GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / rtc / rtc-isl12057.c
1 /*
2  * rtc-isl12057 - Driver for Intersil ISL12057 I2C Real Time Clock
3  *
4  * Copyright (C) 2013, Arnaud EBALARD <arno@natisbad.org>
5  *
6  * This work is largely based on Intersil ISL1208 driver developed by
7  * Hebert Valerio Riedel <hvr@gnu.org>.
8  *
9  * Detailed datasheet on which this development is based is available here:
10  *
11  *  http://natisbad.org/NAS2/refs/ISL12057.pdf
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/rtc.h>
27 #include <linux/i2c.h>
28 #include <linux/bcd.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/regmap.h>
32
33 #define DRV_NAME "rtc-isl12057"
34
35 /* RTC section */
36 #define ISL12057_REG_RTC_SC     0x00    /* Seconds */
37 #define ISL12057_REG_RTC_MN     0x01    /* Minutes */
38 #define ISL12057_REG_RTC_HR     0x02    /* Hours */
39 #define ISL12057_REG_RTC_HR_PM  BIT(5)  /* AM/PM bit in 12h format */
40 #define ISL12057_REG_RTC_HR_MIL BIT(6)  /* 24h/12h format */
41 #define ISL12057_REG_RTC_DW     0x03    /* Day of the Week */
42 #define ISL12057_REG_RTC_DT     0x04    /* Date */
43 #define ISL12057_REG_RTC_MO     0x05    /* Month */
44 #define ISL12057_REG_RTC_MO_CEN BIT(7)  /* Century bit */
45 #define ISL12057_REG_RTC_YR     0x06    /* Year */
46 #define ISL12057_RTC_SEC_LEN    7
47
48 /* Alarm 1 section */
49 #define ISL12057_REG_A1_SC      0x07    /* Alarm 1 Seconds */
50 #define ISL12057_REG_A1_MN      0x08    /* Alarm 1 Minutes */
51 #define ISL12057_REG_A1_HR      0x09    /* Alarm 1 Hours */
52 #define ISL12057_REG_A1_HR_PM   BIT(5)  /* AM/PM bit in 12h format */
53 #define ISL12057_REG_A1_HR_MIL  BIT(6)  /* 24h/12h format */
54 #define ISL12057_REG_A1_DWDT    0x0A    /* Alarm 1 Date / Day of the week */
55 #define ISL12057_REG_A1_DWDT_B  BIT(6)  /* DW / DT selection bit */
56 #define ISL12057_A1_SEC_LEN     4
57
58 /* Alarm 2 section */
59 #define ISL12057_REG_A2_MN      0x0B    /* Alarm 2 Minutes */
60 #define ISL12057_REG_A2_HR      0x0C    /* Alarm 2 Hours */
61 #define ISL12057_REG_A2_DWDT    0x0D    /* Alarm 2 Date / Day of the week */
62 #define ISL12057_A2_SEC_LEN     3
63
64 /* Control/Status registers */
65 #define ISL12057_REG_INT        0x0E
66 #define ISL12057_REG_INT_A1IE   BIT(0)  /* Alarm 1 interrupt enable bit */
67 #define ISL12057_REG_INT_A2IE   BIT(1)  /* Alarm 2 interrupt enable bit */
68 #define ISL12057_REG_INT_INTCN  BIT(2)  /* Interrupt control enable bit */
69 #define ISL12057_REG_INT_RS1    BIT(3)  /* Freq out control bit 1 */
70 #define ISL12057_REG_INT_RS2    BIT(4)  /* Freq out control bit 2 */
71 #define ISL12057_REG_INT_EOSC   BIT(7)  /* Oscillator enable bit */
72
73 #define ISL12057_REG_SR         0x0F
74 #define ISL12057_REG_SR_A1F     BIT(0)  /* Alarm 1 interrupt bit */
75 #define ISL12057_REG_SR_A2F     BIT(1)  /* Alarm 2 interrupt bit */
76 #define ISL12057_REG_SR_OSF     BIT(7)  /* Oscillator failure bit */
77
78 /* Register memory map length */
79 #define ISL12057_MEM_MAP_LEN    0x10
80
81 struct isl12057_rtc_data {
82         struct rtc_device *rtc;
83         struct regmap *regmap;
84         struct mutex lock;
85         int irq;
86 };
87
88 static void isl12057_rtc_regs_to_tm(struct rtc_time *tm, u8 *regs)
89 {
90         tm->tm_sec = bcd2bin(regs[ISL12057_REG_RTC_SC]);
91         tm->tm_min = bcd2bin(regs[ISL12057_REG_RTC_MN]);
92
93         if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_MIL) { /* AM/PM */
94                 tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x1f);
95                 if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_PM)
96                         tm->tm_hour += 12;
97         } else {                                            /* 24 hour mode */
98                 tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x3f);
99         }
100
101         tm->tm_mday = bcd2bin(regs[ISL12057_REG_RTC_DT]);
102         tm->tm_wday = bcd2bin(regs[ISL12057_REG_RTC_DW]) - 1; /* starts at 1 */
103         tm->tm_mon  = bcd2bin(regs[ISL12057_REG_RTC_MO] & 0x1f) - 1; /* ditto */
104         tm->tm_year = bcd2bin(regs[ISL12057_REG_RTC_YR]) + 100;
105
106         /* Check if years register has overflown from 99 to 00 */
107         if (regs[ISL12057_REG_RTC_MO] & ISL12057_REG_RTC_MO_CEN)
108                 tm->tm_year += 100;
109 }
110
111 static int isl12057_rtc_tm_to_regs(u8 *regs, struct rtc_time *tm)
112 {
113         u8 century_bit;
114
115         /*
116          * The clock has an 8 bit wide bcd-coded register for the year.
117          * It also has a century bit encoded in MO flag which provides
118          * information about overflow of year register from 99 to 00.
119          * tm_year is an offset from 1900 and we are interested in the
120          * 2000-2199 range, so any value less than 100 or larger than
121          * 299 is invalid.
122          */
123         if (tm->tm_year < 100 || tm->tm_year > 299)
124                 return -EINVAL;
125
126         century_bit = (tm->tm_year > 199) ? ISL12057_REG_RTC_MO_CEN : 0;
127
128         regs[ISL12057_REG_RTC_SC] = bin2bcd(tm->tm_sec);
129         regs[ISL12057_REG_RTC_MN] = bin2bcd(tm->tm_min);
130         regs[ISL12057_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
131         regs[ISL12057_REG_RTC_DT] = bin2bcd(tm->tm_mday);
132         regs[ISL12057_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1) | century_bit;
133         regs[ISL12057_REG_RTC_YR] = bin2bcd(tm->tm_year % 100);
134         regs[ISL12057_REG_RTC_DW] = bin2bcd(tm->tm_wday + 1);
135
136         return 0;
137 }
138
139 /*
140  * Try and match register bits w/ fixed null values to see whether we
141  * are dealing with an ISL12057. Note: this function is called early
142  * during init and hence does need mutex protection.
143  */
144 static int isl12057_i2c_validate_chip(struct regmap *regmap)
145 {
146         u8 regs[ISL12057_MEM_MAP_LEN];
147         static const u8 mask[ISL12057_MEM_MAP_LEN] = { 0x80, 0x80, 0x80, 0xf8,
148                                                        0xc0, 0x60, 0x00, 0x00,
149                                                        0x00, 0x00, 0x00, 0x00,
150                                                        0x00, 0x00, 0x60, 0x7c };
151         int ret, i;
152
153         ret = regmap_bulk_read(regmap, 0, regs, ISL12057_MEM_MAP_LEN);
154         if (ret)
155                 return ret;
156
157         for (i = 0; i < ISL12057_MEM_MAP_LEN; ++i) {
158                 if (regs[i] & mask[i])  /* check if bits are cleared */
159                         return -ENODEV;
160         }
161
162         return 0;
163 }
164
165 static int _isl12057_rtc_clear_alarm(struct device *dev)
166 {
167         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
168         int ret;
169
170         ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
171                                  ISL12057_REG_SR_A1F, 0);
172         if (ret)
173                 dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
174
175         return ret;
176 }
177
178 static int _isl12057_rtc_update_alarm(struct device *dev, int enable)
179 {
180         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
181         int ret;
182
183         ret = regmap_update_bits(data->regmap, ISL12057_REG_INT,
184                                  ISL12057_REG_INT_A1IE,
185                                  enable ? ISL12057_REG_INT_A1IE : 0);
186         if (ret)
187                 dev_err(dev, "%s: changing alarm interrupt flag failed (%d)\n",
188                         __func__, ret);
189
190         return ret;
191 }
192
193 /*
194  * Note: as we only read from device and do not perform any update, there is
195  * no need for an equivalent function which would try and get driver's main
196  * lock. Here, it is safe for everyone if we just use regmap internal lock
197  * on the device when reading.
198  */
199 static int _isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm)
200 {
201         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
202         u8 regs[ISL12057_RTC_SEC_LEN];
203         unsigned int sr;
204         int ret;
205
206         ret = regmap_read(data->regmap, ISL12057_REG_SR, &sr);
207         if (ret) {
208                 dev_err(dev, "%s: unable to read oscillator status flag (%d)\n",
209                         __func__, ret);
210                 goto out;
211         } else {
212                 if (sr & ISL12057_REG_SR_OSF) {
213                         ret = -ENODATA;
214                         goto out;
215                 }
216         }
217
218         ret = regmap_bulk_read(data->regmap, ISL12057_REG_RTC_SC, regs,
219                                ISL12057_RTC_SEC_LEN);
220         if (ret)
221                 dev_err(dev, "%s: unable to read RTC time section (%d)\n",
222                         __func__, ret);
223
224 out:
225         if (ret)
226                 return ret;
227
228         isl12057_rtc_regs_to_tm(tm, regs);
229
230         return rtc_valid_tm(tm);
231 }
232
233 static int isl12057_rtc_update_alarm(struct device *dev, int enable)
234 {
235         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
236         int ret;
237
238         mutex_lock(&data->lock);
239         ret = _isl12057_rtc_update_alarm(dev, enable);
240         mutex_unlock(&data->lock);
241
242         return ret;
243 }
244
245 static int isl12057_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
246 {
247         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
248         struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
249         unsigned long rtc_secs, alarm_secs;
250         u8 regs[ISL12057_A1_SEC_LEN];
251         unsigned int ir;
252         int ret;
253
254         mutex_lock(&data->lock);
255         ret = regmap_bulk_read(data->regmap, ISL12057_REG_A1_SC, regs,
256                                ISL12057_A1_SEC_LEN);
257         if (ret) {
258                 dev_err(dev, "%s: reading alarm section failed (%d)\n",
259                         __func__, ret);
260                 goto err_unlock;
261         }
262
263         alarm_tm->tm_sec  = bcd2bin(regs[0] & 0x7f);
264         alarm_tm->tm_min  = bcd2bin(regs[1] & 0x7f);
265         alarm_tm->tm_hour = bcd2bin(regs[2] & 0x3f);
266         alarm_tm->tm_mday = bcd2bin(regs[3] & 0x3f);
267         alarm_tm->tm_wday = -1;
268
269         /*
270          * The alarm section does not store year/month. We use the ones in rtc
271          * section as a basis and increment month and then year if needed to get
272          * alarm after current time.
273          */
274         ret = _isl12057_rtc_read_time(dev, &rtc_tm);
275         if (ret)
276                 goto err_unlock;
277
278         alarm_tm->tm_year = rtc_tm.tm_year;
279         alarm_tm->tm_mon = rtc_tm.tm_mon;
280
281         ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
282         if (ret)
283                 goto err_unlock;
284
285         ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
286         if (ret)
287                 goto err_unlock;
288
289         if (alarm_secs < rtc_secs) {
290                 if (alarm_tm->tm_mon == 11) {
291                         alarm_tm->tm_mon = 0;
292                         alarm_tm->tm_year += 1;
293                 } else {
294                         alarm_tm->tm_mon += 1;
295                 }
296         }
297
298         ret = regmap_read(data->regmap, ISL12057_REG_INT, &ir);
299         if (ret) {
300                 dev_err(dev, "%s: reading alarm interrupt flag failed (%d)\n",
301                         __func__, ret);
302                 goto err_unlock;
303         }
304
305         alarm->enabled = !!(ir & ISL12057_REG_INT_A1IE);
306
307 err_unlock:
308         mutex_unlock(&data->lock);
309
310         return ret;
311 }
312
313 static int isl12057_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
314 {
315         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
316         struct rtc_time *alarm_tm = &alarm->time;
317         unsigned long rtc_secs, alarm_secs;
318         u8 regs[ISL12057_A1_SEC_LEN];
319         struct rtc_time rtc_tm;
320         int ret, enable = 1;
321
322         mutex_lock(&data->lock);
323         ret = _isl12057_rtc_read_time(dev, &rtc_tm);
324         if (ret)
325                 goto err_unlock;
326
327         ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
328         if (ret)
329                 goto err_unlock;
330
331         ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
332         if (ret)
333                 goto err_unlock;
334
335         /* If alarm time is before current time, disable the alarm */
336         if (!alarm->enabled || alarm_secs <= rtc_secs) {
337                 enable = 0;
338         } else {
339                 /*
340                  * Chip only support alarms up to one month in the future. Let's
341                  * return an error if we get something after that limit.
342                  * Comparison is done by incrementing rtc_tm month field by one
343                  * and checking alarm value is still below.
344                  */
345                 if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
346                         rtc_tm.tm_mon = 0;
347                         rtc_tm.tm_year += 1;
348                 } else {
349                         rtc_tm.tm_mon += 1;
350                 }
351
352                 ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
353                 if (ret)
354                         goto err_unlock;
355
356                 if (alarm_secs > rtc_secs) {
357                         dev_err(dev, "%s: max for alarm is one month (%d)\n",
358                                 __func__, ret);
359                         ret = -EINVAL;
360                         goto err_unlock;
361                 }
362         }
363
364         /* Disable the alarm before modifying it */
365         ret = _isl12057_rtc_update_alarm(dev, 0);
366         if (ret < 0) {
367                 dev_err(dev, "%s: unable to disable the alarm (%d)\n",
368                         __func__, ret);
369                 goto err_unlock;
370         }
371
372         /* Program alarm registers */
373         regs[0] = bin2bcd(alarm_tm->tm_sec) & 0x7f;
374         regs[1] = bin2bcd(alarm_tm->tm_min) & 0x7f;
375         regs[2] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
376         regs[3] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
377
378         ret = regmap_bulk_write(data->regmap, ISL12057_REG_A1_SC, regs,
379                                 ISL12057_A1_SEC_LEN);
380         if (ret < 0) {
381                 dev_err(dev, "%s: writing alarm section failed (%d)\n",
382                         __func__, ret);
383                 goto err_unlock;
384         }
385
386         /* Enable or disable alarm */
387         ret = _isl12057_rtc_update_alarm(dev, enable);
388
389 err_unlock:
390         mutex_unlock(&data->lock);
391
392         return ret;
393 }
394
395 static int isl12057_rtc_set_time(struct device *dev, struct rtc_time *tm)
396 {
397         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
398         u8 regs[ISL12057_RTC_SEC_LEN];
399         int ret;
400
401         ret = isl12057_rtc_tm_to_regs(regs, tm);
402         if (ret)
403                 return ret;
404
405         mutex_lock(&data->lock);
406         ret = regmap_bulk_write(data->regmap, ISL12057_REG_RTC_SC, regs,
407                                 ISL12057_RTC_SEC_LEN);
408         if (ret) {
409                 dev_err(dev, "%s: unable to write RTC time section (%d)\n",
410                         __func__, ret);
411                 goto out;
412         }
413
414         /*
415          * Now that RTC time has been updated, let's clear oscillator
416          * failure flag, if needed.
417          */
418         ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
419                                  ISL12057_REG_SR_OSF, 0);
420         if (ret < 0)
421                 dev_err(dev, "%s: unable to clear osc. failure bit (%d)\n",
422                         __func__, ret);
423
424 out:
425         mutex_unlock(&data->lock);
426
427         return ret;
428 }
429
430 /*
431  * Check current RTC status and enable/disable what needs to be. Return 0 if
432  * everything went ok and a negative value upon error. Note: this function
433  * is called early during init and hence does need mutex protection.
434  */
435 static int isl12057_check_rtc_status(struct device *dev, struct regmap *regmap)
436 {
437         int ret;
438
439         /* Enable oscillator if not already running */
440         ret = regmap_update_bits(regmap, ISL12057_REG_INT,
441                                  ISL12057_REG_INT_EOSC, 0);
442         if (ret < 0) {
443                 dev_err(dev, "%s: unable to enable oscillator (%d)\n",
444                         __func__, ret);
445                 return ret;
446         }
447
448         /* Clear alarm bit if needed */
449         ret = regmap_update_bits(regmap, ISL12057_REG_SR,
450                                  ISL12057_REG_SR_A1F, 0);
451         if (ret < 0) {
452                 dev_err(dev, "%s: unable to clear alarm bit (%d)\n",
453                         __func__, ret);
454                 return ret;
455         }
456
457         return 0;
458 }
459
460 #ifdef CONFIG_OF
461 /*
462  * One would expect the device to be marked as a wakeup source only
463  * when an IRQ pin of the RTC is routed to an interrupt line of the
464  * CPU. In practice, such an IRQ pin can be connected to a PMIC and
465  * this allows the device to be powered up when RTC alarm rings. This
466  * is for instance the case on ReadyNAS 102, 104 and 2120. On those
467  * devices with no IRQ driectly connected to the SoC, the RTC chip
468  * can be forced as a wakeup source by stating that explicitly in
469  * the device's .dts file using the "wakeup-source" boolean property.
470  * This will guarantee 'wakealarm' sysfs entry is available on the device.
471  *
472  * The function below returns 1, i.e. the capability of the chip to
473  * wakeup the device, based on IRQ availability or if the boolean
474  * property has been set in the .dts file. Otherwise, it returns 0.
475  */
476
477 static bool isl12057_can_wakeup_machine(struct device *dev)
478 {
479         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
480
481         return data->irq || of_property_read_bool(dev->of_node, "wakeup-source")
482                 || of_property_read_bool(dev->of_node, /* legacy */
483                                          "isil,irq2-can-wakeup-machine");
484 }
485 #else
486 static bool isl12057_can_wakeup_machine(struct device *dev)
487 {
488         struct isl12057_rtc_data *data = dev_get_drvdata(dev);
489
490         return !!data->irq;
491 }
492 #endif
493
494 static int isl12057_rtc_alarm_irq_enable(struct device *dev,
495                                          unsigned int enable)
496 {
497         struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
498         int ret = -ENOTTY;
499
500         if (rtc_data->irq)
501                 ret = isl12057_rtc_update_alarm(dev, enable);
502
503         return ret;
504 }
505
506 static irqreturn_t isl12057_rtc_interrupt(int irq, void *data)
507 {
508         struct i2c_client *client = data;
509         struct isl12057_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
510         struct rtc_device *rtc = rtc_data->rtc;
511         int ret, handled = IRQ_NONE;
512         unsigned int sr;
513
514         ret = regmap_read(rtc_data->regmap, ISL12057_REG_SR, &sr);
515         if (!ret && (sr & ISL12057_REG_SR_A1F)) {
516                 dev_dbg(&client->dev, "RTC alarm!\n");
517
518                 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
519
520                 /* Acknowledge and disable the alarm */
521                 _isl12057_rtc_clear_alarm(&client->dev);
522                 _isl12057_rtc_update_alarm(&client->dev, 0);
523
524                 handled = IRQ_HANDLED;
525         }
526
527         return handled;
528 }
529
530 static const struct rtc_class_ops rtc_ops = {
531         .read_time = _isl12057_rtc_read_time,
532         .set_time = isl12057_rtc_set_time,
533         .read_alarm = isl12057_rtc_read_alarm,
534         .set_alarm = isl12057_rtc_set_alarm,
535         .alarm_irq_enable = isl12057_rtc_alarm_irq_enable,
536 };
537
538 static const struct regmap_config isl12057_rtc_regmap_config = {
539         .reg_bits = 8,
540         .val_bits = 8,
541 };
542
543 static int isl12057_probe(struct i2c_client *client,
544                           const struct i2c_device_id *id)
545 {
546         struct device *dev = &client->dev;
547         struct isl12057_rtc_data *data;
548         struct regmap *regmap;
549         int ret;
550
551         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
552                                      I2C_FUNC_SMBUS_BYTE_DATA |
553                                      I2C_FUNC_SMBUS_I2C_BLOCK))
554                 return -ENODEV;
555
556         regmap = devm_regmap_init_i2c(client, &isl12057_rtc_regmap_config);
557         if (IS_ERR(regmap)) {
558                 ret = PTR_ERR(regmap);
559                 dev_err(dev, "%s: regmap allocation failed (%d)\n",
560                         __func__, ret);
561                 return ret;
562         }
563
564         ret = isl12057_i2c_validate_chip(regmap);
565         if (ret)
566                 return ret;
567
568         ret = isl12057_check_rtc_status(dev, regmap);
569         if (ret)
570                 return ret;
571
572         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
573         if (!data)
574                 return -ENOMEM;
575
576         mutex_init(&data->lock);
577         data->regmap = regmap;
578         dev_set_drvdata(dev, data);
579
580         if (client->irq > 0) {
581                 ret = devm_request_threaded_irq(dev, client->irq, NULL,
582                                                 isl12057_rtc_interrupt,
583                                                 IRQF_SHARED|IRQF_ONESHOT,
584                                                 DRV_NAME, client);
585                 if (!ret)
586                         data->irq = client->irq;
587                 else
588                         dev_err(dev, "%s: irq %d unavailable (%d)\n", __func__,
589                                 client->irq, ret);
590         }
591
592         if (isl12057_can_wakeup_machine(dev))
593                 device_init_wakeup(dev, true);
594
595         data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
596                                              THIS_MODULE);
597         ret = PTR_ERR_OR_ZERO(data->rtc);
598         if (ret) {
599                 dev_err(dev, "%s: unable to register RTC device (%d)\n",
600                         __func__, ret);
601                 goto err;
602         }
603
604         /* We cannot support UIE mode if we do not have an IRQ line */
605         if (!data->irq)
606                 data->rtc->uie_unsupported = 1;
607
608 err:
609         return ret;
610 }
611
612 static int isl12057_remove(struct i2c_client *client)
613 {
614         if (isl12057_can_wakeup_machine(&client->dev))
615                 device_init_wakeup(&client->dev, false);
616
617         return 0;
618 }
619
620 #ifdef CONFIG_PM_SLEEP
621 static int isl12057_rtc_suspend(struct device *dev)
622 {
623         struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
624
625         if (rtc_data->irq && device_may_wakeup(dev))
626                 return enable_irq_wake(rtc_data->irq);
627
628         return 0;
629 }
630
631 static int isl12057_rtc_resume(struct device *dev)
632 {
633         struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
634
635         if (rtc_data->irq && device_may_wakeup(dev))
636                 return disable_irq_wake(rtc_data->irq);
637
638         return 0;
639 }
640 #endif
641
642 static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend,
643                          isl12057_rtc_resume);
644
645 #ifdef CONFIG_OF
646 static const struct of_device_id isl12057_dt_match[] = {
647         { .compatible = "isl,isl12057" }, /* for backward compat., don't use */
648         { .compatible = "isil,isl12057" },
649         { },
650 };
651 MODULE_DEVICE_TABLE(of, isl12057_dt_match);
652 #endif
653
654 static const struct i2c_device_id isl12057_id[] = {
655         { "isl12057", 0 },
656         { }
657 };
658 MODULE_DEVICE_TABLE(i2c, isl12057_id);
659
660 static struct i2c_driver isl12057_driver = {
661         .driver = {
662                 .name = DRV_NAME,
663                 .pm = &isl12057_rtc_pm_ops,
664                 .of_match_table = of_match_ptr(isl12057_dt_match),
665         },
666         .probe    = isl12057_probe,
667         .remove   = isl12057_remove,
668         .id_table = isl12057_id,
669 };
670 module_i2c_driver(isl12057_driver);
671
672 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
673 MODULE_DESCRIPTION("Intersil ISL12057 RTC driver");
674 MODULE_LICENSE("GPL");