GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / scsi / csiostor / csio_hw_t5.c
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include "csio_hw.h"
35 #include "csio_init.h"
36
37 static int
38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39 {
40         u32 mem_win_base;
41         /*
42          * Truncation intentional: we only read the bottom 32-bits of the
43          * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
44          * read BAR0 instead of using pci_resource_start() because we could be
45          * operating from within a Virtual Machine which is trapping our
46          * accesses to our Configuration Space and we need to set up the PCI-E
47          * Memory Window decoders with the actual addresses which will be
48          * coming across the PCI-E link.
49          */
50
51         /* For T5, only relative offset inside the PCIe BAR is passed */
52         mem_win_base = MEMWIN_BASE;
53
54         /*
55          * Set up memory window for accessing adapter memory ranges.  (Read
56          * back MA register to ensure that changes propagate before we attempt
57          * to use the new values.)
58          */
59         csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60                           WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61                           PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62         csio_rd_reg32(hw,
63                       PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64
65         return 0;
66 }
67
68 /*
69  * Interrupt handler for the PCIE module.
70  */
71 static void
72 csio_t5_pcie_intr_handler(struct csio_hw *hw)
73 {
74         static struct intr_info pcie_intr_info[] = {
75                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
76                 -1, 1 },
77                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
78                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
79                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
80                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
81                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
82                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
83                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
84                 -1, 1 },
85                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
86                 -1, 1 },
87                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
88                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
89                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
90                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
91                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
92                 -1, 1 },
93                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
94                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
95                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
96                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
97                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
98                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
99                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
100                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
101                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
102                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
103                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
104                 -1, 1 },
105                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
106                 -1, 1 },
107                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
108                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
109                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
110                 { READRSPERR_F, "Outbound read error", -1, 0 },
111                 { 0, NULL, 0, 0 }
112         };
113
114         int fat;
115         fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
116         if (fat)
117                 csio_hw_fatal_err(hw);
118 }
119
120 /*
121  * csio_t5_flash_cfg_addr - return the address of the flash configuration file
122  * @hw: the HW module
123  *
124  * Return the address within the flash where the Firmware Configuration
125  * File is stored.
126  */
127 static unsigned int
128 csio_t5_flash_cfg_addr(struct csio_hw *hw)
129 {
130         return FLASH_CFG_START;
131 }
132
133 /*
134  *      csio_t5_mc_read - read from MC through backdoor accesses
135  *      @hw: the hw module
136  *      @idx: index to the register
137  *      @addr: address of first byte requested
138  *      @data: 64 bytes of data containing the requested address
139  *      @ecc: where to store the corresponding 64-bit ECC word
140  *
141  *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
142  *      that covers the requested address @addr.  If @parity is not %NULL it
143  *      is assigned the 64-bit ECC word for the read data.
144  */
145 static int
146 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
147                 uint64_t *ecc)
148 {
149         int i;
150         uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
151         uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
152
153         mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
154         mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
155         mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
156         mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
157         mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
158
159         if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
160                 return -EBUSY;
161         csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
162         csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
163         csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
164         csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
165                       mc_bist_cmd_reg);
166         i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
167                                      0, 10, 1, NULL);
168         if (i)
169                 return i;
170
171 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
172
173         for (i = 15; i >= 0; i--)
174                 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
175         if (ecc)
176                 *ecc = csio_rd_reg64(hw, MC_DATA(16));
177 #undef MC_DATA
178         return 0;
179 }
180
181 /*
182  *      csio_t5_edc_read - read from EDC through backdoor accesses
183  *      @hw: the hw module
184  *      @idx: which EDC to access
185  *      @addr: address of first byte requested
186  *      @data: 64 bytes of data containing the requested address
187  *      @ecc: where to store the corresponding 64-bit ECC word
188  *
189  *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
190  *      that covers the requested address @addr.  If @parity is not %NULL it
191  *      is assigned the 64-bit ECC word for the read data.
192  */
193 static int
194 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
195                 uint64_t *ecc)
196 {
197         int i;
198         uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
199         uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
200
201 /*
202  * These macro are missing in t4_regs.h file.
203  */
204 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
205 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
206
207         edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
208         edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
209         edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
210         edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
211         edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
212 #undef EDC_REG_T5
213 #undef EDC_STRIDE_T5
214
215         if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
216                 return -EBUSY;
217         csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
218         csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
219         csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
220         csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F |  BIST_CMD_GAP_V(1),
221                       edc_bist_cmd_reg);
222         i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
223                                      0, 10, 1, NULL);
224         if (i)
225                 return i;
226
227 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
228
229         for (i = 15; i >= 0; i--)
230                 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
231         if (ecc)
232                 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
233 #undef EDC_DATA
234         return 0;
235 }
236
237 /*
238  * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
239  * @hw: the csio_hw
240  * @win: PCI-E memory Window to use
241  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
242  * @addr: address within indicated memory type
243  * @len: amount of memory to transfer
244  * @buf: host memory buffer
245  * @dir: direction of transfer 1 => read, 0 => write
246  *
247  * Reads/writes an [almost] arbitrary memory region in the firmware: the
248  * firmware memory address, length and host buffer must be aligned on
249  * 32-bit boudaries.  The memory is transferred as a raw byte sequence
250  * from/to the firmware's memory.  If this memory contains data
251  * structures which contain multi-byte integers, it's the callers
252  * responsibility to perform appropriate byte order conversions.
253  */
254 static int
255 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
256                 u32 len, uint32_t *buf, int dir)
257 {
258         u32 pos, start, offset, memoffset;
259         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
260
261         /*
262          * Argument sanity checks ...
263          */
264         if ((addr & 0x3) || (len & 0x3))
265                 return -EINVAL;
266
267         /* Offset into the region of memory which is being accessed
268          * MEM_EDC0 = 0
269          * MEM_EDC1 = 1
270          * MEM_MC   = 2 -- T4
271          * MEM_MC0  = 2 -- For T5
272          * MEM_MC1  = 3 -- For T5
273          */
274         edc_size  = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
275         if (mtype != MEM_MC1)
276                 memoffset = (mtype * (edc_size * 1024 * 1024));
277         else {
278                 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
279                                                        MA_EXT_MEMORY_BAR_A));
280                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
281         }
282
283         /* Determine the PCIE_MEM_ACCESS_OFFSET */
284         addr = addr + memoffset;
285
286         /*
287          * Each PCI-E Memory Window is programmed with a window size -- or
288          * "aperture" -- which controls the granularity of its mapping onto
289          * adapter memory.  We need to grab that aperture in order to know
290          * how to use the specified window.  The window is also programmed
291          * with the base address of the Memory Window in BAR0's address
292          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
293          * the address is relative to BAR0.
294          */
295         mem_reg = csio_rd_reg32(hw,
296                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
297         mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
298         mem_base = PCIEOFST_G(mem_reg) << 10;
299
300         start = addr & ~(mem_aperture-1);
301         offset = addr - start;
302         win_pf = PFNUM_V(hw->pfn);
303
304         csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
305                  mem_reg, mem_aperture);
306         csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
307                  mem_base, memoffset);
308         csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
309                  start, offset, win_pf);
310         csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
311                  mtype, addr, len);
312
313         for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
314                 /*
315                  * Move PCI-E Memory Window to our current transfer
316                  * position.  Read it back to ensure that changes propagate
317                  * before we attempt to use the new value.
318                  */
319                 csio_wr_reg32(hw, pos | win_pf,
320                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
321                 csio_rd_reg32(hw,
322                         PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
323
324                 while (offset < mem_aperture && len > 0) {
325                         if (dir)
326                                 *buf++ = csio_rd_reg32(hw, mem_base + offset);
327                         else
328                                 csio_wr_reg32(hw, *buf++, mem_base + offset);
329
330                         offset += sizeof(__be32);
331                         len -= sizeof(__be32);
332                 }
333         }
334         return 0;
335 }
336
337 /*
338  * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
339  * @hw: the csio_hw
340  *
341  * This function creates files in the debugfs with external memory region
342  * MC0 & MC1.
343  */
344 static void
345 csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
346 {
347         u32 size;
348         int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
349
350         if (i & EXT_MEM_ENABLE_F) {
351                 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
352                 csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
353                                      EXT_MEM_SIZE_G(size));
354         }
355         if (i & EXT_MEM1_ENABLE_F) {
356                 size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
357                 csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
358                                      EXT_MEM_SIZE_G(size));
359         }
360 }
361
362 /* T5 adapter specific function */
363 struct csio_hw_chip_ops t5_ops = {
364         .chip_set_mem_win               = csio_t5_set_mem_win,
365         .chip_pcie_intr_handler         = csio_t5_pcie_intr_handler,
366         .chip_flash_cfg_addr            = csio_t5_flash_cfg_addr,
367         .chip_mc_read                   = csio_t5_mc_read,
368         .chip_edc_read                  = csio_t5_edc_read,
369         .chip_memory_rw                 = csio_t5_memory_rw,
370         .chip_dfs_create_ext_mem        = csio_t5_dfs_create_ext_mem,
371 };