GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
50
51 struct cmos_rtc {
52         struct rtc_device       *rtc;
53         struct device           *dev;
54         int                     irq;
55         struct resource         *iomem;
56         time64_t                alarm_expires;
57
58         void                    (*wake_on)(struct device *);
59         void                    (*wake_off)(struct device *);
60
61         u8                      enabled_wake;
62         u8                      suspend_ctrl;
63
64         /* newer hardware extends the original register set */
65         u8                      day_alrm;
66         u8                      mon_alrm;
67         u8                      century;
68
69         struct rtc_wkalrm       saved_wkalrm;
70 };
71
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n)         ((n) > 0)
74
75 static const char driver_name[] = "rtc_cmos";
76
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
79  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80  */
81 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
82
83 static inline int is_intr(u8 rtc_intr)
84 {
85         if (!(rtc_intr & RTC_IRQF))
86                 return 0;
87         return rtc_intr & RTC_IRQMASK;
88 }
89
90 /*----------------------------------------------------------------*/
91
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94  * used in a broken "legacy replacement" mode.  The breakage includes
95  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96  * other (better) use.
97  *
98  * When that broken mode is in use, platform glue provides a partial
99  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
100  * want to use HPET for anything except those IRQs though...
101  */
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
104 #else
105
106 static inline int is_hpet_enabled(void)
107 {
108         return 0;
109 }
110
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112 {
113         return 0;
114 }
115
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117 {
118         return 0;
119 }
120
121 static inline int
122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123 {
124         return 0;
125 }
126
127 static inline int hpet_set_periodic_freq(unsigned long freq)
128 {
129         return 0;
130 }
131
132 static inline int hpet_rtc_dropped_irq(void)
133 {
134         return 0;
135 }
136
137 static inline int hpet_rtc_timer_init(void)
138 {
139         return 0;
140 }
141
142 extern irq_handler_t hpet_rtc_interrupt;
143
144 static inline int hpet_register_irq_handler(irq_handler_t handler)
145 {
146         return 0;
147 }
148
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150 {
151         return 0;
152 }
153
154 #endif
155
156 /*----------------------------------------------------------------*/
157
158 #ifdef RTC_PORT
159
160 /* Most newer x86 systems have two register banks, the first used
161  * for RTC and NVRAM and the second only for NVRAM.  Caller must
162  * own rtc_lock ... and we won't worry about access during NMI.
163  */
164 #define can_bank2       true
165
166 static inline unsigned char cmos_read_bank2(unsigned char addr)
167 {
168         outb(addr, RTC_PORT(2));
169         return inb(RTC_PORT(3));
170 }
171
172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173 {
174         outb(addr, RTC_PORT(2));
175         outb(val, RTC_PORT(3));
176 }
177
178 #else
179
180 #define can_bank2       false
181
182 static inline unsigned char cmos_read_bank2(unsigned char addr)
183 {
184         return 0;
185 }
186
187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188 {
189 }
190
191 #endif
192
193 /*----------------------------------------------------------------*/
194
195 static int cmos_read_time(struct device *dev, struct rtc_time *t)
196 {
197         /* REVISIT:  if the clock has a "century" register, use
198          * that instead of the heuristic in mc146818_get_time().
199          * That'll make Y3K compatility (year > 2070) easy!
200          */
201         mc146818_get_time(t);
202         return 0;
203 }
204
205 static int cmos_set_time(struct device *dev, struct rtc_time *t)
206 {
207         /* REVISIT:  set the "century" register if available
208          *
209          * NOTE: this ignores the issue whereby updating the seconds
210          * takes effect exactly 500ms after we write the register.
211          * (Also queueing and other delays before we get this far.)
212          */
213         return mc146818_set_time(t);
214 }
215
216 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
217 {
218         struct cmos_rtc *cmos = dev_get_drvdata(dev);
219         unsigned char   rtc_control;
220
221         if (!is_valid_irq(cmos->irq))
222                 return -EIO;
223
224         /* Basic alarms only support hour, minute, and seconds fields.
225          * Some also support day and month, for alarms up to a year in
226          * the future.
227          */
228
229         spin_lock_irq(&rtc_lock);
230         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
231         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
232         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
233
234         if (cmos->day_alrm) {
235                 /* ignore upper bits on readback per ACPI spec */
236                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
237                 if (!t->time.tm_mday)
238                         t->time.tm_mday = -1;
239
240                 if (cmos->mon_alrm) {
241                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
242                         if (!t->time.tm_mon)
243                                 t->time.tm_mon = -1;
244                 }
245         }
246
247         rtc_control = CMOS_READ(RTC_CONTROL);
248         spin_unlock_irq(&rtc_lock);
249
250         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
251                 if (((unsigned)t->time.tm_sec) < 0x60)
252                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
253                 else
254                         t->time.tm_sec = -1;
255                 if (((unsigned)t->time.tm_min) < 0x60)
256                         t->time.tm_min = bcd2bin(t->time.tm_min);
257                 else
258                         t->time.tm_min = -1;
259                 if (((unsigned)t->time.tm_hour) < 0x24)
260                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
261                 else
262                         t->time.tm_hour = -1;
263
264                 if (cmos->day_alrm) {
265                         if (((unsigned)t->time.tm_mday) <= 0x31)
266                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
267                         else
268                                 t->time.tm_mday = -1;
269
270                         if (cmos->mon_alrm) {
271                                 if (((unsigned)t->time.tm_mon) <= 0x12)
272                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
273                                 else
274                                         t->time.tm_mon = -1;
275                         }
276                 }
277         }
278
279         t->enabled = !!(rtc_control & RTC_AIE);
280         t->pending = 0;
281
282         return 0;
283 }
284
285 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
286 {
287         unsigned char   rtc_intr;
288
289         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
290          * allegedly some older rtcs need that to handle irqs properly
291          */
292         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
293
294         if (is_hpet_enabled())
295                 return;
296
297         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
298         if (is_intr(rtc_intr))
299                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
300 }
301
302 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
303 {
304         unsigned char   rtc_control;
305
306         /* flush any pending IRQ status, notably for update irqs,
307          * before we enable new IRQs
308          */
309         rtc_control = CMOS_READ(RTC_CONTROL);
310         cmos_checkintr(cmos, rtc_control);
311
312         rtc_control |= mask;
313         CMOS_WRITE(rtc_control, RTC_CONTROL);
314         hpet_set_rtc_irq_bit(mask);
315
316         cmos_checkintr(cmos, rtc_control);
317 }
318
319 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
320 {
321         unsigned char   rtc_control;
322
323         rtc_control = CMOS_READ(RTC_CONTROL);
324         rtc_control &= ~mask;
325         CMOS_WRITE(rtc_control, RTC_CONTROL);
326         hpet_mask_rtc_irq_bit(mask);
327
328         cmos_checkintr(cmos, rtc_control);
329 }
330
331 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
332 {
333         struct cmos_rtc *cmos = dev_get_drvdata(dev);
334         unsigned char mon, mday, hrs, min, sec, rtc_control;
335
336         if (!is_valid_irq(cmos->irq))
337                 return -EIO;
338
339         mon = t->time.tm_mon + 1;
340         mday = t->time.tm_mday;
341         hrs = t->time.tm_hour;
342         min = t->time.tm_min;
343         sec = t->time.tm_sec;
344
345         spin_lock_irq(&rtc_lock);
346         rtc_control = CMOS_READ(RTC_CONTROL);
347         spin_unlock_irq(&rtc_lock);
348
349         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
350                 /* Writing 0xff means "don't care" or "match all".  */
351                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
352                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
353                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
354                 min = (min < 60) ? bin2bcd(min) : 0xff;
355                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
356         }
357
358         spin_lock_irq(&rtc_lock);
359
360         /* next rtc irq must not be from previous alarm setting */
361         cmos_irq_disable(cmos, RTC_AIE);
362
363         /* update alarm */
364         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
365         CMOS_WRITE(min, RTC_MINUTES_ALARM);
366         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
367
368         /* the system may support an "enhanced" alarm */
369         if (cmos->day_alrm) {
370                 CMOS_WRITE(mday, cmos->day_alrm);
371                 if (cmos->mon_alrm)
372                         CMOS_WRITE(mon, cmos->mon_alrm);
373         }
374
375         /* FIXME the HPET alarm glue currently ignores day_alrm
376          * and mon_alrm ...
377          */
378         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
379
380         if (t->enabled)
381                 cmos_irq_enable(cmos, RTC_AIE);
382
383         spin_unlock_irq(&rtc_lock);
384
385         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
386
387         return 0;
388 }
389
390 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
391 {
392         struct cmos_rtc *cmos = dev_get_drvdata(dev);
393         unsigned long   flags;
394
395         if (!is_valid_irq(cmos->irq))
396                 return -EINVAL;
397
398         spin_lock_irqsave(&rtc_lock, flags);
399
400         if (enabled)
401                 cmos_irq_enable(cmos, RTC_AIE);
402         else
403                 cmos_irq_disable(cmos, RTC_AIE);
404
405         spin_unlock_irqrestore(&rtc_lock, flags);
406         return 0;
407 }
408
409 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
410
411 static int cmos_procfs(struct device *dev, struct seq_file *seq)
412 {
413         struct cmos_rtc *cmos = dev_get_drvdata(dev);
414         unsigned char   rtc_control, valid;
415
416         spin_lock_irq(&rtc_lock);
417         rtc_control = CMOS_READ(RTC_CONTROL);
418         valid = CMOS_READ(RTC_VALID);
419         spin_unlock_irq(&rtc_lock);
420
421         /* NOTE:  at least ICH6 reports battery status using a different
422          * (non-RTC) bit; and SQWE is ignored on many current systems.
423          */
424         seq_printf(seq,
425                    "periodic_IRQ\t: %s\n"
426                    "update_IRQ\t: %s\n"
427                    "HPET_emulated\t: %s\n"
428                    // "square_wave\t: %s\n"
429                    "BCD\t\t: %s\n"
430                    "DST_enable\t: %s\n"
431                    "periodic_freq\t: %d\n"
432                    "batt_status\t: %s\n",
433                    (rtc_control & RTC_PIE) ? "yes" : "no",
434                    (rtc_control & RTC_UIE) ? "yes" : "no",
435                    is_hpet_enabled() ? "yes" : "no",
436                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
437                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
438                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
439                    cmos->rtc->irq_freq,
440                    (valid & RTC_VRT) ? "okay" : "dead");
441
442         return 0;
443 }
444
445 #else
446 #define cmos_procfs     NULL
447 #endif
448
449 static const struct rtc_class_ops cmos_rtc_ops = {
450         .read_time              = cmos_read_time,
451         .set_time               = cmos_set_time,
452         .read_alarm             = cmos_read_alarm,
453         .set_alarm              = cmos_set_alarm,
454         .proc                   = cmos_procfs,
455         .alarm_irq_enable       = cmos_alarm_irq_enable,
456 };
457
458 /*----------------------------------------------------------------*/
459
460 /*
461  * All these chips have at least 64 bytes of address space, shared by
462  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
463  * by boot firmware.  Modern chips have 128 or 256 bytes.
464  */
465
466 #define NVRAM_OFFSET    (RTC_REG_D + 1)
467
468 static ssize_t
469 cmos_nvram_read(struct file *filp, struct kobject *kobj,
470                 struct bin_attribute *attr,
471                 char *buf, loff_t off, size_t count)
472 {
473         int     retval;
474
475         off += NVRAM_OFFSET;
476         spin_lock_irq(&rtc_lock);
477         for (retval = 0; count; count--, off++, retval++) {
478                 if (off < 128)
479                         *buf++ = CMOS_READ(off);
480                 else if (can_bank2)
481                         *buf++ = cmos_read_bank2(off);
482                 else
483                         break;
484         }
485         spin_unlock_irq(&rtc_lock);
486
487         return retval;
488 }
489
490 static ssize_t
491 cmos_nvram_write(struct file *filp, struct kobject *kobj,
492                 struct bin_attribute *attr,
493                 char *buf, loff_t off, size_t count)
494 {
495         struct cmos_rtc *cmos;
496         int             retval;
497
498         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
499
500         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
501          * checksum on part of the NVRAM data.  That's currently ignored
502          * here.  If userspace is smart enough to know what fields of
503          * NVRAM to update, updating checksums is also part of its job.
504          */
505         off += NVRAM_OFFSET;
506         spin_lock_irq(&rtc_lock);
507         for (retval = 0; count; count--, off++, retval++) {
508                 /* don't trash RTC registers */
509                 if (off == cmos->day_alrm
510                                 || off == cmos->mon_alrm
511                                 || off == cmos->century)
512                         buf++;
513                 else if (off < 128)
514                         CMOS_WRITE(*buf++, off);
515                 else if (can_bank2)
516                         cmos_write_bank2(*buf++, off);
517                 else
518                         break;
519         }
520         spin_unlock_irq(&rtc_lock);
521
522         return retval;
523 }
524
525 static struct bin_attribute nvram = {
526         .attr = {
527                 .name   = "nvram",
528                 .mode   = S_IRUGO | S_IWUSR,
529         },
530
531         .read   = cmos_nvram_read,
532         .write  = cmos_nvram_write,
533         /* size gets set up later */
534 };
535
536 /*----------------------------------------------------------------*/
537
538 static struct cmos_rtc  cmos_rtc;
539
540 static irqreturn_t cmos_interrupt(int irq, void *p)
541 {
542         u8              irqstat;
543         u8              rtc_control;
544
545         spin_lock(&rtc_lock);
546
547         /* When the HPET interrupt handler calls us, the interrupt
548          * status is passed as arg1 instead of the irq number.  But
549          * always clear irq status, even when HPET is in the way.
550          *
551          * Note that HPET and RTC are almost certainly out of phase,
552          * giving different IRQ status ...
553          */
554         irqstat = CMOS_READ(RTC_INTR_FLAGS);
555         rtc_control = CMOS_READ(RTC_CONTROL);
556         if (is_hpet_enabled())
557                 irqstat = (unsigned long)irq & 0xF0;
558
559         /* If we were suspended, RTC_CONTROL may not be accurate since the
560          * bios may have cleared it.
561          */
562         if (!cmos_rtc.suspend_ctrl)
563                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
564         else
565                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
566
567         /* All Linux RTC alarms should be treated as if they were oneshot.
568          * Similar code may be needed in system wakeup paths, in case the
569          * alarm woke the system.
570          */
571         if (irqstat & RTC_AIE) {
572                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
573                 rtc_control &= ~RTC_AIE;
574                 CMOS_WRITE(rtc_control, RTC_CONTROL);
575                 hpet_mask_rtc_irq_bit(RTC_AIE);
576                 CMOS_READ(RTC_INTR_FLAGS);
577         }
578         spin_unlock(&rtc_lock);
579
580         if (is_intr(irqstat)) {
581                 rtc_update_irq(p, 1, irqstat);
582                 return IRQ_HANDLED;
583         } else
584                 return IRQ_NONE;
585 }
586
587 #ifdef  CONFIG_PNP
588 #define INITSECTION
589
590 #else
591 #define INITSECTION     __init
592 #endif
593
594 static int INITSECTION
595 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
596 {
597         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
598         int                             retval = 0;
599         unsigned char                   rtc_control;
600         unsigned                        address_space;
601         u32                             flags = 0;
602
603         /* there can be only one ... */
604         if (cmos_rtc.dev)
605                 return -EBUSY;
606
607         if (!ports)
608                 return -ENODEV;
609
610         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
611          *
612          * REVISIT non-x86 systems may instead use memory space resources
613          * (needing ioremap etc), not i/o space resources like this ...
614          */
615         if (RTC_IOMAPPED)
616                 ports = request_region(ports->start, resource_size(ports),
617                                        driver_name);
618         else
619                 ports = request_mem_region(ports->start, resource_size(ports),
620                                            driver_name);
621         if (!ports) {
622                 dev_dbg(dev, "i/o registers already in use\n");
623                 return -EBUSY;
624         }
625
626         cmos_rtc.irq = rtc_irq;
627         cmos_rtc.iomem = ports;
628
629         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
630          * driver did, but don't reject unknown configs.   Old hardware
631          * won't address 128 bytes.  Newer chips have multiple banks,
632          * though they may not be listed in one I/O resource.
633          */
634 #if     defined(CONFIG_ATARI)
635         address_space = 64;
636 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
637                         || defined(__sparc__) || defined(__mips__) \
638                         || defined(__powerpc__) || defined(CONFIG_MN10300)
639         address_space = 128;
640 #else
641 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
642         address_space = 128;
643 #endif
644         if (can_bank2 && ports->end > (ports->start + 1))
645                 address_space = 256;
646
647         /* For ACPI systems extension info comes from the FADT.  On others,
648          * board specific setup provides it as appropriate.  Systems where
649          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
650          * some almost-clones) can provide hooks to make that behave.
651          *
652          * Note that ACPI doesn't preclude putting these registers into
653          * "extended" areas of the chip, including some that we won't yet
654          * expect CMOS_READ and friends to handle.
655          */
656         if (info) {
657                 if (info->flags)
658                         flags = info->flags;
659                 if (info->address_space)
660                         address_space = info->address_space;
661
662                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
663                         cmos_rtc.day_alrm = info->rtc_day_alarm;
664                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
665                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
666                 if (info->rtc_century && info->rtc_century < 128)
667                         cmos_rtc.century = info->rtc_century;
668
669                 if (info->wake_on && info->wake_off) {
670                         cmos_rtc.wake_on = info->wake_on;
671                         cmos_rtc.wake_off = info->wake_off;
672                 }
673         }
674
675         cmos_rtc.dev = dev;
676         dev_set_drvdata(dev, &cmos_rtc);
677
678         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
679                                 &cmos_rtc_ops, THIS_MODULE);
680         if (IS_ERR(cmos_rtc.rtc)) {
681                 retval = PTR_ERR(cmos_rtc.rtc);
682                 goto cleanup0;
683         }
684
685         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
686
687         spin_lock_irq(&rtc_lock);
688
689         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
690                 /* force periodic irq to CMOS reset default of 1024Hz;
691                  *
692                  * REVISIT it's been reported that at least one x86_64 ALI
693                  * mobo doesn't use 32KHz here ... for portability we might
694                  * need to do something about other clock frequencies.
695                  */
696                 cmos_rtc.rtc->irq_freq = 1024;
697                 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
698                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
699         }
700
701         /* disable irqs */
702         if (is_valid_irq(rtc_irq))
703                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
704
705         rtc_control = CMOS_READ(RTC_CONTROL);
706
707         spin_unlock_irq(&rtc_lock);
708
709         /* FIXME:
710          * <asm-generic/rtc.h> doesn't know 12-hour mode either.
711          */
712         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
713                 dev_warn(dev, "only 24-hr supported\n");
714                 retval = -ENXIO;
715                 goto cleanup1;
716         }
717
718         hpet_rtc_timer_init();
719
720         if (is_valid_irq(rtc_irq)) {
721                 irq_handler_t rtc_cmos_int_handler;
722
723                 if (is_hpet_enabled()) {
724                         rtc_cmos_int_handler = hpet_rtc_interrupt;
725                         retval = hpet_register_irq_handler(cmos_interrupt);
726                         if (retval) {
727                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
728                                 dev_warn(dev, "hpet_register_irq_handler "
729                                                 " failed in rtc_init().");
730                                 goto cleanup1;
731                         }
732                 } else
733                         rtc_cmos_int_handler = cmos_interrupt;
734
735                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
736                                 0, dev_name(&cmos_rtc.rtc->dev),
737                                 cmos_rtc.rtc);
738                 if (retval < 0) {
739                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
740                         goto cleanup1;
741                 }
742         }
743
744         /* export at least the first block of NVRAM */
745         nvram.size = address_space - NVRAM_OFFSET;
746         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
747         if (retval < 0) {
748                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
749                 goto cleanup2;
750         }
751
752         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
753                 !is_valid_irq(rtc_irq) ? "no alarms" :
754                         cmos_rtc.mon_alrm ? "alarms up to one year" :
755                         cmos_rtc.day_alrm ? "alarms up to one month" :
756                         "alarms up to one day",
757                 cmos_rtc.century ? ", y3k" : "",
758                 nvram.size,
759                 is_hpet_enabled() ? ", hpet irqs" : "");
760
761         return 0;
762
763 cleanup2:
764         if (is_valid_irq(rtc_irq))
765                 free_irq(rtc_irq, cmos_rtc.rtc);
766 cleanup1:
767         cmos_rtc.dev = NULL;
768         rtc_device_unregister(cmos_rtc.rtc);
769 cleanup0:
770         if (RTC_IOMAPPED)
771                 release_region(ports->start, resource_size(ports));
772         else
773                 release_mem_region(ports->start, resource_size(ports));
774         return retval;
775 }
776
777 static void cmos_do_shutdown(int rtc_irq)
778 {
779         spin_lock_irq(&rtc_lock);
780         if (is_valid_irq(rtc_irq))
781                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
782         spin_unlock_irq(&rtc_lock);
783 }
784
785 static void cmos_do_remove(struct device *dev)
786 {
787         struct cmos_rtc *cmos = dev_get_drvdata(dev);
788         struct resource *ports;
789
790         cmos_do_shutdown(cmos->irq);
791
792         sysfs_remove_bin_file(&dev->kobj, &nvram);
793
794         if (is_valid_irq(cmos->irq)) {
795                 free_irq(cmos->irq, cmos->rtc);
796                 hpet_unregister_irq_handler(cmos_interrupt);
797         }
798
799         rtc_device_unregister(cmos->rtc);
800         cmos->rtc = NULL;
801
802         ports = cmos->iomem;
803         if (RTC_IOMAPPED)
804                 release_region(ports->start, resource_size(ports));
805         else
806                 release_mem_region(ports->start, resource_size(ports));
807         cmos->iomem = NULL;
808
809         cmos->dev = NULL;
810 }
811
812 static int cmos_aie_poweroff(struct device *dev)
813 {
814         struct cmos_rtc *cmos = dev_get_drvdata(dev);
815         struct rtc_time now;
816         time64_t t_now;
817         int retval = 0;
818         unsigned char rtc_control;
819
820         if (!cmos->alarm_expires)
821                 return -EINVAL;
822
823         spin_lock_irq(&rtc_lock);
824         rtc_control = CMOS_READ(RTC_CONTROL);
825         spin_unlock_irq(&rtc_lock);
826
827         /* We only care about the situation where AIE is disabled. */
828         if (rtc_control & RTC_AIE)
829                 return -EBUSY;
830
831         cmos_read_time(dev, &now);
832         t_now = rtc_tm_to_time64(&now);
833
834         /*
835          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
836          * automatically right after shutdown on some buggy boxes.
837          * This automatic rebooting issue won't happen when the alarm
838          * time is larger than now+1 seconds.
839          *
840          * If the alarm time is equal to now+1 seconds, the issue can be
841          * prevented by cancelling the alarm.
842          */
843         if (cmos->alarm_expires == t_now + 1) {
844                 struct rtc_wkalrm alarm;
845
846                 /* Cancel the AIE timer by configuring the past time. */
847                 rtc_time64_to_tm(t_now - 1, &alarm.time);
848                 alarm.enabled = 0;
849                 retval = cmos_set_alarm(dev, &alarm);
850         } else if (cmos->alarm_expires > t_now + 1) {
851                 retval = -EBUSY;
852         }
853
854         return retval;
855 }
856
857 static int cmos_suspend(struct device *dev)
858 {
859         struct cmos_rtc *cmos = dev_get_drvdata(dev);
860         unsigned char   tmp;
861
862         /* only the alarm might be a wakeup event source */
863         spin_lock_irq(&rtc_lock);
864         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
865         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
866                 unsigned char   mask;
867
868                 if (device_may_wakeup(dev))
869                         mask = RTC_IRQMASK & ~RTC_AIE;
870                 else
871                         mask = RTC_IRQMASK;
872                 tmp &= ~mask;
873                 CMOS_WRITE(tmp, RTC_CONTROL);
874                 hpet_mask_rtc_irq_bit(mask);
875
876                 cmos_checkintr(cmos, tmp);
877         }
878         spin_unlock_irq(&rtc_lock);
879
880         if (tmp & RTC_AIE) {
881                 cmos->enabled_wake = 1;
882                 if (cmos->wake_on)
883                         cmos->wake_on(dev);
884                 else
885                         enable_irq_wake(cmos->irq);
886         }
887
888         cmos_read_alarm(dev, &cmos->saved_wkalrm);
889
890         dev_dbg(dev, "suspend%s, ctrl %02x\n",
891                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
892                         tmp);
893
894         return 0;
895 }
896
897 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
898  * after a detour through G3 "mechanical off", although the ACPI spec
899  * says wakeup should only work from G1/S4 "hibernate".  To most users,
900  * distinctions between S4 and S5 are pointless.  So when the hardware
901  * allows, don't draw that distinction.
902  */
903 static inline int cmos_poweroff(struct device *dev)
904 {
905         if (!IS_ENABLED(CONFIG_PM))
906                 return -ENOSYS;
907
908         return cmos_suspend(dev);
909 }
910
911 static void cmos_check_wkalrm(struct device *dev)
912 {
913         struct cmos_rtc *cmos = dev_get_drvdata(dev);
914         struct rtc_wkalrm current_alarm;
915         time64_t t_current_expires;
916         time64_t t_saved_expires;
917
918         cmos_read_alarm(dev, &current_alarm);
919         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
920         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
921         if (t_current_expires != t_saved_expires ||
922             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
923                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
924         }
925 }
926
927 static void cmos_check_acpi_rtc_status(struct device *dev,
928                                        unsigned char *rtc_control);
929
930 static int __maybe_unused cmos_resume(struct device *dev)
931 {
932         struct cmos_rtc *cmos = dev_get_drvdata(dev);
933         unsigned char tmp;
934
935         if (cmos->enabled_wake) {
936                 if (cmos->wake_off)
937                         cmos->wake_off(dev);
938                 else
939                         disable_irq_wake(cmos->irq);
940                 cmos->enabled_wake = 0;
941         }
942
943         /* The BIOS might have changed the alarm, restore it */
944         cmos_check_wkalrm(dev);
945
946         spin_lock_irq(&rtc_lock);
947         tmp = cmos->suspend_ctrl;
948         cmos->suspend_ctrl = 0;
949         /* re-enable any irqs previously active */
950         if (tmp & RTC_IRQMASK) {
951                 unsigned char   mask;
952
953                 if (device_may_wakeup(dev))
954                         hpet_rtc_timer_init();
955
956                 do {
957                         CMOS_WRITE(tmp, RTC_CONTROL);
958                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
959
960                         mask = CMOS_READ(RTC_INTR_FLAGS);
961                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
962                         if (!is_hpet_enabled() || !is_intr(mask))
963                                 break;
964
965                         /* force one-shot behavior if HPET blocked
966                          * the wake alarm's irq
967                          */
968                         rtc_update_irq(cmos->rtc, 1, mask);
969                         tmp &= ~RTC_AIE;
970                         hpet_mask_rtc_irq_bit(RTC_AIE);
971                 } while (mask & RTC_AIE);
972
973                 if (tmp & RTC_AIE)
974                         cmos_check_acpi_rtc_status(dev, &tmp);
975         }
976         spin_unlock_irq(&rtc_lock);
977
978         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
979
980         return 0;
981 }
982
983 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
984
985 /*----------------------------------------------------------------*/
986
987 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
988  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
989  * probably list them in similar PNPBIOS tables; so PNP is more common.
990  *
991  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
992  * predate even PNPBIOS should set up platform_bus devices.
993  */
994
995 #ifdef  CONFIG_ACPI
996
997 #include <linux/acpi.h>
998
999 static u32 rtc_handler(void *context)
1000 {
1001         struct device *dev = context;
1002         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1003         unsigned char rtc_control = 0;
1004         unsigned char rtc_intr;
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&rtc_lock, flags);
1008         if (cmos_rtc.suspend_ctrl)
1009                 rtc_control = CMOS_READ(RTC_CONTROL);
1010         if (rtc_control & RTC_AIE) {
1011                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1012                 CMOS_WRITE(rtc_control, RTC_CONTROL);
1013                 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1014                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1015         }
1016         spin_unlock_irqrestore(&rtc_lock, flags);
1017
1018         pm_wakeup_event(dev, 0);
1019         acpi_clear_event(ACPI_EVENT_RTC);
1020         acpi_disable_event(ACPI_EVENT_RTC, 0);
1021         return ACPI_INTERRUPT_HANDLED;
1022 }
1023
1024 static inline void rtc_wake_setup(struct device *dev)
1025 {
1026         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1027         /*
1028          * After the RTC handler is installed, the Fixed_RTC event should
1029          * be disabled. Only when the RTC alarm is set will it be enabled.
1030          */
1031         acpi_clear_event(ACPI_EVENT_RTC);
1032         acpi_disable_event(ACPI_EVENT_RTC, 0);
1033 }
1034
1035 static void rtc_wake_on(struct device *dev)
1036 {
1037         acpi_clear_event(ACPI_EVENT_RTC);
1038         acpi_enable_event(ACPI_EVENT_RTC, 0);
1039 }
1040
1041 static void rtc_wake_off(struct device *dev)
1042 {
1043         acpi_disable_event(ACPI_EVENT_RTC, 0);
1044 }
1045
1046 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1047  * its device node and pass extra config data.  This helps its driver use
1048  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1049  * that this board's RTC is wakeup-capable (per ACPI spec).
1050  */
1051 static struct cmos_rtc_board_info acpi_rtc_info;
1052
1053 static void cmos_wake_setup(struct device *dev)
1054 {
1055         if (acpi_disabled)
1056                 return;
1057
1058         rtc_wake_setup(dev);
1059         acpi_rtc_info.wake_on = rtc_wake_on;
1060         acpi_rtc_info.wake_off = rtc_wake_off;
1061
1062         /* workaround bug in some ACPI tables */
1063         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1064                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1065                         acpi_gbl_FADT.month_alarm);
1066                 acpi_gbl_FADT.month_alarm = 0;
1067         }
1068
1069         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1070         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1071         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1072
1073         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1074         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1075                 dev_info(dev, "RTC can wake from S4\n");
1076
1077         dev->platform_data = &acpi_rtc_info;
1078
1079         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1080         device_init_wakeup(dev, 1);
1081 }
1082
1083 static void cmos_check_acpi_rtc_status(struct device *dev,
1084                                        unsigned char *rtc_control)
1085 {
1086         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1087         acpi_event_status rtc_status;
1088         acpi_status status;
1089
1090         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1091                 return;
1092
1093         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1094         if (ACPI_FAILURE(status)) {
1095                 dev_err(dev, "Could not get RTC status\n");
1096         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1097                 unsigned char mask;
1098                 *rtc_control &= ~RTC_AIE;
1099                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1100                 mask = CMOS_READ(RTC_INTR_FLAGS);
1101                 rtc_update_irq(cmos->rtc, 1, mask);
1102         }
1103 }
1104
1105 #else
1106
1107 static void cmos_wake_setup(struct device *dev)
1108 {
1109 }
1110
1111 static void cmos_check_acpi_rtc_status(struct device *dev,
1112                                        unsigned char *rtc_control)
1113 {
1114 }
1115
1116 #endif
1117
1118 #ifdef  CONFIG_PNP
1119
1120 #include <linux/pnp.h>
1121
1122 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1123 {
1124         cmos_wake_setup(&pnp->dev);
1125
1126         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1127                 unsigned int irq = 0;
1128 #ifdef CONFIG_X86
1129                 /* Some machines contain a PNP entry for the RTC, but
1130                  * don't define the IRQ. It should always be safe to
1131                  * hardcode it on systems with a legacy PIC.
1132                  */
1133                 if (nr_legacy_irqs())
1134                         irq = 8;
1135 #endif
1136                 return cmos_do_probe(&pnp->dev,
1137                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1138         } else {
1139                 return cmos_do_probe(&pnp->dev,
1140                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1141                                 pnp_irq(pnp, 0));
1142         }
1143 }
1144
1145 static void cmos_pnp_remove(struct pnp_dev *pnp)
1146 {
1147         cmos_do_remove(&pnp->dev);
1148 }
1149
1150 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1151 {
1152         struct device *dev = &pnp->dev;
1153         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1154
1155         if (system_state == SYSTEM_POWER_OFF) {
1156                 int retval = cmos_poweroff(dev);
1157
1158                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1159                         return;
1160         }
1161
1162         cmos_do_shutdown(cmos->irq);
1163 }
1164
1165 static const struct pnp_device_id rtc_ids[] = {
1166         { .id = "PNP0b00", },
1167         { .id = "PNP0b01", },
1168         { .id = "PNP0b02", },
1169         { },
1170 };
1171 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1172
1173 static struct pnp_driver cmos_pnp_driver = {
1174         .name           = (char *) driver_name,
1175         .id_table       = rtc_ids,
1176         .probe          = cmos_pnp_probe,
1177         .remove         = cmos_pnp_remove,
1178         .shutdown       = cmos_pnp_shutdown,
1179
1180         /* flag ensures resume() gets called, and stops syslog spam */
1181         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1182         .driver         = {
1183                         .pm = &cmos_pm_ops,
1184         },
1185 };
1186
1187 #endif  /* CONFIG_PNP */
1188
1189 #ifdef CONFIG_OF
1190 static const struct of_device_id of_cmos_match[] = {
1191         {
1192                 .compatible = "motorola,mc146818",
1193         },
1194         { },
1195 };
1196 MODULE_DEVICE_TABLE(of, of_cmos_match);
1197
1198 static __init void cmos_of_init(struct platform_device *pdev)
1199 {
1200         struct device_node *node = pdev->dev.of_node;
1201         struct rtc_time time;
1202         int ret;
1203         const __be32 *val;
1204
1205         if (!node)
1206                 return;
1207
1208         val = of_get_property(node, "ctrl-reg", NULL);
1209         if (val)
1210                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1211
1212         val = of_get_property(node, "freq-reg", NULL);
1213         if (val)
1214                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1215
1216         cmos_read_time(&pdev->dev, &time);
1217         ret = rtc_valid_tm(&time);
1218         if (ret) {
1219                 struct rtc_time def_time = {
1220                         .tm_year = 1,
1221                         .tm_mday = 1,
1222                 };
1223                 cmos_set_time(&pdev->dev, &def_time);
1224         }
1225 }
1226 #else
1227 static inline void cmos_of_init(struct platform_device *pdev) {}
1228 #endif
1229 /*----------------------------------------------------------------*/
1230
1231 /* Platform setup should have set up an RTC device, when PNP is
1232  * unavailable ... this could happen even on (older) PCs.
1233  */
1234
1235 static int __init cmos_platform_probe(struct platform_device *pdev)
1236 {
1237         struct resource *resource;
1238         int irq;
1239
1240         cmos_of_init(pdev);
1241         cmos_wake_setup(&pdev->dev);
1242
1243         if (RTC_IOMAPPED)
1244                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1245         else
1246                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1247         irq = platform_get_irq(pdev, 0);
1248         if (irq < 0)
1249                 irq = -1;
1250
1251         return cmos_do_probe(&pdev->dev, resource, irq);
1252 }
1253
1254 static int cmos_platform_remove(struct platform_device *pdev)
1255 {
1256         cmos_do_remove(&pdev->dev);
1257         return 0;
1258 }
1259
1260 static void cmos_platform_shutdown(struct platform_device *pdev)
1261 {
1262         struct device *dev = &pdev->dev;
1263         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1264
1265         if (system_state == SYSTEM_POWER_OFF) {
1266                 int retval = cmos_poweroff(dev);
1267
1268                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1269                         return;
1270         }
1271
1272         cmos_do_shutdown(cmos->irq);
1273 }
1274
1275 /* work with hotplug and coldplug */
1276 MODULE_ALIAS("platform:rtc_cmos");
1277
1278 static struct platform_driver cmos_platform_driver = {
1279         .remove         = cmos_platform_remove,
1280         .shutdown       = cmos_platform_shutdown,
1281         .driver = {
1282                 .name           = driver_name,
1283                 .pm             = &cmos_pm_ops,
1284                 .of_match_table = of_match_ptr(of_cmos_match),
1285         }
1286 };
1287
1288 #ifdef CONFIG_PNP
1289 static bool pnp_driver_registered;
1290 #endif
1291 static bool platform_driver_registered;
1292
1293 static int __init cmos_init(void)
1294 {
1295         int retval = 0;
1296
1297 #ifdef  CONFIG_PNP
1298         retval = pnp_register_driver(&cmos_pnp_driver);
1299         if (retval == 0)
1300                 pnp_driver_registered = true;
1301 #endif
1302
1303         if (!cmos_rtc.dev) {
1304                 retval = platform_driver_probe(&cmos_platform_driver,
1305                                                cmos_platform_probe);
1306                 if (retval == 0)
1307                         platform_driver_registered = true;
1308         }
1309
1310         if (retval == 0)
1311                 return 0;
1312
1313 #ifdef  CONFIG_PNP
1314         if (pnp_driver_registered)
1315                 pnp_unregister_driver(&cmos_pnp_driver);
1316 #endif
1317         return retval;
1318 }
1319 module_init(cmos_init);
1320
1321 static void __exit cmos_exit(void)
1322 {
1323 #ifdef  CONFIG_PNP
1324         if (pnp_driver_registered)
1325                 pnp_unregister_driver(&cmos_pnp_driver);
1326 #endif
1327         if (platform_driver_registered)
1328                 platform_driver_unregister(&cmos_platform_driver);
1329 }
1330 module_exit(cmos_exit);
1331
1332
1333 MODULE_AUTHOR("David Brownell");
1334 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1335 MODULE_LICENSE("GPL");