2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
28 else if (!rtc->ops->read_time)
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
39 err = rtc_valid_tm(tm);
41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
50 err = mutex_lock_interruptible(&rtc->ops_lock);
54 err = __rtc_read_time(rtc, tm);
55 mutex_unlock(&rtc->ops_lock);
58 EXPORT_SYMBOL_GPL(rtc_read_time);
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
64 err = rtc_valid_tm(tm);
68 err = mutex_lock_interruptible(&rtc->ops_lock);
74 else if (rtc->ops->set_time)
75 err = rtc->ops->set_time(rtc->dev.parent, tm);
76 else if (rtc->ops->set_mmss64) {
77 time64_t secs64 = rtc_tm_to_time64(tm);
79 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 } else if (rtc->ops->set_mmss) {
81 time64_t secs64 = rtc_tm_to_time64(tm);
82 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
86 pm_stay_awake(rtc->dev.parent);
87 mutex_unlock(&rtc->ops_lock);
88 /* A timer might have just expired */
89 schedule_work(&rtc->irqwork);
92 EXPORT_SYMBOL_GPL(rtc_set_time);
94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
98 err = mutex_lock_interruptible(&rtc->ops_lock);
102 if (rtc->ops == NULL)
104 else if (!rtc->ops->read_alarm)
107 memset(alarm, 0, sizeof(struct rtc_wkalrm));
108 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
111 mutex_unlock(&rtc->ops_lock);
115 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
118 struct rtc_time before, now;
120 time64_t t_now, t_alm;
121 enum { none, day, month, year } missing = none;
124 /* The lower level RTC driver may return -1 in some fields,
125 * creating invalid alarm->time values, for reasons like:
127 * - The hardware may not be capable of filling them in;
128 * many alarms match only on time-of-day fields, not
129 * day/month/year calendar data.
131 * - Some hardware uses illegal values as "wildcard" match
132 * values, which non-Linux firmware (like a BIOS) may try
133 * to set up as e.g. "alarm 15 minutes after each hour".
134 * Linux uses only oneshot alarms.
136 * When we see that here, we deal with it by using values from
137 * a current RTC timestamp for any missing (-1) values. The
138 * RTC driver prevents "periodic alarm" modes.
140 * But this can be racey, because some fields of the RTC timestamp
141 * may have wrapped in the interval since we read the RTC alarm,
142 * which would lead to us inserting inconsistent values in place
145 * Reading the alarm and timestamp in the reverse sequence
146 * would have the same race condition, and not solve the issue.
148 * So, we must first read the RTC timestamp,
149 * then read the RTC alarm value,
150 * and then read a second RTC timestamp.
152 * If any fields of the second timestamp have changed
153 * when compared with the first timestamp, then we know
154 * our timestamp may be inconsistent with that used by
155 * the low-level rtc_read_alarm_internal() function.
157 * So, when the two timestamps disagree, we just loop and do
158 * the process again to get a fully consistent set of values.
160 * This could all instead be done in the lower level driver,
161 * but since more than one lower level RTC implementation needs it,
162 * then it's probably best best to do it here instead of there..
165 /* Get the "before" timestamp */
166 err = rtc_read_time(rtc, &before);
171 memcpy(&before, &now, sizeof(struct rtc_time));
174 /* get the RTC alarm values, which may be incomplete */
175 err = rtc_read_alarm_internal(rtc, alarm);
179 /* full-function RTCs won't have such missing fields */
180 if (rtc_valid_tm(&alarm->time) == 0)
183 /* get the "after" timestamp, to detect wrapped fields */
184 err = rtc_read_time(rtc, &now);
188 /* note that tm_sec is a "don't care" value here: */
189 } while ( before.tm_min != now.tm_min
190 || before.tm_hour != now.tm_hour
191 || before.tm_mon != now.tm_mon
192 || before.tm_year != now.tm_year);
194 /* Fill in the missing alarm fields using the timestamp; we
195 * know there's at least one since alarm->time is invalid.
197 if (alarm->time.tm_sec == -1)
198 alarm->time.tm_sec = now.tm_sec;
199 if (alarm->time.tm_min == -1)
200 alarm->time.tm_min = now.tm_min;
201 if (alarm->time.tm_hour == -1)
202 alarm->time.tm_hour = now.tm_hour;
204 /* For simplicity, only support date rollover for now */
205 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206 alarm->time.tm_mday = now.tm_mday;
209 if ((unsigned)alarm->time.tm_mon >= 12) {
210 alarm->time.tm_mon = now.tm_mon;
214 if (alarm->time.tm_year == -1) {
215 alarm->time.tm_year = now.tm_year;
220 /* Can't proceed if alarm is still invalid after replacing
223 err = rtc_valid_tm(&alarm->time);
227 /* with luck, no rollover is needed */
228 t_now = rtc_tm_to_time64(&now);
229 t_alm = rtc_tm_to_time64(&alarm->time);
235 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
236 * that will trigger at 5am will do so at 5am Tuesday, which
237 * could also be in the next month or year. This is a common
238 * case, especially for PCs.
241 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
242 t_alm += 24 * 60 * 60;
243 rtc_time64_to_tm(t_alm, &alarm->time);
246 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
247 * be next month. An alarm matching on the 30th, 29th, or 28th
248 * may end up in the month after that! Many newer PCs support
249 * this type of alarm.
252 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
254 if (alarm->time.tm_mon < 11)
255 alarm->time.tm_mon++;
257 alarm->time.tm_mon = 0;
258 alarm->time.tm_year++;
260 days = rtc_month_days(alarm->time.tm_mon,
261 alarm->time.tm_year);
262 } while (days < alarm->time.tm_mday);
265 /* Year rollover ... easy except for leap years! */
267 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
269 alarm->time.tm_year++;
270 } while (!is_leap_year(alarm->time.tm_year + 1900)
271 && rtc_valid_tm(&alarm->time) != 0);
275 dev_warn(&rtc->dev, "alarm rollover not handled\n");
278 err = rtc_valid_tm(&alarm->time);
282 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
283 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
284 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
291 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
295 err = mutex_lock_interruptible(&rtc->ops_lock);
298 if (rtc->ops == NULL)
300 else if (!rtc->ops->read_alarm)
303 memset(alarm, 0, sizeof(struct rtc_wkalrm));
304 alarm->enabled = rtc->aie_timer.enabled;
305 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
307 mutex_unlock(&rtc->ops_lock);
311 EXPORT_SYMBOL_GPL(rtc_read_alarm);
313 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
316 time64_t now, scheduled;
319 err = rtc_valid_tm(&alarm->time);
322 scheduled = rtc_tm_to_time64(&alarm->time);
324 /* Make sure we're not setting alarms in the past */
325 err = __rtc_read_time(rtc, &tm);
328 now = rtc_tm_to_time64(&tm);
329 if (scheduled <= now)
332 * XXX - We just checked to make sure the alarm time is not
333 * in the past, but there is still a race window where if
334 * the is alarm set for the next second and the second ticks
335 * over right here, before we set the alarm.
340 else if (!rtc->ops->set_alarm)
343 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
348 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
354 else if (!rtc->ops->set_alarm)
357 err = rtc_valid_tm(&alarm->time);
361 err = mutex_lock_interruptible(&rtc->ops_lock);
364 if (rtc->aie_timer.enabled)
365 rtc_timer_remove(rtc, &rtc->aie_timer);
367 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
368 rtc->aie_timer.period = ktime_set(0, 0);
370 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372 mutex_unlock(&rtc->ops_lock);
375 EXPORT_SYMBOL_GPL(rtc_set_alarm);
377 /* Called once per device from rtc_device_register */
378 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
383 err = rtc_valid_tm(&alarm->time);
387 err = rtc_read_time(rtc, &now);
391 err = mutex_lock_interruptible(&rtc->ops_lock);
395 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
396 rtc->aie_timer.period = ktime_set(0, 0);
398 /* Alarm has to be enabled & in the futrure for us to enqueue it */
399 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
400 rtc->aie_timer.node.expires.tv64)) {
402 rtc->aie_timer.enabled = 1;
403 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
405 mutex_unlock(&rtc->ops_lock);
408 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
412 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
414 int err = mutex_lock_interruptible(&rtc->ops_lock);
418 if (rtc->aie_timer.enabled != enabled) {
420 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
422 rtc_timer_remove(rtc, &rtc->aie_timer);
429 else if (!rtc->ops->alarm_irq_enable)
432 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
434 mutex_unlock(&rtc->ops_lock);
437 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
439 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
441 int err = mutex_lock_interruptible(&rtc->ops_lock);
445 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
446 if (enabled == 0 && rtc->uie_irq_active) {
447 mutex_unlock(&rtc->ops_lock);
448 return rtc_dev_update_irq_enable_emul(rtc, 0);
451 /* make sure we're changing state */
452 if (rtc->uie_rtctimer.enabled == enabled)
455 if (rtc->uie_unsupported) {
464 __rtc_read_time(rtc, &tm);
465 onesec = ktime_set(1, 0);
466 now = rtc_tm_to_ktime(tm);
467 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
468 rtc->uie_rtctimer.period = ktime_set(1, 0);
469 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
471 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
474 mutex_unlock(&rtc->ops_lock);
475 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
477 * Enable emulation if the driver did not provide
478 * the update_irq_enable function pointer or if returned
479 * -EINVAL to signal that it has been configured without
480 * interrupts or that are not available at the moment.
483 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
488 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
492 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
493 * @rtc: pointer to the rtc device
495 * This function is called when an AIE, UIE or PIE mode interrupt
496 * has occurred (or been emulated).
498 * Triggers the registered irq_task function callback.
500 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
504 /* mark one irq of the appropriate mode */
505 spin_lock_irqsave(&rtc->irq_lock, flags);
506 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
507 spin_unlock_irqrestore(&rtc->irq_lock, flags);
509 /* call the task func */
510 spin_lock_irqsave(&rtc->irq_task_lock, flags);
512 rtc->irq_task->func(rtc->irq_task->private_data);
513 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
515 wake_up_interruptible(&rtc->irq_queue);
516 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
521 * rtc_aie_update_irq - AIE mode rtctimer hook
522 * @private: pointer to the rtc_device
524 * This functions is called when the aie_timer expires.
526 void rtc_aie_update_irq(void *private)
528 struct rtc_device *rtc = (struct rtc_device *)private;
529 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
534 * rtc_uie_update_irq - UIE mode rtctimer hook
535 * @private: pointer to the rtc_device
537 * This functions is called when the uie_timer expires.
539 void rtc_uie_update_irq(void *private)
541 struct rtc_device *rtc = (struct rtc_device *)private;
542 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
547 * rtc_pie_update_irq - PIE mode hrtimer hook
548 * @timer: pointer to the pie mode hrtimer
550 * This function is used to emulate PIE mode interrupts
551 * using an hrtimer. This function is called when the periodic
554 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
556 struct rtc_device *rtc;
559 rtc = container_of(timer, struct rtc_device, pie_timer);
561 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
562 count = hrtimer_forward_now(timer, period);
564 rtc_handle_legacy_irq(rtc, count, RTC_PF);
566 return HRTIMER_RESTART;
570 * rtc_update_irq - Triggered when a RTC interrupt occurs.
571 * @rtc: the rtc device
572 * @num: how many irqs are being reported (usually one)
573 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
576 void rtc_update_irq(struct rtc_device *rtc,
577 unsigned long num, unsigned long events)
579 if (IS_ERR_OR_NULL(rtc))
582 pm_stay_awake(rtc->dev.parent);
583 schedule_work(&rtc->irqwork);
585 EXPORT_SYMBOL_GPL(rtc_update_irq);
587 static int __rtc_match(struct device *dev, const void *data)
589 const char *name = data;
591 if (strcmp(dev_name(dev), name) == 0)
596 struct rtc_device *rtc_class_open(const char *name)
599 struct rtc_device *rtc = NULL;
601 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
603 rtc = to_rtc_device(dev);
606 if (!try_module_get(rtc->owner)) {
614 EXPORT_SYMBOL_GPL(rtc_class_open);
616 void rtc_class_close(struct rtc_device *rtc)
618 module_put(rtc->owner);
619 put_device(&rtc->dev);
621 EXPORT_SYMBOL_GPL(rtc_class_close);
623 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
627 if (task == NULL || task->func == NULL)
630 /* Cannot register while the char dev is in use */
631 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
634 spin_lock_irq(&rtc->irq_task_lock);
635 if (rtc->irq_task == NULL) {
636 rtc->irq_task = task;
639 spin_unlock_irq(&rtc->irq_task_lock);
641 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
645 EXPORT_SYMBOL_GPL(rtc_irq_register);
647 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
649 spin_lock_irq(&rtc->irq_task_lock);
650 if (rtc->irq_task == task)
651 rtc->irq_task = NULL;
652 spin_unlock_irq(&rtc->irq_task_lock);
654 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
656 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
659 * We always cancel the timer here first, because otherwise
660 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
661 * when we manage to start the timer before the callback
662 * returns HRTIMER_RESTART.
664 * We cannot use hrtimer_cancel() here as a running callback
665 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
666 * would spin forever.
668 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
672 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
674 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
680 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
681 * @rtc: the rtc device
682 * @task: currently registered with rtc_irq_register()
683 * @enabled: true to enable periodic IRQs
686 * Note that rtc_irq_set_freq() should previously have been used to
687 * specify the desired frequency of periodic IRQ task->func() callbacks.
689 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
695 spin_lock_irqsave(&rtc->irq_task_lock, flags);
696 if (rtc->irq_task != NULL && task == NULL)
698 else if (rtc->irq_task != task)
701 if (rtc_update_hrtimer(rtc, enabled) < 0) {
702 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
706 rtc->pie_enabled = enabled;
708 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
711 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
714 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
715 * @rtc: the rtc device
716 * @task: currently registered with rtc_irq_register()
717 * @freq: positive frequency with which task->func() will be called
720 * Note that rtc_irq_set_state() is used to enable or disable the
723 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
728 if (freq <= 0 || freq > RTC_MAX_FREQ)
731 spin_lock_irqsave(&rtc->irq_task_lock, flags);
732 if (rtc->irq_task != NULL && task == NULL)
734 else if (rtc->irq_task != task)
737 rtc->irq_freq = freq;
738 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
739 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
744 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
747 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
750 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
752 * @timer timer being added.
754 * Enqueues a timer onto the rtc devices timerqueue and sets
755 * the next alarm event appropriately.
757 * Sets the enabled bit on the added timer.
759 * Must hold ops_lock for proper serialization of timerqueue
761 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
763 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
768 __rtc_read_time(rtc, &tm);
769 now = rtc_tm_to_ktime(tm);
771 /* Skip over expired timers */
773 if (next->expires.tv64 >= now.tv64)
775 next = timerqueue_iterate_next(next);
778 timerqueue_add(&rtc->timerqueue, &timer->node);
779 if (!next || ktime_before(timer->node.expires, next->expires)) {
780 struct rtc_wkalrm alarm;
782 alarm.time = rtc_ktime_to_tm(timer->node.expires);
784 err = __rtc_set_alarm(rtc, &alarm);
786 pm_stay_awake(rtc->dev.parent);
787 schedule_work(&rtc->irqwork);
789 timerqueue_del(&rtc->timerqueue, &timer->node);
797 static void rtc_alarm_disable(struct rtc_device *rtc)
799 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
802 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
806 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
808 * @timer timer being removed.
810 * Removes a timer onto the rtc devices timerqueue and sets
811 * the next alarm event appropriately.
813 * Clears the enabled bit on the removed timer.
815 * Must hold ops_lock for proper serialization of timerqueue
817 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
819 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
820 timerqueue_del(&rtc->timerqueue, &timer->node);
822 if (next == &timer->node) {
823 struct rtc_wkalrm alarm;
825 next = timerqueue_getnext(&rtc->timerqueue);
827 rtc_alarm_disable(rtc);
830 alarm.time = rtc_ktime_to_tm(next->expires);
832 err = __rtc_set_alarm(rtc, &alarm);
834 pm_stay_awake(rtc->dev.parent);
835 schedule_work(&rtc->irqwork);
841 * rtc_timer_do_work - Expires rtc timers
843 * @timer timer being removed.
845 * Expires rtc timers. Reprograms next alarm event if needed.
846 * Called via worktask.
848 * Serializes access to timerqueue via ops_lock mutex
850 void rtc_timer_do_work(struct work_struct *work)
852 struct rtc_timer *timer;
853 struct timerqueue_node *next;
857 struct rtc_device *rtc =
858 container_of(work, struct rtc_device, irqwork);
860 mutex_lock(&rtc->ops_lock);
862 __rtc_read_time(rtc, &tm);
863 now = rtc_tm_to_ktime(tm);
864 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
865 if (next->expires.tv64 > now.tv64)
869 timer = container_of(next, struct rtc_timer, node);
870 timerqueue_del(&rtc->timerqueue, &timer->node);
872 if (timer->task.func)
873 timer->task.func(timer->task.private_data);
875 /* Re-add/fwd periodic timers */
876 if (ktime_to_ns(timer->period)) {
877 timer->node.expires = ktime_add(timer->node.expires,
880 timerqueue_add(&rtc->timerqueue, &timer->node);
886 struct rtc_wkalrm alarm;
890 alarm.time = rtc_ktime_to_tm(next->expires);
893 err = __rtc_set_alarm(rtc, &alarm);
900 timer = container_of(next, struct rtc_timer, node);
901 timerqueue_del(&rtc->timerqueue, &timer->node);
903 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
907 rtc_alarm_disable(rtc);
909 pm_relax(rtc->dev.parent);
910 mutex_unlock(&rtc->ops_lock);
914 /* rtc_timer_init - Initializes an rtc_timer
915 * @timer: timer to be intiialized
916 * @f: function pointer to be called when timer fires
917 * @data: private data passed to function pointer
919 * Kernel interface to initializing an rtc_timer.
921 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
923 timerqueue_init(&timer->node);
925 timer->task.func = f;
926 timer->task.private_data = data;
929 /* rtc_timer_start - Sets an rtc_timer to fire in the future
930 * @ rtc: rtc device to be used
931 * @ timer: timer being set
932 * @ expires: time at which to expire the timer
933 * @ period: period that the timer will recur
935 * Kernel interface to set an rtc_timer
937 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
938 ktime_t expires, ktime_t period)
941 mutex_lock(&rtc->ops_lock);
943 rtc_timer_remove(rtc, timer);
945 timer->node.expires = expires;
946 timer->period = period;
948 ret = rtc_timer_enqueue(rtc, timer);
950 mutex_unlock(&rtc->ops_lock);
954 /* rtc_timer_cancel - Stops an rtc_timer
955 * @ rtc: rtc device to be used
956 * @ timer: timer being set
958 * Kernel interface to cancel an rtc_timer
960 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
962 mutex_lock(&rtc->ops_lock);
964 rtc_timer_remove(rtc, timer);
965 mutex_unlock(&rtc->ops_lock);