GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64
65 static inline int cmos_use_acpi_alarm(void)
66 {
67         return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70
71 static inline int cmos_use_acpi_alarm(void)
72 {
73         return 0;
74 }
75 #endif
76
77 struct cmos_rtc {
78         struct rtc_device       *rtc;
79         struct device           *dev;
80         int                     irq;
81         struct resource         *iomem;
82         time64_t                alarm_expires;
83
84         void                    (*wake_on)(struct device *);
85         void                    (*wake_off)(struct device *);
86
87         u8                      enabled_wake;
88         u8                      suspend_ctrl;
89
90         /* newer hardware extends the original register set */
91         u8                      day_alrm;
92         u8                      mon_alrm;
93         u8                      century;
94
95         struct rtc_wkalrm       saved_wkalrm;
96 };
97
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)         ((n) > 0)
100
101 static const char driver_name[] = "rtc_cmos";
102
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
108
109 static inline int is_intr(u8 rtc_intr)
110 {
111         if (!(rtc_intr & RTC_IRQF))
112                 return 0;
113         return rtc_intr & RTC_IRQMASK;
114 }
115
116 /*----------------------------------------------------------------*/
117
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131
132 static inline int is_hpet_enabled(void)
133 {
134         return 0;
135 }
136
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139         return 0;
140 }
141
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144         return 0;
145 }
146
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150         return 0;
151 }
152
153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155         return 0;
156 }
157
158 static inline int hpet_rtc_dropped_irq(void)
159 {
160         return 0;
161 }
162
163 static inline int hpet_rtc_timer_init(void)
164 {
165         return 0;
166 }
167
168 extern irq_handler_t hpet_rtc_interrupt;
169
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172         return 0;
173 }
174
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177         return 0;
178 }
179
180 #endif
181
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
184 {
185         return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187
188 /*----------------------------------------------------------------*/
189
190 #ifdef RTC_PORT
191
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2       true
197
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200         outb(addr, RTC_PORT(2));
201         return inb(RTC_PORT(3));
202 }
203
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206         outb(addr, RTC_PORT(2));
207         outb(val, RTC_PORT(3));
208 }
209
210 #else
211
212 #define can_bank2       false
213
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216         return 0;
217 }
218
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222
223 #endif
224
225 /*----------------------------------------------------------------*/
226
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229         /*
230          * If pm_trace abused the RTC for storage, set the timespec to 0,
231          * which tells the caller that this RTC value is unusable.
232          */
233         if (!pm_trace_rtc_valid())
234                 return -EIO;
235
236         /* REVISIT:  if the clock has a "century" register, use
237          * that instead of the heuristic in mc146818_get_time().
238          * That'll make Y3K compatility (year > 2070) easy!
239          */
240         mc146818_get_time(t);
241         return 0;
242 }
243
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246         /* REVISIT:  set the "century" register if available
247          *
248          * NOTE: this ignores the issue whereby updating the seconds
249          * takes effect exactly 500ms after we write the register.
250          * (Also queueing and other delays before we get this far.)
251          */
252         return mc146818_set_time(t);
253 }
254
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257         struct cmos_rtc *cmos = dev_get_drvdata(dev);
258         unsigned char   rtc_control;
259
260         /* This not only a rtc_op, but also called directly */
261         if (!is_valid_irq(cmos->irq))
262                 return -EIO;
263
264         /* Basic alarms only support hour, minute, and seconds fields.
265          * Some also support day and month, for alarms up to a year in
266          * the future.
267          */
268
269         spin_lock_irq(&rtc_lock);
270         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
271         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
272         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
273
274         if (cmos->day_alrm) {
275                 /* ignore upper bits on readback per ACPI spec */
276                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
277                 if (!t->time.tm_mday)
278                         t->time.tm_mday = -1;
279
280                 if (cmos->mon_alrm) {
281                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
282                         if (!t->time.tm_mon)
283                                 t->time.tm_mon = -1;
284                 }
285         }
286
287         rtc_control = CMOS_READ(RTC_CONTROL);
288         spin_unlock_irq(&rtc_lock);
289
290         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
291                 if (((unsigned)t->time.tm_sec) < 0x60)
292                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
293                 else
294                         t->time.tm_sec = -1;
295                 if (((unsigned)t->time.tm_min) < 0x60)
296                         t->time.tm_min = bcd2bin(t->time.tm_min);
297                 else
298                         t->time.tm_min = -1;
299                 if (((unsigned)t->time.tm_hour) < 0x24)
300                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
301                 else
302                         t->time.tm_hour = -1;
303
304                 if (cmos->day_alrm) {
305                         if (((unsigned)t->time.tm_mday) <= 0x31)
306                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
307                         else
308                                 t->time.tm_mday = -1;
309
310                         if (cmos->mon_alrm) {
311                                 if (((unsigned)t->time.tm_mon) <= 0x12)
312                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
313                                 else
314                                         t->time.tm_mon = -1;
315                         }
316                 }
317         }
318
319         t->enabled = !!(rtc_control & RTC_AIE);
320         t->pending = 0;
321
322         return 0;
323 }
324
325 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
326 {
327         unsigned char   rtc_intr;
328
329         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330          * allegedly some older rtcs need that to handle irqs properly
331          */
332         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
333
334         if (use_hpet_alarm())
335                 return;
336
337         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338         if (is_intr(rtc_intr))
339                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
340 }
341
342 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
343 {
344         unsigned char   rtc_control;
345
346         /* flush any pending IRQ status, notably for update irqs,
347          * before we enable new IRQs
348          */
349         rtc_control = CMOS_READ(RTC_CONTROL);
350         cmos_checkintr(cmos, rtc_control);
351
352         rtc_control |= mask;
353         CMOS_WRITE(rtc_control, RTC_CONTROL);
354         if (use_hpet_alarm())
355                 hpet_set_rtc_irq_bit(mask);
356
357         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
358                 if (cmos->wake_on)
359                         cmos->wake_on(cmos->dev);
360         }
361
362         cmos_checkintr(cmos, rtc_control);
363 }
364
365 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367         unsigned char   rtc_control;
368
369         rtc_control = CMOS_READ(RTC_CONTROL);
370         rtc_control &= ~mask;
371         CMOS_WRITE(rtc_control, RTC_CONTROL);
372         if (use_hpet_alarm())
373                 hpet_mask_rtc_irq_bit(mask);
374
375         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376                 if (cmos->wake_off)
377                         cmos->wake_off(cmos->dev);
378         }
379
380         cmos_checkintr(cmos, rtc_control);
381 }
382
383 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
384 {
385         struct cmos_rtc *cmos = dev_get_drvdata(dev);
386         struct rtc_time now;
387
388         cmos_read_time(dev, &now);
389
390         if (!cmos->day_alrm) {
391                 time64_t t_max_date;
392                 time64_t t_alrm;
393
394                 t_max_date = rtc_tm_to_time64(&now);
395                 t_max_date += 24 * 60 * 60 - 1;
396                 t_alrm = rtc_tm_to_time64(&t->time);
397                 if (t_alrm > t_max_date) {
398                         dev_err(dev,
399                                 "Alarms can be up to one day in the future\n");
400                         return -EINVAL;
401                 }
402         } else if (!cmos->mon_alrm) {
403                 struct rtc_time max_date = now;
404                 time64_t t_max_date;
405                 time64_t t_alrm;
406                 int max_mday;
407
408                 if (max_date.tm_mon == 11) {
409                         max_date.tm_mon = 0;
410                         max_date.tm_year += 1;
411                 } else {
412                         max_date.tm_mon += 1;
413                 }
414                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
415                 if (max_date.tm_mday > max_mday)
416                         max_date.tm_mday = max_mday;
417
418                 t_max_date = rtc_tm_to_time64(&max_date);
419                 t_max_date -= 1;
420                 t_alrm = rtc_tm_to_time64(&t->time);
421                 if (t_alrm > t_max_date) {
422                         dev_err(dev,
423                                 "Alarms can be up to one month in the future\n");
424                         return -EINVAL;
425                 }
426         } else {
427                 struct rtc_time max_date = now;
428                 time64_t t_max_date;
429                 time64_t t_alrm;
430                 int max_mday;
431
432                 max_date.tm_year += 1;
433                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
434                 if (max_date.tm_mday > max_mday)
435                         max_date.tm_mday = max_mday;
436
437                 t_max_date = rtc_tm_to_time64(&max_date);
438                 t_max_date -= 1;
439                 t_alrm = rtc_tm_to_time64(&t->time);
440                 if (t_alrm > t_max_date) {
441                         dev_err(dev,
442                                 "Alarms can be up to one year in the future\n");
443                         return -EINVAL;
444                 }
445         }
446
447         return 0;
448 }
449
450 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
451 {
452         struct cmos_rtc *cmos = dev_get_drvdata(dev);
453         unsigned char mon, mday, hrs, min, sec, rtc_control;
454         int ret;
455
456         /* This not only a rtc_op, but also called directly */
457         if (!is_valid_irq(cmos->irq))
458                 return -EIO;
459
460         ret = cmos_validate_alarm(dev, t);
461         if (ret < 0)
462                 return ret;
463
464         mon = t->time.tm_mon + 1;
465         mday = t->time.tm_mday;
466         hrs = t->time.tm_hour;
467         min = t->time.tm_min;
468         sec = t->time.tm_sec;
469
470         spin_lock_irq(&rtc_lock);
471         rtc_control = CMOS_READ(RTC_CONTROL);
472         spin_unlock_irq(&rtc_lock);
473
474         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
475                 /* Writing 0xff means "don't care" or "match all".  */
476                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
477                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
478                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
479                 min = (min < 60) ? bin2bcd(min) : 0xff;
480                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
481         }
482
483         spin_lock_irq(&rtc_lock);
484
485         /* next rtc irq must not be from previous alarm setting */
486         cmos_irq_disable(cmos, RTC_AIE);
487
488         /* update alarm */
489         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
490         CMOS_WRITE(min, RTC_MINUTES_ALARM);
491         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
492
493         /* the system may support an "enhanced" alarm */
494         if (cmos->day_alrm) {
495                 CMOS_WRITE(mday, cmos->day_alrm);
496                 if (cmos->mon_alrm)
497                         CMOS_WRITE(mon, cmos->mon_alrm);
498         }
499
500         if (use_hpet_alarm()) {
501                 /*
502                  * FIXME the HPET alarm glue currently ignores day_alrm
503                  * and mon_alrm ...
504                  */
505                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
506                                     t->time.tm_sec);
507         }
508
509         if (t->enabled)
510                 cmos_irq_enable(cmos, RTC_AIE);
511
512         spin_unlock_irq(&rtc_lock);
513
514         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
515
516         return 0;
517 }
518
519 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
520 {
521         struct cmos_rtc *cmos = dev_get_drvdata(dev);
522         unsigned long   flags;
523
524         spin_lock_irqsave(&rtc_lock, flags);
525
526         if (enabled)
527                 cmos_irq_enable(cmos, RTC_AIE);
528         else
529                 cmos_irq_disable(cmos, RTC_AIE);
530
531         spin_unlock_irqrestore(&rtc_lock, flags);
532         return 0;
533 }
534
535 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
536
537 static int cmos_procfs(struct device *dev, struct seq_file *seq)
538 {
539         struct cmos_rtc *cmos = dev_get_drvdata(dev);
540         unsigned char   rtc_control, valid;
541
542         spin_lock_irq(&rtc_lock);
543         rtc_control = CMOS_READ(RTC_CONTROL);
544         valid = CMOS_READ(RTC_VALID);
545         spin_unlock_irq(&rtc_lock);
546
547         /* NOTE:  at least ICH6 reports battery status using a different
548          * (non-RTC) bit; and SQWE is ignored on many current systems.
549          */
550         seq_printf(seq,
551                    "periodic_IRQ\t: %s\n"
552                    "update_IRQ\t: %s\n"
553                    "HPET_emulated\t: %s\n"
554                    // "square_wave\t: %s\n"
555                    "BCD\t\t: %s\n"
556                    "DST_enable\t: %s\n"
557                    "periodic_freq\t: %d\n"
558                    "batt_status\t: %s\n",
559                    (rtc_control & RTC_PIE) ? "yes" : "no",
560                    (rtc_control & RTC_UIE) ? "yes" : "no",
561                    use_hpet_alarm() ? "yes" : "no",
562                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
563                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
564                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
565                    cmos->rtc->irq_freq,
566                    (valid & RTC_VRT) ? "okay" : "dead");
567
568         return 0;
569 }
570
571 #else
572 #define cmos_procfs     NULL
573 #endif
574
575 static const struct rtc_class_ops cmos_rtc_ops = {
576         .read_time              = cmos_read_time,
577         .set_time               = cmos_set_time,
578         .read_alarm             = cmos_read_alarm,
579         .set_alarm              = cmos_set_alarm,
580         .proc                   = cmos_procfs,
581         .alarm_irq_enable       = cmos_alarm_irq_enable,
582 };
583
584 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
585         .read_time              = cmos_read_time,
586         .set_time               = cmos_set_time,
587         .proc                   = cmos_procfs,
588 };
589
590 /*----------------------------------------------------------------*/
591
592 /*
593  * All these chips have at least 64 bytes of address space, shared by
594  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
595  * by boot firmware.  Modern chips have 128 or 256 bytes.
596  */
597
598 #define NVRAM_OFFSET    (RTC_REG_D + 1)
599
600 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
601                            size_t count)
602 {
603         unsigned char *buf = val;
604         int     retval;
605
606         off += NVRAM_OFFSET;
607         spin_lock_irq(&rtc_lock);
608         for (retval = 0; count; count--, off++, retval++) {
609                 if (off < 128)
610                         *buf++ = CMOS_READ(off);
611                 else if (can_bank2)
612                         *buf++ = cmos_read_bank2(off);
613                 else
614                         break;
615         }
616         spin_unlock_irq(&rtc_lock);
617
618         return retval;
619 }
620
621 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
622                             size_t count)
623 {
624         struct cmos_rtc *cmos = priv;
625         unsigned char   *buf = val;
626         int             retval;
627
628         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
629          * checksum on part of the NVRAM data.  That's currently ignored
630          * here.  If userspace is smart enough to know what fields of
631          * NVRAM to update, updating checksums is also part of its job.
632          */
633         off += NVRAM_OFFSET;
634         spin_lock_irq(&rtc_lock);
635         for (retval = 0; count; count--, off++, retval++) {
636                 /* don't trash RTC registers */
637                 if (off == cmos->day_alrm
638                                 || off == cmos->mon_alrm
639                                 || off == cmos->century)
640                         buf++;
641                 else if (off < 128)
642                         CMOS_WRITE(*buf++, off);
643                 else if (can_bank2)
644                         cmos_write_bank2(*buf++, off);
645                 else
646                         break;
647         }
648         spin_unlock_irq(&rtc_lock);
649
650         return retval;
651 }
652
653 /*----------------------------------------------------------------*/
654
655 static struct cmos_rtc  cmos_rtc;
656
657 static irqreturn_t cmos_interrupt(int irq, void *p)
658 {
659         u8              irqstat;
660         u8              rtc_control;
661
662         spin_lock(&rtc_lock);
663
664         /* When the HPET interrupt handler calls us, the interrupt
665          * status is passed as arg1 instead of the irq number.  But
666          * always clear irq status, even when HPET is in the way.
667          *
668          * Note that HPET and RTC are almost certainly out of phase,
669          * giving different IRQ status ...
670          */
671         irqstat = CMOS_READ(RTC_INTR_FLAGS);
672         rtc_control = CMOS_READ(RTC_CONTROL);
673         if (use_hpet_alarm())
674                 irqstat = (unsigned long)irq & 0xF0;
675
676         /* If we were suspended, RTC_CONTROL may not be accurate since the
677          * bios may have cleared it.
678          */
679         if (!cmos_rtc.suspend_ctrl)
680                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
681         else
682                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
683
684         /* All Linux RTC alarms should be treated as if they were oneshot.
685          * Similar code may be needed in system wakeup paths, in case the
686          * alarm woke the system.
687          */
688         if (irqstat & RTC_AIE) {
689                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
690                 rtc_control &= ~RTC_AIE;
691                 CMOS_WRITE(rtc_control, RTC_CONTROL);
692                 if (use_hpet_alarm())
693                         hpet_mask_rtc_irq_bit(RTC_AIE);
694                 CMOS_READ(RTC_INTR_FLAGS);
695         }
696         spin_unlock(&rtc_lock);
697
698         if (is_intr(irqstat)) {
699                 rtc_update_irq(p, 1, irqstat);
700                 return IRQ_HANDLED;
701         } else
702                 return IRQ_NONE;
703 }
704
705 #ifdef  CONFIG_PNP
706 #define INITSECTION
707
708 #else
709 #define INITSECTION     __init
710 #endif
711
712 static int INITSECTION
713 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
714 {
715         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
716         int                             retval = 0;
717         unsigned char                   rtc_control;
718         unsigned                        address_space;
719         u32                             flags = 0;
720         struct nvmem_config nvmem_cfg = {
721                 .name = "cmos_nvram",
722                 .word_size = 1,
723                 .stride = 1,
724                 .reg_read = cmos_nvram_read,
725                 .reg_write = cmos_nvram_write,
726                 .priv = &cmos_rtc,
727         };
728
729         /* there can be only one ... */
730         if (cmos_rtc.dev)
731                 return -EBUSY;
732
733         if (!ports)
734                 return -ENODEV;
735
736         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
737          *
738          * REVISIT non-x86 systems may instead use memory space resources
739          * (needing ioremap etc), not i/o space resources like this ...
740          */
741         if (RTC_IOMAPPED)
742                 ports = request_region(ports->start, resource_size(ports),
743                                        driver_name);
744         else
745                 ports = request_mem_region(ports->start, resource_size(ports),
746                                            driver_name);
747         if (!ports) {
748                 dev_dbg(dev, "i/o registers already in use\n");
749                 return -EBUSY;
750         }
751
752         cmos_rtc.irq = rtc_irq;
753         cmos_rtc.iomem = ports;
754
755         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
756          * driver did, but don't reject unknown configs.   Old hardware
757          * won't address 128 bytes.  Newer chips have multiple banks,
758          * though they may not be listed in one I/O resource.
759          */
760 #if     defined(CONFIG_ATARI)
761         address_space = 64;
762 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
763                         || defined(__sparc__) || defined(__mips__) \
764                         || defined(__powerpc__)
765         address_space = 128;
766 #else
767 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
768         address_space = 128;
769 #endif
770         if (can_bank2 && ports->end > (ports->start + 1))
771                 address_space = 256;
772
773         /* For ACPI systems extension info comes from the FADT.  On others,
774          * board specific setup provides it as appropriate.  Systems where
775          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
776          * some almost-clones) can provide hooks to make that behave.
777          *
778          * Note that ACPI doesn't preclude putting these registers into
779          * "extended" areas of the chip, including some that we won't yet
780          * expect CMOS_READ and friends to handle.
781          */
782         if (info) {
783                 if (info->flags)
784                         flags = info->flags;
785                 if (info->address_space)
786                         address_space = info->address_space;
787
788                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
789                         cmos_rtc.day_alrm = info->rtc_day_alarm;
790                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
791                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
792                 if (info->rtc_century && info->rtc_century < 128)
793                         cmos_rtc.century = info->rtc_century;
794
795                 if (info->wake_on && info->wake_off) {
796                         cmos_rtc.wake_on = info->wake_on;
797                         cmos_rtc.wake_off = info->wake_off;
798                 }
799         }
800
801         cmos_rtc.dev = dev;
802         dev_set_drvdata(dev, &cmos_rtc);
803
804         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
805         if (IS_ERR(cmos_rtc.rtc)) {
806                 retval = PTR_ERR(cmos_rtc.rtc);
807                 goto cleanup0;
808         }
809
810         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
811
812         spin_lock_irq(&rtc_lock);
813
814         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
815                 /* force periodic irq to CMOS reset default of 1024Hz;
816                  *
817                  * REVISIT it's been reported that at least one x86_64 ALI
818                  * mobo doesn't use 32KHz here ... for portability we might
819                  * need to do something about other clock frequencies.
820                  */
821                 cmos_rtc.rtc->irq_freq = 1024;
822                 if (use_hpet_alarm())
823                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
824                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
825         }
826
827         /* disable irqs */
828         if (is_valid_irq(rtc_irq))
829                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
830
831         rtc_control = CMOS_READ(RTC_CONTROL);
832
833         spin_unlock_irq(&rtc_lock);
834
835         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
836                 dev_warn(dev, "only 24-hr supported\n");
837                 retval = -ENXIO;
838                 goto cleanup1;
839         }
840
841         if (use_hpet_alarm())
842                 hpet_rtc_timer_init();
843
844         if (is_valid_irq(rtc_irq)) {
845                 irq_handler_t rtc_cmos_int_handler;
846
847                 if (use_hpet_alarm()) {
848                         rtc_cmos_int_handler = hpet_rtc_interrupt;
849                         retval = hpet_register_irq_handler(cmos_interrupt);
850                         if (retval) {
851                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
852                                 dev_warn(dev, "hpet_register_irq_handler "
853                                                 " failed in rtc_init().");
854                                 goto cleanup1;
855                         }
856                 } else
857                         rtc_cmos_int_handler = cmos_interrupt;
858
859                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
860                                 0, dev_name(&cmos_rtc.rtc->dev),
861                                 cmos_rtc.rtc);
862                 if (retval < 0) {
863                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
864                         goto cleanup1;
865                 }
866
867                 cmos_rtc.rtc->ops = &cmos_rtc_ops;
868         } else {
869                 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
870         }
871
872         cmos_rtc.rtc->nvram_old_abi = true;
873         retval = rtc_register_device(cmos_rtc.rtc);
874         if (retval)
875                 goto cleanup2;
876
877         /* export at least the first block of NVRAM */
878         nvmem_cfg.size = address_space - NVRAM_OFFSET;
879         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
880                 dev_err(dev, "nvmem registration failed\n");
881
882         dev_info(dev, "%s%s, %d bytes nvram%s\n",
883                  !is_valid_irq(rtc_irq) ? "no alarms" :
884                  cmos_rtc.mon_alrm ? "alarms up to one year" :
885                  cmos_rtc.day_alrm ? "alarms up to one month" :
886                  "alarms up to one day",
887                  cmos_rtc.century ? ", y3k" : "",
888                  nvmem_cfg.size,
889                  use_hpet_alarm() ? ", hpet irqs" : "");
890
891         return 0;
892
893 cleanup2:
894         if (is_valid_irq(rtc_irq))
895                 free_irq(rtc_irq, cmos_rtc.rtc);
896 cleanup1:
897         cmos_rtc.dev = NULL;
898 cleanup0:
899         if (RTC_IOMAPPED)
900                 release_region(ports->start, resource_size(ports));
901         else
902                 release_mem_region(ports->start, resource_size(ports));
903         return retval;
904 }
905
906 static void cmos_do_shutdown(int rtc_irq)
907 {
908         spin_lock_irq(&rtc_lock);
909         if (is_valid_irq(rtc_irq))
910                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
911         spin_unlock_irq(&rtc_lock);
912 }
913
914 static void cmos_do_remove(struct device *dev)
915 {
916         struct cmos_rtc *cmos = dev_get_drvdata(dev);
917         struct resource *ports;
918
919         cmos_do_shutdown(cmos->irq);
920
921         if (is_valid_irq(cmos->irq)) {
922                 free_irq(cmos->irq, cmos->rtc);
923                 if (use_hpet_alarm())
924                         hpet_unregister_irq_handler(cmos_interrupt);
925         }
926
927         cmos->rtc = NULL;
928
929         ports = cmos->iomem;
930         if (RTC_IOMAPPED)
931                 release_region(ports->start, resource_size(ports));
932         else
933                 release_mem_region(ports->start, resource_size(ports));
934         cmos->iomem = NULL;
935
936         cmos->dev = NULL;
937 }
938
939 static int cmos_aie_poweroff(struct device *dev)
940 {
941         struct cmos_rtc *cmos = dev_get_drvdata(dev);
942         struct rtc_time now;
943         time64_t t_now;
944         int retval = 0;
945         unsigned char rtc_control;
946
947         if (!cmos->alarm_expires)
948                 return -EINVAL;
949
950         spin_lock_irq(&rtc_lock);
951         rtc_control = CMOS_READ(RTC_CONTROL);
952         spin_unlock_irq(&rtc_lock);
953
954         /* We only care about the situation where AIE is disabled. */
955         if (rtc_control & RTC_AIE)
956                 return -EBUSY;
957
958         cmos_read_time(dev, &now);
959         t_now = rtc_tm_to_time64(&now);
960
961         /*
962          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
963          * automatically right after shutdown on some buggy boxes.
964          * This automatic rebooting issue won't happen when the alarm
965          * time is larger than now+1 seconds.
966          *
967          * If the alarm time is equal to now+1 seconds, the issue can be
968          * prevented by cancelling the alarm.
969          */
970         if (cmos->alarm_expires == t_now + 1) {
971                 struct rtc_wkalrm alarm;
972
973                 /* Cancel the AIE timer by configuring the past time. */
974                 rtc_time64_to_tm(t_now - 1, &alarm.time);
975                 alarm.enabled = 0;
976                 retval = cmos_set_alarm(dev, &alarm);
977         } else if (cmos->alarm_expires > t_now + 1) {
978                 retval = -EBUSY;
979         }
980
981         return retval;
982 }
983
984 static int cmos_suspend(struct device *dev)
985 {
986         struct cmos_rtc *cmos = dev_get_drvdata(dev);
987         unsigned char   tmp;
988
989         /* only the alarm might be a wakeup event source */
990         spin_lock_irq(&rtc_lock);
991         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
992         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
993                 unsigned char   mask;
994
995                 if (device_may_wakeup(dev))
996                         mask = RTC_IRQMASK & ~RTC_AIE;
997                 else
998                         mask = RTC_IRQMASK;
999                 tmp &= ~mask;
1000                 CMOS_WRITE(tmp, RTC_CONTROL);
1001                 if (use_hpet_alarm())
1002                         hpet_mask_rtc_irq_bit(mask);
1003                 cmos_checkintr(cmos, tmp);
1004         }
1005         spin_unlock_irq(&rtc_lock);
1006
1007         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1008                 cmos->enabled_wake = 1;
1009                 if (cmos->wake_on)
1010                         cmos->wake_on(dev);
1011                 else
1012                         enable_irq_wake(cmos->irq);
1013         }
1014
1015         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1016
1017         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1018                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1019                         tmp);
1020
1021         return 0;
1022 }
1023
1024 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1025  * after a detour through G3 "mechanical off", although the ACPI spec
1026  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1027  * distinctions between S4 and S5 are pointless.  So when the hardware
1028  * allows, don't draw that distinction.
1029  */
1030 static inline int cmos_poweroff(struct device *dev)
1031 {
1032         if (!IS_ENABLED(CONFIG_PM))
1033                 return -ENOSYS;
1034
1035         return cmos_suspend(dev);
1036 }
1037
1038 static void cmos_check_wkalrm(struct device *dev)
1039 {
1040         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1041         struct rtc_wkalrm current_alarm;
1042         time64_t t_now;
1043         time64_t t_current_expires;
1044         time64_t t_saved_expires;
1045         struct rtc_time now;
1046
1047         /* Check if we have RTC Alarm armed */
1048         if (!(cmos->suspend_ctrl & RTC_AIE))
1049                 return;
1050
1051         cmos_read_time(dev, &now);
1052         t_now = rtc_tm_to_time64(&now);
1053
1054         /*
1055          * ACPI RTC wake event is cleared after resume from STR,
1056          * ACK the rtc irq here
1057          */
1058         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1059                 cmos_interrupt(0, (void *)cmos->rtc);
1060                 return;
1061         }
1062
1063         cmos_read_alarm(dev, &current_alarm);
1064         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1065         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1066         if (t_current_expires != t_saved_expires ||
1067             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1068                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1069         }
1070 }
1071
1072 static void cmos_check_acpi_rtc_status(struct device *dev,
1073                                        unsigned char *rtc_control);
1074
1075 static int __maybe_unused cmos_resume(struct device *dev)
1076 {
1077         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1078         unsigned char tmp;
1079
1080         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1081                 if (cmos->wake_off)
1082                         cmos->wake_off(dev);
1083                 else
1084                         disable_irq_wake(cmos->irq);
1085                 cmos->enabled_wake = 0;
1086         }
1087
1088         /* The BIOS might have changed the alarm, restore it */
1089         cmos_check_wkalrm(dev);
1090
1091         spin_lock_irq(&rtc_lock);
1092         tmp = cmos->suspend_ctrl;
1093         cmos->suspend_ctrl = 0;
1094         /* re-enable any irqs previously active */
1095         if (tmp & RTC_IRQMASK) {
1096                 unsigned char   mask;
1097
1098                 if (device_may_wakeup(dev) && use_hpet_alarm())
1099                         hpet_rtc_timer_init();
1100
1101                 do {
1102                         CMOS_WRITE(tmp, RTC_CONTROL);
1103                         if (use_hpet_alarm())
1104                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1105
1106                         mask = CMOS_READ(RTC_INTR_FLAGS);
1107                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1108                         if (!use_hpet_alarm() || !is_intr(mask))
1109                                 break;
1110
1111                         /* force one-shot behavior if HPET blocked
1112                          * the wake alarm's irq
1113                          */
1114                         rtc_update_irq(cmos->rtc, 1, mask);
1115                         tmp &= ~RTC_AIE;
1116                         hpet_mask_rtc_irq_bit(RTC_AIE);
1117                 } while (mask & RTC_AIE);
1118
1119                 if (tmp & RTC_AIE)
1120                         cmos_check_acpi_rtc_status(dev, &tmp);
1121         }
1122         spin_unlock_irq(&rtc_lock);
1123
1124         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1125
1126         return 0;
1127 }
1128
1129 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1130
1131 /*----------------------------------------------------------------*/
1132
1133 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1134  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1135  * probably list them in similar PNPBIOS tables; so PNP is more common.
1136  *
1137  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1138  * predate even PNPBIOS should set up platform_bus devices.
1139  */
1140
1141 #ifdef  CONFIG_ACPI
1142
1143 #include <linux/acpi.h>
1144
1145 static u32 rtc_handler(void *context)
1146 {
1147         struct device *dev = context;
1148         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1149         unsigned char rtc_control = 0;
1150         unsigned char rtc_intr;
1151         unsigned long flags;
1152
1153
1154         /*
1155          * Always update rtc irq when ACPI is used as RTC Alarm.
1156          * Or else, ACPI SCI is enabled during suspend/resume only,
1157          * update rtc irq in that case.
1158          */
1159         if (cmos_use_acpi_alarm())
1160                 cmos_interrupt(0, (void *)cmos->rtc);
1161         else {
1162                 /* Fix me: can we use cmos_interrupt() here as well? */
1163                 spin_lock_irqsave(&rtc_lock, flags);
1164                 if (cmos_rtc.suspend_ctrl)
1165                         rtc_control = CMOS_READ(RTC_CONTROL);
1166                 if (rtc_control & RTC_AIE) {
1167                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1168                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1169                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1170                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1171                 }
1172                 spin_unlock_irqrestore(&rtc_lock, flags);
1173         }
1174
1175         pm_wakeup_hard_event(dev);
1176         acpi_clear_event(ACPI_EVENT_RTC);
1177         acpi_disable_event(ACPI_EVENT_RTC, 0);
1178         return ACPI_INTERRUPT_HANDLED;
1179 }
1180
1181 static inline void rtc_wake_setup(struct device *dev)
1182 {
1183         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1184         /*
1185          * After the RTC handler is installed, the Fixed_RTC event should
1186          * be disabled. Only when the RTC alarm is set will it be enabled.
1187          */
1188         acpi_clear_event(ACPI_EVENT_RTC);
1189         acpi_disable_event(ACPI_EVENT_RTC, 0);
1190 }
1191
1192 static void rtc_wake_on(struct device *dev)
1193 {
1194         acpi_clear_event(ACPI_EVENT_RTC);
1195         acpi_enable_event(ACPI_EVENT_RTC, 0);
1196 }
1197
1198 static void rtc_wake_off(struct device *dev)
1199 {
1200         acpi_disable_event(ACPI_EVENT_RTC, 0);
1201 }
1202
1203 #ifdef CONFIG_X86
1204 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1205 static void use_acpi_alarm_quirks(void)
1206 {
1207         int year;
1208
1209         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1210                 return;
1211
1212         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1213                 return;
1214
1215         if (!is_hpet_enabled())
1216                 return;
1217
1218         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1219                 use_acpi_alarm = true;
1220 }
1221 #else
1222 static inline void use_acpi_alarm_quirks(void) { }
1223 #endif
1224
1225 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1226  * its device node and pass extra config data.  This helps its driver use
1227  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1228  * that this board's RTC is wakeup-capable (per ACPI spec).
1229  */
1230 static struct cmos_rtc_board_info acpi_rtc_info;
1231
1232 static void cmos_wake_setup(struct device *dev)
1233 {
1234         if (acpi_disabled)
1235                 return;
1236
1237         use_acpi_alarm_quirks();
1238
1239         rtc_wake_setup(dev);
1240         acpi_rtc_info.wake_on = rtc_wake_on;
1241         acpi_rtc_info.wake_off = rtc_wake_off;
1242
1243         /* workaround bug in some ACPI tables */
1244         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1245                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1246                         acpi_gbl_FADT.month_alarm);
1247                 acpi_gbl_FADT.month_alarm = 0;
1248         }
1249
1250         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1251         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1252         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1253
1254         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1255         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1256                 dev_info(dev, "RTC can wake from S4\n");
1257
1258         dev->platform_data = &acpi_rtc_info;
1259
1260         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1261         device_init_wakeup(dev, 1);
1262 }
1263
1264 static void cmos_check_acpi_rtc_status(struct device *dev,
1265                                        unsigned char *rtc_control)
1266 {
1267         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1268         acpi_event_status rtc_status;
1269         acpi_status status;
1270
1271         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1272                 return;
1273
1274         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1275         if (ACPI_FAILURE(status)) {
1276                 dev_err(dev, "Could not get RTC status\n");
1277         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1278                 unsigned char mask;
1279                 *rtc_control &= ~RTC_AIE;
1280                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1281                 mask = CMOS_READ(RTC_INTR_FLAGS);
1282                 rtc_update_irq(cmos->rtc, 1, mask);
1283         }
1284 }
1285
1286 #else
1287
1288 static void cmos_wake_setup(struct device *dev)
1289 {
1290 }
1291
1292 static void cmos_check_acpi_rtc_status(struct device *dev,
1293                                        unsigned char *rtc_control)
1294 {
1295 }
1296
1297 #endif
1298
1299 #ifdef  CONFIG_PNP
1300
1301 #include <linux/pnp.h>
1302
1303 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1304 {
1305         cmos_wake_setup(&pnp->dev);
1306
1307         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1308                 unsigned int irq = 0;
1309 #ifdef CONFIG_X86
1310                 /* Some machines contain a PNP entry for the RTC, but
1311                  * don't define the IRQ. It should always be safe to
1312                  * hardcode it on systems with a legacy PIC.
1313                  */
1314                 if (nr_legacy_irqs())
1315                         irq = 8;
1316 #endif
1317                 return cmos_do_probe(&pnp->dev,
1318                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1319         } else {
1320                 return cmos_do_probe(&pnp->dev,
1321                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1322                                 pnp_irq(pnp, 0));
1323         }
1324 }
1325
1326 static void cmos_pnp_remove(struct pnp_dev *pnp)
1327 {
1328         cmos_do_remove(&pnp->dev);
1329 }
1330
1331 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1332 {
1333         struct device *dev = &pnp->dev;
1334         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1335
1336         if (system_state == SYSTEM_POWER_OFF) {
1337                 int retval = cmos_poweroff(dev);
1338
1339                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1340                         return;
1341         }
1342
1343         cmos_do_shutdown(cmos->irq);
1344 }
1345
1346 static const struct pnp_device_id rtc_ids[] = {
1347         { .id = "PNP0b00", },
1348         { .id = "PNP0b01", },
1349         { .id = "PNP0b02", },
1350         { },
1351 };
1352 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1353
1354 static struct pnp_driver cmos_pnp_driver = {
1355         .name           = (char *) driver_name,
1356         .id_table       = rtc_ids,
1357         .probe          = cmos_pnp_probe,
1358         .remove         = cmos_pnp_remove,
1359         .shutdown       = cmos_pnp_shutdown,
1360
1361         /* flag ensures resume() gets called, and stops syslog spam */
1362         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1363         .driver         = {
1364                         .pm = &cmos_pm_ops,
1365         },
1366 };
1367
1368 #endif  /* CONFIG_PNP */
1369
1370 #ifdef CONFIG_OF
1371 static const struct of_device_id of_cmos_match[] = {
1372         {
1373                 .compatible = "motorola,mc146818",
1374         },
1375         { },
1376 };
1377 MODULE_DEVICE_TABLE(of, of_cmos_match);
1378
1379 static __init void cmos_of_init(struct platform_device *pdev)
1380 {
1381         struct device_node *node = pdev->dev.of_node;
1382         const __be32 *val;
1383
1384         if (!node)
1385                 return;
1386
1387         val = of_get_property(node, "ctrl-reg", NULL);
1388         if (val)
1389                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1390
1391         val = of_get_property(node, "freq-reg", NULL);
1392         if (val)
1393                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1394 }
1395 #else
1396 static inline void cmos_of_init(struct platform_device *pdev) {}
1397 #endif
1398 /*----------------------------------------------------------------*/
1399
1400 /* Platform setup should have set up an RTC device, when PNP is
1401  * unavailable ... this could happen even on (older) PCs.
1402  */
1403
1404 static int __init cmos_platform_probe(struct platform_device *pdev)
1405 {
1406         struct resource *resource;
1407         int irq;
1408
1409         cmos_of_init(pdev);
1410         cmos_wake_setup(&pdev->dev);
1411
1412         if (RTC_IOMAPPED)
1413                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1414         else
1415                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1416         irq = platform_get_irq(pdev, 0);
1417         if (irq < 0)
1418                 irq = -1;
1419
1420         return cmos_do_probe(&pdev->dev, resource, irq);
1421 }
1422
1423 static int cmos_platform_remove(struct platform_device *pdev)
1424 {
1425         cmos_do_remove(&pdev->dev);
1426         return 0;
1427 }
1428
1429 static void cmos_platform_shutdown(struct platform_device *pdev)
1430 {
1431         struct device *dev = &pdev->dev;
1432         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1433
1434         if (system_state == SYSTEM_POWER_OFF) {
1435                 int retval = cmos_poweroff(dev);
1436
1437                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1438                         return;
1439         }
1440
1441         cmos_do_shutdown(cmos->irq);
1442 }
1443
1444 /* work with hotplug and coldplug */
1445 MODULE_ALIAS("platform:rtc_cmos");
1446
1447 static struct platform_driver cmos_platform_driver = {
1448         .remove         = cmos_platform_remove,
1449         .shutdown       = cmos_platform_shutdown,
1450         .driver = {
1451                 .name           = driver_name,
1452                 .pm             = &cmos_pm_ops,
1453                 .of_match_table = of_match_ptr(of_cmos_match),
1454         }
1455 };
1456
1457 #ifdef CONFIG_PNP
1458 static bool pnp_driver_registered;
1459 #endif
1460 static bool platform_driver_registered;
1461
1462 static int __init cmos_init(void)
1463 {
1464         int retval = 0;
1465
1466 #ifdef  CONFIG_PNP
1467         retval = pnp_register_driver(&cmos_pnp_driver);
1468         if (retval == 0)
1469                 pnp_driver_registered = true;
1470 #endif
1471
1472         if (!cmos_rtc.dev) {
1473                 retval = platform_driver_probe(&cmos_platform_driver,
1474                                                cmos_platform_probe);
1475                 if (retval == 0)
1476                         platform_driver_registered = true;
1477         }
1478
1479         if (retval == 0)
1480                 return 0;
1481
1482 #ifdef  CONFIG_PNP
1483         if (pnp_driver_registered)
1484                 pnp_unregister_driver(&cmos_pnp_driver);
1485 #endif
1486         return retval;
1487 }
1488 module_init(cmos_init);
1489
1490 static void __exit cmos_exit(void)
1491 {
1492 #ifdef  CONFIG_PNP
1493         if (pnp_driver_registered)
1494                 pnp_unregister_driver(&cmos_pnp_driver);
1495 #endif
1496         if (platform_driver_registered)
1497                 platform_driver_unregister(&cmos_platform_driver);
1498 }
1499 module_exit(cmos_exit);
1500
1501
1502 MODULE_AUTHOR("David Brownell");
1503 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1504 MODULE_LICENSE("GPL");