GNU Linux-libre 4.19.281-gnu1
[releases.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/semaphore.h>
48 #include <linux/bcd.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_device.h>
52 #include <scsi/scsi_cmnd.h>
53
54 #include "aacraid.h"
55
56 /**
57  *      fib_map_alloc           -       allocate the fib objects
58  *      @dev: Adapter to allocate for
59  *
60  *      Allocate and map the shared PCI space for the FIB blocks used to
61  *      talk to the Adaptec firmware.
62  */
63
64 static int fib_map_alloc(struct aac_dev *dev)
65 {
66         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
67                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
68         else
69                 dev->max_cmd_size = dev->max_fib_size;
70         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
71                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
72         } else {
73                 dev->max_cmd_size = dev->max_fib_size;
74         }
75
76         dprintk((KERN_INFO
77           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
78           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
79           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
80         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
81                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
82                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
83                 &dev->hw_fib_pa, GFP_KERNEL);
84         if (dev->hw_fib_va == NULL)
85                 return -ENOMEM;
86         return 0;
87 }
88
89 /**
90  *      aac_fib_map_free                -       free the fib objects
91  *      @dev: Adapter to free
92  *
93  *      Free the PCI mappings and the memory allocated for FIB blocks
94  *      on this adapter.
95  */
96
97 void aac_fib_map_free(struct aac_dev *dev)
98 {
99         size_t alloc_size;
100         size_t fib_size;
101         int num_fibs;
102
103         if(!dev->hw_fib_va || !dev->max_cmd_size)
104                 return;
105
106         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
107         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
108         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
109
110         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
111                           dev->hw_fib_pa);
112
113         dev->hw_fib_va = NULL;
114         dev->hw_fib_pa = 0;
115 }
116
117 void aac_fib_vector_assign(struct aac_dev *dev)
118 {
119         u32 i = 0;
120         u32 vector = 1;
121         struct fib *fibptr = NULL;
122
123         for (i = 0, fibptr = &dev->fibs[i];
124                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
125                 i++, fibptr++) {
126                 if ((dev->max_msix == 1) ||
127                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
128                         - dev->vector_cap))) {
129                         fibptr->vector_no = 0;
130                 } else {
131                         fibptr->vector_no = vector;
132                         vector++;
133                         if (vector == dev->max_msix)
134                                 vector = 1;
135                 }
136         }
137 }
138
139 /**
140  *      aac_fib_setup   -       setup the fibs
141  *      @dev: Adapter to set up
142  *
143  *      Allocate the PCI space for the fibs, map it and then initialise the
144  *      fib area, the unmapped fib data and also the free list
145  */
146
147 int aac_fib_setup(struct aac_dev * dev)
148 {
149         struct fib *fibptr;
150         struct hw_fib *hw_fib;
151         dma_addr_t hw_fib_pa;
152         int i;
153         u32 max_cmds;
154
155         while (((i = fib_map_alloc(dev)) == -ENOMEM)
156          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
157                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
158                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
159                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
160                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
161         }
162         if (i<0)
163                 return -ENOMEM;
164
165         memset(dev->hw_fib_va, 0,
166                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
167                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
168
169         /* 32 byte alignment for PMC */
170         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
171         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
172                                         (hw_fib_pa - dev->hw_fib_pa));
173
174         /* add Xport header */
175         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176                 sizeof(struct aac_fib_xporthdr));
177         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
178
179         /*
180          *      Initialise the fibs
181          */
182         for (i = 0, fibptr = &dev->fibs[i];
183                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
184                 i++, fibptr++)
185         {
186                 fibptr->flags = 0;
187                 fibptr->size = sizeof(struct fib);
188                 fibptr->dev = dev;
189                 fibptr->hw_fib_va = hw_fib;
190                 fibptr->data = (void *) fibptr->hw_fib_va->data;
191                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
192                 sema_init(&fibptr->event_wait, 0);
193                 spin_lock_init(&fibptr->event_lock);
194                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
195                 hw_fib->header.SenderSize =
196                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
197                 fibptr->hw_fib_pa = hw_fib_pa;
198                 fibptr->hw_sgl_pa = hw_fib_pa +
199                         offsetof(struct aac_hba_cmd_req, sge[2]);
200                 /*
201                  * one element is for the ptr to the separate sg list,
202                  * second element for 32 byte alignment
203                  */
204                 fibptr->hw_error_pa = hw_fib_pa +
205                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
206
207                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
208                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
209                 hw_fib_pa = hw_fib_pa +
210                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
211         }
212
213         /*
214          *Assign vector numbers to fibs
215          */
216         aac_fib_vector_assign(dev);
217
218         /*
219          *      Add the fib chain to the free list
220          */
221         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
222         /*
223         *       Set 8 fibs aside for management tools
224         */
225         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
226         return 0;
227 }
228
229 /**
230  *      aac_fib_alloc_tag-allocate a fib using tags
231  *      @dev: Adapter to allocate the fib for
232  *
233  *      Allocate a fib from the adapter fib pool using tags
234  *      from the blk layer.
235  */
236
237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
238 {
239         struct fib *fibptr;
240
241         fibptr = &dev->fibs[scmd->request->tag];
242         /*
243          *      Null out fields that depend on being zero at the start of
244          *      each I/O
245          */
246         fibptr->hw_fib_va->header.XferState = 0;
247         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
248         fibptr->callback_data = NULL;
249         fibptr->callback = NULL;
250
251         return fibptr;
252 }
253
254 /**
255  *      aac_fib_alloc   -       allocate a fib
256  *      @dev: Adapter to allocate the fib for
257  *
258  *      Allocate a fib from the adapter fib pool. If the pool is empty we
259  *      return NULL.
260  */
261
262 struct fib *aac_fib_alloc(struct aac_dev *dev)
263 {
264         struct fib * fibptr;
265         unsigned long flags;
266         spin_lock_irqsave(&dev->fib_lock, flags);
267         fibptr = dev->free_fib;
268         if(!fibptr){
269                 spin_unlock_irqrestore(&dev->fib_lock, flags);
270                 return fibptr;
271         }
272         dev->free_fib = fibptr->next;
273         spin_unlock_irqrestore(&dev->fib_lock, flags);
274         /*
275          *      Set the proper node type code and node byte size
276          */
277         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
278         fibptr->size = sizeof(struct fib);
279         /*
280          *      Null out fields that depend on being zero at the start of
281          *      each I/O
282          */
283         fibptr->hw_fib_va->header.XferState = 0;
284         fibptr->flags = 0;
285         fibptr->callback = NULL;
286         fibptr->callback_data = NULL;
287
288         return fibptr;
289 }
290
291 /**
292  *      aac_fib_free    -       free a fib
293  *      @fibptr: fib to free up
294  *
295  *      Frees up a fib and places it on the appropriate queue
296  */
297
298 void aac_fib_free(struct fib *fibptr)
299 {
300         unsigned long flags;
301
302         if (fibptr->done == 2)
303                 return;
304
305         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
306         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
307                 aac_config.fib_timeouts++;
308         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
309                 fibptr->hw_fib_va->header.XferState != 0) {
310                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
311                          (void*)fibptr,
312                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
313         }
314         fibptr->next = fibptr->dev->free_fib;
315         fibptr->dev->free_fib = fibptr;
316         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
317 }
318
319 /**
320  *      aac_fib_init    -       initialise a fib
321  *      @fibptr: The fib to initialize
322  *
323  *      Set up the generic fib fields ready for use
324  */
325
326 void aac_fib_init(struct fib *fibptr)
327 {
328         struct hw_fib *hw_fib = fibptr->hw_fib_va;
329
330         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
331         hw_fib->header.StructType = FIB_MAGIC;
332         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
333         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
334         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
335         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
336 }
337
338 /**
339  *      fib_deallocate          -       deallocate a fib
340  *      @fibptr: fib to deallocate
341  *
342  *      Will deallocate and return to the free pool the FIB pointed to by the
343  *      caller.
344  */
345
346 static void fib_dealloc(struct fib * fibptr)
347 {
348         struct hw_fib *hw_fib = fibptr->hw_fib_va;
349         hw_fib->header.XferState = 0;
350 }
351
352 /*
353  *      Commuication primitives define and support the queuing method we use to
354  *      support host to adapter commuication. All queue accesses happen through
355  *      these routines and are the only routines which have a knowledge of the
356  *       how these queues are implemented.
357  */
358
359 /**
360  *      aac_get_entry           -       get a queue entry
361  *      @dev: Adapter
362  *      @qid: Queue Number
363  *      @entry: Entry return
364  *      @index: Index return
365  *      @nonotify: notification control
366  *
367  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
368  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
369  *      returned.
370  */
371
372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
373 {
374         struct aac_queue * q;
375         unsigned long idx;
376
377         /*
378          *      All of the queues wrap when they reach the end, so we check
379          *      to see if they have reached the end and if they have we just
380          *      set the index back to zero. This is a wrap. You could or off
381          *      the high bits in all updates but this is a bit faster I think.
382          */
383
384         q = &dev->queues->queue[qid];
385
386         idx = *index = le32_to_cpu(*(q->headers.producer));
387         /* Interrupt Moderation, only interrupt for first two entries */
388         if (idx != le32_to_cpu(*(q->headers.consumer))) {
389                 if (--idx == 0) {
390                         if (qid == AdapNormCmdQueue)
391                                 idx = ADAP_NORM_CMD_ENTRIES;
392                         else
393                                 idx = ADAP_NORM_RESP_ENTRIES;
394                 }
395                 if (idx != le32_to_cpu(*(q->headers.consumer)))
396                         *nonotify = 1;
397         }
398
399         if (qid == AdapNormCmdQueue) {
400                 if (*index >= ADAP_NORM_CMD_ENTRIES)
401                         *index = 0; /* Wrap to front of the Producer Queue. */
402         } else {
403                 if (*index >= ADAP_NORM_RESP_ENTRIES)
404                         *index = 0; /* Wrap to front of the Producer Queue. */
405         }
406
407         /* Queue is full */
408         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
409                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
410                                 qid, atomic_read(&q->numpending));
411                 return 0;
412         } else {
413                 *entry = q->base + *index;
414                 return 1;
415         }
416 }
417
418 /**
419  *      aac_queue_get           -       get the next free QE
420  *      @dev: Adapter
421  *      @index: Returned index
422  *      @priority: Priority of fib
423  *      @fib: Fib to associate with the queue entry
424  *      @wait: Wait if queue full
425  *      @fibptr: Driver fib object to go with fib
426  *      @nonotify: Don't notify the adapter
427  *
428  *      Gets the next free QE off the requested priorty adapter command
429  *      queue and associates the Fib with the QE. The QE represented by
430  *      index is ready to insert on the queue when this routine returns
431  *      success.
432  */
433
434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
435 {
436         struct aac_entry * entry = NULL;
437         int map = 0;
438
439         if (qid == AdapNormCmdQueue) {
440                 /*  if no entries wait for some if caller wants to */
441                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
442                         printk(KERN_ERR "GetEntries failed\n");
443                 }
444                 /*
445                  *      Setup queue entry with a command, status and fib mapped
446                  */
447                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
448                 map = 1;
449         } else {
450                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
451                         /* if no entries wait for some if caller wants to */
452                 }
453                 /*
454                  *      Setup queue entry with command, status and fib mapped
455                  */
456                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
457                 entry->addr = hw_fib->header.SenderFibAddress;
458                         /* Restore adapters pointer to the FIB */
459                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
460                 map = 0;
461         }
462         /*
463          *      If MapFib is true than we need to map the Fib and put pointers
464          *      in the queue entry.
465          */
466         if (map)
467                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
468         return 0;
469 }
470
471 /*
472  *      Define the highest level of host to adapter communication routines.
473  *      These routines will support host to adapter FS commuication. These
474  *      routines have no knowledge of the commuication method used. This level
475  *      sends and receives FIBs. This level has no knowledge of how these FIBs
476  *      get passed back and forth.
477  */
478
479 /**
480  *      aac_fib_send    -       send a fib to the adapter
481  *      @command: Command to send
482  *      @fibptr: The fib
483  *      @size: Size of fib data area
484  *      @priority: Priority of Fib
485  *      @wait: Async/sync select
486  *      @reply: True if a reply is wanted
487  *      @callback: Called with reply
488  *      @callback_data: Passed to callback
489  *
490  *      Sends the requested FIB to the adapter and optionally will wait for a
491  *      response FIB. If the caller does not wish to wait for a response than
492  *      an event to wait on must be supplied. This event will be set when a
493  *      response FIB is received from the adapter.
494  */
495
496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
497                 int priority, int wait, int reply, fib_callback callback,
498                 void *callback_data)
499 {
500         struct aac_dev * dev = fibptr->dev;
501         struct hw_fib * hw_fib = fibptr->hw_fib_va;
502         unsigned long flags = 0;
503         unsigned long mflags = 0;
504         unsigned long sflags = 0;
505
506         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
507                 return -EBUSY;
508
509         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
510                 return -EINVAL;
511
512         /*
513          *      There are 5 cases with the wait and response requested flags.
514          *      The only invalid cases are if the caller requests to wait and
515          *      does not request a response and if the caller does not want a
516          *      response and the Fib is not allocated from pool. If a response
517          *      is not requested the Fib will just be deallocaed by the DPC
518          *      routine when the response comes back from the adapter. No
519          *      further processing will be done besides deleting the Fib. We
520          *      will have a debug mode where the adapter can notify the host
521          *      it had a problem and the host can log that fact.
522          */
523         fibptr->flags = 0;
524         if (wait && !reply) {
525                 return -EINVAL;
526         } else if (!wait && reply) {
527                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
528                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
529         } else if (!wait && !reply) {
530                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
531                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
532         } else if (wait && reply) {
533                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
534                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
535         }
536         /*
537          *      Map the fib into 32bits by using the fib number
538          */
539
540         hw_fib->header.SenderFibAddress =
541                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
542
543         /* use the same shifted value for handle to be compatible
544          * with the new native hba command handle
545          */
546         hw_fib->header.Handle =
547                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
548
549         /*
550          *      Set FIB state to indicate where it came from and if we want a
551          *      response from the adapter. Also load the command from the
552          *      caller.
553          *
554          *      Map the hw fib pointer as a 32bit value
555          */
556         hw_fib->header.Command = cpu_to_le16(command);
557         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
558         /*
559          *      Set the size of the Fib we want to send to the adapter
560          */
561         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
562         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
563                 return -EMSGSIZE;
564         }
565         /*
566          *      Get a queue entry connect the FIB to it and send an notify
567          *      the adapter a command is ready.
568          */
569         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
570
571         /*
572          *      Fill in the Callback and CallbackContext if we are not
573          *      going to wait.
574          */
575         if (!wait) {
576                 fibptr->callback = callback;
577                 fibptr->callback_data = callback_data;
578                 fibptr->flags = FIB_CONTEXT_FLAG;
579         }
580
581         fibptr->done = 0;
582
583         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
584
585         dprintk((KERN_DEBUG "Fib contents:.\n"));
586         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
587         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
588         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
589         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
590         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
591         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
592
593         if (!dev->queues)
594                 return -EBUSY;
595
596         if (wait) {
597
598                 spin_lock_irqsave(&dev->manage_lock, mflags);
599                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
600                         printk(KERN_INFO "No management Fibs Available:%d\n",
601                                                 dev->management_fib_count);
602                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
603                         return -EBUSY;
604                 }
605                 dev->management_fib_count++;
606                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
607                 spin_lock_irqsave(&fibptr->event_lock, flags);
608         }
609
610         if (dev->sync_mode) {
611                 if (wait)
612                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
613                 spin_lock_irqsave(&dev->sync_lock, sflags);
614                 if (dev->sync_fib) {
615                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
616                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
617                 } else {
618                         dev->sync_fib = fibptr;
619                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
620                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
621                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
622                                 NULL, NULL, NULL, NULL, NULL);
623                 }
624                 if (wait) {
625                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
626                         if (down_interruptible(&fibptr->event_wait)) {
627                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
628                                 return -EFAULT;
629                         }
630                         return 0;
631                 }
632                 return -EINPROGRESS;
633         }
634
635         if (aac_adapter_deliver(fibptr) != 0) {
636                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
637                 if (wait) {
638                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
639                         spin_lock_irqsave(&dev->manage_lock, mflags);
640                         dev->management_fib_count--;
641                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
642                 }
643                 return -EBUSY;
644         }
645
646
647         /*
648          *      If the caller wanted us to wait for response wait now.
649          */
650
651         if (wait) {
652                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
653                 /* Only set for first known interruptable command */
654                 if (wait < 0) {
655                         /*
656                          * *VERY* Dangerous to time out a command, the
657                          * assumption is made that we have no hope of
658                          * functioning because an interrupt routing or other
659                          * hardware failure has occurred.
660                          */
661                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
662                         while (down_trylock(&fibptr->event_wait)) {
663                                 int blink;
664                                 if (time_is_before_eq_jiffies(timeout)) {
665                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
666                                         atomic_dec(&q->numpending);
667                                         if (wait == -1) {
668                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
669                                                   "Usually a result of a PCI interrupt routing problem;\n"
670                                                   "update mother board BIOS or consider utilizing one of\n"
671                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
672                                         }
673                                         return -ETIMEDOUT;
674                                 }
675
676                                 if (unlikely(aac_pci_offline(dev)))
677                                         return -EFAULT;
678
679                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
680                                         if (wait == -1) {
681                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
682                                                   "Usually a result of a serious unrecoverable hardware problem\n",
683                                                   blink);
684                                         }
685                                         return -EFAULT;
686                                 }
687                                 /*
688                                  * Allow other processes / CPUS to use core
689                                  */
690                                 schedule();
691                         }
692                 } else if (down_interruptible(&fibptr->event_wait)) {
693                         /* Do nothing ... satisfy
694                          * down_interruptible must_check */
695                 }
696
697                 spin_lock_irqsave(&fibptr->event_lock, flags);
698                 if (fibptr->done == 0) {
699                         fibptr->done = 2; /* Tell interrupt we aborted */
700                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
701                         return -ERESTARTSYS;
702                 }
703                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
704                 BUG_ON(fibptr->done == 0);
705
706                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
707                         return -ETIMEDOUT;
708                 return 0;
709         }
710         /*
711          *      If the user does not want a response than return success otherwise
712          *      return pending
713          */
714         if (reply)
715                 return -EINPROGRESS;
716         else
717                 return 0;
718 }
719
720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
721                 void *callback_data)
722 {
723         struct aac_dev *dev = fibptr->dev;
724         int wait;
725         unsigned long flags = 0;
726         unsigned long mflags = 0;
727         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
728                         fibptr->hw_fib_va;
729
730         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
731         if (callback) {
732                 wait = 0;
733                 fibptr->callback = callback;
734                 fibptr->callback_data = callback_data;
735         } else
736                 wait = 1;
737
738
739         hbacmd->iu_type = command;
740
741         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
742                 /* bit1 of request_id must be 0 */
743                 hbacmd->request_id =
744                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
745                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
746         } else
747                 return -EINVAL;
748
749
750         if (wait) {
751                 spin_lock_irqsave(&dev->manage_lock, mflags);
752                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
753                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
754                         return -EBUSY;
755                 }
756                 dev->management_fib_count++;
757                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
758                 spin_lock_irqsave(&fibptr->event_lock, flags);
759         }
760
761         if (aac_adapter_deliver(fibptr) != 0) {
762                 if (wait) {
763                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
764                         spin_lock_irqsave(&dev->manage_lock, mflags);
765                         dev->management_fib_count--;
766                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
767                 }
768                 return -EBUSY;
769         }
770         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
771
772         if (wait) {
773
774                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
775
776                 if (unlikely(aac_pci_offline(dev)))
777                         return -EFAULT;
778
779                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
780                 if (down_interruptible(&fibptr->event_wait))
781                         fibptr->done = 2;
782                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
783
784                 spin_lock_irqsave(&fibptr->event_lock, flags);
785                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
786                         fibptr->done = 2; /* Tell interrupt we aborted */
787                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
788                         return -ERESTARTSYS;
789                 }
790                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
791                 WARN_ON(fibptr->done == 0);
792
793                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
794                         return -ETIMEDOUT;
795
796                 return 0;
797         }
798
799         return -EINPROGRESS;
800 }
801
802 /**
803  *      aac_consumer_get        -       get the top of the queue
804  *      @dev: Adapter
805  *      @q: Queue
806  *      @entry: Return entry
807  *
808  *      Will return a pointer to the entry on the top of the queue requested that
809  *      we are a consumer of, and return the address of the queue entry. It does
810  *      not change the state of the queue.
811  */
812
813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
814 {
815         u32 index;
816         int status;
817         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
818                 status = 0;
819         } else {
820                 /*
821                  *      The consumer index must be wrapped if we have reached
822                  *      the end of the queue, else we just use the entry
823                  *      pointed to by the header index
824                  */
825                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
826                         index = 0;
827                 else
828                         index = le32_to_cpu(*q->headers.consumer);
829                 *entry = q->base + index;
830                 status = 1;
831         }
832         return(status);
833 }
834
835 /**
836  *      aac_consumer_free       -       free consumer entry
837  *      @dev: Adapter
838  *      @q: Queue
839  *      @qid: Queue ident
840  *
841  *      Frees up the current top of the queue we are a consumer of. If the
842  *      queue was full notify the producer that the queue is no longer full.
843  */
844
845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
846 {
847         int wasfull = 0;
848         u32 notify;
849
850         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
851                 wasfull = 1;
852
853         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854                 *q->headers.consumer = cpu_to_le32(1);
855         else
856                 le32_add_cpu(q->headers.consumer, 1);
857
858         if (wasfull) {
859                 switch (qid) {
860
861                 case HostNormCmdQueue:
862                         notify = HostNormCmdNotFull;
863                         break;
864                 case HostNormRespQueue:
865                         notify = HostNormRespNotFull;
866                         break;
867                 default:
868                         BUG();
869                         return;
870                 }
871                 aac_adapter_notify(dev, notify);
872         }
873 }
874
875 /**
876  *      aac_fib_adapter_complete        -       complete adapter issued fib
877  *      @fibptr: fib to complete
878  *      @size: size of fib
879  *
880  *      Will do all necessary work to complete a FIB that was sent from
881  *      the adapter.
882  */
883
884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
885 {
886         struct hw_fib * hw_fib = fibptr->hw_fib_va;
887         struct aac_dev * dev = fibptr->dev;
888         struct aac_queue * q;
889         unsigned long nointr = 0;
890         unsigned long qflags;
891
892         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
893                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
894                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
895                 kfree(hw_fib);
896                 return 0;
897         }
898
899         if (hw_fib->header.XferState == 0) {
900                 if (dev->comm_interface == AAC_COMM_MESSAGE)
901                         kfree(hw_fib);
902                 return 0;
903         }
904         /*
905          *      If we plan to do anything check the structure type first.
906          */
907         if (hw_fib->header.StructType != FIB_MAGIC &&
908             hw_fib->header.StructType != FIB_MAGIC2 &&
909             hw_fib->header.StructType != FIB_MAGIC2_64) {
910                 if (dev->comm_interface == AAC_COMM_MESSAGE)
911                         kfree(hw_fib);
912                 return -EINVAL;
913         }
914         /*
915          *      This block handles the case where the adapter had sent us a
916          *      command and we have finished processing the command. We
917          *      call completeFib when we are done processing the command
918          *      and want to send a response back to the adapter. This will
919          *      send the completed cdb to the adapter.
920          */
921         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
922                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
923                         kfree (hw_fib);
924                 } else {
925                         u32 index;
926                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
927                         if (size) {
928                                 size += sizeof(struct aac_fibhdr);
929                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
930                                         return -EMSGSIZE;
931                                 hw_fib->header.Size = cpu_to_le16(size);
932                         }
933                         q = &dev->queues->queue[AdapNormRespQueue];
934                         spin_lock_irqsave(q->lock, qflags);
935                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
936                         *(q->headers.producer) = cpu_to_le32(index + 1);
937                         spin_unlock_irqrestore(q->lock, qflags);
938                         if (!(nointr & (int)aac_config.irq_mod))
939                                 aac_adapter_notify(dev, AdapNormRespQueue);
940                 }
941         } else {
942                 printk(KERN_WARNING "aac_fib_adapter_complete: "
943                         "Unknown xferstate detected.\n");
944                 BUG();
945         }
946         return 0;
947 }
948
949 /**
950  *      aac_fib_complete        -       fib completion handler
951  *      @fib: FIB to complete
952  *
953  *      Will do all necessary work to complete a FIB.
954  */
955
956 int aac_fib_complete(struct fib *fibptr)
957 {
958         struct hw_fib * hw_fib = fibptr->hw_fib_va;
959
960         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
961                 fib_dealloc(fibptr);
962                 return 0;
963         }
964
965         /*
966          *      Check for a fib which has already been completed or with a
967          *      status wait timeout
968          */
969
970         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
971                 return 0;
972         /*
973          *      If we plan to do anything check the structure type first.
974          */
975
976         if (hw_fib->header.StructType != FIB_MAGIC &&
977             hw_fib->header.StructType != FIB_MAGIC2 &&
978             hw_fib->header.StructType != FIB_MAGIC2_64)
979                 return -EINVAL;
980         /*
981          *      This block completes a cdb which orginated on the host and we
982          *      just need to deallocate the cdb or reinit it. At this point the
983          *      command is complete that we had sent to the adapter and this
984          *      cdb could be reused.
985          */
986
987         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
988                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
989         {
990                 fib_dealloc(fibptr);
991         }
992         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
993         {
994                 /*
995                  *      This handles the case when the host has aborted the I/O
996                  *      to the adapter because the adapter is not responding
997                  */
998                 fib_dealloc(fibptr);
999         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1000                 fib_dealloc(fibptr);
1001         } else {
1002                 BUG();
1003         }
1004         return 0;
1005 }
1006
1007 /**
1008  *      aac_printf      -       handle printf from firmware
1009  *      @dev: Adapter
1010  *      @val: Message info
1011  *
1012  *      Print a message passed to us by the controller firmware on the
1013  *      Adaptec board
1014  */
1015
1016 void aac_printf(struct aac_dev *dev, u32 val)
1017 {
1018         char *cp = dev->printfbuf;
1019         if (dev->printf_enabled)
1020         {
1021                 int length = val & 0xffff;
1022                 int level = (val >> 16) & 0xffff;
1023
1024                 /*
1025                  *      The size of the printfbuf is set in port.c
1026                  *      There is no variable or define for it
1027                  */
1028                 if (length > 255)
1029                         length = 255;
1030                 if (cp[length] != 0)
1031                         cp[length] = 0;
1032                 if (level == LOG_AAC_HIGH_ERROR)
1033                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1034                 else
1035                         printk(KERN_INFO "%s:%s", dev->name, cp);
1036         }
1037         memset(cp, 0, 256);
1038 }
1039
1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1041 {
1042         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1043 }
1044
1045
1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1047 {
1048         switch (aac_aif_data(aifcmd, 1)) {
1049         case AifBuCacheDataLoss:
1050                 if (aac_aif_data(aifcmd, 2))
1051                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1052                         aac_aif_data(aifcmd, 2));
1053                 else
1054                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1055                 break;
1056         case AifBuCacheDataRecover:
1057                 if (aac_aif_data(aifcmd, 2))
1058                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1059                         aac_aif_data(aifcmd, 2));
1060                 else
1061                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1062                 break;
1063         }
1064 }
1065
1066 /**
1067  *      aac_handle_aif          -       Handle a message from the firmware
1068  *      @dev: Which adapter this fib is from
1069  *      @fibptr: Pointer to fibptr from adapter
1070  *
1071  *      This routine handles a driver notify fib from the adapter and
1072  *      dispatches it to the appropriate routine for handling.
1073  */
1074
1075 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1077 {
1078         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1079         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1080         u32 channel, id, lun, container;
1081         struct scsi_device *device;
1082         enum {
1083                 NOTHING,
1084                 DELETE,
1085                 ADD,
1086                 CHANGE
1087         } device_config_needed = NOTHING;
1088
1089         /* Sniff for container changes */
1090
1091         if (!dev || !dev->fsa_dev)
1092                 return;
1093         container = channel = id = lun = (u32)-1;
1094
1095         /*
1096          *      We have set this up to try and minimize the number of
1097          * re-configures that take place. As a result of this when
1098          * certain AIF's come in we will set a flag waiting for another
1099          * type of AIF before setting the re-config flag.
1100          */
1101         switch (le32_to_cpu(aifcmd->command)) {
1102         case AifCmdDriverNotify:
1103                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1104                 case AifRawDeviceRemove:
1105                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106                         if ((container >> 28)) {
1107                                 container = (u32)-1;
1108                                 break;
1109                         }
1110                         channel = (container >> 24) & 0xF;
1111                         if (channel >= dev->maximum_num_channels) {
1112                                 container = (u32)-1;
1113                                 break;
1114                         }
1115                         id = container & 0xFFFF;
1116                         if (id >= dev->maximum_num_physicals) {
1117                                 container = (u32)-1;
1118                                 break;
1119                         }
1120                         lun = (container >> 16) & 0xFF;
1121                         container = (u32)-1;
1122                         channel = aac_phys_to_logical(channel);
1123                         device_config_needed = DELETE;
1124                         break;
1125
1126                 /*
1127                  *      Morph or Expand complete
1128                  */
1129                 case AifDenMorphComplete:
1130                 case AifDenVolumeExtendComplete:
1131                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1132                         if (container >= dev->maximum_num_containers)
1133                                 break;
1134
1135                         /*
1136                          *      Find the scsi_device associated with the SCSI
1137                          * address. Make sure we have the right array, and if
1138                          * so set the flag to initiate a new re-config once we
1139                          * see an AifEnConfigChange AIF come through.
1140                          */
1141
1142                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1143                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1144                                         CONTAINER_TO_CHANNEL(container),
1145                                         CONTAINER_TO_ID(container),
1146                                         CONTAINER_TO_LUN(container));
1147                                 if (device) {
1148                                         dev->fsa_dev[container].config_needed = CHANGE;
1149                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1150                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1151                                         scsi_device_put(device);
1152                                 }
1153                         }
1154                 }
1155
1156                 /*
1157                  *      If we are waiting on something and this happens to be
1158                  * that thing then set the re-configure flag.
1159                  */
1160                 if (container != (u32)-1) {
1161                         if (container >= dev->maximum_num_containers)
1162                                 break;
1163                         if ((dev->fsa_dev[container].config_waiting_on ==
1164                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1165                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1166                                 dev->fsa_dev[container].config_waiting_on = 0;
1167                 } else for (container = 0;
1168                     container < dev->maximum_num_containers; ++container) {
1169                         if ((dev->fsa_dev[container].config_waiting_on ==
1170                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1171                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1172                                 dev->fsa_dev[container].config_waiting_on = 0;
1173                 }
1174                 break;
1175
1176         case AifCmdEventNotify:
1177                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1178                 case AifEnBatteryEvent:
1179                         dev->cache_protected =
1180                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1181                         break;
1182                 /*
1183                  *      Add an Array.
1184                  */
1185                 case AifEnAddContainer:
1186                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1187                         if (container >= dev->maximum_num_containers)
1188                                 break;
1189                         dev->fsa_dev[container].config_needed = ADD;
1190                         dev->fsa_dev[container].config_waiting_on =
1191                                 AifEnConfigChange;
1192                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1193                         break;
1194
1195                 /*
1196                  *      Delete an Array.
1197                  */
1198                 case AifEnDeleteContainer:
1199                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                         if (container >= dev->maximum_num_containers)
1201                                 break;
1202                         dev->fsa_dev[container].config_needed = DELETE;
1203                         dev->fsa_dev[container].config_waiting_on =
1204                                 AifEnConfigChange;
1205                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1206                         break;
1207
1208                 /*
1209                  *      Container change detected. If we currently are not
1210                  * waiting on something else, setup to wait on a Config Change.
1211                  */
1212                 case AifEnContainerChange:
1213                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214                         if (container >= dev->maximum_num_containers)
1215                                 break;
1216                         if (dev->fsa_dev[container].config_waiting_on &&
1217                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1218                                 break;
1219                         dev->fsa_dev[container].config_needed = CHANGE;
1220                         dev->fsa_dev[container].config_waiting_on =
1221                                 AifEnConfigChange;
1222                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1223                         break;
1224
1225                 case AifEnConfigChange:
1226                         break;
1227
1228                 case AifEnAddJBOD:
1229                 case AifEnDeleteJBOD:
1230                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1231                         if ((container >> 28)) {
1232                                 container = (u32)-1;
1233                                 break;
1234                         }
1235                         channel = (container >> 24) & 0xF;
1236                         if (channel >= dev->maximum_num_channels) {
1237                                 container = (u32)-1;
1238                                 break;
1239                         }
1240                         id = container & 0xFFFF;
1241                         if (id >= dev->maximum_num_physicals) {
1242                                 container = (u32)-1;
1243                                 break;
1244                         }
1245                         lun = (container >> 16) & 0xFF;
1246                         container = (u32)-1;
1247                         channel = aac_phys_to_logical(channel);
1248                         device_config_needed =
1249                           (((__le32 *)aifcmd->data)[0] ==
1250                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1251                         if (device_config_needed == ADD) {
1252                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1253                                         channel,
1254                                         id,
1255                                         lun);
1256                                 if (device) {
1257                                         scsi_remove_device(device);
1258                                         scsi_device_put(device);
1259                                 }
1260                         }
1261                         break;
1262
1263                 case AifEnEnclosureManagement:
1264                         /*
1265                          * If in JBOD mode, automatic exposure of new
1266                          * physical target to be suppressed until configured.
1267                          */
1268                         if (dev->jbod)
1269                                 break;
1270                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1271                         case EM_DRIVE_INSERTION:
1272                         case EM_DRIVE_REMOVAL:
1273                         case EM_SES_DRIVE_INSERTION:
1274                         case EM_SES_DRIVE_REMOVAL:
1275                                 container = le32_to_cpu(
1276                                         ((__le32 *)aifcmd->data)[2]);
1277                                 if ((container >> 28)) {
1278                                         container = (u32)-1;
1279                                         break;
1280                                 }
1281                                 channel = (container >> 24) & 0xF;
1282                                 if (channel >= dev->maximum_num_channels) {
1283                                         container = (u32)-1;
1284                                         break;
1285                                 }
1286                                 id = container & 0xFFFF;
1287                                 lun = (container >> 16) & 0xFF;
1288                                 container = (u32)-1;
1289                                 if (id >= dev->maximum_num_physicals) {
1290                                         /* legacy dev_t ? */
1291                                         if ((0x2000 <= id) || lun || channel ||
1292                                           ((channel = (id >> 7) & 0x3F) >=
1293                                           dev->maximum_num_channels))
1294                                                 break;
1295                                         lun = (id >> 4) & 7;
1296                                         id &= 0xF;
1297                                 }
1298                                 channel = aac_phys_to_logical(channel);
1299                                 device_config_needed =
1300                                   ((((__le32 *)aifcmd->data)[3]
1301                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1302                                     (((__le32 *)aifcmd->data)[3]
1303                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1304                                   ADD : DELETE;
1305                                 break;
1306                         }
1307                         break;
1308                 case AifBuManagerEvent:
1309                         aac_handle_aif_bu(dev, aifcmd);
1310                         break;
1311                 }
1312
1313                 /*
1314                  *      If we are waiting on something and this happens to be
1315                  * that thing then set the re-configure flag.
1316                  */
1317                 if (container != (u32)-1) {
1318                         if (container >= dev->maximum_num_containers)
1319                                 break;
1320                         if ((dev->fsa_dev[container].config_waiting_on ==
1321                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1322                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1323                                 dev->fsa_dev[container].config_waiting_on = 0;
1324                 } else for (container = 0;
1325                     container < dev->maximum_num_containers; ++container) {
1326                         if ((dev->fsa_dev[container].config_waiting_on ==
1327                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1328                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1329                                 dev->fsa_dev[container].config_waiting_on = 0;
1330                 }
1331                 break;
1332
1333         case AifCmdJobProgress:
1334                 /*
1335                  *      These are job progress AIF's. When a Clear is being
1336                  * done on a container it is initially created then hidden from
1337                  * the OS. When the clear completes we don't get a config
1338                  * change so we monitor the job status complete on a clear then
1339                  * wait for a container change.
1340                  */
1341
1342                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1343                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1344                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1345                         for (container = 0;
1346                             container < dev->maximum_num_containers;
1347                             ++container) {
1348                                 /*
1349                                  * Stomp on all config sequencing for all
1350                                  * containers?
1351                                  */
1352                                 dev->fsa_dev[container].config_waiting_on =
1353                                         AifEnContainerChange;
1354                                 dev->fsa_dev[container].config_needed = ADD;
1355                                 dev->fsa_dev[container].config_waiting_stamp =
1356                                         jiffies;
1357                         }
1358                 }
1359                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1360                     ((__le32 *)aifcmd->data)[6] == 0 &&
1361                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1362                         for (container = 0;
1363                             container < dev->maximum_num_containers;
1364                             ++container) {
1365                                 /*
1366                                  * Stomp on all config sequencing for all
1367                                  * containers?
1368                                  */
1369                                 dev->fsa_dev[container].config_waiting_on =
1370                                         AifEnContainerChange;
1371                                 dev->fsa_dev[container].config_needed = DELETE;
1372                                 dev->fsa_dev[container].config_waiting_stamp =
1373                                         jiffies;
1374                         }
1375                 }
1376                 break;
1377         }
1378
1379         container = 0;
1380 retry_next:
1381         if (device_config_needed == NOTHING)
1382         for (; container < dev->maximum_num_containers; ++container) {
1383                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1384                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1385                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1386                         device_config_needed =
1387                                 dev->fsa_dev[container].config_needed;
1388                         dev->fsa_dev[container].config_needed = NOTHING;
1389                         channel = CONTAINER_TO_CHANNEL(container);
1390                         id = CONTAINER_TO_ID(container);
1391                         lun = CONTAINER_TO_LUN(container);
1392                         break;
1393                 }
1394         }
1395         if (device_config_needed == NOTHING)
1396                 return;
1397
1398         /*
1399          *      If we decided that a re-configuration needs to be done,
1400          * schedule it here on the way out the door, please close the door
1401          * behind you.
1402          */
1403
1404         /*
1405          *      Find the scsi_device associated with the SCSI address,
1406          * and mark it as changed, invalidating the cache. This deals
1407          * with changes to existing device IDs.
1408          */
1409
1410         if (!dev || !dev->scsi_host_ptr)
1411                 return;
1412         /*
1413          * force reload of disk info via aac_probe_container
1414          */
1415         if ((channel == CONTAINER_CHANNEL) &&
1416           (device_config_needed != NOTHING)) {
1417                 if (dev->fsa_dev[container].valid == 1)
1418                         dev->fsa_dev[container].valid = 2;
1419                 aac_probe_container(dev, container);
1420         }
1421         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1422         if (device) {
1423                 switch (device_config_needed) {
1424                 case DELETE:
1425 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1426                         scsi_remove_device(device);
1427 #else
1428                         if (scsi_device_online(device)) {
1429                                 scsi_device_set_state(device, SDEV_OFFLINE);
1430                                 sdev_printk(KERN_INFO, device,
1431                                         "Device offlined - %s\n",
1432                                         (channel == CONTAINER_CHANNEL) ?
1433                                                 "array deleted" :
1434                                                 "enclosure services event");
1435                         }
1436 #endif
1437                         break;
1438                 case ADD:
1439                         if (!scsi_device_online(device)) {
1440                                 sdev_printk(KERN_INFO, device,
1441                                         "Device online - %s\n",
1442                                         (channel == CONTAINER_CHANNEL) ?
1443                                                 "array created" :
1444                                                 "enclosure services event");
1445                                 scsi_device_set_state(device, SDEV_RUNNING);
1446                         }
1447                         /* FALLTHRU */
1448                 case CHANGE:
1449                         if ((channel == CONTAINER_CHANNEL)
1450                          && (!dev->fsa_dev[container].valid)) {
1451 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1452                                 scsi_remove_device(device);
1453 #else
1454                                 if (!scsi_device_online(device))
1455                                         break;
1456                                 scsi_device_set_state(device, SDEV_OFFLINE);
1457                                 sdev_printk(KERN_INFO, device,
1458                                         "Device offlined - %s\n",
1459                                         "array failed");
1460 #endif
1461                                 break;
1462                         }
1463                         scsi_rescan_device(&device->sdev_gendev);
1464
1465                 default:
1466                         break;
1467                 }
1468                 scsi_device_put(device);
1469                 device_config_needed = NOTHING;
1470         }
1471         if (device_config_needed == ADD)
1472                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1473         if (channel == CONTAINER_CHANNEL) {
1474                 container++;
1475                 device_config_needed = NOTHING;
1476                 goto retry_next;
1477         }
1478 }
1479
1480 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1481 {
1482         int index, quirks;
1483         int retval;
1484         struct Scsi_Host *host;
1485         struct scsi_device *dev;
1486         struct scsi_cmnd *command;
1487         struct scsi_cmnd *command_list;
1488         int jafo = 0;
1489         int bled;
1490         u64 dmamask;
1491         int num_of_fibs = 0;
1492
1493         /*
1494          * Assumptions:
1495          *      - host is locked, unless called by the aacraid thread.
1496          *        (a matter of convenience, due to legacy issues surrounding
1497          *        eh_host_adapter_reset).
1498          *      - in_reset is asserted, so no new i/o is getting to the
1499          *        card.
1500          *      - The card is dead, or will be very shortly ;-/ so no new
1501          *        commands are completing in the interrupt service.
1502          */
1503         host = aac->scsi_host_ptr;
1504         scsi_block_requests(host);
1505         aac_adapter_disable_int(aac);
1506         if (aac->thread && aac->thread->pid != current->pid) {
1507                 spin_unlock_irq(host->host_lock);
1508                 kthread_stop(aac->thread);
1509                 aac->thread = NULL;
1510                 jafo = 1;
1511         }
1512
1513         /*
1514          *      If a positive health, means in a known DEAD PANIC
1515          * state and the adapter could be reset to `try again'.
1516          */
1517         bled = forced ? 0 : aac_adapter_check_health(aac);
1518         retval = aac_adapter_restart(aac, bled, reset_type);
1519
1520         if (retval)
1521                 goto out;
1522
1523         /*
1524          *      Loop through the fibs, close the synchronous FIBS
1525          */
1526         retval = 1;
1527         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1528         for (index = 0; index <  num_of_fibs; index++) {
1529
1530                 struct fib *fib = &aac->fibs[index];
1531                 __le32 XferState = fib->hw_fib_va->header.XferState;
1532                 bool is_response_expected = false;
1533
1534                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1535                    (XferState & cpu_to_le32(ResponseExpected)))
1536                         is_response_expected = true;
1537
1538                 if (is_response_expected
1539                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1540                         unsigned long flagv;
1541                         spin_lock_irqsave(&fib->event_lock, flagv);
1542                         up(&fib->event_wait);
1543                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1544                         schedule();
1545                         retval = 0;
1546                 }
1547         }
1548         /* Give some extra time for ioctls to complete. */
1549         if (retval == 0)
1550                 ssleep(2);
1551         index = aac->cardtype;
1552
1553         /*
1554          * Re-initialize the adapter, first free resources, then carefully
1555          * apply the initialization sequence to come back again. Only risk
1556          * is a change in Firmware dropping cache, it is assumed the caller
1557          * will ensure that i/o is queisced and the card is flushed in that
1558          * case.
1559          */
1560         aac_free_irq(aac);
1561         aac_fib_map_free(aac);
1562         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1563                           aac->comm_phys);
1564         aac->comm_addr = NULL;
1565         aac->comm_phys = 0;
1566         kfree(aac->queues);
1567         aac->queues = NULL;
1568         kfree(aac->fsa_dev);
1569         aac->fsa_dev = NULL;
1570
1571         dmamask = DMA_BIT_MASK(32);
1572         quirks = aac_get_driver_ident(index)->quirks;
1573         if (quirks & AAC_QUIRK_31BIT)
1574                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1575         else if (!(quirks & AAC_QUIRK_SRC))
1576                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1577         else
1578                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1579
1580         if (quirks & AAC_QUIRK_31BIT && !retval) {
1581                 dmamask = DMA_BIT_MASK(31);
1582                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1583         }
1584
1585         if (retval)
1586                 goto out;
1587
1588         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1589                 goto out;
1590
1591         if (jafo) {
1592                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1593                                           aac->name);
1594                 if (IS_ERR(aac->thread)) {
1595                         retval = PTR_ERR(aac->thread);
1596                         aac->thread = NULL;
1597                         goto out;
1598                 }
1599         }
1600         (void)aac_get_adapter_info(aac);
1601         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1602                 host->sg_tablesize = 34;
1603                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1604         }
1605         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1606                 host->sg_tablesize = 17;
1607                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1608         }
1609         aac_get_config_status(aac, 1);
1610         aac_get_containers(aac);
1611         /*
1612          * This is where the assumption that the Adapter is quiesced
1613          * is important.
1614          */
1615         command_list = NULL;
1616         __shost_for_each_device(dev, host) {
1617                 unsigned long flags;
1618                 spin_lock_irqsave(&dev->list_lock, flags);
1619                 list_for_each_entry(command, &dev->cmd_list, list)
1620                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1621                                 command->SCp.buffer = (struct scatterlist *)command_list;
1622                                 command_list = command;
1623                         }
1624                 spin_unlock_irqrestore(&dev->list_lock, flags);
1625         }
1626         while ((command = command_list)) {
1627                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1628                 command->SCp.buffer = NULL;
1629                 command->result = DID_OK << 16
1630                   | COMMAND_COMPLETE << 8
1631                   | SAM_STAT_TASK_SET_FULL;
1632                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1633                 command->scsi_done(command);
1634         }
1635         /*
1636          * Any Device that was already marked offline needs to be marked
1637          * running
1638          */
1639         __shost_for_each_device(dev, host) {
1640                 if (!scsi_device_online(dev))
1641                         scsi_device_set_state(dev, SDEV_RUNNING);
1642         }
1643         retval = 0;
1644
1645 out:
1646         aac->in_reset = 0;
1647         scsi_unblock_requests(host);
1648
1649         /*
1650          * Issue bus rescan to catch any configuration that might have
1651          * occurred
1652          */
1653         if (!retval && !is_kdump_kernel()) {
1654                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1655                 aac_schedule_safw_scan_worker(aac);
1656         }
1657
1658         if (jafo) {
1659                 spin_lock_irq(host->host_lock);
1660         }
1661         return retval;
1662 }
1663
1664 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1665 {
1666         unsigned long flagv = 0;
1667         int retval;
1668         struct Scsi_Host * host;
1669         int bled;
1670
1671         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1672                 return -EBUSY;
1673
1674         if (aac->in_reset) {
1675                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1676                 return -EBUSY;
1677         }
1678         aac->in_reset = 1;
1679         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1680
1681         /*
1682          * Wait for all commands to complete to this specific
1683          * target (block maximum 60 seconds). Although not necessary,
1684          * it does make us a good storage citizen.
1685          */
1686         host = aac->scsi_host_ptr;
1687         scsi_block_requests(host);
1688
1689         /* Quiesce build, flush cache, write through mode */
1690         if (forced < 2)
1691                 aac_send_shutdown(aac);
1692         spin_lock_irqsave(host->host_lock, flagv);
1693         bled = forced ? forced :
1694                         (aac_check_reset != 0 && aac_check_reset != 1);
1695         retval = _aac_reset_adapter(aac, bled, reset_type);
1696         spin_unlock_irqrestore(host->host_lock, flagv);
1697
1698         if ((forced < 2) && (retval == -ENODEV)) {
1699                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1700                 struct fib * fibctx = aac_fib_alloc(aac);
1701                 if (fibctx) {
1702                         struct aac_pause *cmd;
1703                         int status;
1704
1705                         aac_fib_init(fibctx);
1706
1707                         cmd = (struct aac_pause *) fib_data(fibctx);
1708
1709                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1710                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1711                         cmd->timeout = cpu_to_le32(1);
1712                         cmd->min = cpu_to_le32(1);
1713                         cmd->noRescan = cpu_to_le32(1);
1714                         cmd->count = cpu_to_le32(0);
1715
1716                         status = aac_fib_send(ContainerCommand,
1717                           fibctx,
1718                           sizeof(struct aac_pause),
1719                           FsaNormal,
1720                           -2 /* Timeout silently */, 1,
1721                           NULL, NULL);
1722
1723                         if (status >= 0)
1724                                 aac_fib_complete(fibctx);
1725                         /* FIB should be freed only after getting
1726                          * the response from the F/W */
1727                         if (status != -ERESTARTSYS)
1728                                 aac_fib_free(fibctx);
1729                 }
1730         }
1731
1732         return retval;
1733 }
1734
1735 int aac_check_health(struct aac_dev * aac)
1736 {
1737         int BlinkLED;
1738         unsigned long time_now, flagv = 0;
1739         struct list_head * entry;
1740
1741         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1742         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1743                 return 0;
1744
1745         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1746                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1747                 return 0; /* OK */
1748         }
1749
1750         aac->in_reset = 1;
1751
1752         /* Fake up an AIF:
1753          *      aac_aifcmd.command = AifCmdEventNotify = 1
1754          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1755          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1756          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1757          *      aac.aifcmd.data[2] = AifHighPriority = 3
1758          *      aac.aifcmd.data[3] = BlinkLED
1759          */
1760
1761         time_now = jiffies/HZ;
1762         entry = aac->fib_list.next;
1763
1764         /*
1765          * For each Context that is on the
1766          * fibctxList, make a copy of the
1767          * fib, and then set the event to wake up the
1768          * thread that is waiting for it.
1769          */
1770         while (entry != &aac->fib_list) {
1771                 /*
1772                  * Extract the fibctx
1773                  */
1774                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1775                 struct hw_fib * hw_fib;
1776                 struct fib * fib;
1777                 /*
1778                  * Check if the queue is getting
1779                  * backlogged
1780                  */
1781                 if (fibctx->count > 20) {
1782                         /*
1783                          * It's *not* jiffies folks,
1784                          * but jiffies / HZ, so do not
1785                          * panic ...
1786                          */
1787                         u32 time_last = fibctx->jiffies;
1788                         /*
1789                          * Has it been > 2 minutes
1790                          * since the last read off
1791                          * the queue?
1792                          */
1793                         if ((time_now - time_last) > aif_timeout) {
1794                                 entry = entry->next;
1795                                 aac_close_fib_context(aac, fibctx);
1796                                 continue;
1797                         }
1798                 }
1799                 /*
1800                  * Warning: no sleep allowed while
1801                  * holding spinlock
1802                  */
1803                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1804                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1805                 if (fib && hw_fib) {
1806                         struct aac_aifcmd * aif;
1807
1808                         fib->hw_fib_va = hw_fib;
1809                         fib->dev = aac;
1810                         aac_fib_init(fib);
1811                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1812                         fib->size = sizeof (struct fib);
1813                         fib->data = hw_fib->data;
1814                         aif = (struct aac_aifcmd *)hw_fib->data;
1815                         aif->command = cpu_to_le32(AifCmdEventNotify);
1816                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1817                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1818                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1819                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1820                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1821
1822                         /*
1823                          * Put the FIB onto the
1824                          * fibctx's fibs
1825                          */
1826                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1827                         fibctx->count++;
1828                         /*
1829                          * Set the event to wake up the
1830                          * thread that will waiting.
1831                          */
1832                         up(&fibctx->wait_sem);
1833                 } else {
1834                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1835                         kfree(fib);
1836                         kfree(hw_fib);
1837                 }
1838                 entry = entry->next;
1839         }
1840
1841         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1842
1843         if (BlinkLED < 0) {
1844                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1845                                 aac->name, BlinkLED);
1846                 goto out;
1847         }
1848
1849         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1850
1851 out:
1852         aac->in_reset = 0;
1853         return BlinkLED;
1854 }
1855
1856 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1857 {
1858         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1859 }
1860
1861 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1862                                                                 int bus,
1863                                                                 int target)
1864 {
1865         if (bus != CONTAINER_CHANNEL)
1866                 bus = aac_phys_to_logical(bus);
1867
1868         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1869 }
1870
1871 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873         if (bus != CONTAINER_CHANNEL)
1874                 bus = aac_phys_to_logical(bus);
1875
1876         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1877 }
1878
1879 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1880 {
1881         if (sdev)
1882                 scsi_device_put(sdev);
1883 }
1884
1885 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1886 {
1887         struct scsi_device *sdev;
1888
1889         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1890         scsi_remove_device(sdev);
1891         aac_put_safw_scsi_device(sdev);
1892 }
1893
1894 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1895         int bus, int target)
1896 {
1897         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1898 }
1899
1900 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1901 {
1902         if (is_safw_raid_volume(dev, bus, target))
1903                 return dev->fsa_dev[target].valid;
1904         else
1905                 return aac_is_safw_scan_count_equal(dev, bus, target);
1906 }
1907
1908 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1909 {
1910         int is_exposed = 0;
1911         struct scsi_device *sdev;
1912
1913         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1914         if (sdev)
1915                 is_exposed = 1;
1916         aac_put_safw_scsi_device(sdev);
1917
1918         return is_exposed;
1919 }
1920
1921 static int aac_update_safw_host_devices(struct aac_dev *dev)
1922 {
1923         int i;
1924         int bus;
1925         int target;
1926         int is_exposed = 0;
1927         int rcode = 0;
1928
1929         rcode = aac_setup_safw_adapter(dev);
1930         if (unlikely(rcode < 0)) {
1931                 goto out;
1932         }
1933
1934         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1935
1936                 bus = get_bus_number(i);
1937                 target = get_target_number(i);
1938
1939                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1940
1941                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1942                         aac_add_safw_device(dev, bus, target);
1943                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1944                                                                 is_exposed)
1945                         aac_remove_safw_device(dev, bus, target);
1946         }
1947 out:
1948         return rcode;
1949 }
1950
1951 static int aac_scan_safw_host(struct aac_dev *dev)
1952 {
1953         int rcode = 0;
1954
1955         rcode = aac_update_safw_host_devices(dev);
1956         if (rcode)
1957                 aac_schedule_safw_scan_worker(dev);
1958
1959         return rcode;
1960 }
1961
1962 int aac_scan_host(struct aac_dev *dev)
1963 {
1964         int rcode = 0;
1965
1966         mutex_lock(&dev->scan_mutex);
1967         if (dev->sa_firmware)
1968                 rcode = aac_scan_safw_host(dev);
1969         else
1970                 scsi_scan_host(dev->scsi_host_ptr);
1971         mutex_unlock(&dev->scan_mutex);
1972
1973         return rcode;
1974 }
1975
1976 /**
1977  *      aac_handle_sa_aif       Handle a message from the firmware
1978  *      @dev: Which adapter this fib is from
1979  *      @fibptr: Pointer to fibptr from adapter
1980  *
1981  *      This routine handles a driver notify fib from the adapter and
1982  *      dispatches it to the appropriate routine for handling.
1983  */
1984 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1985 {
1986         int i;
1987         u32 events = 0;
1988
1989         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1990                 events = SA_AIF_HOTPLUG;
1991         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1992                 events = SA_AIF_HARDWARE;
1993         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1994                 events = SA_AIF_PDEV_CHANGE;
1995         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1996                 events = SA_AIF_LDEV_CHANGE;
1997         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1998                 events = SA_AIF_BPSTAT_CHANGE;
1999         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
2000                 events = SA_AIF_BPCFG_CHANGE;
2001
2002         switch (events) {
2003         case SA_AIF_HOTPLUG:
2004         case SA_AIF_HARDWARE:
2005         case SA_AIF_PDEV_CHANGE:
2006         case SA_AIF_LDEV_CHANGE:
2007         case SA_AIF_BPCFG_CHANGE:
2008
2009                 aac_scan_host(dev);
2010
2011                 break;
2012
2013         case SA_AIF_BPSTAT_CHANGE:
2014                 /* currently do nothing */
2015                 break;
2016         }
2017
2018         for (i = 1; i <= 10; ++i) {
2019                 events = src_readl(dev, MUnit.IDR);
2020                 if (events & (1<<23)) {
2021                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2022                                 i, 10);
2023                         ssleep(1);
2024                 }
2025         }
2026 }
2027
2028 static int get_fib_count(struct aac_dev *dev)
2029 {
2030         unsigned int num = 0;
2031         struct list_head *entry;
2032         unsigned long flagv;
2033
2034         /*
2035          * Warning: no sleep allowed while
2036          * holding spinlock. We take the estimate
2037          * and pre-allocate a set of fibs outside the
2038          * lock.
2039          */
2040         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2041                         / sizeof(struct hw_fib); /* some extra */
2042         spin_lock_irqsave(&dev->fib_lock, flagv);
2043         entry = dev->fib_list.next;
2044         while (entry != &dev->fib_list) {
2045                 entry = entry->next;
2046                 ++num;
2047         }
2048         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2049
2050         return num;
2051 }
2052
2053 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2054                                                 struct fib **fib_pool,
2055                                                 unsigned int num)
2056 {
2057         struct hw_fib **hw_fib_p;
2058         struct fib **fib_p;
2059
2060         hw_fib_p = hw_fib_pool;
2061         fib_p = fib_pool;
2062         while (hw_fib_p < &hw_fib_pool[num]) {
2063                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2064                 if (!(*(hw_fib_p++))) {
2065                         --hw_fib_p;
2066                         break;
2067                 }
2068
2069                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2070                 if (!(*(fib_p++))) {
2071                         kfree(*(--hw_fib_p));
2072                         break;
2073                 }
2074         }
2075
2076         /*
2077          * Get the actual number of allocated fibs
2078          */
2079         num = hw_fib_p - hw_fib_pool;
2080         return num;
2081 }
2082
2083 static void wakeup_fibctx_threads(struct aac_dev *dev,
2084                                                 struct hw_fib **hw_fib_pool,
2085                                                 struct fib **fib_pool,
2086                                                 struct fib *fib,
2087                                                 struct hw_fib *hw_fib,
2088                                                 unsigned int num)
2089 {
2090         unsigned long flagv;
2091         struct list_head *entry;
2092         struct hw_fib **hw_fib_p;
2093         struct fib **fib_p;
2094         u32 time_now, time_last;
2095         struct hw_fib *hw_newfib;
2096         struct fib *newfib;
2097         struct aac_fib_context *fibctx;
2098
2099         time_now = jiffies/HZ;
2100         spin_lock_irqsave(&dev->fib_lock, flagv);
2101         entry = dev->fib_list.next;
2102         /*
2103          * For each Context that is on the
2104          * fibctxList, make a copy of the
2105          * fib, and then set the event to wake up the
2106          * thread that is waiting for it.
2107          */
2108
2109         hw_fib_p = hw_fib_pool;
2110         fib_p = fib_pool;
2111         while (entry != &dev->fib_list) {
2112                 /*
2113                  * Extract the fibctx
2114                  */
2115                 fibctx = list_entry(entry, struct aac_fib_context,
2116                                 next);
2117                 /*
2118                  * Check if the queue is getting
2119                  * backlogged
2120                  */
2121                 if (fibctx->count > 20) {
2122                         /*
2123                          * It's *not* jiffies folks,
2124                          * but jiffies / HZ so do not
2125                          * panic ...
2126                          */
2127                         time_last = fibctx->jiffies;
2128                         /*
2129                          * Has it been > 2 minutes
2130                          * since the last read off
2131                          * the queue?
2132                          */
2133                         if ((time_now - time_last) > aif_timeout) {
2134                                 entry = entry->next;
2135                                 aac_close_fib_context(dev, fibctx);
2136                                 continue;
2137                         }
2138                 }
2139                 /*
2140                  * Warning: no sleep allowed while
2141                  * holding spinlock
2142                  */
2143                 if (hw_fib_p >= &hw_fib_pool[num]) {
2144                         pr_warn("aifd: didn't allocate NewFib\n");
2145                         entry = entry->next;
2146                         continue;
2147                 }
2148
2149                 hw_newfib = *hw_fib_p;
2150                 *(hw_fib_p++) = NULL;
2151                 newfib = *fib_p;
2152                 *(fib_p++) = NULL;
2153                 /*
2154                  * Make the copy of the FIB
2155                  */
2156                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2157                 memcpy(newfib, fib, sizeof(struct fib));
2158                 newfib->hw_fib_va = hw_newfib;
2159                 /*
2160                  * Put the FIB onto the
2161                  * fibctx's fibs
2162                  */
2163                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2164                 fibctx->count++;
2165                 /*
2166                  * Set the event to wake up the
2167                  * thread that is waiting.
2168                  */
2169                 up(&fibctx->wait_sem);
2170
2171                 entry = entry->next;
2172         }
2173         /*
2174          *      Set the status of this FIB
2175          */
2176         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2177         aac_fib_adapter_complete(fib, sizeof(u32));
2178         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2179
2180 }
2181
2182 static void aac_process_events(struct aac_dev *dev)
2183 {
2184         struct hw_fib *hw_fib;
2185         struct fib *fib;
2186         unsigned long flags;
2187         spinlock_t *t_lock;
2188
2189         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2190         spin_lock_irqsave(t_lock, flags);
2191
2192         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2193                 struct list_head *entry;
2194                 struct aac_aifcmd *aifcmd;
2195                 unsigned int  num;
2196                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2197                 struct fib **fib_pool, **fib_p;
2198
2199                 set_current_state(TASK_RUNNING);
2200
2201                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2202                 list_del(entry);
2203
2204                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2205                 spin_unlock_irqrestore(t_lock, flags);
2206
2207                 fib = list_entry(entry, struct fib, fiblink);
2208                 hw_fib = fib->hw_fib_va;
2209                 if (dev->sa_firmware) {
2210                         /* Thor AIF */
2211                         aac_handle_sa_aif(dev, fib);
2212                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213                         goto free_fib;
2214                 }
2215                 /*
2216                  *      We will process the FIB here or pass it to a
2217                  *      worker thread that is TBD. We Really can't
2218                  *      do anything at this point since we don't have
2219                  *      anything defined for this thread to do.
2220                  */
2221                 memset(fib, 0, sizeof(struct fib));
2222                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2223                 fib->size = sizeof(struct fib);
2224                 fib->hw_fib_va = hw_fib;
2225                 fib->data = hw_fib->data;
2226                 fib->dev = dev;
2227                 /*
2228                  *      We only handle AifRequest fibs from the adapter.
2229                  */
2230
2231                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2232                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2233                         /* Handle Driver Notify Events */
2234                         aac_handle_aif(dev, fib);
2235                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2236                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2237                         goto free_fib;
2238                 }
2239                 /*
2240                  * The u32 here is important and intended. We are using
2241                  * 32bit wrapping time to fit the adapter field
2242                  */
2243
2244                 /* Sniff events */
2245                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2246                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2247                         aac_handle_aif(dev, fib);
2248                 }
2249
2250                 /*
2251                  * get number of fibs to process
2252                  */
2253                 num = get_fib_count(dev);
2254                 if (!num)
2255                         goto free_fib;
2256
2257                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2258                                                 GFP_KERNEL);
2259                 if (!hw_fib_pool)
2260                         goto free_fib;
2261
2262                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2263                 if (!fib_pool)
2264                         goto free_hw_fib_pool;
2265
2266                 /*
2267                  * Fill up fib pointer pools with actual fibs
2268                  * and hw_fibs
2269                  */
2270                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2271                 if (!num)
2272                         goto free_mem;
2273
2274                 /*
2275                  * wakeup the thread that is waiting for
2276                  * the response from fw (ioctl)
2277                  */
2278                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2279                                                             fib, hw_fib, num);
2280
2281 free_mem:
2282                 /* Free up the remaining resources */
2283                 hw_fib_p = hw_fib_pool;
2284                 fib_p = fib_pool;
2285                 while (hw_fib_p < &hw_fib_pool[num]) {
2286                         kfree(*hw_fib_p);
2287                         kfree(*fib_p);
2288                         ++fib_p;
2289                         ++hw_fib_p;
2290                 }
2291                 kfree(fib_pool);
2292 free_hw_fib_pool:
2293                 kfree(hw_fib_pool);
2294 free_fib:
2295                 kfree(fib);
2296                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2297                 spin_lock_irqsave(t_lock, flags);
2298         }
2299         /*
2300          *      There are no more AIF's
2301          */
2302         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2303         spin_unlock_irqrestore(t_lock, flags);
2304 }
2305
2306 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2307                                                         u32 datasize)
2308 {
2309         struct aac_srb *srbcmd;
2310         struct sgmap64 *sg64;
2311         dma_addr_t addr;
2312         char *dma_buf;
2313         struct fib *fibptr;
2314         int ret = -ENOMEM;
2315         u32 vbus, vid;
2316
2317         fibptr = aac_fib_alloc(dev);
2318         if (!fibptr)
2319                 goto out;
2320
2321         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2322                                      GFP_KERNEL);
2323         if (!dma_buf)
2324                 goto fib_free_out;
2325
2326         aac_fib_init(fibptr);
2327
2328         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2329         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2330
2331         srbcmd = (struct aac_srb *)fib_data(fibptr);
2332
2333         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2334         srbcmd->channel = cpu_to_le32(vbus);
2335         srbcmd->id = cpu_to_le32(vid);
2336         srbcmd->lun = 0;
2337         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2338         srbcmd->timeout = cpu_to_le32(10);
2339         srbcmd->retry_limit = 0;
2340         srbcmd->cdb_size = cpu_to_le32(12);
2341         srbcmd->count = cpu_to_le32(datasize);
2342
2343         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2344         srbcmd->cdb[0] = BMIC_OUT;
2345         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2346         memcpy(dma_buf, (char *)wellness_str, datasize);
2347
2348         sg64 = (struct sgmap64 *)&srbcmd->sg;
2349         sg64->count = cpu_to_le32(1);
2350         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2351         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2352         sg64->sg[0].count = cpu_to_le32(datasize);
2353
2354         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2355                                 FsaNormal, 1, 1, NULL, NULL);
2356
2357         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2358
2359         /*
2360          * Do not set XferState to zero unless
2361          * receives a response from F/W
2362          */
2363         if (ret >= 0)
2364                 aac_fib_complete(fibptr);
2365
2366         /*
2367          * FIB should be freed only after
2368          * getting the response from the F/W
2369          */
2370         if (ret != -ERESTARTSYS)
2371                 goto fib_free_out;
2372
2373 out:
2374         return ret;
2375 fib_free_out:
2376         aac_fib_free(fibptr);
2377         goto out;
2378 }
2379
2380 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2381 {
2382         struct tm cur_tm;
2383         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2384         u32 datasize = sizeof(wellness_str);
2385         time64_t local_time;
2386         int ret = -ENODEV;
2387
2388         if (!dev->sa_firmware)
2389                 goto out;
2390
2391         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2392         time64_to_tm(local_time, 0, &cur_tm);
2393         cur_tm.tm_mon += 1;
2394         cur_tm.tm_year += 1900;
2395         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2396         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2397         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2398         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2399         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2400         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2401         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2402
2403         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2404
2405 out:
2406         return ret;
2407 }
2408
2409 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2410 {
2411         int ret = -ENOMEM;
2412         struct fib *fibptr;
2413         __le32 *info;
2414
2415         fibptr = aac_fib_alloc(dev);
2416         if (!fibptr)
2417                 goto out;
2418
2419         aac_fib_init(fibptr);
2420         info = (__le32 *)fib_data(fibptr);
2421         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2422         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2423                                         1, 1, NULL, NULL);
2424
2425         /*
2426          * Do not set XferState to zero unless
2427          * receives a response from F/W
2428          */
2429         if (ret >= 0)
2430                 aac_fib_complete(fibptr);
2431
2432         /*
2433          * FIB should be freed only after
2434          * getting the response from the F/W
2435          */
2436         if (ret != -ERESTARTSYS)
2437                 aac_fib_free(fibptr);
2438
2439 out:
2440         return ret;
2441 }
2442
2443 /**
2444  *      aac_command_thread      -       command processing thread
2445  *      @dev: Adapter to monitor
2446  *
2447  *      Waits on the commandready event in it's queue. When the event gets set
2448  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2449  *      until the queue is empty. When the queue is empty it will wait for
2450  *      more FIBs.
2451  */
2452
2453 int aac_command_thread(void *data)
2454 {
2455         struct aac_dev *dev = data;
2456         DECLARE_WAITQUEUE(wait, current);
2457         unsigned long next_jiffies = jiffies + HZ;
2458         unsigned long next_check_jiffies = next_jiffies;
2459         long difference = HZ;
2460
2461         /*
2462          *      We can only have one thread per adapter for AIF's.
2463          */
2464         if (dev->aif_thread)
2465                 return -EINVAL;
2466
2467         /*
2468          *      Let the DPC know it has a place to send the AIF's to.
2469          */
2470         dev->aif_thread = 1;
2471         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2472         set_current_state(TASK_INTERRUPTIBLE);
2473         dprintk ((KERN_INFO "aac_command_thread start\n"));
2474         while (1) {
2475
2476                 aac_process_events(dev);
2477
2478                 /*
2479                  *      Background activity
2480                  */
2481                 if ((time_before(next_check_jiffies,next_jiffies))
2482                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2483                         next_check_jiffies = next_jiffies;
2484                         if (aac_adapter_check_health(dev) == 0) {
2485                                 difference = ((long)(unsigned)check_interval)
2486                                            * HZ;
2487                                 next_check_jiffies = jiffies + difference;
2488                         } else if (!dev->queues)
2489                                 break;
2490                 }
2491                 if (!time_before(next_check_jiffies,next_jiffies)
2492                  && ((difference = next_jiffies - jiffies) <= 0)) {
2493                         struct timespec64 now;
2494                         int ret;
2495
2496                         /* Don't even try to talk to adapter if its sick */
2497                         ret = aac_adapter_check_health(dev);
2498                         if (ret || !dev->queues)
2499                                 break;
2500                         next_check_jiffies = jiffies
2501                                            + ((long)(unsigned)check_interval)
2502                                            * HZ;
2503                         ktime_get_real_ts64(&now);
2504
2505                         /* Synchronize our watches */
2506                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2507                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2508                                 difference = HZ + HZ / 2 -
2509                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2510                         else {
2511                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2512                                         ++now.tv_sec;
2513
2514                                 if (dev->sa_firmware)
2515                                         ret =
2516                                         aac_send_safw_hostttime(dev, &now);
2517                                 else
2518                                         ret = aac_send_hosttime(dev, &now);
2519
2520                                 difference = (long)(unsigned)update_interval*HZ;
2521                         }
2522                         next_jiffies = jiffies + difference;
2523                         if (time_before(next_check_jiffies,next_jiffies))
2524                                 difference = next_check_jiffies - jiffies;
2525                 }
2526                 if (difference <= 0)
2527                         difference = 1;
2528                 set_current_state(TASK_INTERRUPTIBLE);
2529
2530                 if (kthread_should_stop())
2531                         break;
2532
2533                 /*
2534                  * we probably want usleep_range() here instead of the
2535                  * jiffies computation
2536                  */
2537                 schedule_timeout(difference);
2538
2539                 if (kthread_should_stop())
2540                         break;
2541         }
2542         if (dev->queues)
2543                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2544         dev->aif_thread = 0;
2545         return 0;
2546 }
2547
2548 int aac_acquire_irq(struct aac_dev *dev)
2549 {
2550         int i;
2551         int j;
2552         int ret = 0;
2553
2554         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2555                 for (i = 0; i < dev->max_msix; i++) {
2556                         dev->aac_msix[i].vector_no = i;
2557                         dev->aac_msix[i].dev = dev;
2558                         if (request_irq(pci_irq_vector(dev->pdev, i),
2559                                         dev->a_ops.adapter_intr,
2560                                         0, "aacraid", &(dev->aac_msix[i]))) {
2561                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2562                                                 dev->name, dev->id, i);
2563                                 for (j = 0 ; j < i ; j++)
2564                                         free_irq(pci_irq_vector(dev->pdev, j),
2565                                                  &(dev->aac_msix[j]));
2566                                 pci_disable_msix(dev->pdev);
2567                                 ret = -1;
2568                         }
2569                 }
2570         } else {
2571                 dev->aac_msix[0].vector_no = 0;
2572                 dev->aac_msix[0].dev = dev;
2573
2574                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2575                         IRQF_SHARED, "aacraid",
2576                         &(dev->aac_msix[0])) < 0) {
2577                         if (dev->msi)
2578                                 pci_disable_msi(dev->pdev);
2579                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2580                                         dev->name, dev->id);
2581                         ret = -1;
2582                 }
2583         }
2584         return ret;
2585 }
2586
2587 void aac_free_irq(struct aac_dev *dev)
2588 {
2589         int i;
2590         int cpu;
2591
2592         cpu = cpumask_first(cpu_online_mask);
2593         if (aac_is_src(dev)) {
2594                 if (dev->max_msix > 1) {
2595                         for (i = 0; i < dev->max_msix; i++)
2596                                 free_irq(pci_irq_vector(dev->pdev, i),
2597                                          &(dev->aac_msix[i]));
2598                 } else {
2599                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2600                 }
2601         } else {
2602                 free_irq(dev->pdev->irq, dev);
2603         }
2604         if (dev->msi)
2605                 pci_disable_msi(dev->pdev);
2606         else if (dev->max_msix > 1)
2607                 pci_disable_msix(dev->pdev);
2608 }