorbell) {
7106                 /* For everything after the P600, the PCI power state method
7107                  * of resetting the controller doesn't work, so we have this
7108                  * other way using the doorbell register.
7109                  */
7110                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7111                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7112
7113                 /* PMC hardware guys tell us we need a 10 second delay after
7114                  * doorbell reset and before any attempt to talk to the board
7115                  * at all to ensure that this actually works and doesn't fall
7116                  * over in some weird corner cases.
7117                  */
7118                 msleep(10000);
7119         } else { /* Try to do it the PCI power state way */
7120
7121                 /* Quoting from the Open CISS Specification: "The Power
7122                  * Management Control/Status Register (CSR) controls the power
7123                  * state of the device.  The normal operating state is D0,
7124                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7125                  * the controller, place the interface device in D3 then to D0,
7126                  * this causes a secondary PCI reset which will reset the
7127                  * controller." */
7128
7129                 int rc = 0;
7130
7131                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7132
7133                 /* enter the D3hot power management state */
7134                 rc = pci_set_power_state(pdev, PCI_D3hot);
7135                 if (rc)
7136                         return rc;
7137
7138                 msleep(500);
7139
7140                 /* enter the D0 power management state */
7141                 rc = pci_set_power_state(pdev, PCI_D0);
7142                 if (rc)
7143                         return rc;
7144
7145                 /*
7146                  * The P600 requires a small delay when changing states.
7147                  * Otherwise we may think the board did not reset and we bail.
7148                  * This for kdump only and is particular to the P600.
7149                  */
7150                 msleep(500);
7151         }
7152         return 0;
7153 }
7154
7155 static void init_driver_version(char *driver_version, int len)
7156 {
7157         memset(driver_version, 0, len);
7158         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7159 }
7160
7161 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7162 {
7163         char *driver_version;
7164         int i, size = sizeof(cfgtable->driver_version);
7165
7166         driver_version = kmalloc(size, GFP_KERNEL);
7167         if (!driver_version)
7168                 return -ENOMEM;
7169
7170         init_driver_version(driver_version, size);
7171         for (i = 0; i < size; i++)
7172                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7173         kfree(driver_version);
7174         return 0;
7175 }
7176
7177 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7178                                           unsigned char *driver_ver)
7179 {
7180         int i;
7181
7182         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7183                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7184 }
7185
7186 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7187 {
7188
7189         char *driver_ver, *old_driver_ver;
7190         int rc, size = sizeof(cfgtable->driver_version);
7191
7192         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7193         if (!old_driver_ver)
7194                 return -ENOMEM;
7195         driver_ver = old_driver_ver + size;
7196
7197         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7198          * should have been changed, otherwise we know the reset failed.
7199          */
7200         init_driver_version(old_driver_ver, size);
7201         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7202         rc = !memcmp(driver_ver, old_driver_ver, size);
7203         kfree(old_driver_ver);
7204         return rc;
7205 }
7206 /* This does a hard reset of the controller using PCI power management
7207  * states or the using the doorbell register.
7208  */
7209 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7210 {
7211         u64 cfg_offset;
7212         u32 cfg_base_addr;
7213         u64 cfg_base_addr_index;
7214         void __iomem *vaddr;
7215         unsigned long paddr;
7216         u32 misc_fw_support;
7217         int rc;
7218         struct CfgTable __iomem *cfgtable;
7219         u32 use_doorbell;
7220         u16 command_register;
7221
7222         /* For controllers as old as the P600, this is very nearly
7223          * the same thing as
7224          *
7225          * pci_save_state(pci_dev);
7226          * pci_set_power_state(pci_dev, PCI_D3hot);
7227          * pci_set_power_state(pci_dev, PCI_D0);
7228          * pci_restore_state(pci_dev);
7229          *
7230          * For controllers newer than the P600, the pci power state
7231          * method of resetting doesn't work so we have another way
7232          * using the doorbell register.
7233          */
7234
7235         if (!ctlr_is_resettable(board_id)) {
7236                 dev_warn(&pdev->dev, "Controller not resettable\n");
7237                 return -ENODEV;
7238         }
7239
7240         /* if controller is soft- but not hard resettable... */
7241         if (!ctlr_is_hard_resettable(board_id))
7242                 return -ENOTSUPP; /* try soft reset later. */
7243
7244         /* Save the PCI command register */
7245         pci_read_config_word(pdev, 4, &command_register);
7246         pci_save_state(pdev);
7247
7248         /* find the first memory BAR, so we can find the cfg table */
7249         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7250         if (rc)
7251                 return rc;
7252         vaddr = remap_pci_mem(paddr, 0x250);
7253         if (!vaddr)
7254                 return -ENOMEM;
7255
7256         /* find cfgtable in order to check if reset via doorbell is supported */
7257         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7258                                         &cfg_base_addr_index, &cfg_offset);
7259         if (rc)
7260                 goto unmap_vaddr;
7261         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7262                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7263         if (!cfgtable) {
7264                 rc = -ENOMEM;
7265                 goto unmap_vaddr;
7266         }
7267         rc = write_driver_ver_to_cfgtable(cfgtable);
7268         if (rc)
7269                 goto unmap_cfgtable;
7270
7271         /* If reset via doorbell register is supported, use that.
7272          * There are two such methods.  Favor the newest method.
7273          */
7274         misc_fw_support = readl(&cfgtable->misc_fw_support);
7275         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7276         if (use_doorbell) {
7277                 use_doorbell = DOORBELL_CTLR_RESET2;
7278         } else {
7279                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7280                 if (use_doorbell) {
7281                         dev_warn(&pdev->dev,
7282                                 "Soft reset not supported. Firmware update is required.\n");
7283                         rc = -ENOTSUPP; /* try soft reset */
7284                         goto unmap_cfgtable;
7285                 }
7286         }
7287
7288         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7289         if (rc)
7290                 goto unmap_cfgtable;
7291
7292         pci_restore_state(pdev);
7293         pci_write_config_word(pdev, 4, command_register);
7294
7295         /* Some devices (notably the HP Smart Array 5i Controller)
7296            need a little pause here */
7297         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7298
7299         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7300         if (rc) {
7301                 dev_warn(&pdev->dev,
7302                         "Failed waiting for board to become ready after hard reset\n");
7303                 goto unmap_cfgtable;
7304         }
7305
7306         rc = controller_reset_failed(vaddr);
7307         if (rc < 0)
7308                 goto unmap_cfgtable;
7309         if (rc) {
7310                 dev_warn(&pdev->dev, "Unable to successfully reset "
7311                         "controller. Will try soft reset.\n");
7312                 rc = -ENOTSUPP;
7313         } else {
7314                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7315         }
7316
7317 unmap_cfgtable:
7318         iounmap(cfgtable);
7319
7320 unmap_vaddr:
7321         iounmap(vaddr);
7322         return rc;
7323 }
7324
7325 /*
7326  *  We cannot read the structure directly, for portability we must use
7327  *   the io functions.
7328  *   This is for debug only.
7329  */
7330 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7331 {
7332 #ifdef HPSA_DEBUG
7333         int i;
7334         char temp_name[17];
7335
7336         dev_info(dev, "Controller Configuration information\n");
7337         dev_info(dev, "------------------------------------\n");
7338         for (i = 0; i < 4; i++)
7339                 temp_name[i] = readb(&(tb->Signature[i]));
7340         temp_name[4] = '\0';
7341         dev_info(dev, "   Signature = %s\n", temp_name);
7342         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7343         dev_info(dev, "   Transport methods supported = 0x%x\n",
7344                readl(&(tb->TransportSupport)));
7345         dev_info(dev, "   Transport methods active = 0x%x\n",
7346                readl(&(tb->TransportActive)));
7347         dev_info(dev, "   Requested transport Method = 0x%x\n",
7348                readl(&(tb->HostWrite.TransportRequest)));
7349         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7350                readl(&(tb->HostWrite.CoalIntDelay)));
7351         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7352                readl(&(tb->HostWrite.CoalIntCount)));
7353         dev_info(dev, "   Max outstanding commands = %d\n",
7354                readl(&(tb->CmdsOutMax)));
7355         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7356         for (i = 0; i < 16; i++)
7357                 temp_name[i] = readb(&(tb->ServerName[i]));
7358         temp_name[16] = '\0';
7359         dev_info(dev, "   Server Name = %s\n", temp_name);
7360         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7361                 readl(&(tb->HeartBeat)));
7362 #endif                          /* HPSA_DEBUG */
7363 }
7364
7365 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7366 {
7367         int i, offset, mem_type, bar_type;
7368
7369         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7370                 return 0;
7371         offset = 0;
7372         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7373                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7374                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7375                         offset += 4;
7376                 else {
7377                         mem_type = pci_resource_flags(pdev, i) &
7378                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7379                         switch (mem_type) {
7380                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7381                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7382                                 offset += 4;    /* 32 bit */
7383                                 break;
7384                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7385                                 offset += 8;
7386                                 break;
7387                         default:        /* reserved in PCI 2.2 */
7388                                 dev_warn(&pdev->dev,
7389                                        "base address is invalid\n");
7390                                 return -1;
7391                                 break;
7392                         }
7393                 }
7394                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7395                         return i + 1;
7396         }
7397         return -1;
7398 }
7399
7400 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7401 {
7402         pci_free_irq_vectors(h->pdev);
7403         h->msix_vectors = 0;
7404 }
7405
7406 static void hpsa_setup_reply_map(struct ctlr_info *h)
7407 {
7408         const struct cpumask *mask;
7409         unsigned int queue, cpu;
7410
7411         for (queue = 0; queue < h->msix_vectors; queue++) {
7412                 mask = pci_irq_get_affinity(h->pdev, queue);
7413                 if (!mask)
7414                         goto fallback;
7415
7416                 for_each_cpu(cpu, mask)
7417                         h->reply_map[cpu] = queue;
7418         }
7419         return;
7420
7421 fallback:
7422         for_each_possible_cpu(cpu)
7423                 h->reply_map[cpu] = 0;
7424 }
7425
7426 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7427  * controllers that are capable. If not, we use legacy INTx mode.
7428  */
7429 static int hpsa_interrupt_mode(struct ctlr_info *h)
7430 {
7431         unsigned int flags = PCI_IRQ_LEGACY;
7432         int ret;
7433
7434         /* Some boards advertise MSI but don't really support it */
7435         switch (h->board_id) {
7436         case 0x40700E11:
7437         case 0x40800E11:
7438         case 0x40820E11:
7439         case 0x40830E11:
7440                 break;
7441         default:
7442                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7443                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7444                 if (ret > 0) {
7445                         h->msix_vectors = ret;
7446                         return 0;
7447                 }
7448
7449                 flags |= PCI_IRQ_MSI;
7450                 break;
7451         }
7452
7453         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7454         if (ret < 0)
7455                 return ret;
7456         return 0;
7457 }
7458
7459 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7460                                 bool *legacy_board)
7461 {
7462         int i;
7463         u32 subsystem_vendor_id, subsystem_device_id;
7464
7465         subsystem_vendor_id = pdev->subsystem_vendor;
7466         subsystem_device_id = pdev->subsystem_device;
7467         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7468                     subsystem_vendor_id;
7469
7470         if (legacy_board)
7471                 *legacy_board = false;
7472         for (i = 0; i < ARRAY_SIZE(products); i++)
7473                 if (*board_id == products[i].board_id) {
7474                         if (products[i].access != &SA5A_access &&
7475                             products[i].access != &SA5B_access)
7476                                 return i;
7477                         dev_warn(&pdev->dev,
7478                                  "legacy board ID: 0x%08x\n",
7479                                  *board_id);
7480                         if (legacy_board)
7481                             *legacy_board = true;
7482                         return i;
7483                 }
7484
7485         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7486         if (legacy_board)
7487                 *legacy_board = true;
7488         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7489 }
7490
7491 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7492                                     unsigned long *memory_bar)
7493 {
7494         int i;
7495
7496         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7497                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7498                         /* addressing mode bits already removed */
7499                         *memory_bar = pci_resource_start(pdev, i);
7500                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7501                                 *memory_bar);
7502                         return 0;
7503                 }
7504         dev_warn(&pdev->dev, "no memory BAR found\n");
7505         return -ENODEV;
7506 }
7507
7508 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7509                                      int wait_for_ready)
7510 {
7511         int i, iterations;
7512         u32 scratchpad;
7513         if (wait_for_ready)
7514                 iterations = HPSA_BOARD_READY_ITERATIONS;
7515         else
7516                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7517
7518         for (i = 0; i < iterations; i++) {
7519                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7520                 if (wait_for_ready) {
7521                         if (scratchpad == HPSA_FIRMWARE_READY)
7522                                 return 0;
7523                 } else {
7524                         if (scratchpad != HPSA_FIRMWARE_READY)
7525                                 return 0;
7526                 }
7527                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7528         }
7529         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7530         return -ENODEV;
7531 }
7532
7533 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7534                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7535                                u64 *cfg_offset)
7536 {
7537         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7538         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7539         *cfg_base_addr &= (u32) 0x0000ffff;
7540         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7541         if (*cfg_base_addr_index == -1) {
7542                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7543                 return -ENODEV;
7544         }
7545         return 0;
7546 }
7547
7548 static void hpsa_free_cfgtables(struct ctlr_info *h)
7549 {
7550         if (h->transtable) {
7551                 iounmap(h->transtable);
7552                 h->transtable = NULL;
7553         }
7554         if (h->cfgtable) {
7555                 iounmap(h->cfgtable);
7556                 h->cfgtable = NULL;
7557         }
7558 }
7559
7560 /* Find and map CISS config table and transfer table
7561 + * several items must be unmapped (freed) later
7562 + * */
7563 static int hpsa_find_cfgtables(struct ctlr_info *h)
7564 {
7565         u64 cfg_offset;
7566         u32 cfg_base_addr;
7567         u64 cfg_base_addr_index;
7568         u32 trans_offset;
7569         int rc;
7570
7571         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7572                 &cfg_base_addr_index, &cfg_offset);
7573         if (rc)
7574                 return rc;
7575         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7576                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7577         if (!h->cfgtable) {
7578                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7579                 return -ENOMEM;
7580         }
7581         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7582         if (rc)
7583                 return rc;
7584         /* Find performant mode table. */
7585         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7586         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7587                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7588                                 sizeof(*h->transtable));
7589         if (!h->transtable) {
7590                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7591                 hpsa_free_cfgtables(h);
7592                 return -ENOMEM;
7593         }
7594         return 0;
7595 }
7596
7597 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7598 {
7599 #define MIN_MAX_COMMANDS 16
7600         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7601
7602         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7603
7604         /* Limit commands in memory limited kdump scenario. */
7605         if (reset_devices && h->max_commands > 32)
7606                 h->max_commands = 32;
7607
7608         if (h->max_commands < MIN_MAX_COMMANDS) {
7609                 dev_warn(&h->pdev->dev,
7610                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7611                         h->max_commands,
7612                         MIN_MAX_COMMANDS);
7613                 h->max_commands = MIN_MAX_COMMANDS;
7614         }
7615 }
7616
7617 /* If the controller reports that the total max sg entries is greater than 512,
7618  * then we know that chained SG blocks work.  (Original smart arrays did not
7619  * support chained SG blocks and would return zero for max sg entries.)
7620  */
7621 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7622 {
7623         return h->maxsgentries > 512;
7624 }
7625
7626 /* Interrogate the hardware for some limits:
7627  * max commands, max SG elements without chaining, and with chaining,
7628  * SG chain block size, etc.
7629  */
7630 static void hpsa_find_board_params(struct ctlr_info *h)
7631 {
7632         hpsa_get_max_perf_mode_cmds(h);
7633         h->nr_cmds = h->max_commands;
7634         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7635         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7636         if (hpsa_supports_chained_sg_blocks(h)) {
7637                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7638                 h->max_cmd_sg_entries = 32;
7639                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7640                 h->maxsgentries--; /* save one for chain pointer */
7641         } else {
7642                 /*
7643                  * Original smart arrays supported at most 31 s/g entries
7644                  * embedded inline in the command (trying to use more
7645                  * would lock up the controller)
7646                  */
7647                 h->max_cmd_sg_entries = 31;
7648                 h->maxsgentries = 31; /* default to traditional values */
7649                 h->chainsize = 0;
7650         }
7651
7652         /* Find out what task management functions are supported and cache */
7653         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7654         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7655                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7656         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7657                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7658         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7659                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7660 }
7661
7662 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7663 {
7664         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7665                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7666                 return false;
7667         }
7668         return true;
7669 }
7670
7671 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7672 {
7673         u32 driver_support;
7674
7675         driver_support = readl(&(h->cfgtable->driver_support));
7676         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7677 #ifdef CONFIG_X86
7678         driver_support |= ENABLE_SCSI_PREFETCH;
7679 #endif
7680         driver_support |= ENABLE_UNIT_ATTN;
7681         writel(driver_support, &(h->cfgtable->driver_support));
7682 }
7683
7684 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7685  * in a prefetch beyond physical memory.
7686  */
7687 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7688 {
7689         u32 dma_prefetch;
7690
7691         if (h->board_id != 0x3225103C)
7692                 return;
7693         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7694         dma_prefetch |= 0x8000;
7695         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7696 }
7697
7698 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7699 {
7700         int i;
7701         u32 doorbell_value;
7702         unsigned long flags;
7703         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7704         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7705                 spin_lock_irqsave(&h->lock, flags);
7706                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7707                 spin_unlock_irqrestore(&h->lock, flags);
7708                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7709                         goto done;
7710                 /* delay and try again */
7711                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7712         }
7713         return -ENODEV;
7714 done:
7715         return 0;
7716 }
7717
7718 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7719 {
7720         int i;
7721         u32 doorbell_value;
7722         unsigned long flags;
7723
7724         /* under certain very rare conditions, this can take awhile.
7725          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7726          * as we enter this code.)
7727          */
7728         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7729                 if (h->remove_in_progress)
7730                         goto done;
7731                 spin_lock_irqsave(&h->lock, flags);
7732                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7733                 spin_unlock_irqrestore(&h->lock, flags);
7734                 if (!(doorbell_value & CFGTBL_ChangeReq))
7735                         goto done;
7736                 /* delay and try again */
7737                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7738         }
7739         return -ENODEV;
7740 done:
7741         return 0;
7742 }
7743
7744 /* return -ENODEV or other reason on error, 0 on success */
7745 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7746 {
7747         u32 trans_support;
7748
7749         trans_support = readl(&(h->cfgtable->TransportSupport));
7750         if (!(trans_support & SIMPLE_MODE))
7751                 return -ENOTSUPP;
7752
7753         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7754
7755         /* Update the field, and then ring the doorbell */
7756         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7757         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7758         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7759         if (hpsa_wait_for_mode_change_ack(h))
7760                 goto error;
7761         print_cfg_table(&h->pdev->dev, h->cfgtable);
7762         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7763                 goto error;
7764         h->transMethod = CFGTBL_Trans_Simple;
7765         return 0;
7766 error:
7767         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7768         return -ENODEV;
7769 }
7770
7771 /* free items allocated or mapped by hpsa_pci_init */
7772 static void hpsa_free_pci_init(struct ctlr_info *h)
7773 {
7774         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7775         iounmap(h->vaddr);                      /* pci_init 3 */
7776         h->vaddr = NULL;
7777         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7778         /*
7779          * call pci_disable_device before pci_release_regions per
7780          * Documentation/PCI/pci.txt
7781          */
7782         pci_disable_device(h->pdev);            /* pci_init 1 */
7783         pci_release_regions(h->pdev);           /* pci_init 2 */
7784 }
7785
7786 /* several items must be freed later */
7787 static int hpsa_pci_init(struct ctlr_info *h)
7788 {
7789         int prod_index, err;
7790         bool legacy_board;
7791
7792         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7793         if (prod_index < 0)
7794                 return prod_index;
7795         h->product_name = products[prod_index].product_name;
7796         h->access = *(products[prod_index].access);
7797         h->legacy_board = legacy_board;
7798         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7799                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7800
7801         err = pci_enable_device(h->pdev);
7802         if (err) {
7803                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7804                 pci_disable_device(h->pdev);
7805                 return err;
7806         }
7807
7808         err = pci_request_regions(h->pdev, HPSA);
7809         if (err) {
7810                 dev_err(&h->pdev->dev,
7811                         "failed to obtain PCI resources\n");
7812                 pci_disable_device(h->pdev);
7813                 return err;
7814         }
7815
7816         pci_set_master(h->pdev);
7817
7818         err = hpsa_interrupt_mode(h);
7819         if (err)
7820                 goto clean1;
7821
7822         /* setup mapping between CPU and reply queue */
7823         hpsa_setup_reply_map(h);
7824
7825         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7826         if (err)
7827                 goto clean2;    /* intmode+region, pci */
7828         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7829         if (!h->vaddr) {
7830                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7831                 err = -ENOMEM;
7832                 goto clean2;    /* intmode+region, pci */
7833         }
7834         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7835         if (err)
7836                 goto clean3;    /* vaddr, intmode+region, pci */
7837         err = hpsa_find_cfgtables(h);
7838         if (err)
7839                 goto clean3;    /* vaddr, intmode+region, pci */
7840         hpsa_find_board_params(h);
7841
7842         if (!hpsa_CISS_signature_present(h)) {
7843                 err = -ENODEV;
7844                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7845         }
7846         hpsa_set_driver_support_bits(h);
7847         hpsa_p600_dma_prefetch_quirk(h);
7848         err = hpsa_enter_simple_mode(h);
7849         if (err)
7850                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7851         return 0;
7852
7853 clean4: /* cfgtables, vaddr, intmode+region, pci */
7854         hpsa_free_cfgtables(h);
7855 clean3: /* vaddr, intmode+region, pci */
7856         iounmap(h->vaddr);
7857         h->vaddr = NULL;
7858 clean2: /* intmode+region, pci */
7859         hpsa_disable_interrupt_mode(h);
7860 clean1:
7861         /*
7862          * call pci_disable_device before pci_release_regions per
7863          * Documentation/PCI/pci.txt
7864          */
7865         pci_disable_device(h->pdev);
7866         pci_release_regions(h->pdev);
7867         return err;
7868 }
7869
7870 static void hpsa_hba_inquiry(struct ctlr_info *h)
7871 {
7872         int rc;
7873
7874 #define HBA_INQUIRY_BYTE_COUNT 64
7875         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7876         if (!h->hba_inquiry_data)
7877                 return;
7878         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7879                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7880         if (rc != 0) {
7881                 kfree(h->hba_inquiry_data);
7882                 h->hba_inquiry_data = NULL;
7883         }
7884 }
7885
7886 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7887 {
7888         int rc, i;
7889         void __iomem *vaddr;
7890
7891         if (!reset_devices)
7892                 return 0;
7893
7894         /* kdump kernel is loading, we don't know in which state is
7895          * the pci interface. The dev->enable_cnt is equal zero
7896          * so we call enable+disable, wait a while and switch it on.
7897          */
7898         rc = pci_enable_device(pdev);
7899         if (rc) {
7900                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7901                 return -ENODEV;
7902         }
7903         pci_disable_device(pdev);
7904         msleep(260);                    /* a randomly chosen number */
7905         rc = pci_enable_device(pdev);
7906         if (rc) {
7907                 dev_warn(&pdev->dev, "failed to enable device.\n");
7908                 return -ENODEV;
7909         }
7910
7911         pci_set_master(pdev);
7912
7913         vaddr = pci_ioremap_bar(pdev, 0);
7914         if (vaddr == NULL) {
7915                 rc = -ENOMEM;
7916                 goto out_disable;
7917         }
7918         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7919         iounmap(vaddr);
7920
7921         /* Reset the controller with a PCI power-cycle or via doorbell */
7922         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7923
7924         /* -ENOTSUPP here means we cannot reset the controller
7925          * but it's already (and still) up and running in
7926          * "performant mode".  Or, it might be 640x, which can't reset
7927          * due to concerns about shared bbwc between 6402/6404 pair.
7928          */
7929         if (rc)
7930                 goto out_disable;
7931
7932         /* Now try to get the controller to respond to a no-op */
7933         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7934         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7935                 if (hpsa_noop(pdev) == 0)
7936                         break;
7937                 else
7938                         dev_warn(&pdev->dev, "no-op failed%s\n",
7939                                         (i < 11 ? "; re-trying" : ""));
7940         }
7941
7942 out_disable:
7943
7944         pci_disable_device(pdev);
7945         return rc;
7946 }
7947
7948 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7949 {
7950         kfree(h->cmd_pool_bits);
7951         h->cmd_pool_bits = NULL;
7952         if (h->cmd_pool) {
7953                 pci_free_consistent(h->pdev,
7954                                 h->nr_cmds * sizeof(struct CommandList),
7955                                 h->cmd_pool,
7956                                 h->cmd_pool_dhandle);
7957                 h->cmd_pool = NULL;
7958                 h->cmd_pool_dhandle = 0;
7959         }
7960         if (h->errinfo_pool) {
7961                 pci_free_consistent(h->pdev,
7962                                 h->nr_cmds * sizeof(struct ErrorInfo),
7963                                 h->errinfo_pool,
7964                                 h->errinfo_pool_dhandle);
7965                 h->errinfo_pool = NULL;
7966                 h->errinfo_pool_dhandle = 0;
7967         }
7968 }
7969
7970 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7971 {
7972         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7973                                    sizeof(unsigned long),
7974                                    GFP_KERNEL);
7975         h->cmd_pool = pci_alloc_consistent(h->pdev,
7976                     h->nr_cmds * sizeof(*h->cmd_pool),
7977                     &(h->cmd_pool_dhandle));
7978         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7979                     h->nr_cmds * sizeof(*h->errinfo_pool),
7980                     &(h->errinfo_pool_dhandle));
7981         if ((h->cmd_pool_bits == NULL)
7982             || (h->cmd_pool == NULL)
7983             || (h->errinfo_pool == NULL)) {
7984                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7985                 goto clean_up;
7986         }
7987         hpsa_preinitialize_commands(h);
7988         return 0;
7989 clean_up:
7990         hpsa_free_cmd_pool(h);
7991         return -ENOMEM;
7992 }
7993
7994 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7995 static void hpsa_free_irqs(struct ctlr_info *h)
7996 {
7997         int i;
7998
7999         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8000                 /* Single reply queue, only one irq to free */
8001                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8002                 h->q[h->intr_mode] = 0;
8003                 return;
8004         }
8005
8006         for (i = 0; i < h->msix_vectors; i++) {
8007                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8008                 h->q[i] = 0;
8009         }
8010         for (; i < MAX_REPLY_QUEUES; i++)
8011                 h->q[i] = 0;
8012 }
8013
8014 /* returns 0 on success; cleans up and returns -Enn on error */
8015 static int hpsa_request_irqs(struct ctlr_info *h,
8016         irqreturn_t (*msixhandler)(int, void *),
8017         irqreturn_t (*intxhandler)(int, void *))
8018 {
8019         int rc, i;
8020
8021         /*
8022          * initialize h->q[x] = x so that interrupt handlers know which
8023          * queue to process.
8024          */
8025         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8026                 h->q[i] = (u8) i;
8027
8028         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8029                 /* If performant mode and MSI-X, use multiple reply queues */
8030                 for (i = 0; i < h->msix_vectors; i++) {
8031                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8032                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8033                                         0, h->intrname[i],
8034                                         &h->q[i]);
8035                         if (rc) {
8036                                 int j;
8037
8038                                 dev_err(&h->pdev->dev,
8039                                         "failed to get irq %d for %s\n",
8040                                        pci_irq_vector(h->pdev, i), h->devname);
8041                                 for (j = 0; j < i; j++) {
8042                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8043                                         h->q[j] = 0;
8044                                 }
8045                                 for (; j < MAX_REPLY_QUEUES; j++)
8046                                         h->q[j] = 0;
8047                                 return rc;
8048                         }
8049                 }
8050         } else {
8051                 /* Use single reply pool */
8052                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8053                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8054                                 h->msix_vectors ? "x" : "");
8055                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8056                                 msixhandler, 0,
8057                                 h->intrname[0],
8058                                 &h->q[h->intr_mode]);
8059                 } else {
8060                         sprintf(h->intrname[h->intr_mode],
8061                                 "%s-intx", h->devname);
8062                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8063                                 intxhandler, IRQF_SHARED,
8064                                 h->intrname[0],
8065                                 &h->q[h->intr_mode]);
8066                 }
8067         }
8068         if (rc) {
8069                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8070                        pci_irq_vector(h->pdev, 0), h->devname);
8071                 hpsa_free_irqs(h);
8072                 return -ENODEV;
8073         }
8074         return 0;
8075 }
8076
8077 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8078 {
8079         int rc;
8080         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8081
8082         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8083         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8084         if (rc) {
8085                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8086                 return rc;
8087         }
8088
8089         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8090         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091         if (rc) {
8092                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8093                         "after soft reset.\n");
8094                 return rc;
8095         }
8096
8097         return 0;
8098 }
8099
8100 static void hpsa_free_reply_queues(struct ctlr_info *h)
8101 {
8102         int i;
8103
8104         for (i = 0; i < h->nreply_queues; i++) {
8105                 if (!h->reply_queue[i].head)
8106                         continue;
8107                 pci_free_consistent(h->pdev,
8108                                         h->reply_queue_size,
8109                                         h->reply_queue[i].head,
8110                                         h->reply_queue[i].busaddr);
8111                 h->reply_queue[i].head = NULL;
8112                 h->reply_queue[i].busaddr = 0;
8113         }
8114         h->reply_queue_size = 0;
8115 }
8116
8117 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8118 {
8119         hpsa_free_performant_mode(h);           /* init_one 7 */
8120         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8121         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8122         hpsa_free_irqs(h);                      /* init_one 4 */
8123         scsi_host_put(h->scsi_host);            /* init_one 3 */
8124         h->scsi_host = NULL;                    /* init_one 3 */
8125         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8126         free_percpu(h->lockup_detected);        /* init_one 2 */
8127         h->lockup_detected = NULL;              /* init_one 2 */
8128         if (h->resubmit_wq) {
8129                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8130                 h->resubmit_wq = NULL;
8131         }
8132         if (h->rescan_ctlr_wq) {
8133                 destroy_workqueue(h->rescan_ctlr_wq);
8134                 h->rescan_ctlr_wq = NULL;
8135         }
8136         kfree(h);                               /* init_one 1 */
8137 }
8138
8139 /* Called when controller lockup detected. */
8140 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8141 {
8142         int i, refcount;
8143         struct CommandList *c;
8144         int failcount = 0;
8145
8146         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8147         for (i = 0; i < h->nr_cmds; i++) {
8148                 c = h->cmd_pool + i;
8149                 refcount = atomic_inc_return(&c->refcount);
8150                 if (refcount > 1) {
8151                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8152                         finish_cmd(c);
8153                         atomic_dec(&h->commands_outstanding);
8154                         failcount++;
8155                 }
8156                 cmd_free(h, c);
8157         }
8158         dev_warn(&h->pdev->dev,
8159                 "failed %d commands in fail_all\n", failcount);
8160 }
8161
8162 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8163 {
8164         int cpu;
8165
8166         for_each_online_cpu(cpu) {
8167                 u32 *lockup_detected;
8168                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8169                 *lockup_detected = value;
8170         }
8171         wmb(); /* be sure the per-cpu variables are out to memory */
8172 }
8173
8174 static void controller_lockup_detected(struct ctlr_info *h)
8175 {
8176         unsigned long flags;
8177         u32 lockup_detected;
8178
8179         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180         spin_lock_irqsave(&h->lock, flags);
8181         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8182         if (!lockup_detected) {
8183                 /* no heartbeat, but controller gave us a zero. */
8184                 dev_warn(&h->pdev->dev,
8185                         "lockup detected after %d but scratchpad register is zero\n",
8186                         h->heartbeat_sample_interval / HZ);
8187                 lockup_detected = 0xffffffff;
8188         }
8189         set_lockup_detected_for_all_cpus(h, lockup_detected);
8190         spin_unlock_irqrestore(&h->lock, flags);
8191         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8192                         lockup_detected, h->heartbeat_sample_interval / HZ);
8193         if (lockup_detected == 0xffff0000) {
8194                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8195                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8196         }
8197         pci_disable_device(h->pdev);
8198         fail_all_outstanding_cmds(h);
8199 }
8200
8201 static int detect_controller_lockup(struct ctlr_info *h)
8202 {
8203         u64 now;
8204         u32 heartbeat;
8205         unsigned long flags;
8206
8207         now = get_jiffies_64();
8208         /* If we've received an interrupt recently, we're ok. */
8209         if (time_after64(h->last_intr_timestamp +
8210                                 (h->heartbeat_sample_interval), now))
8211                 return false;
8212
8213         /*
8214          * If we've already checked the heartbeat recently, we're ok.
8215          * This could happen if someone sends us a signal. We
8216          * otherwise don't care about signals in this thread.
8217          */
8218         if (time_after64(h->last_heartbeat_timestamp +
8219                                 (h->heartbeat_sample_interval), now))
8220                 return false;
8221
8222         /* If heartbeat has not changed since we last looked, we're not ok. */
8223         spin_lock_irqsave(&h->lock, flags);
8224         heartbeat = readl(&h->cfgtable->HeartBeat);
8225         spin_unlock_irqrestore(&h->lock, flags);
8226         if (h->last_heartbeat == heartbeat) {
8227                 controller_lockup_detected(h);
8228                 return true;
8229         }
8230
8231         /* We're ok. */
8232         h->last_heartbeat = heartbeat;
8233         h->last_heartbeat_timestamp = now;
8234         return false;
8235 }
8236
8237 /*
8238  * Set ioaccel status for all ioaccel volumes.
8239  *
8240  * Called from monitor controller worker (hpsa_event_monitor_worker)
8241  *
8242  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8243  * transformation, so we will be turning off ioaccel for all volumes that
8244  * make up the Array.
8245  */
8246 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8247 {
8248         int rc;
8249         int i;
8250         u8 ioaccel_status;
8251         unsigned char *buf;
8252         struct hpsa_scsi_dev_t *device;
8253
8254         if (!h)
8255                 return;
8256
8257         buf = kmalloc(64, GFP_KERNEL);
8258         if (!buf)
8259                 return;
8260
8261         /*
8262          * Run through current device list used during I/O requests.
8263          */
8264         for (i = 0; i < h->ndevices; i++) {
8265                 int offload_to_be_enabled = 0;
8266                 int offload_config = 0;
8267
8268                 device = h->dev[i];
8269
8270                 if (!device)
8271                         continue;
8272                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8273                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8274                         continue;
8275
8276                 memset(buf, 0, 64);
8277
8278                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8279                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8280                                         buf, 64);
8281                 if (rc != 0)
8282                         continue;
8283
8284                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8285
8286                 /*
8287                  * Check if offload is still configured on
8288                  */
8289                 offload_config =
8290                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8291                 /*
8292                  * If offload is configured on, check to see if ioaccel
8293                  * needs to be enabled.
8294                  */
8295                 if (offload_config)
8296                         offload_to_be_enabled =
8297                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8298
8299                 /*
8300                  * If ioaccel is to be re-enabled, re-enable later during the
8301                  * scan operation so the driver can get a fresh raidmap
8302                  * before turning ioaccel back on.
8303                  */
8304                 if (offload_to_be_enabled)
8305                         continue;
8306
8307                 /*
8308                  * Immediately turn off ioaccel for any volume the
8309                  * controller tells us to. Some of the reasons could be:
8310                  *    transformation - change to the LVs of an Array.
8311                  *    degraded volume - component failure
8312                  */
8313                 hpsa_turn_off_ioaccel_for_device(device);
8314         }
8315
8316         kfree(buf);
8317 }
8318
8319 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8320 {
8321         char *event_type;
8322
8323         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8324                 return;
8325
8326         /* Ask the controller to clear the events we're handling. */
8327         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8328                         | CFGTBL_Trans_io_accel2)) &&
8329                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8330                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8331
8332                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8333                         event_type = "state change";
8334                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8335                         event_type = "configuration change";
8336                 /* Stop sending new RAID offload reqs via the IO accelerator */
8337                 scsi_block_requests(h->scsi_host);
8338                 hpsa_set_ioaccel_status(h);
8339                 hpsa_drain_accel_commands(h);
8340                 /* Set 'accelerator path config change' bit */
8341                 dev_warn(&h->pdev->dev,
8342                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8343                         h->events, event_type);
8344                 writel(h->events, &(h->cfgtable->clear_event_notify));
8345                 /* Set the "clear event notify field update" bit 6 */
8346                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8347                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8348                 hpsa_wait_for_clear_event_notify_ack(h);
8349                 scsi_unblock_requests(h->scsi_host);
8350         } else {
8351                 /* Acknowledge controller notification events. */
8352                 writel(h->events, &(h->cfgtable->clear_event_notify));
8353                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8354                 hpsa_wait_for_clear_event_notify_ack(h);
8355         }
8356         return;
8357 }
8358
8359 /* Check a register on the controller to see if there are configuration
8360  * changes (added/changed/removed logical drives, etc.) which mean that
8361  * we should rescan the controller for devices.
8362  * Also check flag for driver-initiated rescan.
8363  */
8364 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8365 {
8366         if (h->drv_req_rescan) {
8367                 h->drv_req_rescan = 0;
8368                 return 1;
8369         }
8370
8371         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8372                 return 0;
8373
8374         h->events = readl(&(h->cfgtable->event_notify));
8375         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8376 }
8377
8378 /*
8379  * Check if any of the offline devices have become ready
8380  */
8381 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8382 {
8383         unsigned long flags;
8384         struct offline_device_entry *d;
8385         struct list_head *this, *tmp;
8386
8387         spin_lock_irqsave(&h->offline_device_lock, flags);
8388         list_for_each_safe(this, tmp, &h->offline_device_list) {
8389                 d = list_entry(this, struct offline_device_entry,
8390                                 offline_list);
8391                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8392                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8393                         spin_lock_irqsave(&h->offline_device_lock, flags);
8394                         list_del(&d->offline_list);
8395                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8396                         return 1;
8397                 }
8398                 spin_lock_irqsave(&h->offline_device_lock, flags);
8399         }
8400         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8401         return 0;
8402 }
8403
8404 static int hpsa_luns_changed(struct ctlr_info *h)
8405 {
8406         int rc = 1; /* assume there are changes */
8407         struct ReportLUNdata *logdev = NULL;
8408
8409         /* if we can't find out if lun data has changed,
8410          * assume that it has.
8411          */
8412
8413         if (!h->lastlogicals)
8414                 return rc;
8415
8416         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8417         if (!logdev)
8418                 return rc;
8419
8420         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8421                 dev_warn(&h->pdev->dev,
8422                         "report luns failed, can't track lun changes.\n");
8423                 goto out;
8424         }
8425         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8426                 dev_info(&h->pdev->dev,
8427                         "Lun changes detected.\n");
8428                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8429                 goto out;
8430         } else
8431                 rc = 0; /* no changes detected. */
8432 out:
8433         kfree(logdev);
8434         return rc;
8435 }
8436
8437 static void hpsa_perform_rescan(struct ctlr_info *h)
8438 {
8439         struct Scsi_Host *sh = NULL;
8440         unsigned long flags;
8441
8442         /*
8443          * Do the scan after the reset
8444          */
8445         spin_lock_irqsave(&h->reset_lock, flags);
8446         if (h->reset_in_progress) {
8447                 h->drv_req_rescan = 1;
8448                 spin_unlock_irqrestore(&h->reset_lock, flags);
8449                 return;
8450         }
8451         spin_unlock_irqrestore(&h->reset_lock, flags);
8452
8453         sh = scsi_host_get(h->scsi_host);
8454         if (sh != NULL) {
8455                 hpsa_scan_start(sh);
8456                 scsi_host_put(sh);
8457                 h->drv_req_rescan = 0;
8458         }
8459 }
8460
8461 /*
8462  * watch for controller events
8463  */
8464 static void hpsa_event_monitor_worker(struct work_struct *work)
8465 {
8466         struct ctlr_info *h = container_of(to_delayed_work(work),
8467                                         struct ctlr_info, event_monitor_work);
8468         unsigned long flags;
8469
8470         spin_lock_irqsave(&h->lock, flags);
8471         if (h->remove_in_progress) {
8472                 spin_unlock_irqrestore(&h->lock, flags);
8473                 return;
8474         }
8475         spin_unlock_irqrestore(&h->lock, flags);
8476
8477         if (hpsa_ctlr_needs_rescan(h)) {
8478                 hpsa_ack_ctlr_events(h);
8479                 hpsa_perform_rescan(h);
8480         }
8481
8482         spin_lock_irqsave(&h->lock, flags);
8483         if (!h->remove_in_progress)
8484                 schedule_delayed_work(&h->event_monitor_work,
8485                                         HPSA_EVENT_MONITOR_INTERVAL);
8486         spin_unlock_irqrestore(&h->lock, flags);
8487 }
8488
8489 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8490 {
8491         unsigned long flags;
8492         struct ctlr_info *h = container_of(to_delayed_work(work),
8493                                         struct ctlr_info, rescan_ctlr_work);
8494
8495         spin_lock_irqsave(&h->lock, flags);
8496         if (h->remove_in_progress) {
8497                 spin_unlock_irqrestore(&h->lock, flags);
8498                 return;
8499         }
8500         spin_unlock_irqrestore(&h->lock, flags);
8501
8502         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8503                 hpsa_perform_rescan(h);
8504         } else if (h->discovery_polling) {
8505                 if (hpsa_luns_changed(h)) {
8506                         dev_info(&h->pdev->dev,
8507                                 "driver discovery polling rescan.\n");
8508                         hpsa_perform_rescan(h);
8509                 }
8510         }
8511         spin_lock_irqsave(&h->lock, flags);
8512         if (!h->remove_in_progress)
8513                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8514                                 h->heartbeat_sample_interval);
8515         spin_unlock_irqrestore(&h->lock, flags);
8516 }
8517
8518 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8519 {
8520         unsigned long flags;
8521         struct ctlr_info *h = container_of(to_delayed_work(work),
8522                                         struct ctlr_info, monitor_ctlr_work);
8523
8524         detect_controller_lockup(h);
8525         if (lockup_detected(h))
8526                 return;
8527
8528         spin_lock_irqsave(&h->lock, flags);
8529         if (!h->remove_in_progress)
8530                 schedule_delayed_work(&h->monitor_ctlr_work,
8531                                 h->heartbeat_sample_interval);
8532         spin_unlock_irqrestore(&h->lock, flags);
8533 }
8534
8535 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8536                                                 char *name)
8537 {
8538         struct workqueue_struct *wq = NULL;
8539
8540         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8541         if (!wq)
8542                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8543
8544         return wq;
8545 }
8546
8547 static void hpda_free_ctlr_info(struct ctlr_info *h)
8548 {
8549         kfree(h->reply_map);
8550         kfree(h);
8551 }
8552
8553 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8554 {
8555         struct ctlr_info *h;
8556
8557         h = kzalloc(sizeof(*h), GFP_KERNEL);
8558         if (!h)
8559                 return NULL;
8560
8561         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8562         if (!h->reply_map) {
8563                 kfree(h);
8564                 return NULL;
8565         }
8566         return h;
8567 }
8568
8569 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8570 {
8571         int dac, rc;
8572         struct ctlr_info *h;
8573         int try_soft_reset = 0;
8574         unsigned long flags;
8575         u32 board_id;
8576
8577         if (number_of_controllers == 0)
8578                 printk(KERN_INFO DRIVER_NAME "\n");
8579
8580         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8581         if (rc < 0) {
8582                 dev_warn(&pdev->dev, "Board ID not found\n");
8583                 return rc;
8584         }
8585
8586         rc = hpsa_init_reset_devices(pdev, board_id);
8587         if (rc) {
8588                 if (rc != -ENOTSUPP)
8589                         return rc;
8590                 /* If the reset fails in a particular way (it has no way to do
8591                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8592                  * a soft reset once we get the controller configured up to the
8593                  * point that it can accept a command.
8594                  */
8595                 try_soft_reset = 1;
8596                 rc = 0;
8597         }
8598
8599 reinit_after_soft_reset:
8600
8601         /* Command structures must be aligned on a 32-byte boundary because
8602          * the 5 lower bits of the address are used by the hardware. and by
8603          * the driver.  See comments in hpsa.h for more info.
8604          */
8605         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8606         h = hpda_alloc_ctlr_info();
8607         if (!h) {
8608                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8609                 return -ENOMEM;
8610         }
8611
8612         h->pdev = pdev;
8613
8614         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8615         INIT_LIST_HEAD(&h->offline_device_list);
8616         spin_lock_init(&h->lock);
8617         spin_lock_init(&h->offline_device_lock);
8618         spin_lock_init(&h->scan_lock);
8619         spin_lock_init(&h->reset_lock);
8620         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8621
8622         /* Allocate and clear per-cpu variable lockup_detected */
8623         h->lockup_detected = alloc_percpu(u32);
8624         if (!h->lockup_detected) {
8625                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8626                 rc = -ENOMEM;
8627                 goto clean1;    /* aer/h */
8628         }
8629         set_lockup_detected_for_all_cpus(h, 0);
8630
8631         rc = hpsa_pci_init(h);
8632         if (rc)
8633                 goto clean2;    /* lu, aer/h */
8634
8635         /* relies on h-> settings made by hpsa_pci_init, including
8636          * interrupt_mode h->intr */
8637         rc = hpsa_scsi_host_alloc(h);
8638         if (rc)
8639                 goto clean2_5;  /* pci, lu, aer/h */
8640
8641         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8642         h->ctlr = number_of_controllers;
8643         number_of_controllers++;
8644
8645         /* configure PCI DMA stuff */
8646         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8647         if (rc == 0) {
8648                 dac = 1;
8649         } else {
8650                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8651                 if (rc == 0) {
8652                         dac = 0;
8653                 } else {
8654                         dev_err(&pdev->dev, "no suitable DMA available\n");
8655                         goto clean3;    /* shost, pci, lu, aer/h */
8656                 }
8657         }
8658
8659         /* make sure the board interrupts are off */
8660         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8661
8662         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8663         if (rc)
8664                 goto clean3;    /* shost, pci, lu, aer/h */
8665         rc = hpsa_alloc_cmd_pool(h);
8666         if (rc)
8667                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8668         rc = hpsa_alloc_sg_chain_blocks(h);
8669         if (rc)
8670                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8671         init_waitqueue_head(&h->scan_wait_queue);
8672         init_waitqueue_head(&h->event_sync_wait_queue);
8673         mutex_init(&h->reset_mutex);
8674         h->scan_finished = 1; /* no scan currently in progress */
8675         h->scan_waiting = 0;
8676
8677         pci_set_drvdata(pdev, h);
8678         h->ndevices = 0;
8679
8680         spin_lock_init(&h->devlock);
8681         rc = hpsa_put_ctlr_into_performant_mode(h);
8682         if (rc)
8683                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8684
8685         /* create the resubmit workqueue */
8686         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8687         if (!h->rescan_ctlr_wq) {
8688                 rc = -ENOMEM;
8689                 goto clean7;
8690         }
8691
8692         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8693         if (!h->resubmit_wq) {
8694                 rc = -ENOMEM;
8695                 goto clean7;    /* aer/h */
8696         }
8697
8698         /*
8699          * At this point, the controller is ready to take commands.
8700          * Now, if reset_devices and the hard reset didn't work, try
8701          * the soft reset and see if that works.
8702          */
8703         if (try_soft_reset) {
8704
8705                 /* This is kind of gross.  We may or may not get a completion
8706                  * from the soft reset command, and if we do, then the value
8707                  * from the fifo may or may not be valid.  So, we wait 10 secs
8708                  * after the reset throwing away any completions we get during
8709                  * that time.  Unregister the interrupt handler and register
8710                  * fake ones to scoop up any residual completions.
8711                  */
8712                 spin_lock_irqsave(&h->lock, flags);
8713                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8714                 spin_unlock_irqrestore(&h->lock, flags);
8715                 hpsa_free_irqs(h);
8716                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8717                                         hpsa_intx_discard_completions);
8718                 if (rc) {
8719                         dev_warn(&h->pdev->dev,
8720                                 "Failed to request_irq after soft reset.\n");
8721                         /*
8722                          * cannot goto clean7 or free_irqs will be called
8723                          * again. Instead, do its work
8724                          */
8725                         hpsa_free_performant_mode(h);   /* clean7 */
8726                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8727                         hpsa_free_cmd_pool(h);          /* clean5 */
8728                         /*
8729                          * skip hpsa_free_irqs(h) clean4 since that
8730                          * was just called before request_irqs failed
8731                          */
8732                         goto clean3;
8733                 }
8734
8735                 rc = hpsa_kdump_soft_reset(h);
8736                 if (rc)
8737                         /* Neither hard nor soft reset worked, we're hosed. */
8738                         goto clean7;
8739
8740                 dev_info(&h->pdev->dev, "Board READY.\n");
8741                 dev_info(&h->pdev->dev,
8742                         "Waiting for stale completions to drain.\n");
8743                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8744                 msleep(10000);
8745                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8746
8747                 rc = controller_reset_failed(h->cfgtable);
8748                 if (rc)
8749                         dev_info(&h->pdev->dev,
8750                                 "Soft reset appears to have failed.\n");
8751
8752                 /* since the controller's reset, we have to go back and re-init
8753                  * everything.  Easiest to just forget what we've done and do it
8754                  * all over again.
8755                  */
8756                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8757                 try_soft_reset = 0;
8758                 if (rc)
8759                         /* don't goto clean, we already unallocated */
8760                         return -ENODEV;
8761
8762                 goto reinit_after_soft_reset;
8763         }
8764
8765         /* Enable Accelerated IO path at driver layer */
8766         h->acciopath_status = 1;
8767         /* Disable discovery polling.*/
8768         h->discovery_polling = 0;
8769
8770
8771         /* Turn the interrupts on so we can service requests */
8772         h->access.set_intr_mask(h, HPSA_INTR_ON);
8773
8774         hpsa_hba_inquiry(h);
8775
8776         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8777         if (!h->lastlogicals)
8778                 dev_info(&h->pdev->dev,
8779                         "Can't track change to report lun data\n");
8780
8781         /* hook into SCSI subsystem */
8782         rc = hpsa_scsi_add_host(h);
8783         if (rc)
8784                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8785
8786         /* Monitor the controller for firmware lockups */
8787         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8788         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8789         schedule_delayed_work(&h->monitor_ctlr_work,
8790                                 h->heartbeat_sample_interval);
8791         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8792         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8793                                 h->heartbeat_sample_interval);
8794         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8795         schedule_delayed_work(&h->event_monitor_work,
8796                                 HPSA_EVENT_MONITOR_INTERVAL);
8797         return 0;
8798
8799 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8800         kfree(h->lastlogicals);
8801 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8802         hpsa_free_performant_mode(h);
8803         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8804 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8805         hpsa_free_sg_chain_blocks(h);
8806 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8807         hpsa_free_cmd_pool(h);
8808 clean4: /* irq, shost, pci, lu, aer/h */
8809         hpsa_free_irqs(h);
8810 clean3: /* shost, pci, lu, aer/h */
8811         scsi_host_put(h->scsi_host);
8812         h->scsi_host = NULL;
8813 clean2_5: /* pci, lu, aer/h */
8814         hpsa_free_pci_init(h);
8815 clean2: /* lu, aer/h */
8816         if (h->lockup_detected) {
8817                 free_percpu(h->lockup_detected);
8818                 h->lockup_detected = NULL;
8819         }
8820 clean1: /* wq/aer/h */
8821         if (h->resubmit_wq) {
8822                 destroy_workqueue(h->resubmit_wq);
8823                 h->resubmit_wq = NULL;
8824         }
8825         if (h->rescan_ctlr_wq) {
8826                 destroy_workqueue(h->rescan_ctlr_wq);
8827                 h->rescan_ctlr_wq = NULL;
8828         }
8829         kfree(h);
8830         return rc;
8831 }
8832
8833 static void hpsa_flush_cache(struct ctlr_info *h)
8834 {
8835         char *flush_buf;
8836         struct CommandList *c;
8837         int rc;
8838
8839         if (unlikely(lockup_detected(h)))
8840                 return;
8841         flush_buf = kzalloc(4, GFP_KERNEL);
8842         if (!flush_buf)
8843                 return;
8844
8845         c = cmd_alloc(h);
8846
8847         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8848                 RAID_CTLR_LUNID, TYPE_CMD)) {
8849                 goto out;
8850         }
8851         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8852                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8853         if (rc)
8854                 goto out;
8855         if (c->err_info->CommandStatus != 0)
8856 out:
8857                 dev_warn(&h->pdev->dev,
8858                         "error flushing cache on controller\n");
8859         cmd_free(h, c);
8860         kfree(flush_buf);
8861 }
8862
8863 /* Make controller gather fresh report lun data each time we
8864  * send down a report luns request
8865  */
8866 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8867 {
8868         u32 *options;
8869         struct CommandList *c;
8870         int rc;
8871
8872         /* Don't bother trying to set diag options if locked up */
8873         if (unlikely(h->lockup_detected))
8874                 return;
8875
8876         options = kzalloc(sizeof(*options), GFP_KERNEL);
8877         if (!options)
8878                 return;
8879
8880         c = cmd_alloc(h);
8881
8882         /* first, get the current diag options settings */
8883         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8884                 RAID_CTLR_LUNID, TYPE_CMD))
8885                 goto errout;
8886
8887         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8888                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8889         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8890                 goto errout;
8891
8892         /* Now, set the bit for disabling the RLD caching */
8893         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8894
8895         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8896                 RAID_CTLR_LUNID, TYPE_CMD))
8897                 goto errout;
8898
8899         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8900                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8901         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8902                 goto errout;
8903
8904         /* Now verify that it got set: */
8905         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8906                 RAID_CTLR_LUNID, TYPE_CMD))
8907                 goto errout;
8908
8909         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8910                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8911         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8912                 goto errout;
8913
8914         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8915                 goto out;
8916
8917 errout:
8918         dev_err(&h->pdev->dev,
8919                         "Error: failed to disable report lun data caching.\n");
8920 out:
8921         cmd_free(h, c);
8922         kfree(options);
8923 }
8924
8925 static void __hpsa_shutdown(struct pci_dev *pdev)
8926 {
8927         struct ctlr_info *h;
8928
8929         h = pci_get_drvdata(pdev);
8930         /* Turn board interrupts off  and send the flush cache command
8931          * sendcmd will turn off interrupt, and send the flush...
8932          * To write all data in the battery backed cache to disks
8933          */
8934         hpsa_flush_cache(h);
8935         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8936         hpsa_free_irqs(h);                      /* init_one 4 */
8937         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8938 }
8939
8940 static void hpsa_shutdown(struct pci_dev *pdev)
8941 {
8942         __hpsa_shutdown(pdev);
8943         pci_disable_device(pdev);
8944 }
8945
8946 static void hpsa_free_device_info(struct ctlr_info *h)
8947 {
8948         int i;
8949
8950         for (i = 0; i < h->ndevices; i++) {
8951                 kfree(h->dev[i]);
8952                 h->dev[i] = NULL;
8953         }
8954 }
8955
8956 static void hpsa_remove_one(struct pci_dev *pdev)
8957 {
8958         struct ctlr_info *h;
8959         unsigned long flags;
8960
8961         if (pci_get_drvdata(pdev) == NULL) {
8962                 dev_err(&pdev->dev, "unable to remove device\n");
8963                 return;
8964         }
8965         h = pci_get_drvdata(pdev);
8966
8967         /* Get rid of any controller monitoring work items */
8968         spin_lock_irqsave(&h->lock, flags);
8969         h->remove_in_progress = 1;
8970         spin_unlock_irqrestore(&h->lock, flags);
8971         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8972         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8973         cancel_delayed_work_sync(&h->event_monitor_work);
8974         destroy_workqueue(h->rescan_ctlr_wq);
8975         destroy_workqueue(h->resubmit_wq);
8976
8977         hpsa_delete_sas_host(h);
8978
8979         /*
8980          * Call before disabling interrupts.
8981          * scsi_remove_host can trigger I/O operations especially
8982          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8983          * operations which cannot complete and will hang the system.
8984          */
8985         if (h->scsi_host)
8986                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8987         /* includes hpsa_free_irqs - init_one 4 */
8988         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8989         __hpsa_shutdown(pdev);
8990
8991         hpsa_free_device_info(h);               /* scan */
8992
8993         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8994         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8995         hpsa_free_ioaccel2_sg_chain_blocks(h);
8996         hpsa_free_performant_mode(h);                   /* init_one 7 */
8997         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8998         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8999         kfree(h->lastlogicals);
9000
9001         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9002
9003         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9004         h->scsi_host = NULL;                            /* init_one 3 */
9005
9006         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9007         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9008
9009         free_percpu(h->lockup_detected);                /* init_one 2 */
9010         h->lockup_detected = NULL;                      /* init_one 2 */
9011         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9012
9013         hpda_free_ctlr_info(h);                         /* init_one 1 */
9014 }
9015
9016 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9017         __attribute__((unused)) pm_message_t state)
9018 {
9019         return -ENOSYS;
9020 }
9021
9022 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9023 {
9024         return -ENOSYS;
9025 }
9026
9027 static struct pci_driver hpsa_pci_driver = {
9028         .name = HPSA,
9029         .probe = hpsa_init_one,
9030         .remove = hpsa_remove_one,
9031         .id_table = hpsa_pci_device_id, /* id_table */
9032         .shutdown = hpsa_shutdown,
9033         .suspend = hpsa_suspend,
9034         .resume = hpsa_resume,
9035 };
9036
9037 /* Fill in bucket_map[], given nsgs (the max number of
9038  * scatter gather elements supported) and bucket[],
9039  * which is an array of 8 integers.  The bucket[] array
9040  * contains 8 different DMA transfer sizes (in 16
9041  * byte increments) which the controller uses to fetch
9042  * commands.  This function fills in bucket_map[], which
9043  * maps a given number of scatter gather elements to one of
9044  * the 8 DMA transfer sizes.  The point of it is to allow the
9045  * controller to only do as much DMA as needed to fetch the
9046  * command, with the DMA transfer size encoded in the lower
9047  * bits of the command address.
9048  */
9049 static void  calc_bucket_map(int bucket[], int num_buckets,
9050         int nsgs, int min_blocks, u32 *bucket_map)
9051 {
9052         int i, j, b, size;
9053
9054         /* Note, bucket_map must have nsgs+1 entries. */
9055         for (i = 0; i <= nsgs; i++) {
9056                 /* Compute size of a command with i SG entries */
9057                 size = i + min_blocks;
9058                 b = num_buckets; /* Assume the biggest bucket */
9059                 /* Find the bucket that is just big enough */
9060                 for (j = 0; j < num_buckets; j++) {
9061                         if (bucket[j] >= size) {
9062                                 b = j;
9063                                 break;
9064                         }
9065                 }
9066                 /* for a command with i SG entries, use bucket b. */
9067                 bucket_map[i] = b;
9068         }
9069 }
9070
9071 /*
9072  * return -ENODEV on err, 0 on success (or no action)
9073  * allocates numerous items that must be freed later
9074  */
9075 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9076 {
9077         int i;
9078         unsigned long register_value;
9079         unsigned long transMethod = CFGTBL_Trans_Performant |
9080                         (trans_support & CFGTBL_Trans_use_short_tags) |
9081                                 CFGTBL_Trans_enable_directed_msix |
9082                         (trans_support & (CFGTBL_Trans_io_accel1 |
9083                                 CFGTBL_Trans_io_accel2));
9084         struct access_method access = SA5_performant_access;
9085
9086         /* This is a bit complicated.  There are 8 registers on
9087          * the controller which we write to to tell it 8 different
9088          * sizes of commands which there may be.  It's a way of
9089          * reducing the DMA done to fetch each command.  Encoded into
9090          * each command's tag are 3 bits which communicate to the controller
9091          * which of the eight sizes that command fits within.  The size of
9092          * each command depends on how many scatter gather entries there are.
9093          * Each SG entry requires 16 bytes.  The eight registers are programmed
9094          * with the number of 16-byte blocks a command of that size requires.
9095          * The smallest command possible requires 5 such 16 byte blocks.
9096          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9097          * blocks.  Note, this only extends to the SG entries contained
9098          * within the command block, and does not extend to chained blocks
9099          * of SG elements.   bft[] contains the eight values we write to
9100          * the registers.  They are not evenly distributed, but have more
9101          * sizes for small commands, and fewer sizes for larger commands.
9102          */
9103         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9104 #define MIN_IOACCEL2_BFT_ENTRY 5
9105 #define HPSA_IOACCEL2_HEADER_SZ 4
9106         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9107                         13, 14, 15, 16, 17, 18, 19,
9108                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9109         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9110         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9111         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9112                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9113         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9114         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9115         /*  5 = 1 s/g entry or 4k
9116          *  6 = 2 s/g entry or 8k
9117          *  8 = 4 s/g entry or 16k
9118          * 10 = 6 s/g entry or 24k
9119          */
9120
9121         /* If the controller supports either ioaccel method then
9122          * we can also use the RAID stack submit path that does not
9123          * perform the superfluous readl() after each command submission.
9124          */
9125         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9126                 access = SA5_performant_access_no_read;
9127
9128         /* Controller spec: zero out this buffer. */
9129         for (i = 0; i < h->nreply_queues; i++)
9130                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9131
9132         bft[7] = SG_ENTRIES_IN_CMD + 4;
9133         calc_bucket_map(bft, ARRAY_SIZE(bft),
9134                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9135         for (i = 0; i < 8; i++)
9136                 writel(bft[i], &h->transtable->BlockFetch[i]);
9137
9138         /* size of controller ring buffer */
9139         writel(h->max_commands, &h->transtable->RepQSize);
9140         writel(h->nreply_queues, &h->transtable->RepQCount);
9141         writel(0, &h->transtable->RepQCtrAddrLow32);
9142         writel(0, &h->transtable->RepQCtrAddrHigh32);
9143
9144         for (i = 0; i < h->nreply_queues; i++) {
9145                 writel(0, &h->transtable->RepQAddr[i].upper);
9146                 writel(h->reply_queue[i].busaddr,
9147                         &h->transtable->RepQAddr[i].lower);
9148         }
9149
9150         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9151         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9152         /*
9153          * enable outbound interrupt coalescing in accelerator mode;
9154          */
9155         if (trans_support & CFGTBL_Trans_io_accel1) {
9156                 access = SA5_ioaccel_mode1_access;
9157                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9158                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9159         } else
9160                 if (trans_support & CFGTBL_Trans_io_accel2)
9161                         access = SA5_ioaccel_mode2_access;
9162         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9163         if (hpsa_wait_for_mode_change_ack(h)) {
9164                 dev_err(&h->pdev->dev,
9165                         "performant mode problem - doorbell timeout\n");
9166                 return -ENODEV;
9167         }
9168         register_value = readl(&(h->cfgtable->TransportActive));
9169         if (!(register_value & CFGTBL_Trans_Performant)) {
9170                 dev_err(&h->pdev->dev,
9171                         "performant mode problem - transport not active\n");
9172                 return -ENODEV;
9173         }
9174         /* Change the access methods to the performant access methods */
9175         h->access = access;
9176         h->transMethod = transMethod;
9177
9178         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9179                 (trans_support & CFGTBL_Trans_io_accel2)))
9180                 return 0;
9181
9182         if (trans_support & CFGTBL_Trans_io_accel1) {
9183                 /* Set up I/O accelerator mode */
9184                 for (i = 0; i < h->nreply_queues; i++) {
9185                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9186                         h->reply_queue[i].current_entry =
9187                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9188                 }
9189                 bft[7] = h->ioaccel_maxsg + 8;
9190                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9191                                 h->ioaccel1_blockFetchTable);
9192
9193                 /* initialize all reply queue entries to unused */
9194                 for (i = 0; i < h->nreply_queues; i++)
9195                         memset(h->reply_queue[i].head,
9196                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9197                                 h->reply_queue_size);
9198
9199                 /* set all the constant fields in the accelerator command
9200                  * frames once at init time to save CPU cycles later.
9201                  */
9202                 for (i = 0; i < h->nr_cmds; i++) {
9203                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9204
9205                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9206                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9207                                         (i * sizeof(struct ErrorInfo)));
9208                         cp->err_info_len = sizeof(struct ErrorInfo);
9209                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9210                         cp->host_context_flags =
9211                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9212                         cp->timeout_sec = 0;
9213                         cp->ReplyQueue = 0;
9214                         cp->tag =
9215                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9216                         cp->host_addr =
9217                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9218                                         (i * sizeof(struct io_accel1_cmd)));
9219                 }
9220         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9221                 u64 cfg_offset, cfg_base_addr_index;
9222                 u32 bft2_offset, cfg_base_addr;
9223                 int rc;
9224
9225                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9226                         &cfg_base_addr_index, &cfg_offset);
9227                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9228                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9229                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9230                                 4, h->ioaccel2_blockFetchTable);
9231                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9232                 BUILD_BUG_ON(offsetof(struct CfgTable,
9233                                 io_accel_request_size_offset) != 0xb8);
9234                 h->ioaccel2_bft2_regs =
9235                         remap_pci_mem(pci_resource_start(h->pdev,
9236                                         cfg_base_addr_index) +
9237                                         cfg_offset + bft2_offset,
9238                                         ARRAY_SIZE(bft2) *
9239                                         sizeof(*h->ioaccel2_bft2_regs));
9240                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9241                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9242         }
9243         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9244         if (hpsa_wait_for_mode_change_ack(h)) {
9245                 dev_err(&h->pdev->dev,
9246                         "performant mode problem - enabling ioaccel mode\n");
9247                 return -ENODEV;
9248         }
9249         return 0;
9250 }
9251
9252 /* Free ioaccel1 mode command blocks and block fetch table */
9253 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9254 {
9255         if (h->ioaccel_cmd_pool) {
9256                 pci_free_consistent(h->pdev,
9257                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9258                         h->ioaccel_cmd_pool,
9259                         h->ioaccel_cmd_pool_dhandle);
9260                 h->ioaccel_cmd_pool = NULL;
9261                 h->ioaccel_cmd_pool_dhandle = 0;
9262         }
9263         kfree(h->ioaccel1_blockFetchTable);
9264         h->ioaccel1_blockFetchTable = NULL;
9265 }
9266
9267 /* Allocate ioaccel1 mode command blocks and block fetch table */
9268 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9269 {
9270         h->ioaccel_maxsg =
9271                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9272         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9273                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9274
9275         /* Command structures must be aligned on a 128-byte boundary
9276          * because the 7 lower bits of the address are used by the
9277          * hardware.
9278          */
9279         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9280                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9281         h->ioaccel_cmd_pool =
9282                 pci_alloc_consistent(h->pdev,
9283                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9284                         &(h->ioaccel_cmd_pool_dhandle));
9285
9286         h->ioaccel1_blockFetchTable =
9287                 kmalloc(((h->ioaccel_maxsg + 1) *
9288                                 sizeof(u32)), GFP_KERNEL);
9289
9290         if ((h->ioaccel_cmd_pool == NULL) ||
9291                 (h->ioaccel1_blockFetchTable == NULL))
9292                 goto clean_up;
9293
9294         memset(h->ioaccel_cmd_pool, 0,
9295                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9296         return 0;
9297
9298 clean_up:
9299         hpsa_free_ioaccel1_cmd_and_bft(h);
9300         return -ENOMEM;
9301 }
9302
9303 /* Free ioaccel2 mode command blocks and block fetch table */
9304 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9305 {
9306         hpsa_free_ioaccel2_sg_chain_blocks(h);
9307
9308         if (h->ioaccel2_cmd_pool) {
9309                 pci_free_consistent(h->pdev,
9310                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9311                         h->ioaccel2_cmd_pool,
9312                         h->ioaccel2_cmd_pool_dhandle);
9313                 h->ioaccel2_cmd_pool = NULL;
9314                 h->ioaccel2_cmd_pool_dhandle = 0;
9315         }
9316         kfree(h->ioaccel2_blockFetchTable);
9317         h->ioaccel2_blockFetchTable = NULL;
9318 }
9319
9320 /* Allocate ioaccel2 mode command blocks and block fetch table */
9321 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9322 {
9323         int rc;
9324
9325         /* Allocate ioaccel2 mode command blocks and block fetch table */
9326
9327         h->ioaccel_maxsg =
9328                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9329         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9330                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9331
9332         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9333                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9334         h->ioaccel2_cmd_pool =
9335                 pci_alloc_consistent(h->pdev,
9336                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9337                         &(h->ioaccel2_cmd_pool_dhandle));
9338
9339         h->ioaccel2_blockFetchTable =
9340                 kmalloc(((h->ioaccel_maxsg + 1) *
9341                                 sizeof(u32)), GFP_KERNEL);
9342
9343         if ((h->ioaccel2_cmd_pool == NULL) ||
9344                 (h->ioaccel2_blockFetchTable == NULL)) {
9345                 rc = -ENOMEM;
9346                 goto clean_up;
9347         }
9348
9349         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9350         if (rc)
9351                 goto clean_up;
9352
9353         memset(h->ioaccel2_cmd_pool, 0,
9354                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9355         return 0;
9356
9357 clean_up:
9358         hpsa_free_ioaccel2_cmd_and_bft(h);
9359         return rc;
9360 }
9361
9362 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9363 static void hpsa_free_performant_mode(struct ctlr_info *h)
9364 {
9365         kfree(h->blockFetchTable);
9366         h->blockFetchTable = NULL;
9367         hpsa_free_reply_queues(h);
9368         hpsa_free_ioaccel1_cmd_and_bft(h);
9369         hpsa_free_ioaccel2_cmd_and_bft(h);
9370 }
9371
9372 /* return -ENODEV on error, 0 on success (or no action)
9373  * allocates numerous items that must be freed later
9374  */
9375 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9376 {
9377         u32 trans_support;
9378         unsigned long transMethod = CFGTBL_Trans_Performant |
9379                                         CFGTBL_Trans_use_short_tags;
9380         int i, rc;
9381
9382         if (hpsa_simple_mode)
9383                 return 0;
9384
9385         trans_support = readl(&(h->cfgtable->TransportSupport));
9386         if (!(trans_support & PERFORMANT_MODE))
9387                 return 0;
9388
9389         /* Check for I/O accelerator mode support */
9390         if (trans_support & CFGTBL_Trans_io_accel1) {
9391                 transMethod |= CFGTBL_Trans_io_accel1 |
9392                                 CFGTBL_Trans_enable_directed_msix;
9393                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9394                 if (rc)
9395                         return rc;
9396         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9397                 transMethod |= CFGTBL_Trans_io_accel2 |
9398                                 CFGTBL_Trans_enable_directed_msix;
9399                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9400                 if (rc)
9401                         return rc;
9402         }
9403
9404         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9405         hpsa_get_max_perf_mode_cmds(h);
9406         /* Performant mode ring buffer and supporting data structures */
9407         h->reply_queue_size = h->max_commands * sizeof(u64);
9408
9409         for (i = 0; i < h->nreply_queues; i++) {
9410                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9411                                                 h->reply_queue_size,
9412                                                 &(h->reply_queue[i].busaddr));
9413                 if (!h->reply_queue[i].head) {
9414                         rc = -ENOMEM;
9415                         goto clean1;    /* rq, ioaccel */
9416                 }
9417                 h->reply_queue[i].size = h->max_commands;
9418                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9419                 h->reply_queue[i].current_entry = 0;
9420         }
9421
9422         /* Need a block fetch table for performant mode */
9423         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9424                                 sizeof(u32)), GFP_KERNEL);
9425         if (!h->blockFetchTable) {
9426                 rc = -ENOMEM;
9427                 goto clean1;    /* rq, ioaccel */
9428         }
9429
9430         rc = hpsa_enter_performant_mode(h, trans_support);
9431         if (rc)
9432                 goto clean2;    /* bft, rq, ioaccel */
9433         return 0;
9434
9435 clean2: /* bft, rq, ioaccel */
9436         kfree(h->blockFetchTable);
9437         h->blockFetchTable = NULL;
9438 clean1: /* rq, ioaccel */
9439         hpsa_free_reply_queues(h);
9440         hpsa_free_ioaccel1_cmd_and_bft(h);
9441         hpsa_free_ioaccel2_cmd_and_bft(h);
9442         return rc;
9443 }
9444
9445 static int is_accelerated_cmd(struct CommandList *c)
9446 {
9447         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9448 }
9449
9450 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9451 {
9452         struct CommandList *c = NULL;
9453         int i, accel_cmds_out;
9454         int refcount;
9455
9456         do { /* wait for all outstanding ioaccel commands to drain out */
9457                 accel_cmds_out = 0;
9458                 for (i = 0; i < h->nr_cmds; i++) {
9459                         c = h->cmd_pool + i;
9460                         refcount = atomic_inc_return(&c->refcount);
9461                         if (refcount > 1) /* Command is allocated */
9462                                 accel_cmds_out += is_accelerated_cmd(c);
9463                         cmd_free(h, c);
9464                 }
9465                 if (accel_cmds_out <= 0)
9466                         break;
9467                 msleep(100);
9468         } while (1);
9469 }
9470
9471 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9472                                 struct hpsa_sas_port *hpsa_sas_port)
9473 {
9474         struct hpsa_sas_phy *hpsa_sas_phy;
9475         struct sas_phy *phy;
9476
9477         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9478         if (!hpsa_sas_phy)
9479                 return NULL;
9480
9481         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9482                 hpsa_sas_port->next_phy_index);
9483         if (!phy) {
9484                 kfree(hpsa_sas_phy);
9485                 return NULL;
9486         }
9487
9488         hpsa_sas_port->next_phy_index++;
9489         hpsa_sas_phy->phy = phy;
9490         hpsa_sas_phy->parent_port = hpsa_sas_port;
9491
9492         return hpsa_sas_phy;
9493 }
9494
9495 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9496 {
9497         struct sas_phy *phy = hpsa_sas_phy->phy;
9498
9499         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9500         if (hpsa_sas_phy->added_to_port)
9501                 list_del(&hpsa_sas_phy->phy_list_entry);
9502         sas_phy_delete(phy);
9503         kfree(hpsa_sas_phy);
9504 }
9505
9506 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9507 {
9508         int rc;
9509         struct hpsa_sas_port *hpsa_sas_port;
9510         struct sas_phy *phy;
9511         struct sas_identify *identify;
9512
9513         hpsa_sas_port = hpsa_sas_phy->parent_port;
9514         phy = hpsa_sas_phy->phy;
9515
9516         identify = &phy->identify;
9517         memset(identify, 0, sizeof(*identify));
9518         identify->sas_address = hpsa_sas_port->sas_address;
9519         identify->device_type = SAS_END_DEVICE;
9520         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9521         identify->target_port_protocols = SAS_PROTOCOL_STP;
9522         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9523         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9524         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9525         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9526         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9527
9528         rc = sas_phy_add(hpsa_sas_phy->phy);
9529         if (rc)
9530                 return rc;
9531
9532         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9533         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9534                         &hpsa_sas_port->phy_list_head);
9535         hpsa_sas_phy->added_to_port = true;
9536
9537         return 0;
9538 }
9539
9540 static int
9541         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9542                                 struct sas_rphy *rphy)
9543 {
9544         struct sas_identify *identify;
9545
9546         identify = &rphy->identify;
9547         identify->sas_address = hpsa_sas_port->sas_address;
9548         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9549         identify->target_port_protocols = SAS_PROTOCOL_STP;
9550
9551         return sas_rphy_add(rphy);
9552 }
9553
9554 static struct hpsa_sas_port
9555         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9556                                 u64 sas_address)
9557 {
9558         int rc;
9559         struct hpsa_sas_port *hpsa_sas_port;
9560         struct sas_port *port;
9561
9562         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9563         if (!hpsa_sas_port)
9564                 return NULL;
9565
9566         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9567         hpsa_sas_port->parent_node = hpsa_sas_node;
9568
9569         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9570         if (!port)
9571                 goto free_hpsa_port;
9572
9573         rc = sas_port_add(port);
9574         if (rc)
9575                 goto free_sas_port;
9576
9577         hpsa_sas_port->port = port;
9578         hpsa_sas_port->sas_address = sas_address;
9579         list_add_tail(&hpsa_sas_port->port_list_entry,
9580                         &hpsa_sas_node->port_list_head);
9581
9582         return hpsa_sas_port;
9583
9584 free_sas_port:
9585         sas_port_free(port);
9586 free_hpsa_port:
9587         kfree(hpsa_sas_port);
9588
9589         return NULL;
9590 }
9591
9592 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9593 {
9594         struct hpsa_sas_phy *hpsa_sas_phy;
9595         struct hpsa_sas_phy *next;
9596
9597         list_for_each_entry_safe(hpsa_sas_phy, next,
9598                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9599                 hpsa_free_sas_phy(hpsa_sas_phy);
9600
9601         sas_port_delete(hpsa_sas_port->port);
9602         list_del(&hpsa_sas_port->port_list_entry);
9603         kfree(hpsa_sas_port);
9604 }
9605
9606 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9607 {
9608         struct hpsa_sas_node *hpsa_sas_node;
9609
9610         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9611         if (hpsa_sas_node) {
9612                 hpsa_sas_node->parent_dev = parent_dev;
9613                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9614         }
9615
9616         return hpsa_sas_node;
9617 }
9618
9619 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9620 {
9621         struct hpsa_sas_port *hpsa_sas_port;
9622         struct hpsa_sas_port *next;
9623
9624         if (!hpsa_sas_node)
9625                 return;
9626
9627         list_for_each_entry_safe(hpsa_sas_port, next,
9628                         &hpsa_sas_node->port_list_head, port_list_entry)
9629                 hpsa_free_sas_port(hpsa_sas_port);
9630
9631         kfree(hpsa_sas_node);
9632 }
9633
9634 static struct hpsa_scsi_dev_t
9635         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9636                                         struct sas_rphy *rphy)
9637 {
9638         int i;
9639         struct hpsa_scsi_dev_t *device;
9640
9641         for (i = 0; i < h->ndevices; i++) {
9642                 device = h->dev[i];
9643                 if (!device->sas_port)
9644                         continue;
9645                 if (device->sas_port->rphy == rphy)
9646                         return device;
9647         }
9648
9649         return NULL;
9650 }
9651
9652 static int hpsa_add_sas_host(struct ctlr_info *h)
9653 {
9654         int rc;
9655         struct device *parent_dev;
9656         struct hpsa_sas_node *hpsa_sas_node;
9657         struct hpsa_sas_port *hpsa_sas_port;
9658         struct hpsa_sas_phy *hpsa_sas_phy;
9659
9660         parent_dev = &h->scsi_host->shost_dev;
9661
9662         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9663         if (!hpsa_sas_node)
9664                 return -ENOMEM;
9665
9666         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9667         if (!hpsa_sas_port) {
9668                 rc = -ENODEV;
9669                 goto free_sas_node;
9670         }
9671
9672         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9673         if (!hpsa_sas_phy) {
9674                 rc = -ENODEV;
9675                 goto free_sas_port;
9676         }
9677
9678         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9679         if (rc)
9680                 goto free_sas_phy;
9681
9682         h->sas_host = hpsa_sas_node;
9683
9684         return 0;
9685
9686 free_sas_phy:
9687         hpsa_free_sas_phy(hpsa_sas_phy);
9688 free_sas_port:
9689         hpsa_free_sas_port(hpsa_sas_port);
9690 free_sas_node:
9691         hpsa_free_sas_node(hpsa_sas_node);
9692
9693         return rc;
9694 }
9695
9696 static void hpsa_delete_sas_host(struct ctlr_info *h)
9697 {
9698         hpsa_free_sas_node(h->sas_host);
9699 }
9700
9701 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9702                                 struct hpsa_scsi_dev_t *device)
9703 {
9704         int rc;
9705         struct hpsa_sas_port *hpsa_sas_port;
9706         struct sas_rphy *rphy;
9707
9708         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9709         if (!hpsa_sas_port)
9710                 return -ENOMEM;
9711
9712         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9713         if (!rphy) {
9714                 rc = -ENODEV;
9715                 goto free_sas_port;
9716         }
9717
9718         hpsa_sas_port->rphy = rphy;
9719         device->sas_port = hpsa_sas_port;
9720
9721         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9722         if (rc)
9723                 goto free_sas_port;
9724
9725         return 0;
9726
9727 free_sas_port:
9728         hpsa_free_sas_port(hpsa_sas_port);
9729         device->sas_port = NULL;
9730
9731         return rc;
9732 }
9733
9734 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9735 {
9736         if (device->sas_port) {
9737                 hpsa_free_sas_port(device->sas_port);
9738                 device->sas_port = NULL;
9739         }
9740 }
9741
9742 static int
9743 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9744 {
9745         return 0;
9746 }
9747
9748 static int
9749 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9750 {
9751         struct Scsi_Host *shost = phy_to_shost(rphy);
9752         struct ctlr_info *h;
9753         struct hpsa_scsi_dev_t *sd;
9754
9755         if (!shost)
9756                 return -ENXIO;
9757
9758         h = shost_to_hba(shost);
9759
9760         if (!h)
9761                 return -ENXIO;
9762
9763         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9764         if (!sd)
9765                 return -ENXIO;
9766
9767         *identifier = sd->eli;
9768
9769         return 0;
9770 }
9771
9772 static int
9773 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9774 {
9775         return -ENXIO;
9776 }
9777
9778 static int
9779 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9780 {
9781         return 0;
9782 }
9783
9784 static int
9785 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9786 {
9787         return 0;
9788 }
9789
9790 static int
9791 hpsa_sas_phy_setup(struct sas_phy *phy)
9792 {
9793         return 0;
9794 }
9795
9796 static void
9797 hpsa_sas_phy_release(struct sas_phy *phy)
9798 {
9799 }
9800
9801 static int
9802 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9803 {
9804         return -EINVAL;
9805 }
9806
9807 static struct sas_function_template hpsa_sas_transport_functions = {
9808         .get_linkerrors = hpsa_sas_get_linkerrors,
9809         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9810         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9811         .phy_reset = hpsa_sas_phy_reset,
9812         .phy_enable = hpsa_sas_phy_enable,
9813         .phy_setup = hpsa_sas_phy_setup,
9814         .phy_release = hpsa_sas_phy_release,
9815         .set_phy_speed = hpsa_sas_phy_speed,
9816 };
9817
9818 /*
9819  *  This is it.  Register the PCI driver information for the cards we control
9820  *  the OS will call our registered routines when it finds one of our cards.
9821  */
9822 static int __init hpsa_init(void)
9823 {
9824         int rc;
9825
9826         hpsa_sas_transport_template =
9827                 sas_attach_transport(&hpsa_sas_transport_functions);
9828         if (!hpsa_sas_transport_template)
9829                 return -ENODEV;
9830
9831         rc = pci_register_driver(&hpsa_pci_driver);
9832
9833         if (rc)
9834                 sas_release_transport(hpsa_sas_transport_template);
9835
9836         return rc;
9837 }
9838
9839 static void __exit hpsa_cleanup(void)
9840 {
9841         pci_unregister_driver(&hpsa_pci_driver);
9842         sas_release_transport(hpsa_sas_transport_template);
9843 }
9844
9845 static void __attribute__((unused)) verify_offsets(void)
9846 {
9847 #define VERIFY_OFFSET(member, offset) \
9848         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9849
9850         VERIFY_OFFSET(structure_size, 0);
9851         VERIFY_OFFSET(volume_blk_size, 4);
9852         VERIFY_OFFSET(volume_blk_cnt, 8);
9853         VERIFY_OFFSET(phys_blk_shift, 16);
9854         VERIFY_OFFSET(parity_rotation_shift, 17);
9855         VERIFY_OFFSET(strip_size, 18);
9856         VERIFY_OFFSET(disk_starting_blk, 20);
9857         VERIFY_OFFSET(disk_blk_cnt, 28);
9858         VERIFY_OFFSET(data_disks_per_row, 36);
9859         VERIFY_OFFSET(metadata_disks_per_row, 38);
9860         VERIFY_OFFSET(row_cnt, 40);
9861         VERIFY_OFFSET(layout_map_count, 42);
9862         VERIFY_OFFSET(flags, 44);
9863         VERIFY_OFFSET(dekindex, 46);
9864         /* VERIFY_OFFSET(reserved, 48 */
9865         VERIFY_OFFSET(data, 64);
9866
9867 #undef VERIFY_OFFSET
9868
9869 #define VERIFY_OFFSET(member, offset) \
9870         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9871
9872         VERIFY_OFFSET(IU_type, 0);
9873         VERIFY_OFFSET(direction, 1);
9874         VERIFY_OFFSET(reply_queue, 2);
9875         /* VERIFY_OFFSET(reserved1, 3);  */
9876         VERIFY_OFFSET(scsi_nexus, 4);
9877         VERIFY_OFFSET(Tag, 8);
9878         VERIFY_OFFSET(cdb, 16);
9879         VERIFY_OFFSET(cciss_lun, 32);
9880         VERIFY_OFFSET(data_len, 40);
9881         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9882         VERIFY_OFFSET(sg_count, 45);
9883         /* VERIFY_OFFSET(reserved3 */
9884         VERIFY_OFFSET(err_ptr, 48);
9885         VERIFY_OFFSET(err_len, 56);
9886         /* VERIFY_OFFSET(reserved4  */
9887         VERIFY_OFFSET(sg, 64);
9888
9889 #undef VERIFY_OFFSET
9890
9891 #define VERIFY_OFFSET(member, offset) \
9892         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9893
9894         VERIFY_OFFSET(dev_handle, 0x00);
9895         VERIFY_OFFSET(reserved1, 0x02);
9896         VERIFY_OFFSET(function, 0x03);
9897         VERIFY_OFFSET(reserved2, 0x04);
9898         VERIFY_OFFSET(err_info, 0x0C);
9899         VERIFY_OFFSET(reserved3, 0x10);
9900         VERIFY_OFFSET(err_info_len, 0x12);
9901         VERIFY_OFFSET(reserved4, 0x13);
9902         VERIFY_OFFSET(sgl_offset, 0x14);
9903         VERIFY_OFFSET(reserved5, 0x15);
9904         VERIFY_OFFSET(transfer_len, 0x1C);
9905         VERIFY_OFFSET(reserved6, 0x20);
9906         VERIFY_OFFSET(io_flags, 0x24);
9907         VERIFY_OFFSET(reserved7, 0x26);
9908         VERIFY_OFFSET(LUN, 0x34);
9909         VERIFY_OFFSET(control, 0x3C);
9910         VERIFY_OFFSET(CDB, 0x40);
9911         VERIFY_OFFSET(reserved8, 0x50);
9912         VERIFY_OFFSET(host_context_flags, 0x60);
9913         VERIFY_OFFSET(timeout_sec, 0x62);
9914         VERIFY_OFFSET(ReplyQueue, 0x64);
9915         VERIFY_OFFSET(reserved9, 0x65);
9916         VERIFY_OFFSET(tag, 0x68);
9917         VERIFY_OFFSET(host_addr, 0x70);
9918         VERIFY_OFFSET(CISS_LUN, 0x78);
9919         VERIFY_OFFSET(SG, 0x78 + 8);
9920 #undef VERIFY_OFFSET
9921 }
9922
9923 module_init(hpsa_init);
9924 module_exit(hpsa_cleanup);