GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54  *      fib_map_alloc           -       allocate the fib objects
55  *      @dev: Adapter to allocate for
56  *
57  *      Allocate and map the shared PCI space for the FIB blocks used to
58  *      talk to the Adaptec firmware.
59  */
60
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63         dprintk((KERN_INFO
64           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67         dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70                 &dev->hw_fib_pa);
71         if (dev->hw_fib_va == NULL)
72                 return -ENOMEM;
73         return 0;
74 }
75
76 /**
77  *      aac_fib_map_free                -       free the fib objects
78  *      @dev: Adapter to free
79  *
80  *      Free the PCI mappings and the memory allocated for FIB blocks
81  *      on this adapter.
82  */
83
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86         if (dev->hw_fib_va && dev->max_fib_size) {
87                 pci_free_consistent(dev->pdev,
88                 (dev->max_fib_size *
89                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90                 dev->hw_fib_va, dev->hw_fib_pa);
91         }
92         dev->hw_fib_va = NULL;
93         dev->hw_fib_pa = 0;
94 }
95
96 void aac_fib_vector_assign(struct aac_dev *dev)
97 {
98         u32 i = 0;
99         u32 vector = 1;
100         struct fib *fibptr = NULL;
101
102         for (i = 0, fibptr = &dev->fibs[i];
103                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104                 i++, fibptr++) {
105                 if ((dev->max_msix == 1) ||
106                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107                         - dev->vector_cap))) {
108                         fibptr->vector_no = 0;
109                 } else {
110                         fibptr->vector_no = vector;
111                         vector++;
112                         if (vector == dev->max_msix)
113                                 vector = 1;
114                 }
115         }
116 }
117
118 /**
119  *      aac_fib_setup   -       setup the fibs
120  *      @dev: Adapter to set up
121  *
122  *      Allocate the PCI space for the fibs, map it and then initialise the
123  *      fib area, the unmapped fib data and also the free list
124  */
125
126 int aac_fib_setup(struct aac_dev * dev)
127 {
128         struct fib *fibptr;
129         struct hw_fib *hw_fib;
130         dma_addr_t hw_fib_pa;
131         int i;
132
133         while (((i = fib_map_alloc(dev)) == -ENOMEM)
134          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137         }
138         if (i<0)
139                 return -ENOMEM;
140
141         /* 32 byte alignment for PMC */
142         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144                 (hw_fib_pa - dev->hw_fib_pa));
145         dev->hw_fib_pa = hw_fib_pa;
146         memset(dev->hw_fib_va, 0,
147                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149
150         /* add Xport header */
151         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152                 sizeof(struct aac_fib_xporthdr));
153         dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154
155         hw_fib = dev->hw_fib_va;
156         hw_fib_pa = dev->hw_fib_pa;
157         /*
158          *      Initialise the fibs
159          */
160         for (i = 0, fibptr = &dev->fibs[i];
161                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162                 i++, fibptr++)
163         {
164                 fibptr->flags = 0;
165                 fibptr->dev = dev;
166                 fibptr->hw_fib_va = hw_fib;
167                 fibptr->data = (void *) fibptr->hw_fib_va->data;
168                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
169                 sema_init(&fibptr->event_wait, 0);
170                 spin_lock_init(&fibptr->event_lock);
171                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
172                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
173                 fibptr->hw_fib_pa = hw_fib_pa;
174                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
176                 hw_fib_pa = hw_fib_pa +
177                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
178         }
179
180         /*
181          *Assign vector numbers to fibs
182          */
183         aac_fib_vector_assign(dev);
184
185         /*
186          *      Add the fib chain to the free list
187          */
188         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
189         /*
190          *      Enable this to debug out of queue space
191          */
192         dev->free_fib = &dev->fibs[0];
193         return 0;
194 }
195
196 /**
197  *      aac_fib_alloc   -       allocate a fib
198  *      @dev: Adapter to allocate the fib for
199  *
200  *      Allocate a fib from the adapter fib pool. If the pool is empty we
201  *      return NULL.
202  */
203
204 struct fib *aac_fib_alloc(struct aac_dev *dev)
205 {
206         struct fib * fibptr;
207         unsigned long flags;
208         spin_lock_irqsave(&dev->fib_lock, flags);
209         fibptr = dev->free_fib;
210         if(!fibptr){
211                 spin_unlock_irqrestore(&dev->fib_lock, flags);
212                 return fibptr;
213         }
214         dev->free_fib = fibptr->next;
215         spin_unlock_irqrestore(&dev->fib_lock, flags);
216         /*
217          *      Set the proper node type code and node byte size
218          */
219         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
220         fibptr->size = sizeof(struct fib);
221         /*
222          *      Null out fields that depend on being zero at the start of
223          *      each I/O
224          */
225         fibptr->hw_fib_va->header.XferState = 0;
226         fibptr->flags = 0;
227         fibptr->callback = NULL;
228         fibptr->callback_data = NULL;
229
230         return fibptr;
231 }
232
233 /**
234  *      aac_fib_free    -       free a fib
235  *      @fibptr: fib to free up
236  *
237  *      Frees up a fib and places it on the appropriate queue
238  */
239
240 void aac_fib_free(struct fib *fibptr)
241 {
242         unsigned long flags;
243
244         if (fibptr->done == 2)
245                 return;
246
247         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
248         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
249                 aac_config.fib_timeouts++;
250         if (fibptr->hw_fib_va->header.XferState != 0) {
251                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
252                          (void*)fibptr,
253                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
254         }
255         fibptr->next = fibptr->dev->free_fib;
256         fibptr->dev->free_fib = fibptr;
257         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
258 }
259
260 /**
261  *      aac_fib_init    -       initialise a fib
262  *      @fibptr: The fib to initialize
263  *
264  *      Set up the generic fib fields ready for use
265  */
266
267 void aac_fib_init(struct fib *fibptr)
268 {
269         struct hw_fib *hw_fib = fibptr->hw_fib_va;
270
271         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
272         hw_fib->header.StructType = FIB_MAGIC;
273         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
274         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
275         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
276         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
277 }
278
279 /**
280  *      fib_deallocate          -       deallocate a fib
281  *      @fibptr: fib to deallocate
282  *
283  *      Will deallocate and return to the free pool the FIB pointed to by the
284  *      caller.
285  */
286
287 static void fib_dealloc(struct fib * fibptr)
288 {
289         struct hw_fib *hw_fib = fibptr->hw_fib_va;
290         hw_fib->header.XferState = 0;
291 }
292
293 /*
294  *      Commuication primitives define and support the queuing method we use to
295  *      support host to adapter commuication. All queue accesses happen through
296  *      these routines and are the only routines which have a knowledge of the
297  *       how these queues are implemented.
298  */
299
300 /**
301  *      aac_get_entry           -       get a queue entry
302  *      @dev: Adapter
303  *      @qid: Queue Number
304  *      @entry: Entry return
305  *      @index: Index return
306  *      @nonotify: notification control
307  *
308  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
309  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
310  *      returned.
311  */
312
313 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
314 {
315         struct aac_queue * q;
316         unsigned long idx;
317
318         /*
319          *      All of the queues wrap when they reach the end, so we check
320          *      to see if they have reached the end and if they have we just
321          *      set the index back to zero. This is a wrap. You could or off
322          *      the high bits in all updates but this is a bit faster I think.
323          */
324
325         q = &dev->queues->queue[qid];
326
327         idx = *index = le32_to_cpu(*(q->headers.producer));
328         /* Interrupt Moderation, only interrupt for first two entries */
329         if (idx != le32_to_cpu(*(q->headers.consumer))) {
330                 if (--idx == 0) {
331                         if (qid == AdapNormCmdQueue)
332                                 idx = ADAP_NORM_CMD_ENTRIES;
333                         else
334                                 idx = ADAP_NORM_RESP_ENTRIES;
335                 }
336                 if (idx != le32_to_cpu(*(q->headers.consumer)))
337                         *nonotify = 1;
338         }
339
340         if (qid == AdapNormCmdQueue) {
341                 if (*index >= ADAP_NORM_CMD_ENTRIES)
342                         *index = 0; /* Wrap to front of the Producer Queue. */
343         } else {
344                 if (*index >= ADAP_NORM_RESP_ENTRIES)
345                         *index = 0; /* Wrap to front of the Producer Queue. */
346         }
347
348         /* Queue is full */
349         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
350                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
351                                 qid, atomic_read(&q->numpending));
352                 return 0;
353         } else {
354                 *entry = q->base + *index;
355                 return 1;
356         }
357 }
358
359 /**
360  *      aac_queue_get           -       get the next free QE
361  *      @dev: Adapter
362  *      @index: Returned index
363  *      @priority: Priority of fib
364  *      @fib: Fib to associate with the queue entry
365  *      @wait: Wait if queue full
366  *      @fibptr: Driver fib object to go with fib
367  *      @nonotify: Don't notify the adapter
368  *
369  *      Gets the next free QE off the requested priorty adapter command
370  *      queue and associates the Fib with the QE. The QE represented by
371  *      index is ready to insert on the queue when this routine returns
372  *      success.
373  */
374
375 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
376 {
377         struct aac_entry * entry = NULL;
378         int map = 0;
379
380         if (qid == AdapNormCmdQueue) {
381                 /*  if no entries wait for some if caller wants to */
382                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
383                         printk(KERN_ERR "GetEntries failed\n");
384                 }
385                 /*
386                  *      Setup queue entry with a command, status and fib mapped
387                  */
388                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
389                 map = 1;
390         } else {
391                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
392                         /* if no entries wait for some if caller wants to */
393                 }
394                 /*
395                  *      Setup queue entry with command, status and fib mapped
396                  */
397                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
398                 entry->addr = hw_fib->header.SenderFibAddress;
399                         /* Restore adapters pointer to the FIB */
400                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
401                 map = 0;
402         }
403         /*
404          *      If MapFib is true than we need to map the Fib and put pointers
405          *      in the queue entry.
406          */
407         if (map)
408                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
409         return 0;
410 }
411
412 /*
413  *      Define the highest level of host to adapter communication routines.
414  *      These routines will support host to adapter FS commuication. These
415  *      routines have no knowledge of the commuication method used. This level
416  *      sends and receives FIBs. This level has no knowledge of how these FIBs
417  *      get passed back and forth.
418  */
419
420 /**
421  *      aac_fib_send    -       send a fib to the adapter
422  *      @command: Command to send
423  *      @fibptr: The fib
424  *      @size: Size of fib data area
425  *      @priority: Priority of Fib
426  *      @wait: Async/sync select
427  *      @reply: True if a reply is wanted
428  *      @callback: Called with reply
429  *      @callback_data: Passed to callback
430  *
431  *      Sends the requested FIB to the adapter and optionally will wait for a
432  *      response FIB. If the caller does not wish to wait for a response than
433  *      an event to wait on must be supplied. This event will be set when a
434  *      response FIB is received from the adapter.
435  */
436
437 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
438                 int priority, int wait, int reply, fib_callback callback,
439                 void *callback_data)
440 {
441         struct aac_dev * dev = fibptr->dev;
442         struct hw_fib * hw_fib = fibptr->hw_fib_va;
443         unsigned long flags = 0;
444         unsigned long mflags = 0;
445         unsigned long sflags = 0;
446
447
448         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449                 return -EBUSY;
450         /*
451          *      There are 5 cases with the wait and response requested flags.
452          *      The only invalid cases are if the caller requests to wait and
453          *      does not request a response and if the caller does not want a
454          *      response and the Fib is not allocated from pool. If a response
455          *      is not requesed the Fib will just be deallocaed by the DPC
456          *      routine when the response comes back from the adapter. No
457          *      further processing will be done besides deleting the Fib. We
458          *      will have a debug mode where the adapter can notify the host
459          *      it had a problem and the host can log that fact.
460          */
461         fibptr->flags = 0;
462         if (wait && !reply) {
463                 return -EINVAL;
464         } else if (!wait && reply) {
465                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
466                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
467         } else if (!wait && !reply) {
468                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
469                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
470         } else if (wait && reply) {
471                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
472                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
473         }
474         /*
475          *      Map the fib into 32bits by using the fib number
476          */
477
478         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
479         hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
480         /*
481          *      Set FIB state to indicate where it came from and if we want a
482          *      response from the adapter. Also load the command from the
483          *      caller.
484          *
485          *      Map the hw fib pointer as a 32bit value
486          */
487         hw_fib->header.Command = cpu_to_le16(command);
488         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
489         /*
490          *      Set the size of the Fib we want to send to the adapter
491          */
492         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
493         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
494                 return -EMSGSIZE;
495         }
496         /*
497          *      Get a queue entry connect the FIB to it and send an notify
498          *      the adapter a command is ready.
499          */
500         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
501
502         /*
503          *      Fill in the Callback and CallbackContext if we are not
504          *      going to wait.
505          */
506         if (!wait) {
507                 fibptr->callback = callback;
508                 fibptr->callback_data = callback_data;
509                 fibptr->flags = FIB_CONTEXT_FLAG;
510         }
511
512         fibptr->done = 0;
513
514         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
515
516         dprintk((KERN_DEBUG "Fib contents:.\n"));
517         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
518         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
519         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
520         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
521         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
522         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
523
524         if (!dev->queues)
525                 return -EBUSY;
526
527         if (wait) {
528
529                 spin_lock_irqsave(&dev->manage_lock, mflags);
530                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
531                         printk(KERN_INFO "No management Fibs Available:%d\n",
532                                                 dev->management_fib_count);
533                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
534                         return -EBUSY;
535                 }
536                 dev->management_fib_count++;
537                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
538                 spin_lock_irqsave(&fibptr->event_lock, flags);
539         }
540
541         if (dev->sync_mode) {
542                 if (wait)
543                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
544                 spin_lock_irqsave(&dev->sync_lock, sflags);
545                 if (dev->sync_fib) {
546                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
547                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
548                 } else {
549                         dev->sync_fib = fibptr;
550                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
551                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
552                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
553                                 NULL, NULL, NULL, NULL, NULL);
554                 }
555                 if (wait) {
556                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
557                         if (down_interruptible(&fibptr->event_wait)) {
558                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
559                                 return -EFAULT;
560                         }
561                         return 0;
562                 }
563                 return -EINPROGRESS;
564         }
565
566         if (aac_adapter_deliver(fibptr) != 0) {
567                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
568                 if (wait) {
569                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
570                         spin_lock_irqsave(&dev->manage_lock, mflags);
571                         dev->management_fib_count--;
572                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
573                 }
574                 return -EBUSY;
575         }
576
577
578         /*
579          *      If the caller wanted us to wait for response wait now.
580          */
581
582         if (wait) {
583                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
584                 /* Only set for first known interruptable command */
585                 if (wait < 0) {
586                         /*
587                          * *VERY* Dangerous to time out a command, the
588                          * assumption is made that we have no hope of
589                          * functioning because an interrupt routing or other
590                          * hardware failure has occurred.
591                          */
592                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
593                         while (down_trylock(&fibptr->event_wait)) {
594                                 int blink;
595                                 if (time_is_before_eq_jiffies(timeout)) {
596                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
597                                         atomic_dec(&q->numpending);
598                                         if (wait == -1) {
599                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
600                                                   "Usually a result of a PCI interrupt routing problem;\n"
601                                                   "update mother board BIOS or consider utilizing one of\n"
602                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
603                                         }
604                                         return -ETIMEDOUT;
605                                 }
606                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
607                                         if (wait == -1) {
608                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
609                                                   "Usually a result of a serious unrecoverable hardware problem\n",
610                                                   blink);
611                                         }
612                                         return -EFAULT;
613                                 }
614                                 /*
615                                  * Allow other processes / CPUS to use core
616                                  */
617                                 schedule();
618                         }
619                 } else if (down_interruptible(&fibptr->event_wait)) {
620                         /* Do nothing ... satisfy
621                          * down_interruptible must_check */
622                 }
623
624                 spin_lock_irqsave(&fibptr->event_lock, flags);
625                 if (fibptr->done == 0) {
626                         fibptr->done = 2; /* Tell interrupt we aborted */
627                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
628                         return -ERESTARTSYS;
629                 }
630                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
631                 BUG_ON(fibptr->done == 0);
632
633                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
634                         return -ETIMEDOUT;
635                 return 0;
636         }
637         /*
638          *      If the user does not want a response than return success otherwise
639          *      return pending
640          */
641         if (reply)
642                 return -EINPROGRESS;
643         else
644                 return 0;
645 }
646
647 /**
648  *      aac_consumer_get        -       get the top of the queue
649  *      @dev: Adapter
650  *      @q: Queue
651  *      @entry: Return entry
652  *
653  *      Will return a pointer to the entry on the top of the queue requested that
654  *      we are a consumer of, and return the address of the queue entry. It does
655  *      not change the state of the queue.
656  */
657
658 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
659 {
660         u32 index;
661         int status;
662         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
663                 status = 0;
664         } else {
665                 /*
666                  *      The consumer index must be wrapped if we have reached
667                  *      the end of the queue, else we just use the entry
668                  *      pointed to by the header index
669                  */
670                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
671                         index = 0;
672                 else
673                         index = le32_to_cpu(*q->headers.consumer);
674                 *entry = q->base + index;
675                 status = 1;
676         }
677         return(status);
678 }
679
680 /**
681  *      aac_consumer_free       -       free consumer entry
682  *      @dev: Adapter
683  *      @q: Queue
684  *      @qid: Queue ident
685  *
686  *      Frees up the current top of the queue we are a consumer of. If the
687  *      queue was full notify the producer that the queue is no longer full.
688  */
689
690 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
691 {
692         int wasfull = 0;
693         u32 notify;
694
695         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
696                 wasfull = 1;
697
698         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
699                 *q->headers.consumer = cpu_to_le32(1);
700         else
701                 le32_add_cpu(q->headers.consumer, 1);
702
703         if (wasfull) {
704                 switch (qid) {
705
706                 case HostNormCmdQueue:
707                         notify = HostNormCmdNotFull;
708                         break;
709                 case HostNormRespQueue:
710                         notify = HostNormRespNotFull;
711                         break;
712                 default:
713                         BUG();
714                         return;
715                 }
716                 aac_adapter_notify(dev, notify);
717         }
718 }
719
720 /**
721  *      aac_fib_adapter_complete        -       complete adapter issued fib
722  *      @fibptr: fib to complete
723  *      @size: size of fib
724  *
725  *      Will do all necessary work to complete a FIB that was sent from
726  *      the adapter.
727  */
728
729 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
730 {
731         struct hw_fib * hw_fib = fibptr->hw_fib_va;
732         struct aac_dev * dev = fibptr->dev;
733         struct aac_queue * q;
734         unsigned long nointr = 0;
735         unsigned long qflags;
736
737         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
738             dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
739                 kfree(hw_fib);
740                 return 0;
741         }
742
743         if (hw_fib->header.XferState == 0) {
744                 if (dev->comm_interface == AAC_COMM_MESSAGE)
745                         kfree(hw_fib);
746                 return 0;
747         }
748         /*
749          *      If we plan to do anything check the structure type first.
750          */
751         if (hw_fib->header.StructType != FIB_MAGIC &&
752             hw_fib->header.StructType != FIB_MAGIC2 &&
753             hw_fib->header.StructType != FIB_MAGIC2_64) {
754                 if (dev->comm_interface == AAC_COMM_MESSAGE)
755                         kfree(hw_fib);
756                 return -EINVAL;
757         }
758         /*
759          *      This block handles the case where the adapter had sent us a
760          *      command and we have finished processing the command. We
761          *      call completeFib when we are done processing the command
762          *      and want to send a response back to the adapter. This will
763          *      send the completed cdb to the adapter.
764          */
765         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
766                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
767                         kfree (hw_fib);
768                 } else {
769                         u32 index;
770                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
771                         if (size) {
772                                 size += sizeof(struct aac_fibhdr);
773                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
774                                         return -EMSGSIZE;
775                                 hw_fib->header.Size = cpu_to_le16(size);
776                         }
777                         q = &dev->queues->queue[AdapNormRespQueue];
778                         spin_lock_irqsave(q->lock, qflags);
779                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
780                         *(q->headers.producer) = cpu_to_le32(index + 1);
781                         spin_unlock_irqrestore(q->lock, qflags);
782                         if (!(nointr & (int)aac_config.irq_mod))
783                                 aac_adapter_notify(dev, AdapNormRespQueue);
784                 }
785         } else {
786                 printk(KERN_WARNING "aac_fib_adapter_complete: "
787                         "Unknown xferstate detected.\n");
788                 BUG();
789         }
790         return 0;
791 }
792
793 /**
794  *      aac_fib_complete        -       fib completion handler
795  *      @fib: FIB to complete
796  *
797  *      Will do all necessary work to complete a FIB.
798  */
799
800 int aac_fib_complete(struct fib *fibptr)
801 {
802         struct hw_fib * hw_fib = fibptr->hw_fib_va;
803
804         /*
805          *      Check for a fib which has already been completed
806          */
807
808         if (hw_fib->header.XferState == 0)
809                 return 0;
810         /*
811          *      If we plan to do anything check the structure type first.
812          */
813
814         if (hw_fib->header.StructType != FIB_MAGIC &&
815             hw_fib->header.StructType != FIB_MAGIC2 &&
816             hw_fib->header.StructType != FIB_MAGIC2_64)
817                 return -EINVAL;
818         /*
819          *      This block completes a cdb which orginated on the host and we
820          *      just need to deallocate the cdb or reinit it. At this point the
821          *      command is complete that we had sent to the adapter and this
822          *      cdb could be reused.
823          */
824
825         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
826                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
827         {
828                 fib_dealloc(fibptr);
829         }
830         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
831         {
832                 /*
833                  *      This handles the case when the host has aborted the I/O
834                  *      to the adapter because the adapter is not responding
835                  */
836                 fib_dealloc(fibptr);
837         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
838                 fib_dealloc(fibptr);
839         } else {
840                 BUG();
841         }
842         return 0;
843 }
844
845 /**
846  *      aac_printf      -       handle printf from firmware
847  *      @dev: Adapter
848  *      @val: Message info
849  *
850  *      Print a message passed to us by the controller firmware on the
851  *      Adaptec board
852  */
853
854 void aac_printf(struct aac_dev *dev, u32 val)
855 {
856         char *cp = dev->printfbuf;
857         if (dev->printf_enabled)
858         {
859                 int length = val & 0xffff;
860                 int level = (val >> 16) & 0xffff;
861
862                 /*
863                  *      The size of the printfbuf is set in port.c
864                  *      There is no variable or define for it
865                  */
866                 if (length > 255)
867                         length = 255;
868                 if (cp[length] != 0)
869                         cp[length] = 0;
870                 if (level == LOG_AAC_HIGH_ERROR)
871                         printk(KERN_WARNING "%s:%s", dev->name, cp);
872                 else
873                         printk(KERN_INFO "%s:%s", dev->name, cp);
874         }
875         memset(cp, 0, 256);
876 }
877
878
879 /**
880  *      aac_handle_aif          -       Handle a message from the firmware
881  *      @dev: Which adapter this fib is from
882  *      @fibptr: Pointer to fibptr from adapter
883  *
884  *      This routine handles a driver notify fib from the adapter and
885  *      dispatches it to the appropriate routine for handling.
886  */
887
888 #define AIF_SNIFF_TIMEOUT       (500*HZ)
889 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
890 {
891         struct hw_fib * hw_fib = fibptr->hw_fib_va;
892         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
893         u32 channel, id, lun, container;
894         struct scsi_device *device;
895         enum {
896                 NOTHING,
897                 DELETE,
898                 ADD,
899                 CHANGE
900         } device_config_needed = NOTHING;
901
902         /* Sniff for container changes */
903
904         if (!dev || !dev->fsa_dev)
905                 return;
906         container = channel = id = lun = (u32)-1;
907
908         /*
909          *      We have set this up to try and minimize the number of
910          * re-configures that take place. As a result of this when
911          * certain AIF's come in we will set a flag waiting for another
912          * type of AIF before setting the re-config flag.
913          */
914         switch (le32_to_cpu(aifcmd->command)) {
915         case AifCmdDriverNotify:
916                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
917                 case AifRawDeviceRemove:
918                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
919                         if ((container >> 28)) {
920                                 container = (u32)-1;
921                                 break;
922                         }
923                         channel = (container >> 24) & 0xF;
924                         if (channel >= dev->maximum_num_channels) {
925                                 container = (u32)-1;
926                                 break;
927                         }
928                         id = container & 0xFFFF;
929                         if (id >= dev->maximum_num_physicals) {
930                                 container = (u32)-1;
931                                 break;
932                         }
933                         lun = (container >> 16) & 0xFF;
934                         container = (u32)-1;
935                         channel = aac_phys_to_logical(channel);
936                         device_config_needed =
937                           (((__le32 *)aifcmd->data)[0] ==
938                             cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
939
940                         if (device_config_needed == ADD) {
941                                 device = scsi_device_lookup(
942                                         dev->scsi_host_ptr,
943                                         channel, id, lun);
944                                 if (device) {
945                                         scsi_remove_device(device);
946                                         scsi_device_put(device);
947                                 }
948                         }
949                         break;
950                 /*
951                  *      Morph or Expand complete
952                  */
953                 case AifDenMorphComplete:
954                 case AifDenVolumeExtendComplete:
955                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
956                         if (container >= dev->maximum_num_containers)
957                                 break;
958
959                         /*
960                          *      Find the scsi_device associated with the SCSI
961                          * address. Make sure we have the right array, and if
962                          * so set the flag to initiate a new re-config once we
963                          * see an AifEnConfigChange AIF come through.
964                          */
965
966                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
967                                 device = scsi_device_lookup(dev->scsi_host_ptr,
968                                         CONTAINER_TO_CHANNEL(container),
969                                         CONTAINER_TO_ID(container),
970                                         CONTAINER_TO_LUN(container));
971                                 if (device) {
972                                         dev->fsa_dev[container].config_needed = CHANGE;
973                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
974                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
975                                         scsi_device_put(device);
976                                 }
977                         }
978                 }
979
980                 /*
981                  *      If we are waiting on something and this happens to be
982                  * that thing then set the re-configure flag.
983                  */
984                 if (container != (u32)-1) {
985                         if (container >= dev->maximum_num_containers)
986                                 break;
987                         if ((dev->fsa_dev[container].config_waiting_on ==
988                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
989                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
990                                 dev->fsa_dev[container].config_waiting_on = 0;
991                 } else for (container = 0;
992                     container < dev->maximum_num_containers; ++container) {
993                         if ((dev->fsa_dev[container].config_waiting_on ==
994                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
995                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
996                                 dev->fsa_dev[container].config_waiting_on = 0;
997                 }
998                 break;
999
1000         case AifCmdEventNotify:
1001                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1002                 case AifEnBatteryEvent:
1003                         dev->cache_protected =
1004                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1005                         break;
1006                 /*
1007                  *      Add an Array.
1008                  */
1009                 case AifEnAddContainer:
1010                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1011                         if (container >= dev->maximum_num_containers)
1012                                 break;
1013                         dev->fsa_dev[container].config_needed = ADD;
1014                         dev->fsa_dev[container].config_waiting_on =
1015                                 AifEnConfigChange;
1016                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1017                         break;
1018
1019                 /*
1020                  *      Delete an Array.
1021                  */
1022                 case AifEnDeleteContainer:
1023                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024                         if (container >= dev->maximum_num_containers)
1025                                 break;
1026                         dev->fsa_dev[container].config_needed = DELETE;
1027                         dev->fsa_dev[container].config_waiting_on =
1028                                 AifEnConfigChange;
1029                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1030                         break;
1031
1032                 /*
1033                  *      Container change detected. If we currently are not
1034                  * waiting on something else, setup to wait on a Config Change.
1035                  */
1036                 case AifEnContainerChange:
1037                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1038                         if (container >= dev->maximum_num_containers)
1039                                 break;
1040                         if (dev->fsa_dev[container].config_waiting_on &&
1041                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1042                                 break;
1043                         dev->fsa_dev[container].config_needed = CHANGE;
1044                         dev->fsa_dev[container].config_waiting_on =
1045                                 AifEnConfigChange;
1046                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1047                         break;
1048
1049                 case AifEnConfigChange:
1050                         break;
1051
1052                 case AifEnAddJBOD:
1053                 case AifEnDeleteJBOD:
1054                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1055                         if ((container >> 28)) {
1056                                 container = (u32)-1;
1057                                 break;
1058                         }
1059                         channel = (container >> 24) & 0xF;
1060                         if (channel >= dev->maximum_num_channels) {
1061                                 container = (u32)-1;
1062                                 break;
1063                         }
1064                         id = container & 0xFFFF;
1065                         if (id >= dev->maximum_num_physicals) {
1066                                 container = (u32)-1;
1067                                 break;
1068                         }
1069                         lun = (container >> 16) & 0xFF;
1070                         container = (u32)-1;
1071                         channel = aac_phys_to_logical(channel);
1072                         device_config_needed =
1073                           (((__le32 *)aifcmd->data)[0] ==
1074                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1075                         if (device_config_needed == ADD) {
1076                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1077                                         channel,
1078                                         id,
1079                                         lun);
1080                                 if (device) {
1081                                         scsi_remove_device(device);
1082                                         scsi_device_put(device);
1083                                 }
1084                         }
1085                         break;
1086
1087                 case AifEnEnclosureManagement:
1088                         /*
1089                          * If in JBOD mode, automatic exposure of new
1090                          * physical target to be suppressed until configured.
1091                          */
1092                         if (dev->jbod)
1093                                 break;
1094                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1095                         case EM_DRIVE_INSERTION:
1096                         case EM_DRIVE_REMOVAL:
1097                         case EM_SES_DRIVE_INSERTION:
1098                         case EM_SES_DRIVE_REMOVAL:
1099                                 container = le32_to_cpu(
1100                                         ((__le32 *)aifcmd->data)[2]);
1101                                 if ((container >> 28)) {
1102                                         container = (u32)-1;
1103                                         break;
1104                                 }
1105                                 channel = (container >> 24) & 0xF;
1106                                 if (channel >= dev->maximum_num_channels) {
1107                                         container = (u32)-1;
1108                                         break;
1109                                 }
1110                                 id = container & 0xFFFF;
1111                                 lun = (container >> 16) & 0xFF;
1112                                 container = (u32)-1;
1113                                 if (id >= dev->maximum_num_physicals) {
1114                                         /* legacy dev_t ? */
1115                                         if ((0x2000 <= id) || lun || channel ||
1116                                           ((channel = (id >> 7) & 0x3F) >=
1117                                           dev->maximum_num_channels))
1118                                                 break;
1119                                         lun = (id >> 4) & 7;
1120                                         id &= 0xF;
1121                                 }
1122                                 channel = aac_phys_to_logical(channel);
1123                                 device_config_needed =
1124                                   ((((__le32 *)aifcmd->data)[3]
1125                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1126                                     (((__le32 *)aifcmd->data)[3]
1127                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1128                                   ADD : DELETE;
1129                                 break;
1130                         }
1131                         break;
1132                 }
1133
1134                 /*
1135                  *      If we are waiting on something and this happens to be
1136                  * that thing then set the re-configure flag.
1137                  */
1138                 if (container != (u32)-1) {
1139                         if (container >= dev->maximum_num_containers)
1140                                 break;
1141                         if ((dev->fsa_dev[container].config_waiting_on ==
1142                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1143                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1144                                 dev->fsa_dev[container].config_waiting_on = 0;
1145                 } else for (container = 0;
1146                     container < dev->maximum_num_containers; ++container) {
1147                         if ((dev->fsa_dev[container].config_waiting_on ==
1148                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1149                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1150                                 dev->fsa_dev[container].config_waiting_on = 0;
1151                 }
1152                 break;
1153
1154         case AifCmdJobProgress:
1155                 /*
1156                  *      These are job progress AIF's. When a Clear is being
1157                  * done on a container it is initially created then hidden from
1158                  * the OS. When the clear completes we don't get a config
1159                  * change so we monitor the job status complete on a clear then
1160                  * wait for a container change.
1161                  */
1162
1163                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1164                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1165                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1166                         for (container = 0;
1167                             container < dev->maximum_num_containers;
1168                             ++container) {
1169                                 /*
1170                                  * Stomp on all config sequencing for all
1171                                  * containers?
1172                                  */
1173                                 dev->fsa_dev[container].config_waiting_on =
1174                                         AifEnContainerChange;
1175                                 dev->fsa_dev[container].config_needed = ADD;
1176                                 dev->fsa_dev[container].config_waiting_stamp =
1177                                         jiffies;
1178                         }
1179                 }
1180                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1181                     ((__le32 *)aifcmd->data)[6] == 0 &&
1182                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1183                         for (container = 0;
1184                             container < dev->maximum_num_containers;
1185                             ++container) {
1186                                 /*
1187                                  * Stomp on all config sequencing for all
1188                                  * containers?
1189                                  */
1190                                 dev->fsa_dev[container].config_waiting_on =
1191                                         AifEnContainerChange;
1192                                 dev->fsa_dev[container].config_needed = DELETE;
1193                                 dev->fsa_dev[container].config_waiting_stamp =
1194                                         jiffies;
1195                         }
1196                 }
1197                 break;
1198         }
1199
1200         container = 0;
1201 retry_next:
1202         if (device_config_needed == NOTHING)
1203         for (; container < dev->maximum_num_containers; ++container) {
1204                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1205                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1206                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1207                         device_config_needed =
1208                                 dev->fsa_dev[container].config_needed;
1209                         dev->fsa_dev[container].config_needed = NOTHING;
1210                         channel = CONTAINER_TO_CHANNEL(container);
1211                         id = CONTAINER_TO_ID(container);
1212                         lun = CONTAINER_TO_LUN(container);
1213                         break;
1214                 }
1215         }
1216         if (device_config_needed == NOTHING)
1217                 return;
1218
1219         /*
1220          *      If we decided that a re-configuration needs to be done,
1221          * schedule it here on the way out the door, please close the door
1222          * behind you.
1223          */
1224
1225         /*
1226          *      Find the scsi_device associated with the SCSI address,
1227          * and mark it as changed, invalidating the cache. This deals
1228          * with changes to existing device IDs.
1229          */
1230
1231         if (!dev || !dev->scsi_host_ptr)
1232                 return;
1233         /*
1234          * force reload of disk info via aac_probe_container
1235          */
1236         if ((channel == CONTAINER_CHANNEL) &&
1237           (device_config_needed != NOTHING)) {
1238                 if (dev->fsa_dev[container].valid == 1)
1239                         dev->fsa_dev[container].valid = 2;
1240                 aac_probe_container(dev, container);
1241         }
1242         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1243         if (device) {
1244                 switch (device_config_needed) {
1245                 case DELETE:
1246 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1247                         scsi_remove_device(device);
1248 #else
1249                         if (scsi_device_online(device)) {
1250                                 scsi_device_set_state(device, SDEV_OFFLINE);
1251                                 sdev_printk(KERN_INFO, device,
1252                                         "Device offlined - %s\n",
1253                                         (channel == CONTAINER_CHANNEL) ?
1254                                                 "array deleted" :
1255                                                 "enclosure services event");
1256                         }
1257 #endif
1258                         break;
1259                 case ADD:
1260                         if (!scsi_device_online(device)) {
1261                                 sdev_printk(KERN_INFO, device,
1262                                         "Device online - %s\n",
1263                                         (channel == CONTAINER_CHANNEL) ?
1264                                                 "array created" :
1265                                                 "enclosure services event");
1266                                 scsi_device_set_state(device, SDEV_RUNNING);
1267                         }
1268                         /* FALLTHRU */
1269                 case CHANGE:
1270                         if ((channel == CONTAINER_CHANNEL)
1271                          && (!dev->fsa_dev[container].valid)) {
1272 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1273                                 scsi_remove_device(device);
1274 #else
1275                                 if (!scsi_device_online(device))
1276                                         break;
1277                                 scsi_device_set_state(device, SDEV_OFFLINE);
1278                                 sdev_printk(KERN_INFO, device,
1279                                         "Device offlined - %s\n",
1280                                         "array failed");
1281 #endif
1282                                 break;
1283                         }
1284                         scsi_rescan_device(&device->sdev_gendev);
1285
1286                 default:
1287                         break;
1288                 }
1289                 scsi_device_put(device);
1290                 device_config_needed = NOTHING;
1291         }
1292         if (device_config_needed == ADD)
1293                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1294         if (channel == CONTAINER_CHANNEL) {
1295                 container++;
1296                 device_config_needed = NOTHING;
1297                 goto retry_next;
1298         }
1299 }
1300
1301 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1302 {
1303         int index, quirks;
1304         int retval;
1305         struct Scsi_Host *host;
1306         struct scsi_device *dev;
1307         struct scsi_cmnd *command;
1308         struct scsi_cmnd *command_list;
1309         int jafo = 0;
1310
1311         /*
1312          * Assumptions:
1313          *      - host is locked, unless called by the aacraid thread.
1314          *        (a matter of convenience, due to legacy issues surrounding
1315          *        eh_host_adapter_reset).
1316          *      - in_reset is asserted, so no new i/o is getting to the
1317          *        card.
1318          *      - The card is dead, or will be very shortly ;-/ so no new
1319          *        commands are completing in the interrupt service.
1320          */
1321         host = aac->scsi_host_ptr;
1322         scsi_block_requests(host);
1323         aac_adapter_disable_int(aac);
1324         if (aac->thread && aac->thread->pid != current->pid) {
1325                 spin_unlock_irq(host->host_lock);
1326                 kthread_stop(aac->thread);
1327                 aac->thread = NULL;
1328                 jafo = 1;
1329         }
1330
1331         /*
1332          *      If a positive health, means in a known DEAD PANIC
1333          * state and the adapter could be reset to `try again'.
1334          */
1335         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1336
1337         if (retval)
1338                 goto out;
1339
1340         /*
1341          *      Loop through the fibs, close the synchronous FIBS
1342          */
1343         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1344                 struct fib *fib = &aac->fibs[index];
1345                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1346                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1347                         unsigned long flagv;
1348                         spin_lock_irqsave(&fib->event_lock, flagv);
1349                         up(&fib->event_wait);
1350                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1351                         schedule();
1352                         retval = 0;
1353                 }
1354         }
1355         /* Give some extra time for ioctls to complete. */
1356         if (retval == 0)
1357                 ssleep(2);
1358         index = aac->cardtype;
1359
1360         /*
1361          * Re-initialize the adapter, first free resources, then carefully
1362          * apply the initialization sequence to come back again. Only risk
1363          * is a change in Firmware dropping cache, it is assumed the caller
1364          * will ensure that i/o is queisced and the card is flushed in that
1365          * case.
1366          */
1367         aac_free_irq(aac);
1368         aac_fib_map_free(aac);
1369         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1370         aac->comm_addr = NULL;
1371         aac->comm_phys = 0;
1372         kfree(aac->queues);
1373         aac->queues = NULL;
1374         kfree(aac->fsa_dev);
1375         aac->fsa_dev = NULL;
1376         quirks = aac_get_driver_ident(index)->quirks;
1377         if (quirks & AAC_QUIRK_31BIT) {
1378                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1379                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1380                         goto out;
1381         } else {
1382                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1383                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1384                         goto out;
1385         }
1386         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1387                 goto out;
1388         if (quirks & AAC_QUIRK_31BIT)
1389                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1390                         goto out;
1391         if (jafo) {
1392                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1393                                           aac->name);
1394                 if (IS_ERR(aac->thread)) {
1395                         retval = PTR_ERR(aac->thread);
1396                         aac->thread = NULL;
1397                         goto out;
1398                 }
1399         }
1400         (void)aac_get_adapter_info(aac);
1401         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1402                 host->sg_tablesize = 34;
1403                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1404         }
1405         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1406                 host->sg_tablesize = 17;
1407                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1408         }
1409         aac_get_config_status(aac, 1);
1410         aac_get_containers(aac);
1411         /*
1412          * This is where the assumption that the Adapter is quiesced
1413          * is important.
1414          */
1415         command_list = NULL;
1416         __shost_for_each_device(dev, host) {
1417                 unsigned long flags;
1418                 spin_lock_irqsave(&dev->list_lock, flags);
1419                 list_for_each_entry(command, &dev->cmd_list, list)
1420                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1421                                 command->SCp.buffer = (struct scatterlist *)command_list;
1422                                 command_list = command;
1423                         }
1424                 spin_unlock_irqrestore(&dev->list_lock, flags);
1425         }
1426         while ((command = command_list)) {
1427                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1428                 command->SCp.buffer = NULL;
1429                 command->result = DID_OK << 16
1430                   | COMMAND_COMPLETE << 8
1431                   | SAM_STAT_TASK_SET_FULL;
1432                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1433                 command->scsi_done(command);
1434         }
1435         retval = 0;
1436
1437 out:
1438         aac->in_reset = 0;
1439         scsi_unblock_requests(host);
1440         if (jafo) {
1441                 spin_lock_irq(host->host_lock);
1442         }
1443         return retval;
1444 }
1445
1446 int aac_reset_adapter(struct aac_dev * aac, int forced)
1447 {
1448         unsigned long flagv = 0;
1449         int retval;
1450         struct Scsi_Host * host;
1451
1452         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1453                 return -EBUSY;
1454
1455         if (aac->in_reset) {
1456                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1457                 return -EBUSY;
1458         }
1459         aac->in_reset = 1;
1460         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1461
1462         /*
1463          * Wait for all commands to complete to this specific
1464          * target (block maximum 60 seconds). Although not necessary,
1465          * it does make us a good storage citizen.
1466          */
1467         host = aac->scsi_host_ptr;
1468         scsi_block_requests(host);
1469         if (forced < 2) for (retval = 60; retval; --retval) {
1470                 struct scsi_device * dev;
1471                 struct scsi_cmnd * command;
1472                 int active = 0;
1473
1474                 __shost_for_each_device(dev, host) {
1475                         spin_lock_irqsave(&dev->list_lock, flagv);
1476                         list_for_each_entry(command, &dev->cmd_list, list) {
1477                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1478                                         active++;
1479                                         break;
1480                                 }
1481                         }
1482                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1483                         if (active)
1484                                 break;
1485
1486                 }
1487                 /*
1488                  * We can exit If all the commands are complete
1489                  */
1490                 if (active == 0)
1491                         break;
1492                 ssleep(1);
1493         }
1494
1495         /* Quiesce build, flush cache, write through mode */
1496         if (forced < 2)
1497                 aac_send_shutdown(aac);
1498         spin_lock_irqsave(host->host_lock, flagv);
1499         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1500         spin_unlock_irqrestore(host->host_lock, flagv);
1501
1502         if ((forced < 2) && (retval == -ENODEV)) {
1503                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1504                 struct fib * fibctx = aac_fib_alloc(aac);
1505                 if (fibctx) {
1506                         struct aac_pause *cmd;
1507                         int status;
1508
1509                         aac_fib_init(fibctx);
1510
1511                         cmd = (struct aac_pause *) fib_data(fibctx);
1512
1513                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1514                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1515                         cmd->timeout = cpu_to_le32(1);
1516                         cmd->min = cpu_to_le32(1);
1517                         cmd->noRescan = cpu_to_le32(1);
1518                         cmd->count = cpu_to_le32(0);
1519
1520                         status = aac_fib_send(ContainerCommand,
1521                           fibctx,
1522                           sizeof(struct aac_pause),
1523                           FsaNormal,
1524                           -2 /* Timeout silently */, 1,
1525                           NULL, NULL);
1526
1527                         if (status >= 0)
1528                                 aac_fib_complete(fibctx);
1529                         /* FIB should be freed only after getting
1530                          * the response from the F/W */
1531                         if (status != -ERESTARTSYS)
1532                                 aac_fib_free(fibctx);
1533                 }
1534         }
1535
1536         return retval;
1537 }
1538
1539 int aac_check_health(struct aac_dev * aac)
1540 {
1541         int BlinkLED;
1542         unsigned long time_now, flagv = 0;
1543         struct list_head * entry;
1544         struct Scsi_Host * host;
1545
1546         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1547         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1548                 return 0;
1549
1550         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1551                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1552                 return 0; /* OK */
1553         }
1554
1555         aac->in_reset = 1;
1556
1557         /* Fake up an AIF:
1558          *      aac_aifcmd.command = AifCmdEventNotify = 1
1559          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1560          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1561          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1562          *      aac.aifcmd.data[2] = AifHighPriority = 3
1563          *      aac.aifcmd.data[3] = BlinkLED
1564          */
1565
1566         time_now = jiffies/HZ;
1567         entry = aac->fib_list.next;
1568
1569         /*
1570          * For each Context that is on the
1571          * fibctxList, make a copy of the
1572          * fib, and then set the event to wake up the
1573          * thread that is waiting for it.
1574          */
1575         while (entry != &aac->fib_list) {
1576                 /*
1577                  * Extract the fibctx
1578                  */
1579                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1580                 struct hw_fib * hw_fib;
1581                 struct fib * fib;
1582                 /*
1583                  * Check if the queue is getting
1584                  * backlogged
1585                  */
1586                 if (fibctx->count > 20) {
1587                         /*
1588                          * It's *not* jiffies folks,
1589                          * but jiffies / HZ, so do not
1590                          * panic ...
1591                          */
1592                         u32 time_last = fibctx->jiffies;
1593                         /*
1594                          * Has it been > 2 minutes
1595                          * since the last read off
1596                          * the queue?
1597                          */
1598                         if ((time_now - time_last) > aif_timeout) {
1599                                 entry = entry->next;
1600                                 aac_close_fib_context(aac, fibctx);
1601                                 continue;
1602                         }
1603                 }
1604                 /*
1605                  * Warning: no sleep allowed while
1606                  * holding spinlock
1607                  */
1608                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1609                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1610                 if (fib && hw_fib) {
1611                         struct aac_aifcmd * aif;
1612
1613                         fib->hw_fib_va = hw_fib;
1614                         fib->dev = aac;
1615                         aac_fib_init(fib);
1616                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1617                         fib->size = sizeof (struct fib);
1618                         fib->data = hw_fib->data;
1619                         aif = (struct aac_aifcmd *)hw_fib->data;
1620                         aif->command = cpu_to_le32(AifCmdEventNotify);
1621                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1622                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1623                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1624                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1625                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1626
1627                         /*
1628                          * Put the FIB onto the
1629                          * fibctx's fibs
1630                          */
1631                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1632                         fibctx->count++;
1633                         /*
1634                          * Set the event to wake up the
1635                          * thread that will waiting.
1636                          */
1637                         up(&fibctx->wait_sem);
1638                 } else {
1639                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1640                         kfree(fib);
1641                         kfree(hw_fib);
1642                 }
1643                 entry = entry->next;
1644         }
1645
1646         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1647
1648         if (BlinkLED < 0) {
1649                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1650                 goto out;
1651         }
1652
1653         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1654
1655         if (!aac_check_reset || ((aac_check_reset == 1) &&
1656                 (aac->supplement_adapter_info.SupportedOptions2 &
1657                         AAC_OPTION_IGNORE_RESET)))
1658                 goto out;
1659         host = aac->scsi_host_ptr;
1660         if (aac->thread->pid != current->pid)
1661                 spin_lock_irqsave(host->host_lock, flagv);
1662         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1663         if (aac->thread->pid != current->pid)
1664                 spin_unlock_irqrestore(host->host_lock, flagv);
1665         return BlinkLED;
1666
1667 out:
1668         aac->in_reset = 0;
1669         return BlinkLED;
1670 }
1671
1672
1673 /**
1674  *      aac_command_thread      -       command processing thread
1675  *      @dev: Adapter to monitor
1676  *
1677  *      Waits on the commandready event in it's queue. When the event gets set
1678  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1679  *      until the queue is empty. When the queue is empty it will wait for
1680  *      more FIBs.
1681  */
1682
1683 int aac_command_thread(void *data)
1684 {
1685         struct aac_dev *dev = data;
1686         struct hw_fib *hw_fib, *hw_newfib;
1687         struct fib *fib, *newfib;
1688         struct aac_fib_context *fibctx;
1689         unsigned long flags;
1690         DECLARE_WAITQUEUE(wait, current);
1691         unsigned long next_jiffies = jiffies + HZ;
1692         unsigned long next_check_jiffies = next_jiffies;
1693         long difference = HZ;
1694
1695         /*
1696          *      We can only have one thread per adapter for AIF's.
1697          */
1698         if (dev->aif_thread)
1699                 return -EINVAL;
1700
1701         /*
1702          *      Let the DPC know it has a place to send the AIF's to.
1703          */
1704         dev->aif_thread = 1;
1705         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1706         set_current_state(TASK_INTERRUPTIBLE);
1707         dprintk ((KERN_INFO "aac_command_thread start\n"));
1708         while (1) {
1709                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1710                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1711                         struct list_head *entry;
1712                         struct aac_aifcmd * aifcmd;
1713
1714                         set_current_state(TASK_RUNNING);
1715
1716                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1717                         list_del(entry);
1718
1719                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1720                         fib = list_entry(entry, struct fib, fiblink);
1721                         /*
1722                          *      We will process the FIB here or pass it to a
1723                          *      worker thread that is TBD. We Really can't
1724                          *      do anything at this point since we don't have
1725                          *      anything defined for this thread to do.
1726                          */
1727                         hw_fib = fib->hw_fib_va;
1728                         memset(fib, 0, sizeof(struct fib));
1729                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1730                         fib->size = sizeof(struct fib);
1731                         fib->hw_fib_va = hw_fib;
1732                         fib->data = hw_fib->data;
1733                         fib->dev = dev;
1734                         /*
1735                          *      We only handle AifRequest fibs from the adapter.
1736                          */
1737                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1738                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1739                                 /* Handle Driver Notify Events */
1740                                 aac_handle_aif(dev, fib);
1741                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1742                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1743                         } else {
1744                                 /* The u32 here is important and intended. We are using
1745                                    32bit wrapping time to fit the adapter field */
1746
1747                                 u32 time_now, time_last;
1748                                 unsigned long flagv;
1749                                 unsigned num;
1750                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1751                                 struct fib ** fib_pool, ** fib_p;
1752
1753                                 /* Sniff events */
1754                                 if ((aifcmd->command ==
1755                                      cpu_to_le32(AifCmdEventNotify)) ||
1756                                     (aifcmd->command ==
1757                                      cpu_to_le32(AifCmdJobProgress))) {
1758                                         aac_handle_aif(dev, fib);
1759                                 }
1760
1761                                 time_now = jiffies/HZ;
1762
1763                                 /*
1764                                  * Warning: no sleep allowed while
1765                                  * holding spinlock. We take the estimate
1766                                  * and pre-allocate a set of fibs outside the
1767                                  * lock.
1768                                  */
1769                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1770                                     / sizeof(struct hw_fib); /* some extra */
1771                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1772                                 entry = dev->fib_list.next;
1773                                 while (entry != &dev->fib_list) {
1774                                         entry = entry->next;
1775                                         ++num;
1776                                 }
1777                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1778                                 hw_fib_pool = NULL;
1779                                 fib_pool = NULL;
1780                                 if (num
1781                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1782                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1783                                         hw_fib_p = hw_fib_pool;
1784                                         fib_p = fib_pool;
1785                                         while (hw_fib_p < &hw_fib_pool[num]) {
1786                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1787                                                         --hw_fib_p;
1788                                                         break;
1789                                                 }
1790                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1791                                                         kfree(*(--hw_fib_p));
1792                                                         break;
1793                                                 }
1794                                         }
1795                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1796                                                 kfree(fib_pool);
1797                                                 fib_pool = NULL;
1798                                                 kfree(hw_fib_pool);
1799                                                 hw_fib_pool = NULL;
1800                                         }
1801                                 } else {
1802                                         kfree(hw_fib_pool);
1803                                         hw_fib_pool = NULL;
1804                                 }
1805                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1806                                 entry = dev->fib_list.next;
1807                                 /*
1808                                  * For each Context that is on the
1809                                  * fibctxList, make a copy of the
1810                                  * fib, and then set the event to wake up the
1811                                  * thread that is waiting for it.
1812                                  */
1813                                 hw_fib_p = hw_fib_pool;
1814                                 fib_p = fib_pool;
1815                                 while (entry != &dev->fib_list) {
1816                                         /*
1817                                          * Extract the fibctx
1818                                          */
1819                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1820                                         /*
1821                                          * Check if the queue is getting
1822                                          * backlogged
1823                                          */
1824                                         if (fibctx->count > 20)
1825                                         {
1826                                                 /*
1827                                                  * It's *not* jiffies folks,
1828                                                  * but jiffies / HZ so do not
1829                                                  * panic ...
1830                                                  */
1831                                                 time_last = fibctx->jiffies;
1832                                                 /*
1833                                                  * Has it been > 2 minutes
1834                                                  * since the last read off
1835                                                  * the queue?
1836                                                  */
1837                                                 if ((time_now - time_last) > aif_timeout) {
1838                                                         entry = entry->next;
1839                                                         aac_close_fib_context(dev, fibctx);
1840                                                         continue;
1841                                                 }
1842                                         }
1843                                         /*
1844                                          * Warning: no sleep allowed while
1845                                          * holding spinlock
1846                                          */
1847                                         if (hw_fib_p < &hw_fib_pool[num]) {
1848                                                 hw_newfib = *hw_fib_p;
1849                                                 *(hw_fib_p++) = NULL;
1850                                                 newfib = *fib_p;
1851                                                 *(fib_p++) = NULL;
1852                                                 /*
1853                                                  * Make the copy of the FIB
1854                                                  */
1855                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1856                                                 memcpy(newfib, fib, sizeof(struct fib));
1857                                                 newfib->hw_fib_va = hw_newfib;
1858                                                 /*
1859                                                  * Put the FIB onto the
1860                                                  * fibctx's fibs
1861                                                  */
1862                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1863                                                 fibctx->count++;
1864                                                 /*
1865                                                  * Set the event to wake up the
1866                                                  * thread that is waiting.
1867                                                  */
1868                                                 up(&fibctx->wait_sem);
1869                                         } else {
1870                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1871                                         }
1872                                         entry = entry->next;
1873                                 }
1874                                 /*
1875                                  *      Set the status of this FIB
1876                                  */
1877                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1878                                 aac_fib_adapter_complete(fib, sizeof(u32));
1879                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1880                                 /* Free up the remaining resources */
1881                                 hw_fib_p = hw_fib_pool;
1882                                 fib_p = fib_pool;
1883                                 while (hw_fib_p < &hw_fib_pool[num]) {
1884                                         kfree(*hw_fib_p);
1885                                         kfree(*fib_p);
1886                                         ++fib_p;
1887                                         ++hw_fib_p;
1888                                 }
1889                                 kfree(hw_fib_pool);
1890                                 kfree(fib_pool);
1891                         }
1892                         kfree(fib);
1893                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1894                 }
1895                 /*
1896                  *      There are no more AIF's
1897                  */
1898                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1899
1900                 /*
1901                  *      Background activity
1902                  */
1903                 if ((time_before(next_check_jiffies,next_jiffies))
1904                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1905                         next_check_jiffies = next_jiffies;
1906                         if (aac_check_health(dev) == 0) {
1907                                 difference = ((long)(unsigned)check_interval)
1908                                            * HZ;
1909                                 next_check_jiffies = jiffies + difference;
1910                         } else if (!dev->queues)
1911                                 break;
1912                 }
1913                 if (!time_before(next_check_jiffies,next_jiffies)
1914                  && ((difference = next_jiffies - jiffies) <= 0)) {
1915                         struct timeval now;
1916                         int ret;
1917
1918                         /* Don't even try to talk to adapter if its sick */
1919                         ret = aac_check_health(dev);
1920                         if (!ret && !dev->queues)
1921                                 break;
1922                         next_check_jiffies = jiffies
1923                                            + ((long)(unsigned)check_interval)
1924                                            * HZ;
1925                         do_gettimeofday(&now);
1926
1927                         /* Synchronize our watches */
1928                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1929                          && (now.tv_usec > (1000000 / HZ)))
1930                                 difference = (((1000000 - now.tv_usec) * HZ)
1931                                   + 500000) / 1000000;
1932                         else if (ret == 0) {
1933                                 struct fib *fibptr;
1934
1935                                 if ((fibptr = aac_fib_alloc(dev))) {
1936                                         int status;
1937                                         __le32 *info;
1938
1939                                         aac_fib_init(fibptr);
1940
1941                                         info = (__le32 *) fib_data(fibptr);
1942                                         if (now.tv_usec > 500000)
1943                                                 ++now.tv_sec;
1944
1945                                         *info = cpu_to_le32(now.tv_sec);
1946
1947                                         status = aac_fib_send(SendHostTime,
1948                                                 fibptr,
1949                                                 sizeof(*info),
1950                                                 FsaNormal,
1951                                                 1, 1,
1952                                                 NULL,
1953                                                 NULL);
1954                                         /* Do not set XferState to zero unless
1955                                          * receives a response from F/W */
1956                                         if (status >= 0)
1957                                                 aac_fib_complete(fibptr);
1958                                         /* FIB should be freed only after
1959                                          * getting the response from the F/W */
1960                                         if (status != -ERESTARTSYS)
1961                                                 aac_fib_free(fibptr);
1962                                 }
1963                                 difference = (long)(unsigned)update_interval*HZ;
1964                         } else {
1965                                 /* retry shortly */
1966                                 difference = 10 * HZ;
1967                         }
1968                         next_jiffies = jiffies + difference;
1969                         if (time_before(next_check_jiffies,next_jiffies))
1970                                 difference = next_check_jiffies - jiffies;
1971                 }
1972                 if (difference <= 0)
1973                         difference = 1;
1974                 set_current_state(TASK_INTERRUPTIBLE);
1975
1976                 if (kthread_should_stop())
1977                         break;
1978
1979                 schedule_timeout(difference);
1980
1981                 if (kthread_should_stop())
1982                         break;
1983         }
1984         if (dev->queues)
1985                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1986         dev->aif_thread = 0;
1987         return 0;
1988 }
1989
1990 int aac_acquire_irq(struct aac_dev *dev)
1991 {
1992         int i;
1993         int j;
1994         int ret = 0;
1995         int cpu;
1996
1997         cpu = cpumask_first(cpu_online_mask);
1998         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
1999                 for (i = 0; i < dev->max_msix; i++) {
2000                         dev->aac_msix[i].vector_no = i;
2001                         dev->aac_msix[i].dev = dev;
2002                         if (request_irq(dev->msixentry[i].vector,
2003                                         dev->a_ops.adapter_intr,
2004                                         0, "aacraid", &(dev->aac_msix[i]))) {
2005                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2006                                                 dev->name, dev->id, i);
2007                                 for (j = 0 ; j < i ; j++)
2008                                         free_irq(dev->msixentry[j].vector,
2009                                                  &(dev->aac_msix[j]));
2010                                 pci_disable_msix(dev->pdev);
2011                                 ret = -1;
2012                         }
2013                         if (irq_set_affinity_hint(dev->msixentry[i].vector,
2014                                                         get_cpu_mask(cpu))) {
2015                                 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n",
2016                                             dev->name, dev->id, cpu);
2017                         }
2018                         cpu = cpumask_next(cpu, cpu_online_mask);
2019                 }
2020         } else {
2021                 dev->aac_msix[0].vector_no = 0;
2022                 dev->aac_msix[0].dev = dev;
2023
2024                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2025                         IRQF_SHARED, "aacraid",
2026                         &(dev->aac_msix[0])) < 0) {
2027                         if (dev->msi)
2028                                 pci_disable_msi(dev->pdev);
2029                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2030                                         dev->name, dev->id);
2031                         ret = -1;
2032                 }
2033         }
2034         return ret;
2035 }
2036
2037 void aac_free_irq(struct aac_dev *dev)
2038 {
2039         int i;
2040         int cpu;
2041
2042         cpu = cpumask_first(cpu_online_mask);
2043         if (dev->pdev->device == PMC_DEVICE_S6 ||
2044             dev->pdev->device == PMC_DEVICE_S7 ||
2045             dev->pdev->device == PMC_DEVICE_S8 ||
2046             dev->pdev->device == PMC_DEVICE_S9) {
2047                 if (dev->max_msix > 1) {
2048                         for (i = 0; i < dev->max_msix; i++) {
2049                                 if (irq_set_affinity_hint(
2050                                         dev->msixentry[i].vector, NULL)) {
2051                                         printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
2052                                             dev->name, dev->id, cpu);
2053                                 }
2054                                 cpu = cpumask_next(cpu, cpu_online_mask);
2055                                 free_irq(dev->msixentry[i].vector,
2056                                                 &(dev->aac_msix[i]));
2057                         }
2058                 } else {
2059                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2060                 }
2061         } else {
2062                 free_irq(dev->pdev->irq, dev);
2063         }
2064         if (dev->msi)
2065                 pci_disable_msi(dev->pdev);
2066         else if (dev->max_msix > 1)
2067                 pci_disable_msix(dev->pdev);
2068 }