GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/kernel.h>
20 #include <linux/bcd.h>
21 #include <linux/rtc.h>
22 #include <linux/init.h>
23 #include <linux/platform_device.h>
24 #include <linux/seq_file.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/io.h>
28 #include <linux/log2.h>
29 #include <linux/clk.h>
30 #include <linux/slab.h>
31 #ifdef CONFIG_SUPERH
32 #include <asm/rtc.h>
33 #else
34 /* Default values for RZ/A RTC */
35 #define rtc_reg_size            sizeof(u16)
36 #define RTC_BIT_INVERTED        0       /* no chip bugs */
37 #define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
38 #define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
39 #endif
40
41 #define DRV_NAME        "sh-rtc"
42
43 #define RTC_REG(r)      ((r) * rtc_reg_size)
44
45 #define R64CNT          RTC_REG(0)
46
47 #define RSECCNT         RTC_REG(1)      /* RTC sec */
48 #define RMINCNT         RTC_REG(2)      /* RTC min */
49 #define RHRCNT          RTC_REG(3)      /* RTC hour */
50 #define RWKCNT          RTC_REG(4)      /* RTC week */
51 #define RDAYCNT         RTC_REG(5)      /* RTC day */
52 #define RMONCNT         RTC_REG(6)      /* RTC month */
53 #define RYRCNT          RTC_REG(7)      /* RTC year */
54 #define RSECAR          RTC_REG(8)      /* ALARM sec */
55 #define RMINAR          RTC_REG(9)      /* ALARM min */
56 #define RHRAR           RTC_REG(10)     /* ALARM hour */
57 #define RWKAR           RTC_REG(11)     /* ALARM week */
58 #define RDAYAR          RTC_REG(12)     /* ALARM day */
59 #define RMONAR          RTC_REG(13)     /* ALARM month */
60 #define RCR1            RTC_REG(14)     /* Control */
61 #define RCR2            RTC_REG(15)     /* Control */
62
63 /*
64  * Note on RYRAR and RCR3: Up until this point most of the register
65  * definitions are consistent across all of the available parts. However,
66  * the placement of the optional RYRAR and RCR3 (the RYRAR control
67  * register used to control RYRCNT/RYRAR compare) varies considerably
68  * across various parts, occasionally being mapped in to a completely
69  * unrelated address space. For proper RYRAR support a separate resource
70  * would have to be handed off, but as this is purely optional in
71  * practice, we simply opt not to support it, thereby keeping the code
72  * quite a bit more simplified.
73  */
74
75 /* ALARM Bits - or with BCD encoded value */
76 #define AR_ENB          0x80    /* Enable for alarm cmp   */
77
78 /* Period Bits */
79 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
80 #define PF_COUNT        0x200   /* Half periodic counter */
81 #define PF_OXS          0x400   /* Periodic One x Second */
82 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
83 #define PF_MASK         0xf00
84
85 /* RCR1 Bits */
86 #define RCR1_CF         0x80    /* Carry Flag             */
87 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
88 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
89 #define RCR1_AF         0x01    /* Alarm Flag             */
90
91 /* RCR2 Bits */
92 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
93 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
94 #define RCR2_RTCEN      0x08    /* ENable RTC              */
95 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
96 #define RCR2_RESET      0x02    /* Reset bit               */
97 #define RCR2_START      0x01    /* Start bit               */
98
99 struct sh_rtc {
100         void __iomem            *regbase;
101         unsigned long           regsize;
102         struct resource         *res;
103         int                     alarm_irq;
104         int                     periodic_irq;
105         int                     carry_irq;
106         struct clk              *clk;
107         struct rtc_device       *rtc_dev;
108         spinlock_t              lock;
109         unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
110         unsigned short          periodic_freq;
111 };
112
113 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
114 {
115         unsigned int tmp, pending;
116
117         tmp = readb(rtc->regbase + RCR1);
118         pending = tmp & RCR1_CF;
119         tmp &= ~RCR1_CF;
120         writeb(tmp, rtc->regbase + RCR1);
121
122         /* Users have requested One x Second IRQ */
123         if (pending && rtc->periodic_freq & PF_OXS)
124                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
125
126         return pending;
127 }
128
129 static int __sh_rtc_alarm(struct sh_rtc *rtc)
130 {
131         unsigned int tmp, pending;
132
133         tmp = readb(rtc->regbase + RCR1);
134         pending = tmp & RCR1_AF;
135         tmp &= ~(RCR1_AF | RCR1_AIE);
136         writeb(tmp, rtc->regbase + RCR1);
137
138         if (pending)
139                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
140
141         return pending;
142 }
143
144 static int __sh_rtc_periodic(struct sh_rtc *rtc)
145 {
146         unsigned int tmp, pending;
147
148         tmp = readb(rtc->regbase + RCR2);
149         pending = tmp & RCR2_PEF;
150         tmp &= ~RCR2_PEF;
151         writeb(tmp, rtc->regbase + RCR2);
152
153         if (!pending)
154                 return 0;
155
156         /* Half period enabled than one skipped and the next notified */
157         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
158                 rtc->periodic_freq &= ~PF_COUNT;
159         else {
160                 if (rtc->periodic_freq & PF_HP)
161                         rtc->periodic_freq |= PF_COUNT;
162                 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163         }
164
165         return pending;
166 }
167
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170         struct sh_rtc *rtc = dev_id;
171         int ret;
172
173         spin_lock(&rtc->lock);
174         ret = __sh_rtc_interrupt(rtc);
175         spin_unlock(&rtc->lock);
176
177         return IRQ_RETVAL(ret);
178 }
179
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182         struct sh_rtc *rtc = dev_id;
183         int ret;
184
185         spin_lock(&rtc->lock);
186         ret = __sh_rtc_alarm(rtc);
187         spin_unlock(&rtc->lock);
188
189         return IRQ_RETVAL(ret);
190 }
191
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194         struct sh_rtc *rtc = dev_id;
195         int ret;
196
197         spin_lock(&rtc->lock);
198         ret = __sh_rtc_periodic(rtc);
199         spin_unlock(&rtc->lock);
200
201         return IRQ_RETVAL(ret);
202 }
203
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206         struct sh_rtc *rtc = dev_id;
207         int ret;
208
209         spin_lock(&rtc->lock);
210         ret = __sh_rtc_interrupt(rtc);
211         ret |= __sh_rtc_alarm(rtc);
212         ret |= __sh_rtc_periodic(rtc);
213         spin_unlock(&rtc->lock);
214
215         return IRQ_RETVAL(ret);
216 }
217
218 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
219 {
220         struct sh_rtc *rtc = dev_get_drvdata(dev);
221         unsigned int tmp;
222
223         spin_lock_irq(&rtc->lock);
224
225         tmp = readb(rtc->regbase + RCR1);
226
227         if (enable)
228                 tmp |= RCR1_AIE;
229         else
230                 tmp &= ~RCR1_AIE;
231
232         writeb(tmp, rtc->regbase + RCR1);
233
234         spin_unlock_irq(&rtc->lock);
235 }
236
237 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
238 {
239         struct sh_rtc *rtc = dev_get_drvdata(dev);
240         unsigned int tmp;
241
242         tmp = readb(rtc->regbase + RCR1);
243         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
244
245         tmp = readb(rtc->regbase + RCR2);
246         seq_printf(seq, "periodic_IRQ\t: %s\n",
247                    (tmp & RCR2_PESMASK) ? "yes" : "no");
248
249         return 0;
250 }
251
252 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
253 {
254         struct sh_rtc *rtc = dev_get_drvdata(dev);
255         unsigned int tmp;
256
257         spin_lock_irq(&rtc->lock);
258
259         tmp = readb(rtc->regbase + RCR1);
260
261         if (!enable)
262                 tmp &= ~RCR1_CIE;
263         else
264                 tmp |= RCR1_CIE;
265
266         writeb(tmp, rtc->regbase + RCR1);
267
268         spin_unlock_irq(&rtc->lock);
269 }
270
271 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
272 {
273         sh_rtc_setaie(dev, enabled);
274         return 0;
275 }
276
277 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
278 {
279         struct sh_rtc *rtc = dev_get_drvdata(dev);
280         unsigned int sec128, sec2, yr, yr100, cf_bit;
281
282         do {
283                 unsigned int tmp;
284
285                 spin_lock_irq(&rtc->lock);
286
287                 tmp = readb(rtc->regbase + RCR1);
288                 tmp &= ~RCR1_CF; /* Clear CF-bit */
289                 tmp |= RCR1_CIE;
290                 writeb(tmp, rtc->regbase + RCR1);
291
292                 sec128 = readb(rtc->regbase + R64CNT);
293
294                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
295                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
296                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
297                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
298                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
299                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300
301                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302                         yr  = readw(rtc->regbase + RYRCNT);
303                         yr100 = bcd2bin(yr >> 8);
304                         yr &= 0xff;
305                 } else {
306                         yr  = readb(rtc->regbase + RYRCNT);
307                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308                 }
309
310                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311
312                 sec2 = readb(rtc->regbase + R64CNT);
313                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
314
315                 spin_unlock_irq(&rtc->lock);
316         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317
318 #if RTC_BIT_INVERTED != 0
319         if ((sec128 & RTC_BIT_INVERTED))
320                 tm->tm_sec--;
321 #endif
322
323         /* only keep the carry interrupt enabled if UIE is on */
324         if (!(rtc->periodic_freq & PF_OXS))
325                 sh_rtc_setcie(dev, 0);
326
327         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328                 "mday=%d, mon=%d, year=%d, wday=%d\n",
329                 __func__,
330                 tm->tm_sec, tm->tm_min, tm->tm_hour,
331                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332
333         return 0;
334 }
335
336 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337 {
338         struct sh_rtc *rtc = dev_get_drvdata(dev);
339         unsigned int tmp;
340         int year;
341
342         spin_lock_irq(&rtc->lock);
343
344         /* Reset pre-scaler & stop RTC */
345         tmp = readb(rtc->regbase + RCR2);
346         tmp |= RCR2_RESET;
347         tmp &= ~RCR2_START;
348         writeb(tmp, rtc->regbase + RCR2);
349
350         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
351         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
352         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
353         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
354         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
355         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
356
357         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359                         bin2bcd(tm->tm_year % 100);
360                 writew(year, rtc->regbase + RYRCNT);
361         } else {
362                 year = tm->tm_year % 100;
363                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
364         }
365
366         /* Start RTC */
367         tmp = readb(rtc->regbase + RCR2);
368         tmp &= ~RCR2_RESET;
369         tmp |= RCR2_RTCEN | RCR2_START;
370         writeb(tmp, rtc->regbase + RCR2);
371
372         spin_unlock_irq(&rtc->lock);
373
374         return 0;
375 }
376
377 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378 {
379         unsigned int byte;
380         int value = -1;                 /* return -1 for ignored values */
381
382         byte = readb(rtc->regbase + reg_off);
383         if (byte & AR_ENB) {
384                 byte &= ~AR_ENB;        /* strip the enable bit */
385                 value = bcd2bin(byte);
386         }
387
388         return value;
389 }
390
391 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392 {
393         struct sh_rtc *rtc = dev_get_drvdata(dev);
394         struct rtc_time *tm = &wkalrm->time;
395
396         spin_lock_irq(&rtc->lock);
397
398         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
399         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
400         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
401         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
402         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
403         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
404         if (tm->tm_mon > 0)
405                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
406
407         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408
409         spin_unlock_irq(&rtc->lock);
410
411         return 0;
412 }
413
414 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415                                             int value, int reg_off)
416 {
417         /* < 0 for a value that is ignored */
418         if (value < 0)
419                 writeb(0, rtc->regbase + reg_off);
420         else
421                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
422 }
423
424 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425 {
426         struct sh_rtc *rtc = dev_get_drvdata(dev);
427         unsigned int rcr1;
428         struct rtc_time *tm = &wkalrm->time;
429         int mon;
430
431         spin_lock_irq(&rtc->lock);
432
433         /* disable alarm interrupt and clear the alarm flag */
434         rcr1 = readb(rtc->regbase + RCR1);
435         rcr1 &= ~(RCR1_AF | RCR1_AIE);
436         writeb(rcr1, rtc->regbase + RCR1);
437
438         /* set alarm time */
439         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
440         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
441         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
442         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
443         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
444         mon = tm->tm_mon;
445         if (mon >= 0)
446                 mon += 1;
447         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
448
449         if (wkalrm->enabled) {
450                 rcr1 |= RCR1_AIE;
451                 writeb(rcr1, rtc->regbase + RCR1);
452         }
453
454         spin_unlock_irq(&rtc->lock);
455
456         return 0;
457 }
458
459 static const struct rtc_class_ops sh_rtc_ops = {
460         .read_time      = sh_rtc_read_time,
461         .set_time       = sh_rtc_set_time,
462         .read_alarm     = sh_rtc_read_alarm,
463         .set_alarm      = sh_rtc_set_alarm,
464         .proc           = sh_rtc_proc,
465         .alarm_irq_enable = sh_rtc_alarm_irq_enable,
466 };
467
468 static int __init sh_rtc_probe(struct platform_device *pdev)
469 {
470         struct sh_rtc *rtc;
471         struct resource *res;
472         struct rtc_time r;
473         char clk_name[6];
474         int clk_id, ret;
475
476         rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
477         if (unlikely(!rtc))
478                 return -ENOMEM;
479
480         spin_lock_init(&rtc->lock);
481
482         /* get periodic/carry/alarm irqs */
483         ret = platform_get_irq(pdev, 0);
484         if (unlikely(ret <= 0)) {
485                 dev_err(&pdev->dev, "No IRQ resource\n");
486                 return -ENOENT;
487         }
488
489         rtc->periodic_irq = ret;
490         rtc->carry_irq = platform_get_irq(pdev, 1);
491         rtc->alarm_irq = platform_get_irq(pdev, 2);
492
493         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
494         if (!res)
495                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
496         if (unlikely(res == NULL)) {
497                 dev_err(&pdev->dev, "No IO resource\n");
498                 return -ENOENT;
499         }
500
501         rtc->regsize = resource_size(res);
502
503         rtc->res = devm_request_mem_region(&pdev->dev, res->start,
504                                         rtc->regsize, pdev->name);
505         if (unlikely(!rtc->res))
506                 return -EBUSY;
507
508         rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
509                                         rtc->regsize);
510         if (unlikely(!rtc->regbase))
511                 return -EINVAL;
512
513         if (!pdev->dev.of_node) {
514                 clk_id = pdev->id;
515                 /* With a single device, the clock id is still "rtc0" */
516                 if (clk_id < 0)
517                         clk_id = 0;
518
519                 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
520         } else
521                 snprintf(clk_name, sizeof(clk_name), "fck");
522
523         rtc->clk = devm_clk_get(&pdev->dev, clk_name);
524         if (IS_ERR(rtc->clk)) {
525                 /*
526                  * No error handling for rtc->clk intentionally, not all
527                  * platforms will have a unique clock for the RTC, and
528                  * the clk API can handle the struct clk pointer being
529                  * NULL.
530                  */
531                 rtc->clk = NULL;
532         }
533
534         clk_enable(rtc->clk);
535
536         rtc->capabilities = RTC_DEF_CAPABILITIES;
537
538 #ifdef CONFIG_SUPERH
539         if (dev_get_platdata(&pdev->dev)) {
540                 struct sh_rtc_platform_info *pinfo =
541                         dev_get_platdata(&pdev->dev);
542
543                 /*
544                  * Some CPUs have special capabilities in addition to the
545                  * default set. Add those in here.
546                  */
547                 rtc->capabilities |= pinfo->capabilities;
548         }
549 #endif
550
551         if (rtc->carry_irq <= 0) {
552                 /* register shared periodic/carry/alarm irq */
553                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
554                                 sh_rtc_shared, 0, "sh-rtc", rtc);
555                 if (unlikely(ret)) {
556                         dev_err(&pdev->dev,
557                                 "request IRQ failed with %d, IRQ %d\n", ret,
558                                 rtc->periodic_irq);
559                         goto err_unmap;
560                 }
561         } else {
562                 /* register periodic/carry/alarm irqs */
563                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
564                                 sh_rtc_periodic, 0, "sh-rtc period", rtc);
565                 if (unlikely(ret)) {
566                         dev_err(&pdev->dev,
567                                 "request period IRQ failed with %d, IRQ %d\n",
568                                 ret, rtc->periodic_irq);
569                         goto err_unmap;
570                 }
571
572                 ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
573                                 sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
574                 if (unlikely(ret)) {
575                         dev_err(&pdev->dev,
576                                 "request carry IRQ failed with %d, IRQ %d\n",
577                                 ret, rtc->carry_irq);
578                         goto err_unmap;
579                 }
580
581                 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
582                                 sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
583                 if (unlikely(ret)) {
584                         dev_err(&pdev->dev,
585                                 "request alarm IRQ failed with %d, IRQ %d\n",
586                                 ret, rtc->alarm_irq);
587                         goto err_unmap;
588                 }
589         }
590
591         platform_set_drvdata(pdev, rtc);
592
593         /* everything disabled by default */
594         sh_rtc_setaie(&pdev->dev, 0);
595         sh_rtc_setcie(&pdev->dev, 0);
596
597         rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
598                                            &sh_rtc_ops, THIS_MODULE);
599         if (IS_ERR(rtc->rtc_dev)) {
600                 ret = PTR_ERR(rtc->rtc_dev);
601                 goto err_unmap;
602         }
603
604         rtc->rtc_dev->max_user_freq = 256;
605
606         /* reset rtc to epoch 0 if time is invalid */
607         if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
608                 rtc_time_to_tm(0, &r);
609                 rtc_set_time(rtc->rtc_dev, &r);
610         }
611
612         device_init_wakeup(&pdev->dev, 1);
613         return 0;
614
615 err_unmap:
616         clk_disable(rtc->clk);
617
618         return ret;
619 }
620
621 static int __exit sh_rtc_remove(struct platform_device *pdev)
622 {
623         struct sh_rtc *rtc = platform_get_drvdata(pdev);
624
625         sh_rtc_setaie(&pdev->dev, 0);
626         sh_rtc_setcie(&pdev->dev, 0);
627
628         clk_disable(rtc->clk);
629
630         return 0;
631 }
632
633 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
634 {
635         struct sh_rtc *rtc = dev_get_drvdata(dev);
636
637         irq_set_irq_wake(rtc->periodic_irq, enabled);
638
639         if (rtc->carry_irq > 0) {
640                 irq_set_irq_wake(rtc->carry_irq, enabled);
641                 irq_set_irq_wake(rtc->alarm_irq, enabled);
642         }
643 }
644
645 static int __maybe_unused sh_rtc_suspend(struct device *dev)
646 {
647         if (device_may_wakeup(dev))
648                 sh_rtc_set_irq_wake(dev, 1);
649
650         return 0;
651 }
652
653 static int __maybe_unused sh_rtc_resume(struct device *dev)
654 {
655         if (device_may_wakeup(dev))
656                 sh_rtc_set_irq_wake(dev, 0);
657
658         return 0;
659 }
660
661 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
662
663 static const struct of_device_id sh_rtc_of_match[] = {
664         { .compatible = "renesas,sh-rtc", },
665         { /* sentinel */ }
666 };
667 MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
668
669 static struct platform_driver sh_rtc_platform_driver = {
670         .driver         = {
671                 .name   = DRV_NAME,
672                 .pm     = &sh_rtc_pm_ops,
673                 .of_match_table = sh_rtc_of_match,
674         },
675         .remove         = __exit_p(sh_rtc_remove),
676 };
677
678 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
679
680 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
681 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
682               "Jamie Lenehan <lenehan@twibble.org>, "
683               "Angelo Castello <angelo.castello@st.com>");
684 MODULE_LICENSE("GPL");
685 MODULE_ALIAS("platform:" DRV_NAME);