GNU Linux-libre 5.19.9-gnu
[releases.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94                                      suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
112 static bool have_full_constraints(void)
113 {
114         return has_full_constraints || of_have_populated_dt();
115 }
116
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119         if (!rdev->constraints) {
120                 rdev_err(rdev, "no constraints\n");
121                 return false;
122         }
123
124         if (rdev->constraints->valid_ops_mask & ops)
125                 return true;
126
127         return false;
128 }
129
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:               regulator source
133  * @ww_ctx:             w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142                                         struct ww_acquire_ctx *ww_ctx)
143 {
144         bool lock = false;
145         int ret = 0;
146
147         mutex_lock(&regulator_nesting_mutex);
148
149         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150                 if (rdev->mutex_owner == current)
151                         rdev->ref_cnt++;
152                 else
153                         lock = true;
154
155                 if (lock) {
156                         mutex_unlock(&regulator_nesting_mutex);
157                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158                         mutex_lock(&regulator_nesting_mutex);
159                 }
160         } else {
161                 lock = true;
162         }
163
164         if (lock && ret != -EDEADLK) {
165                 rdev->ref_cnt++;
166                 rdev->mutex_owner = current;
167         }
168
169         mutex_unlock(&regulator_nesting_mutex);
170
171         return ret;
172 }
173
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:               regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186         regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:               regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198         mutex_lock(&regulator_nesting_mutex);
199
200         if (--rdev->ref_cnt == 0) {
201                 rdev->mutex_owner = NULL;
202                 ww_mutex_unlock(&rdev->mutex);
203         }
204
205         WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207         mutex_unlock(&regulator_nesting_mutex);
208 }
209
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212         struct regulator_dev *c_rdev;
213         int i;
214
215         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218                 if (rdev->supply->rdev == c_rdev)
219                         return true;
220         }
221
222         return false;
223 }
224
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226                                        unsigned int n_coupled)
227 {
228         struct regulator_dev *c_rdev, *supply_rdev;
229         int i, supply_n_coupled;
230
231         for (i = n_coupled; i > 0; i--) {
232                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234                 if (!c_rdev)
235                         continue;
236
237                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238                         supply_rdev = c_rdev->supply->rdev;
239                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241                         regulator_unlock_recursive(supply_rdev,
242                                                    supply_n_coupled);
243                 }
244
245                 regulator_unlock(c_rdev);
246         }
247 }
248
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250                                     struct regulator_dev **new_contended_rdev,
251                                     struct regulator_dev **old_contended_rdev,
252                                     struct ww_acquire_ctx *ww_ctx)
253 {
254         struct regulator_dev *c_rdev;
255         int i, err;
256
257         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260                 if (!c_rdev)
261                         continue;
262
263                 if (c_rdev != *old_contended_rdev) {
264                         err = regulator_lock_nested(c_rdev, ww_ctx);
265                         if (err) {
266                                 if (err == -EDEADLK) {
267                                         *new_contended_rdev = c_rdev;
268                                         goto err_unlock;
269                                 }
270
271                                 /* shouldn't happen */
272                                 WARN_ON_ONCE(err != -EALREADY);
273                         }
274                 } else {
275                         *old_contended_rdev = NULL;
276                 }
277
278                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279                         err = regulator_lock_recursive(c_rdev->supply->rdev,
280                                                        new_contended_rdev,
281                                                        old_contended_rdev,
282                                                        ww_ctx);
283                         if (err) {
284                                 regulator_unlock(c_rdev);
285                                 goto err_unlock;
286                         }
287                 }
288         }
289
290         return 0;
291
292 err_unlock:
293         regulator_unlock_recursive(rdev, i);
294
295         return err;
296 }
297
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *                              regulators
301  * @rdev:                       regulator source
302  * @ww_ctx:                     w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307                                        struct ww_acquire_ctx *ww_ctx)
308 {
309         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310         ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:                       regulator source
316  * @ww_ctx:                     w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322                                      struct ww_acquire_ctx *ww_ctx)
323 {
324         struct regulator_dev *new_contended_rdev = NULL;
325         struct regulator_dev *old_contended_rdev = NULL;
326         int err;
327
328         mutex_lock(&regulator_list_mutex);
329
330         ww_acquire_init(ww_ctx, &regulator_ww_class);
331
332         do {
333                 if (new_contended_rdev) {
334                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335                         old_contended_rdev = new_contended_rdev;
336                         old_contended_rdev->ref_cnt++;
337                 }
338
339                 err = regulator_lock_recursive(rdev,
340                                                &new_contended_rdev,
341                                                &old_contended_rdev,
342                                                ww_ctx);
343
344                 if (old_contended_rdev)
345                         regulator_unlock(old_contended_rdev);
346
347         } while (err == -EDEADLK);
348
349         ww_acquire_done(ww_ctx);
350
351         mutex_unlock(&regulator_list_mutex);
352 }
353
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366                                                   const char *prop_name)
367 {
368         struct device_node *regnode = NULL;
369         struct device_node *child = NULL;
370
371         for_each_child_of_node(parent, child) {
372                 regnode = of_parse_phandle(child, prop_name, 0);
373
374                 if (!regnode) {
375                         regnode = of_get_child_regulator(child, prop_name);
376                         if (regnode)
377                                 goto err_node_put;
378                 } else {
379                         goto err_node_put;
380                 }
381         }
382         return NULL;
383
384 err_node_put:
385         of_node_put(child);
386         return regnode;
387 }
388
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400         struct device_node *regnode = NULL;
401         char prop_name[64]; /* 64 is max size of property name */
402
403         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405         snprintf(prop_name, 64, "%s-supply", supply);
406         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408         if (!regnode) {
409                 regnode = of_get_child_regulator(dev->of_node, prop_name);
410                 if (regnode)
411                         return regnode;
412
413                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414                                 prop_name, dev->of_node);
415                 return NULL;
416         }
417         return regnode;
418 }
419
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422                             int *min_uV, int *max_uV)
423 {
424         BUG_ON(*min_uV > *max_uV);
425
426         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427                 rdev_err(rdev, "voltage operation not allowed\n");
428                 return -EPERM;
429         }
430
431         if (*max_uV > rdev->constraints->max_uV)
432                 *max_uV = rdev->constraints->max_uV;
433         if (*min_uV < rdev->constraints->min_uV)
434                 *min_uV = rdev->constraints->min_uV;
435
436         if (*min_uV > *max_uV) {
437                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438                          *min_uV, *max_uV);
439                 return -EINVAL;
440         }
441
442         return 0;
443 }
444
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455                               int *min_uV, int *max_uV,
456                               suspend_state_t state)
457 {
458         struct regulator *regulator;
459         struct regulator_voltage *voltage;
460
461         list_for_each_entry(regulator, &rdev->consumer_list, list) {
462                 voltage = &regulator->voltage[state];
463                 /*
464                  * Assume consumers that didn't say anything are OK
465                  * with anything in the constraint range.
466                  */
467                 if (!voltage->min_uV && !voltage->max_uV)
468                         continue;
469
470                 if (*max_uV > voltage->max_uV)
471                         *max_uV = voltage->max_uV;
472                 if (*min_uV < voltage->min_uV)
473                         *min_uV = voltage->min_uV;
474         }
475
476         if (*min_uV > *max_uV) {
477                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478                         *min_uV, *max_uV);
479                 return -EINVAL;
480         }
481
482         return 0;
483 }
484
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487                                         int *min_uA, int *max_uA)
488 {
489         BUG_ON(*min_uA > *max_uA);
490
491         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492                 rdev_err(rdev, "current operation not allowed\n");
493                 return -EPERM;
494         }
495
496         if (*max_uA > rdev->constraints->max_uA)
497                 *max_uA = rdev->constraints->max_uA;
498         if (*min_uA < rdev->constraints->min_uA)
499                 *min_uA = rdev->constraints->min_uA;
500
501         if (*min_uA > *max_uA) {
502                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503                          *min_uA, *max_uA);
504                 return -EINVAL;
505         }
506
507         return 0;
508 }
509
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512                                     unsigned int *mode)
513 {
514         switch (*mode) {
515         case REGULATOR_MODE_FAST:
516         case REGULATOR_MODE_NORMAL:
517         case REGULATOR_MODE_IDLE:
518         case REGULATOR_MODE_STANDBY:
519                 break;
520         default:
521                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522                 return -EINVAL;
523         }
524
525         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526                 rdev_err(rdev, "mode operation not allowed\n");
527                 return -EPERM;
528         }
529
530         /* The modes are bitmasks, the most power hungry modes having
531          * the lowest values. If the requested mode isn't supported
532          * try higher modes.
533          */
534         while (*mode) {
535                 if (rdev->constraints->valid_modes_mask & *mode)
536                         return 0;
537                 *mode /= 2;
538         }
539
540         return -EINVAL;
541 }
542
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546         if (rdev->constraints == NULL)
547                 return NULL;
548
549         switch (state) {
550         case PM_SUSPEND_STANDBY:
551                 return &rdev->constraints->state_standby;
552         case PM_SUSPEND_MEM:
553                 return &rdev->constraints->state_mem;
554         case PM_SUSPEND_MAX:
555                 return &rdev->constraints->state_disk;
556         default:
557                 return NULL;
558         }
559 }
560
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564         const struct regulator_state *rstate;
565
566         rstate = regulator_get_suspend_state(rdev, state);
567         if (rstate == NULL)
568                 return NULL;
569
570         /* If we have no suspend mode configuration don't set anything;
571          * only warn if the driver implements set_suspend_voltage or
572          * set_suspend_mode callback.
573          */
574         if (rstate->enabled != ENABLE_IN_SUSPEND &&
575             rstate->enabled != DISABLE_IN_SUSPEND) {
576                 if (rdev->desc->ops->set_suspend_voltage ||
577                     rdev->desc->ops->set_suspend_mode)
578                         rdev_warn(rdev, "No configuration\n");
579                 return NULL;
580         }
581
582         return rstate;
583 }
584
585 static ssize_t microvolts_show(struct device *dev,
586                                struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589         int uV;
590
591         regulator_lock(rdev);
592         uV = regulator_get_voltage_rdev(rdev);
593         regulator_unlock(rdev);
594
595         if (uV < 0)
596                 return uV;
597         return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
601 static ssize_t microamps_show(struct device *dev,
602                               struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
619 static const char *regulator_opmode_to_str(int mode)
620 {
621         switch (mode) {
622         case REGULATOR_MODE_FAST:
623                 return "fast";
624         case REGULATOR_MODE_NORMAL:
625                 return "normal";
626         case REGULATOR_MODE_IDLE:
627                 return "idle";
628         case REGULATOR_MODE_STANDBY:
629                 return "standby";
630         }
631         return "unknown";
632 }
633
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
639 static ssize_t opmode_show(struct device *dev,
640                            struct device_attribute *attr, char *buf)
641 {
642         struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650         if (state > 0)
651                 return sprintf(buf, "enabled\n");
652         else if (state == 0)
653                 return sprintf(buf, "disabled\n");
654         else
655                 return sprintf(buf, "unknown\n");
656 }
657
658 static ssize_t state_show(struct device *dev,
659                           struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         ssize_t ret;
663
664         regulator_lock(rdev);
665         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666         regulator_unlock(rdev);
667
668         return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
672 static ssize_t status_show(struct device *dev,
673                            struct device_attribute *attr, char *buf)
674 {
675         struct regulator_dev *rdev = dev_get_drvdata(dev);
676         int status;
677         char *label;
678
679         status = rdev->desc->ops->get_status(rdev);
680         if (status < 0)
681                 return status;
682
683         switch (status) {
684         case REGULATOR_STATUS_OFF:
685                 label = "off";
686                 break;
687         case REGULATOR_STATUS_ON:
688                 label = "on";
689                 break;
690         case REGULATOR_STATUS_ERROR:
691                 label = "error";
692                 break;
693         case REGULATOR_STATUS_FAST:
694                 label = "fast";
695                 break;
696         case REGULATOR_STATUS_NORMAL:
697                 label = "normal";
698                 break;
699         case REGULATOR_STATUS_IDLE:
700                 label = "idle";
701                 break;
702         case REGULATOR_STATUS_STANDBY:
703                 label = "standby";
704                 break;
705         case REGULATOR_STATUS_BYPASS:
706                 label = "bypass";
707                 break;
708         case REGULATOR_STATUS_UNDEFINED:
709                 label = "undefined";
710                 break;
711         default:
712                 return -ERANGE;
713         }
714
715         return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
719 static ssize_t min_microamps_show(struct device *dev,
720                                   struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
731 static ssize_t max_microamps_show(struct device *dev,
732                                   struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
743 static ssize_t min_microvolts_show(struct device *dev,
744                                    struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748         if (!rdev->constraints)
749                 return sprintf(buf, "constraint not defined\n");
750
751         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
755 static ssize_t max_microvolts_show(struct device *dev,
756                                    struct device_attribute *attr, char *buf)
757 {
758         struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760         if (!rdev->constraints)
761                 return sprintf(buf, "constraint not defined\n");
762
763         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
767 static ssize_t requested_microamps_show(struct device *dev,
768                                         struct device_attribute *attr, char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         struct regulator *regulator;
772         int uA = 0;
773
774         regulator_lock(rdev);
775         list_for_each_entry(regulator, &rdev->consumer_list, list) {
776                 if (regulator->enable_count)
777                         uA += regulator->uA_load;
778         }
779         regulator_unlock(rdev);
780         return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785                               char *buf)
786 {
787         struct regulator_dev *rdev = dev_get_drvdata(dev);
788         return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793                          char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797         switch (rdev->desc->type) {
798         case REGULATOR_VOLTAGE:
799                 return sprintf(buf, "voltage\n");
800         case REGULATOR_CURRENT:
801                 return sprintf(buf, "current\n");
802         }
803         return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808                                            struct device_attribute *attr, char *buf)
809 {
810         struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817                                             struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826                                                struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835                                      struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845                                       struct device_attribute *attr, char *buf)
846 {
847         struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849         return regulator_print_opmode(buf,
850                 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855                                          struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_opmode(buf,
860                 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
864 static ssize_t suspend_mem_state_show(struct device *dev,
865                                       struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
874 static ssize_t suspend_disk_state_show(struct device *dev,
875                                        struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
884 static ssize_t suspend_standby_state_show(struct device *dev,
885                                           struct device_attribute *attr, char *buf)
886 {
887         struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889         return regulator_print_state(buf,
890                         rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
894 static ssize_t bypass_show(struct device *dev,
895                            struct device_attribute *attr, char *buf)
896 {
897         struct regulator_dev *rdev = dev_get_drvdata(dev);
898         const char *report;
899         bool bypass;
900         int ret;
901
902         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904         if (ret != 0)
905                 report = "unknown";
906         else if (bypass)
907                 report = "enabled";
908         else
909                 report = "disabled";
910
911         return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit)                                                 \
916         static ssize_t name##_show(struct device *dev, struct device_attribute *attr,   \
917                                    char *buf)                                           \
918         {                                                                               \
919                 int ret;                                                                \
920                 unsigned int flags;                                                     \
921                 struct regulator_dev *rdev = dev_get_drvdata(dev);                      \
922                 ret = _regulator_get_error_flags(rdev, &flags);                         \
923                 if (ret)                                                                \
924                         return ret;                                                     \
925                 return sysfs_emit(buf, "%d\n", !!(flags & (bit)));                      \
926         }                                                                               \
927         static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944         struct regulator *sibling;
945         int current_uA = 0, output_uV, input_uV, err;
946         unsigned int mode;
947
948         /*
949          * first check to see if we can set modes at all, otherwise just
950          * tell the consumer everything is OK.
951          */
952         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953                 rdev_dbg(rdev, "DRMS operation not allowed\n");
954                 return 0;
955         }
956
957         if (!rdev->desc->ops->get_optimum_mode &&
958             !rdev->desc->ops->set_load)
959                 return 0;
960
961         if (!rdev->desc->ops->set_mode &&
962             !rdev->desc->ops->set_load)
963                 return -EINVAL;
964
965         /* calc total requested load */
966         list_for_each_entry(sibling, &rdev->consumer_list, list) {
967                 if (sibling->enable_count)
968                         current_uA += sibling->uA_load;
969         }
970
971         current_uA += rdev->constraints->system_load;
972
973         if (rdev->desc->ops->set_load) {
974                 /* set the optimum mode for our new total regulator load */
975                 err = rdev->desc->ops->set_load(rdev, current_uA);
976                 if (err < 0)
977                         rdev_err(rdev, "failed to set load %d: %pe\n",
978                                  current_uA, ERR_PTR(err));
979         } else {
980                 /* get output voltage */
981                 output_uV = regulator_get_voltage_rdev(rdev);
982                 if (output_uV <= 0) {
983                         rdev_err(rdev, "invalid output voltage found\n");
984                         return -EINVAL;
985                 }
986
987                 /* get input voltage */
988                 input_uV = 0;
989                 if (rdev->supply)
990                         input_uV = regulator_get_voltage(rdev->supply);
991                 if (input_uV <= 0)
992                         input_uV = rdev->constraints->input_uV;
993                 if (input_uV <= 0) {
994                         rdev_err(rdev, "invalid input voltage found\n");
995                         return -EINVAL;
996                 }
997
998                 /* now get the optimum mode for our new total regulator load */
999                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1000                                                          output_uV, current_uA);
1001
1002                 /* check the new mode is allowed */
1003                 err = regulator_mode_constrain(rdev, &mode);
1004                 if (err < 0) {
1005                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1006                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1007                         return err;
1008                 }
1009
1010                 err = rdev->desc->ops->set_mode(rdev, mode);
1011                 if (err < 0)
1012                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1013                                  mode, ERR_PTR(err));
1014         }
1015
1016         return err;
1017 }
1018
1019 static int __suspend_set_state(struct regulator_dev *rdev,
1020                                const struct regulator_state *rstate)
1021 {
1022         int ret = 0;
1023
1024         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1025                 rdev->desc->ops->set_suspend_enable)
1026                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1027         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1028                 rdev->desc->ops->set_suspend_disable)
1029                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1030         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1031                 ret = 0;
1032
1033         if (ret < 0) {
1034                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1035                 return ret;
1036         }
1037
1038         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1039                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1040                 if (ret < 0) {
1041                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1042                         return ret;
1043                 }
1044         }
1045
1046         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1047                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1048                 if (ret < 0) {
1049                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050                         return ret;
1051                 }
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int suspend_set_initial_state(struct regulator_dev *rdev)
1058 {
1059         const struct regulator_state *rstate;
1060
1061         rstate = regulator_get_suspend_state_check(rdev,
1062                         rdev->constraints->initial_state);
1063         if (!rstate)
1064                 return 0;
1065
1066         return __suspend_set_state(rdev, rstate);
1067 }
1068
1069 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1070 static void print_constraints_debug(struct regulator_dev *rdev)
1071 {
1072         struct regulation_constraints *constraints = rdev->constraints;
1073         char buf[160] = "";
1074         size_t len = sizeof(buf) - 1;
1075         int count = 0;
1076         int ret;
1077
1078         if (constraints->min_uV && constraints->max_uV) {
1079                 if (constraints->min_uV == constraints->max_uV)
1080                         count += scnprintf(buf + count, len - count, "%d mV ",
1081                                            constraints->min_uV / 1000);
1082                 else
1083                         count += scnprintf(buf + count, len - count,
1084                                            "%d <--> %d mV ",
1085                                            constraints->min_uV / 1000,
1086                                            constraints->max_uV / 1000);
1087         }
1088
1089         if (!constraints->min_uV ||
1090             constraints->min_uV != constraints->max_uV) {
1091                 ret = regulator_get_voltage_rdev(rdev);
1092                 if (ret > 0)
1093                         count += scnprintf(buf + count, len - count,
1094                                            "at %d mV ", ret / 1000);
1095         }
1096
1097         if (constraints->uV_offset)
1098                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1099                                    constraints->uV_offset / 1000);
1100
1101         if (constraints->min_uA && constraints->max_uA) {
1102                 if (constraints->min_uA == constraints->max_uA)
1103                         count += scnprintf(buf + count, len - count, "%d mA ",
1104                                            constraints->min_uA / 1000);
1105                 else
1106                         count += scnprintf(buf + count, len - count,
1107                                            "%d <--> %d mA ",
1108                                            constraints->min_uA / 1000,
1109                                            constraints->max_uA / 1000);
1110         }
1111
1112         if (!constraints->min_uA ||
1113             constraints->min_uA != constraints->max_uA) {
1114                 ret = _regulator_get_current_limit(rdev);
1115                 if (ret > 0)
1116                         count += scnprintf(buf + count, len - count,
1117                                            "at %d mA ", ret / 1000);
1118         }
1119
1120         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1121                 count += scnprintf(buf + count, len - count, "fast ");
1122         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1123                 count += scnprintf(buf + count, len - count, "normal ");
1124         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1125                 count += scnprintf(buf + count, len - count, "idle ");
1126         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1127                 count += scnprintf(buf + count, len - count, "standby ");
1128
1129         if (!count)
1130                 count = scnprintf(buf, len, "no parameters");
1131         else
1132                 --count;
1133
1134         count += scnprintf(buf + count, len - count, ", %s",
1135                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1136
1137         rdev_dbg(rdev, "%s\n", buf);
1138 }
1139 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1140 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1141 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1142
1143 static void print_constraints(struct regulator_dev *rdev)
1144 {
1145         struct regulation_constraints *constraints = rdev->constraints;
1146
1147         print_constraints_debug(rdev);
1148
1149         if ((constraints->min_uV != constraints->max_uV) &&
1150             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1151                 rdev_warn(rdev,
1152                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1153 }
1154
1155 static int machine_constraints_voltage(struct regulator_dev *rdev,
1156         struct regulation_constraints *constraints)
1157 {
1158         const struct regulator_ops *ops = rdev->desc->ops;
1159         int ret;
1160
1161         /* do we need to apply the constraint voltage */
1162         if (rdev->constraints->apply_uV &&
1163             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1164                 int target_min, target_max;
1165                 int current_uV = regulator_get_voltage_rdev(rdev);
1166
1167                 if (current_uV == -ENOTRECOVERABLE) {
1168                         /* This regulator can't be read and must be initialized */
1169                         rdev_info(rdev, "Setting %d-%duV\n",
1170                                   rdev->constraints->min_uV,
1171                                   rdev->constraints->max_uV);
1172                         _regulator_do_set_voltage(rdev,
1173                                                   rdev->constraints->min_uV,
1174                                                   rdev->constraints->max_uV);
1175                         current_uV = regulator_get_voltage_rdev(rdev);
1176                 }
1177
1178                 if (current_uV < 0) {
1179                         if (current_uV != -EPROBE_DEFER)
1180                                 rdev_err(rdev,
1181                                          "failed to get the current voltage: %pe\n",
1182                                          ERR_PTR(current_uV));
1183                         return current_uV;
1184                 }
1185
1186                 /*
1187                  * If we're below the minimum voltage move up to the
1188                  * minimum voltage, if we're above the maximum voltage
1189                  * then move down to the maximum.
1190                  */
1191                 target_min = current_uV;
1192                 target_max = current_uV;
1193
1194                 if (current_uV < rdev->constraints->min_uV) {
1195                         target_min = rdev->constraints->min_uV;
1196                         target_max = rdev->constraints->min_uV;
1197                 }
1198
1199                 if (current_uV > rdev->constraints->max_uV) {
1200                         target_min = rdev->constraints->max_uV;
1201                         target_max = rdev->constraints->max_uV;
1202                 }
1203
1204                 if (target_min != current_uV || target_max != current_uV) {
1205                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1206                                   current_uV, target_min, target_max);
1207                         ret = _regulator_do_set_voltage(
1208                                 rdev, target_min, target_max);
1209                         if (ret < 0) {
1210                                 rdev_err(rdev,
1211                                         "failed to apply %d-%duV constraint: %pe\n",
1212                                         target_min, target_max, ERR_PTR(ret));
1213                                 return ret;
1214                         }
1215                 }
1216         }
1217
1218         /* constrain machine-level voltage specs to fit
1219          * the actual range supported by this regulator.
1220          */
1221         if (ops->list_voltage && rdev->desc->n_voltages) {
1222                 int     count = rdev->desc->n_voltages;
1223                 int     i;
1224                 int     min_uV = INT_MAX;
1225                 int     max_uV = INT_MIN;
1226                 int     cmin = constraints->min_uV;
1227                 int     cmax = constraints->max_uV;
1228
1229                 /* it's safe to autoconfigure fixed-voltage supplies
1230                  * and the constraints are used by list_voltage.
1231                  */
1232                 if (count == 1 && !cmin) {
1233                         cmin = 1;
1234                         cmax = INT_MAX;
1235                         constraints->min_uV = cmin;
1236                         constraints->max_uV = cmax;
1237                 }
1238
1239                 /* voltage constraints are optional */
1240                 if ((cmin == 0) && (cmax == 0))
1241                         return 0;
1242
1243                 /* else require explicit machine-level constraints */
1244                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1245                         rdev_err(rdev, "invalid voltage constraints\n");
1246                         return -EINVAL;
1247                 }
1248
1249                 /* no need to loop voltages if range is continuous */
1250                 if (rdev->desc->continuous_voltage_range)
1251                         return 0;
1252
1253                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1254                 for (i = 0; i < count; i++) {
1255                         int     value;
1256
1257                         value = ops->list_voltage(rdev, i);
1258                         if (value <= 0)
1259                                 continue;
1260
1261                         /* maybe adjust [min_uV..max_uV] */
1262                         if (value >= cmin && value < min_uV)
1263                                 min_uV = value;
1264                         if (value <= cmax && value > max_uV)
1265                                 max_uV = value;
1266                 }
1267
1268                 /* final: [min_uV..max_uV] valid iff constraints valid */
1269                 if (max_uV < min_uV) {
1270                         rdev_err(rdev,
1271                                  "unsupportable voltage constraints %u-%uuV\n",
1272                                  min_uV, max_uV);
1273                         return -EINVAL;
1274                 }
1275
1276                 /* use regulator's subset of machine constraints */
1277                 if (constraints->min_uV < min_uV) {
1278                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1279                                  constraints->min_uV, min_uV);
1280                         constraints->min_uV = min_uV;
1281                 }
1282                 if (constraints->max_uV > max_uV) {
1283                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1284                                  constraints->max_uV, max_uV);
1285                         constraints->max_uV = max_uV;
1286                 }
1287         }
1288
1289         return 0;
1290 }
1291
1292 static int machine_constraints_current(struct regulator_dev *rdev,
1293         struct regulation_constraints *constraints)
1294 {
1295         const struct regulator_ops *ops = rdev->desc->ops;
1296         int ret;
1297
1298         if (!constraints->min_uA && !constraints->max_uA)
1299                 return 0;
1300
1301         if (constraints->min_uA > constraints->max_uA) {
1302                 rdev_err(rdev, "Invalid current constraints\n");
1303                 return -EINVAL;
1304         }
1305
1306         if (!ops->set_current_limit || !ops->get_current_limit) {
1307                 rdev_warn(rdev, "Operation of current configuration missing\n");
1308                 return 0;
1309         }
1310
1311         /* Set regulator current in constraints range */
1312         ret = ops->set_current_limit(rdev, constraints->min_uA,
1313                         constraints->max_uA);
1314         if (ret < 0) {
1315                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1316                 return ret;
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int _regulator_do_enable(struct regulator_dev *rdev);
1323
1324 static int notif_set_limit(struct regulator_dev *rdev,
1325                            int (*set)(struct regulator_dev *, int, int, bool),
1326                            int limit, int severity)
1327 {
1328         bool enable;
1329
1330         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1331                 enable = false;
1332                 limit = 0;
1333         } else {
1334                 enable = true;
1335         }
1336
1337         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1338                 limit = 0;
1339
1340         return set(rdev, limit, severity, enable);
1341 }
1342
1343 static int handle_notify_limits(struct regulator_dev *rdev,
1344                         int (*set)(struct regulator_dev *, int, int, bool),
1345                         struct notification_limit *limits)
1346 {
1347         int ret = 0;
1348
1349         if (!set)
1350                 return -EOPNOTSUPP;
1351
1352         if (limits->prot)
1353                 ret = notif_set_limit(rdev, set, limits->prot,
1354                                       REGULATOR_SEVERITY_PROT);
1355         if (ret)
1356                 return ret;
1357
1358         if (limits->err)
1359                 ret = notif_set_limit(rdev, set, limits->err,
1360                                       REGULATOR_SEVERITY_ERR);
1361         if (ret)
1362                 return ret;
1363
1364         if (limits->warn)
1365                 ret = notif_set_limit(rdev, set, limits->warn,
1366                                       REGULATOR_SEVERITY_WARN);
1367
1368         return ret;
1369 }
1370 /**
1371  * set_machine_constraints - sets regulator constraints
1372  * @rdev: regulator source
1373  *
1374  * Allows platform initialisation code to define and constrain
1375  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1376  * Constraints *must* be set by platform code in order for some
1377  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1378  * set_mode.
1379  */
1380 static int set_machine_constraints(struct regulator_dev *rdev)
1381 {
1382         int ret = 0;
1383         const struct regulator_ops *ops = rdev->desc->ops;
1384
1385         ret = machine_constraints_voltage(rdev, rdev->constraints);
1386         if (ret != 0)
1387                 return ret;
1388
1389         ret = machine_constraints_current(rdev, rdev->constraints);
1390         if (ret != 0)
1391                 return ret;
1392
1393         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1394                 ret = ops->set_input_current_limit(rdev,
1395                                                    rdev->constraints->ilim_uA);
1396                 if (ret < 0) {
1397                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1398                         return ret;
1399                 }
1400         }
1401
1402         /* do we need to setup our suspend state */
1403         if (rdev->constraints->initial_state) {
1404                 ret = suspend_set_initial_state(rdev);
1405                 if (ret < 0) {
1406                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1407                         return ret;
1408                 }
1409         }
1410
1411         if (rdev->constraints->initial_mode) {
1412                 if (!ops->set_mode) {
1413                         rdev_err(rdev, "no set_mode operation\n");
1414                         return -EINVAL;
1415                 }
1416
1417                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1418                 if (ret < 0) {
1419                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1420                         return ret;
1421                 }
1422         } else if (rdev->constraints->system_load) {
1423                 /*
1424                  * We'll only apply the initial system load if an
1425                  * initial mode wasn't specified.
1426                  */
1427                 drms_uA_update(rdev);
1428         }
1429
1430         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1431                 && ops->set_ramp_delay) {
1432                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1433                 if (ret < 0) {
1434                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1435                         return ret;
1436                 }
1437         }
1438
1439         if (rdev->constraints->pull_down && ops->set_pull_down) {
1440                 ret = ops->set_pull_down(rdev);
1441                 if (ret < 0) {
1442                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1443                         return ret;
1444                 }
1445         }
1446
1447         if (rdev->constraints->soft_start && ops->set_soft_start) {
1448                 ret = ops->set_soft_start(rdev);
1449                 if (ret < 0) {
1450                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1451                         return ret;
1452                 }
1453         }
1454
1455         /*
1456          * Existing logic does not warn if over_current_protection is given as
1457          * a constraint but driver does not support that. I think we should
1458          * warn about this type of issues as it is possible someone changes
1459          * PMIC on board to another type - and the another PMIC's driver does
1460          * not support setting protection. Board composer may happily believe
1461          * the DT limits are respected - especially if the new PMIC HW also
1462          * supports protection but the driver does not. I won't change the logic
1463          * without hearing more experienced opinion on this though.
1464          *
1465          * If warning is seen as a good idea then we can merge handling the
1466          * over-curret protection and detection and get rid of this special
1467          * handling.
1468          */
1469         if (rdev->constraints->over_current_protection
1470                 && ops->set_over_current_protection) {
1471                 int lim = rdev->constraints->over_curr_limits.prot;
1472
1473                 ret = ops->set_over_current_protection(rdev, lim,
1474                                                        REGULATOR_SEVERITY_PROT,
1475                                                        true);
1476                 if (ret < 0) {
1477                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481         }
1482
1483         if (rdev->constraints->over_current_detection)
1484                 ret = handle_notify_limits(rdev,
1485                                            ops->set_over_current_protection,
1486                                            &rdev->constraints->over_curr_limits);
1487         if (ret) {
1488                 if (ret != -EOPNOTSUPP) {
1489                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1490                                  ERR_PTR(ret));
1491                         return ret;
1492                 }
1493                 rdev_warn(rdev,
1494                           "IC does not support requested over-current limits\n");
1495         }
1496
1497         if (rdev->constraints->over_voltage_detection)
1498                 ret = handle_notify_limits(rdev,
1499                                            ops->set_over_voltage_protection,
1500                                            &rdev->constraints->over_voltage_limits);
1501         if (ret) {
1502                 if (ret != -EOPNOTSUPP) {
1503                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1504                                  ERR_PTR(ret));
1505                         return ret;
1506                 }
1507                 rdev_warn(rdev,
1508                           "IC does not support requested over voltage limits\n");
1509         }
1510
1511         if (rdev->constraints->under_voltage_detection)
1512                 ret = handle_notify_limits(rdev,
1513                                            ops->set_under_voltage_protection,
1514                                            &rdev->constraints->under_voltage_limits);
1515         if (ret) {
1516                 if (ret != -EOPNOTSUPP) {
1517                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1518                                  ERR_PTR(ret));
1519                         return ret;
1520                 }
1521                 rdev_warn(rdev,
1522                           "IC does not support requested under voltage limits\n");
1523         }
1524
1525         if (rdev->constraints->over_temp_detection)
1526                 ret = handle_notify_limits(rdev,
1527                                            ops->set_thermal_protection,
1528                                            &rdev->constraints->temp_limits);
1529         if (ret) {
1530                 if (ret != -EOPNOTSUPP) {
1531                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1532                                  ERR_PTR(ret));
1533                         return ret;
1534                 }
1535                 rdev_warn(rdev,
1536                           "IC does not support requested temperature limits\n");
1537         }
1538
1539         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1540                 bool ad_state = (rdev->constraints->active_discharge ==
1541                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1542
1543                 ret = ops->set_active_discharge(rdev, ad_state);
1544                 if (ret < 0) {
1545                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1546                         return ret;
1547                 }
1548         }
1549
1550         /*
1551          * If there is no mechanism for controlling the regulator then
1552          * flag it as always_on so we don't end up duplicating checks
1553          * for this so much.  Note that we could control the state of
1554          * a supply to control the output on a regulator that has no
1555          * direct control.
1556          */
1557         if (!rdev->ena_pin && !ops->enable) {
1558                 if (rdev->supply_name && !rdev->supply)
1559                         return -EPROBE_DEFER;
1560
1561                 if (rdev->supply)
1562                         rdev->constraints->always_on =
1563                                 rdev->supply->rdev->constraints->always_on;
1564                 else
1565                         rdev->constraints->always_on = true;
1566         }
1567
1568         /* If the constraints say the regulator should be on at this point
1569          * and we have control then make sure it is enabled.
1570          */
1571         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1572                 /* If we want to enable this regulator, make sure that we know
1573                  * the supplying regulator.
1574                  */
1575                 if (rdev->supply_name && !rdev->supply)
1576                         return -EPROBE_DEFER;
1577
1578                 if (rdev->supply) {
1579                         ret = regulator_enable(rdev->supply);
1580                         if (ret < 0) {
1581                                 _regulator_put(rdev->supply);
1582                                 rdev->supply = NULL;
1583                                 return ret;
1584                         }
1585                 }
1586
1587                 ret = _regulator_do_enable(rdev);
1588                 if (ret < 0 && ret != -EINVAL) {
1589                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1590                         return ret;
1591                 }
1592
1593                 if (rdev->constraints->always_on)
1594                         rdev->use_count++;
1595         } else if (rdev->desc->off_on_delay) {
1596                 rdev->last_off = ktime_get();
1597         }
1598
1599         print_constraints(rdev);
1600         return 0;
1601 }
1602
1603 /**
1604  * set_supply - set regulator supply regulator
1605  * @rdev: regulator name
1606  * @supply_rdev: supply regulator name
1607  *
1608  * Called by platform initialisation code to set the supply regulator for this
1609  * regulator. This ensures that a regulators supply will also be enabled by the
1610  * core if it's child is enabled.
1611  */
1612 static int set_supply(struct regulator_dev *rdev,
1613                       struct regulator_dev *supply_rdev)
1614 {
1615         int err;
1616
1617         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1618
1619         if (!try_module_get(supply_rdev->owner))
1620                 return -ENODEV;
1621
1622         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1623         if (rdev->supply == NULL) {
1624                 err = -ENOMEM;
1625                 return err;
1626         }
1627         supply_rdev->open_count++;
1628
1629         return 0;
1630 }
1631
1632 /**
1633  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1634  * @rdev:         regulator source
1635  * @consumer_dev_name: dev_name() string for device supply applies to
1636  * @supply:       symbolic name for supply
1637  *
1638  * Allows platform initialisation code to map physical regulator
1639  * sources to symbolic names for supplies for use by devices.  Devices
1640  * should use these symbolic names to request regulators, avoiding the
1641  * need to provide board-specific regulator names as platform data.
1642  */
1643 static int set_consumer_device_supply(struct regulator_dev *rdev,
1644                                       const char *consumer_dev_name,
1645                                       const char *supply)
1646 {
1647         struct regulator_map *node, *new_node;
1648         int has_dev;
1649
1650         if (supply == NULL)
1651                 return -EINVAL;
1652
1653         if (consumer_dev_name != NULL)
1654                 has_dev = 1;
1655         else
1656                 has_dev = 0;
1657
1658         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1659         if (new_node == NULL)
1660                 return -ENOMEM;
1661
1662         new_node->regulator = rdev;
1663         new_node->supply = supply;
1664
1665         if (has_dev) {
1666                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1667                 if (new_node->dev_name == NULL) {
1668                         kfree(new_node);
1669                         return -ENOMEM;
1670                 }
1671         }
1672
1673         mutex_lock(&regulator_list_mutex);
1674         list_for_each_entry(node, &regulator_map_list, list) {
1675                 if (node->dev_name && consumer_dev_name) {
1676                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1677                                 continue;
1678                 } else if (node->dev_name || consumer_dev_name) {
1679                         continue;
1680                 }
1681
1682                 if (strcmp(node->supply, supply) != 0)
1683                         continue;
1684
1685                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1686                          consumer_dev_name,
1687                          dev_name(&node->regulator->dev),
1688                          node->regulator->desc->name,
1689                          supply,
1690                          dev_name(&rdev->dev), rdev_get_name(rdev));
1691                 goto fail;
1692         }
1693
1694         list_add(&new_node->list, &regulator_map_list);
1695         mutex_unlock(&regulator_list_mutex);
1696
1697         return 0;
1698
1699 fail:
1700         mutex_unlock(&regulator_list_mutex);
1701         kfree(new_node->dev_name);
1702         kfree(new_node);
1703         return -EBUSY;
1704 }
1705
1706 static void unset_regulator_supplies(struct regulator_dev *rdev)
1707 {
1708         struct regulator_map *node, *n;
1709
1710         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1711                 if (rdev == node->regulator) {
1712                         list_del(&node->list);
1713                         kfree(node->dev_name);
1714                         kfree(node);
1715                 }
1716         }
1717 }
1718
1719 #ifdef CONFIG_DEBUG_FS
1720 static ssize_t constraint_flags_read_file(struct file *file,
1721                                           char __user *user_buf,
1722                                           size_t count, loff_t *ppos)
1723 {
1724         const struct regulator *regulator = file->private_data;
1725         const struct regulation_constraints *c = regulator->rdev->constraints;
1726         char *buf;
1727         ssize_t ret;
1728
1729         if (!c)
1730                 return 0;
1731
1732         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1733         if (!buf)
1734                 return -ENOMEM;
1735
1736         ret = snprintf(buf, PAGE_SIZE,
1737                         "always_on: %u\n"
1738                         "boot_on: %u\n"
1739                         "apply_uV: %u\n"
1740                         "ramp_disable: %u\n"
1741                         "soft_start: %u\n"
1742                         "pull_down: %u\n"
1743                         "over_current_protection: %u\n",
1744                         c->always_on,
1745                         c->boot_on,
1746                         c->apply_uV,
1747                         c->ramp_disable,
1748                         c->soft_start,
1749                         c->pull_down,
1750                         c->over_current_protection);
1751
1752         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1753         kfree(buf);
1754
1755         return ret;
1756 }
1757
1758 #endif
1759
1760 static const struct file_operations constraint_flags_fops = {
1761 #ifdef CONFIG_DEBUG_FS
1762         .open = simple_open,
1763         .read = constraint_flags_read_file,
1764         .llseek = default_llseek,
1765 #endif
1766 };
1767
1768 #define REG_STR_SIZE    64
1769
1770 static struct regulator *create_regulator(struct regulator_dev *rdev,
1771                                           struct device *dev,
1772                                           const char *supply_name)
1773 {
1774         struct regulator *regulator;
1775         int err = 0;
1776
1777         if (dev) {
1778                 char buf[REG_STR_SIZE];
1779                 int size;
1780
1781                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1782                                 dev->kobj.name, supply_name);
1783                 if (size >= REG_STR_SIZE)
1784                         return NULL;
1785
1786                 supply_name = kstrdup(buf, GFP_KERNEL);
1787                 if (supply_name == NULL)
1788                         return NULL;
1789         } else {
1790                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1791                 if (supply_name == NULL)
1792                         return NULL;
1793         }
1794
1795         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1796         if (regulator == NULL) {
1797                 kfree(supply_name);
1798                 return NULL;
1799         }
1800
1801         regulator->rdev = rdev;
1802         regulator->supply_name = supply_name;
1803
1804         regulator_lock(rdev);
1805         list_add(&regulator->list, &rdev->consumer_list);
1806         regulator_unlock(rdev);
1807
1808         if (dev) {
1809                 regulator->dev = dev;
1810
1811                 /* Add a link to the device sysfs entry */
1812                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1813                                                supply_name);
1814                 if (err) {
1815                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1816                                   dev->kobj.name, ERR_PTR(err));
1817                         /* non-fatal */
1818                 }
1819         }
1820
1821         if (err != -EEXIST)
1822                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1823         if (!regulator->debugfs) {
1824                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1825         } else {
1826                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1827                                    &regulator->uA_load);
1828                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1829                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1830                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1831                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1832                 debugfs_create_file("constraint_flags", 0444,
1833                                     regulator->debugfs, regulator,
1834                                     &constraint_flags_fops);
1835         }
1836
1837         /*
1838          * Check now if the regulator is an always on regulator - if
1839          * it is then we don't need to do nearly so much work for
1840          * enable/disable calls.
1841          */
1842         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1843             _regulator_is_enabled(rdev))
1844                 regulator->always_on = true;
1845
1846         return regulator;
1847 }
1848
1849 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1850 {
1851         if (rdev->constraints && rdev->constraints->enable_time)
1852                 return rdev->constraints->enable_time;
1853         if (rdev->desc->ops->enable_time)
1854                 return rdev->desc->ops->enable_time(rdev);
1855         return rdev->desc->enable_time;
1856 }
1857
1858 static struct regulator_supply_alias *regulator_find_supply_alias(
1859                 struct device *dev, const char *supply)
1860 {
1861         struct regulator_supply_alias *map;
1862
1863         list_for_each_entry(map, &regulator_supply_alias_list, list)
1864                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1865                         return map;
1866
1867         return NULL;
1868 }
1869
1870 static void regulator_supply_alias(struct device **dev, const char **supply)
1871 {
1872         struct regulator_supply_alias *map;
1873
1874         map = regulator_find_supply_alias(*dev, *supply);
1875         if (map) {
1876                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1877                                 *supply, map->alias_supply,
1878                                 dev_name(map->alias_dev));
1879                 *dev = map->alias_dev;
1880                 *supply = map->alias_supply;
1881         }
1882 }
1883
1884 static int regulator_match(struct device *dev, const void *data)
1885 {
1886         struct regulator_dev *r = dev_to_rdev(dev);
1887
1888         return strcmp(rdev_get_name(r), data) == 0;
1889 }
1890
1891 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1892 {
1893         struct device *dev;
1894
1895         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1896
1897         return dev ? dev_to_rdev(dev) : NULL;
1898 }
1899
1900 /**
1901  * regulator_dev_lookup - lookup a regulator device.
1902  * @dev: device for regulator "consumer".
1903  * @supply: Supply name or regulator ID.
1904  *
1905  * If successful, returns a struct regulator_dev that corresponds to the name
1906  * @supply and with the embedded struct device refcount incremented by one.
1907  * The refcount must be dropped by calling put_device().
1908  * On failure one of the following ERR-PTR-encoded values is returned:
1909  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1910  * in the future.
1911  */
1912 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1913                                                   const char *supply)
1914 {
1915         struct regulator_dev *r = NULL;
1916         struct device_node *node;
1917         struct regulator_map *map;
1918         const char *devname = NULL;
1919
1920         regulator_supply_alias(&dev, &supply);
1921
1922         /* first do a dt based lookup */
1923         if (dev && dev->of_node) {
1924                 node = of_get_regulator(dev, supply);
1925                 if (node) {
1926                         r = of_find_regulator_by_node(node);
1927                         if (r)
1928                                 return r;
1929
1930                         /*
1931                          * We have a node, but there is no device.
1932                          * assume it has not registered yet.
1933                          */
1934                         return ERR_PTR(-EPROBE_DEFER);
1935                 }
1936         }
1937
1938         /* if not found, try doing it non-dt way */
1939         if (dev)
1940                 devname = dev_name(dev);
1941
1942         mutex_lock(&regulator_list_mutex);
1943         list_for_each_entry(map, &regulator_map_list, list) {
1944                 /* If the mapping has a device set up it must match */
1945                 if (map->dev_name &&
1946                     (!devname || strcmp(map->dev_name, devname)))
1947                         continue;
1948
1949                 if (strcmp(map->supply, supply) == 0 &&
1950                     get_device(&map->regulator->dev)) {
1951                         r = map->regulator;
1952                         break;
1953                 }
1954         }
1955         mutex_unlock(&regulator_list_mutex);
1956
1957         if (r)
1958                 return r;
1959
1960         r = regulator_lookup_by_name(supply);
1961         if (r)
1962                 return r;
1963
1964         return ERR_PTR(-ENODEV);
1965 }
1966
1967 static int regulator_resolve_supply(struct regulator_dev *rdev)
1968 {
1969         struct regulator_dev *r;
1970         struct device *dev = rdev->dev.parent;
1971         int ret = 0;
1972
1973         /* No supply to resolve? */
1974         if (!rdev->supply_name)
1975                 return 0;
1976
1977         /* Supply already resolved? (fast-path without locking contention) */
1978         if (rdev->supply)
1979                 return 0;
1980
1981         r = regulator_dev_lookup(dev, rdev->supply_name);
1982         if (IS_ERR(r)) {
1983                 ret = PTR_ERR(r);
1984
1985                 /* Did the lookup explicitly defer for us? */
1986                 if (ret == -EPROBE_DEFER)
1987                         goto out;
1988
1989                 if (have_full_constraints()) {
1990                         r = dummy_regulator_rdev;
1991                         get_device(&r->dev);
1992                 } else {
1993                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1994                                 rdev->supply_name, rdev->desc->name);
1995                         ret = -EPROBE_DEFER;
1996                         goto out;
1997                 }
1998         }
1999
2000         if (r == rdev) {
2001                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2002                         rdev->desc->name, rdev->supply_name);
2003                 if (!have_full_constraints()) {
2004                         ret = -EINVAL;
2005                         goto out;
2006                 }
2007                 r = dummy_regulator_rdev;
2008                 get_device(&r->dev);
2009         }
2010
2011         /*
2012          * If the supply's parent device is not the same as the
2013          * regulator's parent device, then ensure the parent device
2014          * is bound before we resolve the supply, in case the parent
2015          * device get probe deferred and unregisters the supply.
2016          */
2017         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2018                 if (!device_is_bound(r->dev.parent)) {
2019                         put_device(&r->dev);
2020                         ret = -EPROBE_DEFER;
2021                         goto out;
2022                 }
2023         }
2024
2025         /* Recursively resolve the supply of the supply */
2026         ret = regulator_resolve_supply(r);
2027         if (ret < 0) {
2028                 put_device(&r->dev);
2029                 goto out;
2030         }
2031
2032         /*
2033          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2034          * between rdev->supply null check and setting rdev->supply in
2035          * set_supply() from concurrent tasks.
2036          */
2037         regulator_lock(rdev);
2038
2039         /* Supply just resolved by a concurrent task? */
2040         if (rdev->supply) {
2041                 regulator_unlock(rdev);
2042                 put_device(&r->dev);
2043                 goto out;
2044         }
2045
2046         ret = set_supply(rdev, r);
2047         if (ret < 0) {
2048                 regulator_unlock(rdev);
2049                 put_device(&r->dev);
2050                 goto out;
2051         }
2052
2053         regulator_unlock(rdev);
2054
2055         /*
2056          * In set_machine_constraints() we may have turned this regulator on
2057          * but we couldn't propagate to the supply if it hadn't been resolved
2058          * yet.  Do it now.
2059          */
2060         if (rdev->use_count) {
2061                 ret = regulator_enable(rdev->supply);
2062                 if (ret < 0) {
2063                         _regulator_put(rdev->supply);
2064                         rdev->supply = NULL;
2065                         goto out;
2066                 }
2067         }
2068
2069 out:
2070         return ret;
2071 }
2072
2073 /* Internal regulator request function */
2074 struct regulator *_regulator_get(struct device *dev, const char *id,
2075                                  enum regulator_get_type get_type)
2076 {
2077         struct regulator_dev *rdev;
2078         struct regulator *regulator;
2079         struct device_link *link;
2080         int ret;
2081
2082         if (get_type >= MAX_GET_TYPE) {
2083                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2084                 return ERR_PTR(-EINVAL);
2085         }
2086
2087         if (id == NULL) {
2088                 pr_err("get() with no identifier\n");
2089                 return ERR_PTR(-EINVAL);
2090         }
2091
2092         rdev = regulator_dev_lookup(dev, id);
2093         if (IS_ERR(rdev)) {
2094                 ret = PTR_ERR(rdev);
2095
2096                 /*
2097                  * If regulator_dev_lookup() fails with error other
2098                  * than -ENODEV our job here is done, we simply return it.
2099                  */
2100                 if (ret != -ENODEV)
2101                         return ERR_PTR(ret);
2102
2103                 if (!have_full_constraints()) {
2104                         dev_warn(dev,
2105                                  "incomplete constraints, dummy supplies not allowed\n");
2106                         return ERR_PTR(-ENODEV);
2107                 }
2108
2109                 switch (get_type) {
2110                 case NORMAL_GET:
2111                         /*
2112                          * Assume that a regulator is physically present and
2113                          * enabled, even if it isn't hooked up, and just
2114                          * provide a dummy.
2115                          */
2116                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2117                         rdev = dummy_regulator_rdev;
2118                         get_device(&rdev->dev);
2119                         break;
2120
2121                 case EXCLUSIVE_GET:
2122                         dev_warn(dev,
2123                                  "dummy supplies not allowed for exclusive requests\n");
2124                         fallthrough;
2125
2126                 default:
2127                         return ERR_PTR(-ENODEV);
2128                 }
2129         }
2130
2131         if (rdev->exclusive) {
2132                 regulator = ERR_PTR(-EPERM);
2133                 put_device(&rdev->dev);
2134                 return regulator;
2135         }
2136
2137         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2138                 regulator = ERR_PTR(-EBUSY);
2139                 put_device(&rdev->dev);
2140                 return regulator;
2141         }
2142
2143         mutex_lock(&regulator_list_mutex);
2144         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2145         mutex_unlock(&regulator_list_mutex);
2146
2147         if (ret != 0) {
2148                 regulator = ERR_PTR(-EPROBE_DEFER);
2149                 put_device(&rdev->dev);
2150                 return regulator;
2151         }
2152
2153         ret = regulator_resolve_supply(rdev);
2154         if (ret < 0) {
2155                 regulator = ERR_PTR(ret);
2156                 put_device(&rdev->dev);
2157                 return regulator;
2158         }
2159
2160         if (!try_module_get(rdev->owner)) {
2161                 regulator = ERR_PTR(-EPROBE_DEFER);
2162                 put_device(&rdev->dev);
2163                 return regulator;
2164         }
2165
2166         regulator = create_regulator(rdev, dev, id);
2167         if (regulator == NULL) {
2168                 regulator = ERR_PTR(-ENOMEM);
2169                 module_put(rdev->owner);
2170                 put_device(&rdev->dev);
2171                 return regulator;
2172         }
2173
2174         rdev->open_count++;
2175         if (get_type == EXCLUSIVE_GET) {
2176                 rdev->exclusive = 1;
2177
2178                 ret = _regulator_is_enabled(rdev);
2179                 if (ret > 0) {
2180                         rdev->use_count = 1;
2181                         regulator->enable_count = 1;
2182                 } else {
2183                         rdev->use_count = 0;
2184                         regulator->enable_count = 0;
2185                 }
2186         }
2187
2188         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2189         if (!IS_ERR_OR_NULL(link))
2190                 regulator->device_link = true;
2191
2192         return regulator;
2193 }
2194
2195 /**
2196  * regulator_get - lookup and obtain a reference to a regulator.
2197  * @dev: device for regulator "consumer"
2198  * @id: Supply name or regulator ID.
2199  *
2200  * Returns a struct regulator corresponding to the regulator producer,
2201  * or IS_ERR() condition containing errno.
2202  *
2203  * Use of supply names configured via set_consumer_device_supply() is
2204  * strongly encouraged.  It is recommended that the supply name used
2205  * should match the name used for the supply and/or the relevant
2206  * device pins in the datasheet.
2207  */
2208 struct regulator *regulator_get(struct device *dev, const char *id)
2209 {
2210         return _regulator_get(dev, id, NORMAL_GET);
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_get);
2213
2214 /**
2215  * regulator_get_exclusive - obtain exclusive access to a regulator.
2216  * @dev: device for regulator "consumer"
2217  * @id: Supply name or regulator ID.
2218  *
2219  * Returns a struct regulator corresponding to the regulator producer,
2220  * or IS_ERR() condition containing errno.  Other consumers will be
2221  * unable to obtain this regulator while this reference is held and the
2222  * use count for the regulator will be initialised to reflect the current
2223  * state of the regulator.
2224  *
2225  * This is intended for use by consumers which cannot tolerate shared
2226  * use of the regulator such as those which need to force the
2227  * regulator off for correct operation of the hardware they are
2228  * controlling.
2229  *
2230  * Use of supply names configured via set_consumer_device_supply() is
2231  * strongly encouraged.  It is recommended that the supply name used
2232  * should match the name used for the supply and/or the relevant
2233  * device pins in the datasheet.
2234  */
2235 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2236 {
2237         return _regulator_get(dev, id, EXCLUSIVE_GET);
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2240
2241 /**
2242  * regulator_get_optional - obtain optional access to a regulator.
2243  * @dev: device for regulator "consumer"
2244  * @id: Supply name or regulator ID.
2245  *
2246  * Returns a struct regulator corresponding to the regulator producer,
2247  * or IS_ERR() condition containing errno.
2248  *
2249  * This is intended for use by consumers for devices which can have
2250  * some supplies unconnected in normal use, such as some MMC devices.
2251  * It can allow the regulator core to provide stub supplies for other
2252  * supplies requested using normal regulator_get() calls without
2253  * disrupting the operation of drivers that can handle absent
2254  * supplies.
2255  *
2256  * Use of supply names configured via set_consumer_device_supply() is
2257  * strongly encouraged.  It is recommended that the supply name used
2258  * should match the name used for the supply and/or the relevant
2259  * device pins in the datasheet.
2260  */
2261 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2262 {
2263         return _regulator_get(dev, id, OPTIONAL_GET);
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_get_optional);
2266
2267 static void destroy_regulator(struct regulator *regulator)
2268 {
2269         struct regulator_dev *rdev = regulator->rdev;
2270
2271         debugfs_remove_recursive(regulator->debugfs);
2272
2273         if (regulator->dev) {
2274                 if (regulator->device_link)
2275                         device_link_remove(regulator->dev, &rdev->dev);
2276
2277                 /* remove any sysfs entries */
2278                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2279         }
2280
2281         regulator_lock(rdev);
2282         list_del(&regulator->list);
2283
2284         rdev->open_count--;
2285         rdev->exclusive = 0;
2286         regulator_unlock(rdev);
2287
2288         kfree_const(regulator->supply_name);
2289         kfree(regulator);
2290 }
2291
2292 /* regulator_list_mutex lock held by regulator_put() */
2293 static void _regulator_put(struct regulator *regulator)
2294 {
2295         struct regulator_dev *rdev;
2296
2297         if (IS_ERR_OR_NULL(regulator))
2298                 return;
2299
2300         lockdep_assert_held_once(&regulator_list_mutex);
2301
2302         /* Docs say you must disable before calling regulator_put() */
2303         WARN_ON(regulator->enable_count);
2304
2305         rdev = regulator->rdev;
2306
2307         destroy_regulator(regulator);
2308
2309         module_put(rdev->owner);
2310         put_device(&rdev->dev);
2311 }
2312
2313 /**
2314  * regulator_put - "free" the regulator source
2315  * @regulator: regulator source
2316  *
2317  * Note: drivers must ensure that all regulator_enable calls made on this
2318  * regulator source are balanced by regulator_disable calls prior to calling
2319  * this function.
2320  */
2321 void regulator_put(struct regulator *regulator)
2322 {
2323         mutex_lock(&regulator_list_mutex);
2324         _regulator_put(regulator);
2325         mutex_unlock(&regulator_list_mutex);
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_put);
2328
2329 /**
2330  * regulator_register_supply_alias - Provide device alias for supply lookup
2331  *
2332  * @dev: device that will be given as the regulator "consumer"
2333  * @id: Supply name or regulator ID
2334  * @alias_dev: device that should be used to lookup the supply
2335  * @alias_id: Supply name or regulator ID that should be used to lookup the
2336  * supply
2337  *
2338  * All lookups for id on dev will instead be conducted for alias_id on
2339  * alias_dev.
2340  */
2341 int regulator_register_supply_alias(struct device *dev, const char *id,
2342                                     struct device *alias_dev,
2343                                     const char *alias_id)
2344 {
2345         struct regulator_supply_alias *map;
2346
2347         map = regulator_find_supply_alias(dev, id);
2348         if (map)
2349                 return -EEXIST;
2350
2351         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2352         if (!map)
2353                 return -ENOMEM;
2354
2355         map->src_dev = dev;
2356         map->src_supply = id;
2357         map->alias_dev = alias_dev;
2358         map->alias_supply = alias_id;
2359
2360         list_add(&map->list, &regulator_supply_alias_list);
2361
2362         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2363                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2364
2365         return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2368
2369 /**
2370  * regulator_unregister_supply_alias - Remove device alias
2371  *
2372  * @dev: device that will be given as the regulator "consumer"
2373  * @id: Supply name or regulator ID
2374  *
2375  * Remove a lookup alias if one exists for id on dev.
2376  */
2377 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2378 {
2379         struct regulator_supply_alias *map;
2380
2381         map = regulator_find_supply_alias(dev, id);
2382         if (map) {
2383                 list_del(&map->list);
2384                 kfree(map);
2385         }
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2388
2389 /**
2390  * regulator_bulk_register_supply_alias - register multiple aliases
2391  *
2392  * @dev: device that will be given as the regulator "consumer"
2393  * @id: List of supply names or regulator IDs
2394  * @alias_dev: device that should be used to lookup the supply
2395  * @alias_id: List of supply names or regulator IDs that should be used to
2396  * lookup the supply
2397  * @num_id: Number of aliases to register
2398  *
2399  * @return 0 on success, an errno on failure.
2400  *
2401  * This helper function allows drivers to register several supply
2402  * aliases in one operation.  If any of the aliases cannot be
2403  * registered any aliases that were registered will be removed
2404  * before returning to the caller.
2405  */
2406 int regulator_bulk_register_supply_alias(struct device *dev,
2407                                          const char *const *id,
2408                                          struct device *alias_dev,
2409                                          const char *const *alias_id,
2410                                          int num_id)
2411 {
2412         int i;
2413         int ret;
2414
2415         for (i = 0; i < num_id; ++i) {
2416                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2417                                                       alias_id[i]);
2418                 if (ret < 0)
2419                         goto err;
2420         }
2421
2422         return 0;
2423
2424 err:
2425         dev_err(dev,
2426                 "Failed to create supply alias %s,%s -> %s,%s\n",
2427                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2428
2429         while (--i >= 0)
2430                 regulator_unregister_supply_alias(dev, id[i]);
2431
2432         return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2435
2436 /**
2437  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2438  *
2439  * @dev: device that will be given as the regulator "consumer"
2440  * @id: List of supply names or regulator IDs
2441  * @num_id: Number of aliases to unregister
2442  *
2443  * This helper function allows drivers to unregister several supply
2444  * aliases in one operation.
2445  */
2446 void regulator_bulk_unregister_supply_alias(struct device *dev,
2447                                             const char *const *id,
2448                                             int num_id)
2449 {
2450         int i;
2451
2452         for (i = 0; i < num_id; ++i)
2453                 regulator_unregister_supply_alias(dev, id[i]);
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2456
2457
2458 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2459 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2460                                 const struct regulator_config *config)
2461 {
2462         struct regulator_enable_gpio *pin, *new_pin;
2463         struct gpio_desc *gpiod;
2464
2465         gpiod = config->ena_gpiod;
2466         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2467
2468         mutex_lock(&regulator_list_mutex);
2469
2470         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2471                 if (pin->gpiod == gpiod) {
2472                         rdev_dbg(rdev, "GPIO is already used\n");
2473                         goto update_ena_gpio_to_rdev;
2474                 }
2475         }
2476
2477         if (new_pin == NULL) {
2478                 mutex_unlock(&regulator_list_mutex);
2479                 return -ENOMEM;
2480         }
2481
2482         pin = new_pin;
2483         new_pin = NULL;
2484
2485         pin->gpiod = gpiod;
2486         list_add(&pin->list, &regulator_ena_gpio_list);
2487
2488 update_ena_gpio_to_rdev:
2489         pin->request_count++;
2490         rdev->ena_pin = pin;
2491
2492         mutex_unlock(&regulator_list_mutex);
2493         kfree(new_pin);
2494
2495         return 0;
2496 }
2497
2498 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2499 {
2500         struct regulator_enable_gpio *pin, *n;
2501
2502         if (!rdev->ena_pin)
2503                 return;
2504
2505         /* Free the GPIO only in case of no use */
2506         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2507                 if (pin != rdev->ena_pin)
2508                         continue;
2509
2510                 if (--pin->request_count)
2511                         break;
2512
2513                 gpiod_put(pin->gpiod);
2514                 list_del(&pin->list);
2515                 kfree(pin);
2516                 break;
2517         }
2518
2519         rdev->ena_pin = NULL;
2520 }
2521
2522 /**
2523  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2524  * @rdev: regulator_dev structure
2525  * @enable: enable GPIO at initial use?
2526  *
2527  * GPIO is enabled in case of initial use. (enable_count is 0)
2528  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2529  */
2530 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2531 {
2532         struct regulator_enable_gpio *pin = rdev->ena_pin;
2533
2534         if (!pin)
2535                 return -EINVAL;
2536
2537         if (enable) {
2538                 /* Enable GPIO at initial use */
2539                 if (pin->enable_count == 0)
2540                         gpiod_set_value_cansleep(pin->gpiod, 1);
2541
2542                 pin->enable_count++;
2543         } else {
2544                 if (pin->enable_count > 1) {
2545                         pin->enable_count--;
2546                         return 0;
2547                 }
2548
2549                 /* Disable GPIO if not used */
2550                 if (pin->enable_count <= 1) {
2551                         gpiod_set_value_cansleep(pin->gpiod, 0);
2552                         pin->enable_count = 0;
2553                 }
2554         }
2555
2556         return 0;
2557 }
2558
2559 /**
2560  * _regulator_delay_helper - a delay helper function
2561  * @delay: time to delay in microseconds
2562  *
2563  * Delay for the requested amount of time as per the guidelines in:
2564  *
2565  *     Documentation/timers/timers-howto.rst
2566  *
2567  * The assumption here is that these regulator operations will never used in
2568  * atomic context and therefore sleeping functions can be used.
2569  */
2570 static void _regulator_delay_helper(unsigned int delay)
2571 {
2572         unsigned int ms = delay / 1000;
2573         unsigned int us = delay % 1000;
2574
2575         if (ms > 0) {
2576                 /*
2577                  * For small enough values, handle super-millisecond
2578                  * delays in the usleep_range() call below.
2579                  */
2580                 if (ms < 20)
2581                         us += ms * 1000;
2582                 else
2583                         msleep(ms);
2584         }
2585
2586         /*
2587          * Give the scheduler some room to coalesce with any other
2588          * wakeup sources. For delays shorter than 10 us, don't even
2589          * bother setting up high-resolution timers and just busy-
2590          * loop.
2591          */
2592         if (us >= 10)
2593                 usleep_range(us, us + 100);
2594         else
2595                 udelay(us);
2596 }
2597
2598 /**
2599  * _regulator_check_status_enabled
2600  *
2601  * A helper function to check if the regulator status can be interpreted
2602  * as 'regulator is enabled'.
2603  * @rdev: the regulator device to check
2604  *
2605  * Return:
2606  * * 1                  - if status shows regulator is in enabled state
2607  * * 0                  - if not enabled state
2608  * * Error Value        - as received from ops->get_status()
2609  */
2610 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2611 {
2612         int ret = rdev->desc->ops->get_status(rdev);
2613
2614         if (ret < 0) {
2615                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2616                 return ret;
2617         }
2618
2619         switch (ret) {
2620         case REGULATOR_STATUS_OFF:
2621         case REGULATOR_STATUS_ERROR:
2622         case REGULATOR_STATUS_UNDEFINED:
2623                 return 0;
2624         default:
2625                 return 1;
2626         }
2627 }
2628
2629 static int _regulator_do_enable(struct regulator_dev *rdev)
2630 {
2631         int ret, delay;
2632
2633         /* Query before enabling in case configuration dependent.  */
2634         ret = _regulator_get_enable_time(rdev);
2635         if (ret >= 0) {
2636                 delay = ret;
2637         } else {
2638                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2639                 delay = 0;
2640         }
2641
2642         trace_regulator_enable(rdev_get_name(rdev));
2643
2644         if (rdev->desc->off_on_delay && rdev->last_off) {
2645                 /* if needed, keep a distance of off_on_delay from last time
2646                  * this regulator was disabled.
2647                  */
2648                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2649                 s64 remaining = ktime_us_delta(end, ktime_get());
2650
2651                 if (remaining > 0)
2652                         _regulator_delay_helper(remaining);
2653         }
2654
2655         if (rdev->ena_pin) {
2656                 if (!rdev->ena_gpio_state) {
2657                         ret = regulator_ena_gpio_ctrl(rdev, true);
2658                         if (ret < 0)
2659                                 return ret;
2660                         rdev->ena_gpio_state = 1;
2661                 }
2662         } else if (rdev->desc->ops->enable) {
2663                 ret = rdev->desc->ops->enable(rdev);
2664                 if (ret < 0)
2665                         return ret;
2666         } else {
2667                 return -EINVAL;
2668         }
2669
2670         /* Allow the regulator to ramp; it would be useful to extend
2671          * this for bulk operations so that the regulators can ramp
2672          * together.
2673          */
2674         trace_regulator_enable_delay(rdev_get_name(rdev));
2675
2676         /* If poll_enabled_time is set, poll upto the delay calculated
2677          * above, delaying poll_enabled_time uS to check if the regulator
2678          * actually got enabled.
2679          * If the regulator isn't enabled after our delay helper has expired,
2680          * return -ETIMEDOUT.
2681          */
2682         if (rdev->desc->poll_enabled_time) {
2683                 unsigned int time_remaining = delay;
2684
2685                 while (time_remaining > 0) {
2686                         _regulator_delay_helper(rdev->desc->poll_enabled_time);
2687
2688                         if (rdev->desc->ops->get_status) {
2689                                 ret = _regulator_check_status_enabled(rdev);
2690                                 if (ret < 0)
2691                                         return ret;
2692                                 else if (ret)
2693                                         break;
2694                         } else if (rdev->desc->ops->is_enabled(rdev))
2695                                 break;
2696
2697                         time_remaining -= rdev->desc->poll_enabled_time;
2698                 }
2699
2700                 if (time_remaining <= 0) {
2701                         rdev_err(rdev, "Enabled check timed out\n");
2702                         return -ETIMEDOUT;
2703                 }
2704         } else {
2705                 _regulator_delay_helper(delay);
2706         }
2707
2708         trace_regulator_enable_complete(rdev_get_name(rdev));
2709
2710         return 0;
2711 }
2712
2713 /**
2714  * _regulator_handle_consumer_enable - handle that a consumer enabled
2715  * @regulator: regulator source
2716  *
2717  * Some things on a regulator consumer (like the contribution towards total
2718  * load on the regulator) only have an effect when the consumer wants the
2719  * regulator enabled.  Explained in example with two consumers of the same
2720  * regulator:
2721  *   consumer A: set_load(100);       => total load = 0
2722  *   consumer A: regulator_enable();  => total load = 100
2723  *   consumer B: set_load(1000);      => total load = 100
2724  *   consumer B: regulator_enable();  => total load = 1100
2725  *   consumer A: regulator_disable(); => total_load = 1000
2726  *
2727  * This function (together with _regulator_handle_consumer_disable) is
2728  * responsible for keeping track of the refcount for a given regulator consumer
2729  * and applying / unapplying these things.
2730  *
2731  * Returns 0 upon no error; -error upon error.
2732  */
2733 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2734 {
2735         int ret;
2736         struct regulator_dev *rdev = regulator->rdev;
2737
2738         lockdep_assert_held_once(&rdev->mutex.base);
2739
2740         regulator->enable_count++;
2741         if (regulator->uA_load && regulator->enable_count == 1) {
2742                 ret = drms_uA_update(rdev);
2743                 if (ret)
2744                         regulator->enable_count--;
2745                 return ret;
2746         }
2747
2748         return 0;
2749 }
2750
2751 /**
2752  * _regulator_handle_consumer_disable - handle that a consumer disabled
2753  * @regulator: regulator source
2754  *
2755  * The opposite of _regulator_handle_consumer_enable().
2756  *
2757  * Returns 0 upon no error; -error upon error.
2758  */
2759 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2760 {
2761         struct regulator_dev *rdev = regulator->rdev;
2762
2763         lockdep_assert_held_once(&rdev->mutex.base);
2764
2765         if (!regulator->enable_count) {
2766                 rdev_err(rdev, "Underflow of regulator enable count\n");
2767                 return -EINVAL;
2768         }
2769
2770         regulator->enable_count--;
2771         if (regulator->uA_load && regulator->enable_count == 0)
2772                 return drms_uA_update(rdev);
2773
2774         return 0;
2775 }
2776
2777 /* locks held by regulator_enable() */
2778 static int _regulator_enable(struct regulator *regulator)
2779 {
2780         struct regulator_dev *rdev = regulator->rdev;
2781         int ret;
2782
2783         lockdep_assert_held_once(&rdev->mutex.base);
2784
2785         if (rdev->use_count == 0 && rdev->supply) {
2786                 ret = _regulator_enable(rdev->supply);
2787                 if (ret < 0)
2788                         return ret;
2789         }
2790
2791         /* balance only if there are regulators coupled */
2792         if (rdev->coupling_desc.n_coupled > 1) {
2793                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2794                 if (ret < 0)
2795                         goto err_disable_supply;
2796         }
2797
2798         ret = _regulator_handle_consumer_enable(regulator);
2799         if (ret < 0)
2800                 goto err_disable_supply;
2801
2802         if (rdev->use_count == 0) {
2803                 /*
2804                  * The regulator may already be enabled if it's not switchable
2805                  * or was left on
2806                  */
2807                 ret = _regulator_is_enabled(rdev);
2808                 if (ret == -EINVAL || ret == 0) {
2809                         if (!regulator_ops_is_valid(rdev,
2810                                         REGULATOR_CHANGE_STATUS)) {
2811                                 ret = -EPERM;
2812                                 goto err_consumer_disable;
2813                         }
2814
2815                         ret = _regulator_do_enable(rdev);
2816                         if (ret < 0)
2817                                 goto err_consumer_disable;
2818
2819                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2820                                              NULL);
2821                 } else if (ret < 0) {
2822                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2823                         goto err_consumer_disable;
2824                 }
2825                 /* Fallthrough on positive return values - already enabled */
2826         }
2827
2828         rdev->use_count++;
2829
2830         return 0;
2831
2832 err_consumer_disable:
2833         _regulator_handle_consumer_disable(regulator);
2834
2835 err_disable_supply:
2836         if (rdev->use_count == 0 && rdev->supply)
2837                 _regulator_disable(rdev->supply);
2838
2839         return ret;
2840 }
2841
2842 /**
2843  * regulator_enable - enable regulator output
2844  * @regulator: regulator source
2845  *
2846  * Request that the regulator be enabled with the regulator output at
2847  * the predefined voltage or current value.  Calls to regulator_enable()
2848  * must be balanced with calls to regulator_disable().
2849  *
2850  * NOTE: the output value can be set by other drivers, boot loader or may be
2851  * hardwired in the regulator.
2852  */
2853 int regulator_enable(struct regulator *regulator)
2854 {
2855         struct regulator_dev *rdev = regulator->rdev;
2856         struct ww_acquire_ctx ww_ctx;
2857         int ret;
2858
2859         regulator_lock_dependent(rdev, &ww_ctx);
2860         ret = _regulator_enable(regulator);
2861         regulator_unlock_dependent(rdev, &ww_ctx);
2862
2863         return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(regulator_enable);
2866
2867 static int _regulator_do_disable(struct regulator_dev *rdev)
2868 {
2869         int ret;
2870
2871         trace_regulator_disable(rdev_get_name(rdev));
2872
2873         if (rdev->ena_pin) {
2874                 if (rdev->ena_gpio_state) {
2875                         ret = regulator_ena_gpio_ctrl(rdev, false);
2876                         if (ret < 0)
2877                                 return ret;
2878                         rdev->ena_gpio_state = 0;
2879                 }
2880
2881         } else if (rdev->desc->ops->disable) {
2882                 ret = rdev->desc->ops->disable(rdev);
2883                 if (ret != 0)
2884                         return ret;
2885         }
2886
2887         if (rdev->desc->off_on_delay)
2888                 rdev->last_off = ktime_get();
2889
2890         trace_regulator_disable_complete(rdev_get_name(rdev));
2891
2892         return 0;
2893 }
2894
2895 /* locks held by regulator_disable() */
2896 static int _regulator_disable(struct regulator *regulator)
2897 {
2898         struct regulator_dev *rdev = regulator->rdev;
2899         int ret = 0;
2900
2901         lockdep_assert_held_once(&rdev->mutex.base);
2902
2903         if (WARN(rdev->use_count <= 0,
2904                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2905                 return -EIO;
2906
2907         /* are we the last user and permitted to disable ? */
2908         if (rdev->use_count == 1 &&
2909             (rdev->constraints && !rdev->constraints->always_on)) {
2910
2911                 /* we are last user */
2912                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2913                         ret = _notifier_call_chain(rdev,
2914                                                    REGULATOR_EVENT_PRE_DISABLE,
2915                                                    NULL);
2916                         if (ret & NOTIFY_STOP_MASK)
2917                                 return -EINVAL;
2918
2919                         ret = _regulator_do_disable(rdev);
2920                         if (ret < 0) {
2921                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2922                                 _notifier_call_chain(rdev,
2923                                                 REGULATOR_EVENT_ABORT_DISABLE,
2924                                                 NULL);
2925                                 return ret;
2926                         }
2927                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2928                                         NULL);
2929                 }
2930
2931                 rdev->use_count = 0;
2932         } else if (rdev->use_count > 1) {
2933                 rdev->use_count--;
2934         }
2935
2936         if (ret == 0)
2937                 ret = _regulator_handle_consumer_disable(regulator);
2938
2939         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2940                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2941
2942         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2943                 ret = _regulator_disable(rdev->supply);
2944
2945         return ret;
2946 }
2947
2948 /**
2949  * regulator_disable - disable regulator output
2950  * @regulator: regulator source
2951  *
2952  * Disable the regulator output voltage or current.  Calls to
2953  * regulator_enable() must be balanced with calls to
2954  * regulator_disable().
2955  *
2956  * NOTE: this will only disable the regulator output if no other consumer
2957  * devices have it enabled, the regulator device supports disabling and
2958  * machine constraints permit this operation.
2959  */
2960 int regulator_disable(struct regulator *regulator)
2961 {
2962         struct regulator_dev *rdev = regulator->rdev;
2963         struct ww_acquire_ctx ww_ctx;
2964         int ret;
2965
2966         regulator_lock_dependent(rdev, &ww_ctx);
2967         ret = _regulator_disable(regulator);
2968         regulator_unlock_dependent(rdev, &ww_ctx);
2969
2970         return ret;
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_disable);
2973
2974 /* locks held by regulator_force_disable() */
2975 static int _regulator_force_disable(struct regulator_dev *rdev)
2976 {
2977         int ret = 0;
2978
2979         lockdep_assert_held_once(&rdev->mutex.base);
2980
2981         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2982                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2983         if (ret & NOTIFY_STOP_MASK)
2984                 return -EINVAL;
2985
2986         ret = _regulator_do_disable(rdev);
2987         if (ret < 0) {
2988                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2989                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2990                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2991                 return ret;
2992         }
2993
2994         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2995                         REGULATOR_EVENT_DISABLE, NULL);
2996
2997         return 0;
2998 }
2999
3000 /**
3001  * regulator_force_disable - force disable regulator output
3002  * @regulator: regulator source
3003  *
3004  * Forcibly disable the regulator output voltage or current.
3005  * NOTE: this *will* disable the regulator output even if other consumer
3006  * devices have it enabled. This should be used for situations when device
3007  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3008  */
3009 int regulator_force_disable(struct regulator *regulator)
3010 {
3011         struct regulator_dev *rdev = regulator->rdev;
3012         struct ww_acquire_ctx ww_ctx;
3013         int ret;
3014
3015         regulator_lock_dependent(rdev, &ww_ctx);
3016
3017         ret = _regulator_force_disable(regulator->rdev);
3018
3019         if (rdev->coupling_desc.n_coupled > 1)
3020                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3021
3022         if (regulator->uA_load) {
3023                 regulator->uA_load = 0;
3024                 ret = drms_uA_update(rdev);
3025         }
3026
3027         if (rdev->use_count != 0 && rdev->supply)
3028                 _regulator_disable(rdev->supply);
3029
3030         regulator_unlock_dependent(rdev, &ww_ctx);
3031
3032         return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(regulator_force_disable);
3035
3036 static void regulator_disable_work(struct work_struct *work)
3037 {
3038         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3039                                                   disable_work.work);
3040         struct ww_acquire_ctx ww_ctx;
3041         int count, i, ret;
3042         struct regulator *regulator;
3043         int total_count = 0;
3044
3045         regulator_lock_dependent(rdev, &ww_ctx);
3046
3047         /*
3048          * Workqueue functions queue the new work instance while the previous
3049          * work instance is being processed. Cancel the queued work instance
3050          * as the work instance under processing does the job of the queued
3051          * work instance.
3052          */
3053         cancel_delayed_work(&rdev->disable_work);
3054
3055         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3056                 count = regulator->deferred_disables;
3057
3058                 if (!count)
3059                         continue;
3060
3061                 total_count += count;
3062                 regulator->deferred_disables = 0;
3063
3064                 for (i = 0; i < count; i++) {
3065                         ret = _regulator_disable(regulator);
3066                         if (ret != 0)
3067                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3068                                          ERR_PTR(ret));
3069                 }
3070         }
3071         WARN_ON(!total_count);
3072
3073         if (rdev->coupling_desc.n_coupled > 1)
3074                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3075
3076         regulator_unlock_dependent(rdev, &ww_ctx);
3077 }
3078
3079 /**
3080  * regulator_disable_deferred - disable regulator output with delay
3081  * @regulator: regulator source
3082  * @ms: milliseconds until the regulator is disabled
3083  *
3084  * Execute regulator_disable() on the regulator after a delay.  This
3085  * is intended for use with devices that require some time to quiesce.
3086  *
3087  * NOTE: this will only disable the regulator output if no other consumer
3088  * devices have it enabled, the regulator device supports disabling and
3089  * machine constraints permit this operation.
3090  */
3091 int regulator_disable_deferred(struct regulator *regulator, int ms)
3092 {
3093         struct regulator_dev *rdev = regulator->rdev;
3094
3095         if (!ms)
3096                 return regulator_disable(regulator);
3097
3098         regulator_lock(rdev);
3099         regulator->deferred_disables++;
3100         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3101                          msecs_to_jiffies(ms));
3102         regulator_unlock(rdev);
3103
3104         return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3107
3108 static int _regulator_is_enabled(struct regulator_dev *rdev)
3109 {
3110         /* A GPIO control always takes precedence */
3111         if (rdev->ena_pin)
3112                 return rdev->ena_gpio_state;
3113
3114         /* If we don't know then assume that the regulator is always on */
3115         if (!rdev->desc->ops->is_enabled)
3116                 return 1;
3117
3118         return rdev->desc->ops->is_enabled(rdev);
3119 }
3120
3121 static int _regulator_list_voltage(struct regulator_dev *rdev,
3122                                    unsigned selector, int lock)
3123 {
3124         const struct regulator_ops *ops = rdev->desc->ops;
3125         int ret;
3126
3127         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3128                 return rdev->desc->fixed_uV;
3129
3130         if (ops->list_voltage) {
3131                 if (selector >= rdev->desc->n_voltages)
3132                         return -EINVAL;
3133                 if (selector < rdev->desc->linear_min_sel)
3134                         return 0;
3135                 if (lock)
3136                         regulator_lock(rdev);
3137                 ret = ops->list_voltage(rdev, selector);
3138                 if (lock)
3139                         regulator_unlock(rdev);
3140         } else if (rdev->is_switch && rdev->supply) {
3141                 ret = _regulator_list_voltage(rdev->supply->rdev,
3142                                               selector, lock);
3143         } else {
3144                 return -EINVAL;
3145         }
3146
3147         if (ret > 0) {
3148                 if (ret < rdev->constraints->min_uV)
3149                         ret = 0;
3150                 else if (ret > rdev->constraints->max_uV)
3151                         ret = 0;
3152         }
3153
3154         return ret;
3155 }
3156
3157 /**
3158  * regulator_is_enabled - is the regulator output enabled
3159  * @regulator: regulator source
3160  *
3161  * Returns positive if the regulator driver backing the source/client
3162  * has requested that the device be enabled, zero if it hasn't, else a
3163  * negative errno code.
3164  *
3165  * Note that the device backing this regulator handle can have multiple
3166  * users, so it might be enabled even if regulator_enable() was never
3167  * called for this particular source.
3168  */
3169 int regulator_is_enabled(struct regulator *regulator)
3170 {
3171         int ret;
3172
3173         if (regulator->always_on)
3174                 return 1;
3175
3176         regulator_lock(regulator->rdev);
3177         ret = _regulator_is_enabled(regulator->rdev);
3178         regulator_unlock(regulator->rdev);
3179
3180         return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3183
3184 /**
3185  * regulator_count_voltages - count regulator_list_voltage() selectors
3186  * @regulator: regulator source
3187  *
3188  * Returns number of selectors, or negative errno.  Selectors are
3189  * numbered starting at zero, and typically correspond to bitfields
3190  * in hardware registers.
3191  */
3192 int regulator_count_voltages(struct regulator *regulator)
3193 {
3194         struct regulator_dev    *rdev = regulator->rdev;
3195
3196         if (rdev->desc->n_voltages)
3197                 return rdev->desc->n_voltages;
3198
3199         if (!rdev->is_switch || !rdev->supply)
3200                 return -EINVAL;
3201
3202         return regulator_count_voltages(rdev->supply);
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3205
3206 /**
3207  * regulator_list_voltage - enumerate supported voltages
3208  * @regulator: regulator source
3209  * @selector: identify voltage to list
3210  * Context: can sleep
3211  *
3212  * Returns a voltage that can be passed to @regulator_set_voltage(),
3213  * zero if this selector code can't be used on this system, or a
3214  * negative errno.
3215  */
3216 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3217 {
3218         return _regulator_list_voltage(regulator->rdev, selector, 1);
3219 }
3220 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3221
3222 /**
3223  * regulator_get_regmap - get the regulator's register map
3224  * @regulator: regulator source
3225  *
3226  * Returns the register map for the given regulator, or an ERR_PTR value
3227  * if the regulator doesn't use regmap.
3228  */
3229 struct regmap *regulator_get_regmap(struct regulator *regulator)
3230 {
3231         struct regmap *map = regulator->rdev->regmap;
3232
3233         return map ? map : ERR_PTR(-EOPNOTSUPP);
3234 }
3235
3236 /**
3237  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3238  * @regulator: regulator source
3239  * @vsel_reg: voltage selector register, output parameter
3240  * @vsel_mask: mask for voltage selector bitfield, output parameter
3241  *
3242  * Returns the hardware register offset and bitmask used for setting the
3243  * regulator voltage. This might be useful when configuring voltage-scaling
3244  * hardware or firmware that can make I2C requests behind the kernel's back,
3245  * for example.
3246  *
3247  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3248  * and 0 is returned, otherwise a negative errno is returned.
3249  */
3250 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3251                                          unsigned *vsel_reg,
3252                                          unsigned *vsel_mask)
3253 {
3254         struct regulator_dev *rdev = regulator->rdev;
3255         const struct regulator_ops *ops = rdev->desc->ops;
3256
3257         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3258                 return -EOPNOTSUPP;
3259
3260         *vsel_reg = rdev->desc->vsel_reg;
3261         *vsel_mask = rdev->desc->vsel_mask;
3262
3263         return 0;
3264 }
3265 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3266
3267 /**
3268  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3269  * @regulator: regulator source
3270  * @selector: identify voltage to list
3271  *
3272  * Converts the selector to a hardware-specific voltage selector that can be
3273  * directly written to the regulator registers. The address of the voltage
3274  * register can be determined by calling @regulator_get_hardware_vsel_register.
3275  *
3276  * On error a negative errno is returned.
3277  */
3278 int regulator_list_hardware_vsel(struct regulator *regulator,
3279                                  unsigned selector)
3280 {
3281         struct regulator_dev *rdev = regulator->rdev;
3282         const struct regulator_ops *ops = rdev->desc->ops;
3283
3284         if (selector >= rdev->desc->n_voltages)
3285                 return -EINVAL;
3286         if (selector < rdev->desc->linear_min_sel)
3287                 return 0;
3288         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3289                 return -EOPNOTSUPP;
3290
3291         return selector;
3292 }
3293 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3294
3295 /**
3296  * regulator_get_linear_step - return the voltage step size between VSEL values
3297  * @regulator: regulator source
3298  *
3299  * Returns the voltage step size between VSEL values for linear
3300  * regulators, or return 0 if the regulator isn't a linear regulator.
3301  */
3302 unsigned int regulator_get_linear_step(struct regulator *regulator)
3303 {
3304         struct regulator_dev *rdev = regulator->rdev;
3305
3306         return rdev->desc->uV_step;
3307 }
3308 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3309
3310 /**
3311  * regulator_is_supported_voltage - check if a voltage range can be supported
3312  *
3313  * @regulator: Regulator to check.
3314  * @min_uV: Minimum required voltage in uV.
3315  * @max_uV: Maximum required voltage in uV.
3316  *
3317  * Returns a boolean.
3318  */
3319 int regulator_is_supported_voltage(struct regulator *regulator,
3320                                    int min_uV, int max_uV)
3321 {
3322         struct regulator_dev *rdev = regulator->rdev;
3323         int i, voltages, ret;
3324
3325         /* If we can't change voltage check the current voltage */
3326         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3327                 ret = regulator_get_voltage(regulator);
3328                 if (ret >= 0)
3329                         return min_uV <= ret && ret <= max_uV;
3330                 else
3331                         return ret;
3332         }
3333
3334         /* Any voltage within constrains range is fine? */
3335         if (rdev->desc->continuous_voltage_range)
3336                 return min_uV >= rdev->constraints->min_uV &&
3337                                 max_uV <= rdev->constraints->max_uV;
3338
3339         ret = regulator_count_voltages(regulator);
3340         if (ret < 0)
3341                 return 0;
3342         voltages = ret;
3343
3344         for (i = 0; i < voltages; i++) {
3345                 ret = regulator_list_voltage(regulator, i);
3346
3347                 if (ret >= min_uV && ret <= max_uV)
3348                         return 1;
3349         }
3350
3351         return 0;
3352 }
3353 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3354
3355 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3356                                  int max_uV)
3357 {
3358         const struct regulator_desc *desc = rdev->desc;
3359
3360         if (desc->ops->map_voltage)
3361                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3362
3363         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3364                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3365
3366         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3367                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3368
3369         if (desc->ops->list_voltage ==
3370                 regulator_list_voltage_pickable_linear_range)
3371                 return regulator_map_voltage_pickable_linear_range(rdev,
3372                                                         min_uV, max_uV);
3373
3374         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3375 }
3376
3377 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3378                                        int min_uV, int max_uV,
3379                                        unsigned *selector)
3380 {
3381         struct pre_voltage_change_data data;
3382         int ret;
3383
3384         data.old_uV = regulator_get_voltage_rdev(rdev);
3385         data.min_uV = min_uV;
3386         data.max_uV = max_uV;
3387         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3388                                    &data);
3389         if (ret & NOTIFY_STOP_MASK)
3390                 return -EINVAL;
3391
3392         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3393         if (ret >= 0)
3394                 return ret;
3395
3396         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3397                              (void *)data.old_uV);
3398
3399         return ret;
3400 }
3401
3402 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3403                                            int uV, unsigned selector)
3404 {
3405         struct pre_voltage_change_data data;
3406         int ret;
3407
3408         data.old_uV = regulator_get_voltage_rdev(rdev);
3409         data.min_uV = uV;
3410         data.max_uV = uV;
3411         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3412                                    &data);
3413         if (ret & NOTIFY_STOP_MASK)
3414                 return -EINVAL;
3415
3416         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3417         if (ret >= 0)
3418                 return ret;
3419
3420         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3421                              (void *)data.old_uV);
3422
3423         return ret;
3424 }
3425
3426 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3427                                            int uV, int new_selector)
3428 {
3429         const struct regulator_ops *ops = rdev->desc->ops;
3430         int diff, old_sel, curr_sel, ret;
3431
3432         /* Stepping is only needed if the regulator is enabled. */
3433         if (!_regulator_is_enabled(rdev))
3434                 goto final_set;
3435
3436         if (!ops->get_voltage_sel)
3437                 return -EINVAL;
3438
3439         old_sel = ops->get_voltage_sel(rdev);
3440         if (old_sel < 0)
3441                 return old_sel;
3442
3443         diff = new_selector - old_sel;
3444         if (diff == 0)
3445                 return 0; /* No change needed. */
3446
3447         if (diff > 0) {
3448                 /* Stepping up. */
3449                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3450                      curr_sel < new_selector;
3451                      curr_sel += rdev->desc->vsel_step) {
3452                         /*
3453                          * Call the callback directly instead of using
3454                          * _regulator_call_set_voltage_sel() as we don't
3455                          * want to notify anyone yet. Same in the branch
3456                          * below.
3457                          */
3458                         ret = ops->set_voltage_sel(rdev, curr_sel);
3459                         if (ret)
3460                                 goto try_revert;
3461                 }
3462         } else {
3463                 /* Stepping down. */
3464                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3465                      curr_sel > new_selector;
3466                      curr_sel -= rdev->desc->vsel_step) {
3467                         ret = ops->set_voltage_sel(rdev, curr_sel);
3468                         if (ret)
3469                                 goto try_revert;
3470                 }
3471         }
3472
3473 final_set:
3474         /* The final selector will trigger the notifiers. */
3475         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3476
3477 try_revert:
3478         /*
3479          * At least try to return to the previous voltage if setting a new
3480          * one failed.
3481          */
3482         (void)ops->set_voltage_sel(rdev, old_sel);
3483         return ret;
3484 }
3485
3486 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3487                                        int old_uV, int new_uV)
3488 {
3489         unsigned int ramp_delay = 0;
3490
3491         if (rdev->constraints->ramp_delay)
3492                 ramp_delay = rdev->constraints->ramp_delay;
3493         else if (rdev->desc->ramp_delay)
3494                 ramp_delay = rdev->desc->ramp_delay;
3495         else if (rdev->constraints->settling_time)
3496                 return rdev->constraints->settling_time;
3497         else if (rdev->constraints->settling_time_up &&
3498                  (new_uV > old_uV))
3499                 return rdev->constraints->settling_time_up;
3500         else if (rdev->constraints->settling_time_down &&
3501                  (new_uV < old_uV))
3502                 return rdev->constraints->settling_time_down;
3503
3504         if (ramp_delay == 0) {
3505                 rdev_dbg(rdev, "ramp_delay not set\n");
3506                 return 0;
3507         }
3508
3509         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3510 }
3511
3512 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3513                                      int min_uV, int max_uV)
3514 {
3515         int ret;
3516         int delay = 0;
3517         int best_val = 0;
3518         unsigned int selector;
3519         int old_selector = -1;
3520         const struct regulator_ops *ops = rdev->desc->ops;
3521         int old_uV = regulator_get_voltage_rdev(rdev);
3522
3523         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3524
3525         min_uV += rdev->constraints->uV_offset;
3526         max_uV += rdev->constraints->uV_offset;
3527
3528         /*
3529          * If we can't obtain the old selector there is not enough
3530          * info to call set_voltage_time_sel().
3531          */
3532         if (_regulator_is_enabled(rdev) &&
3533             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3534                 old_selector = ops->get_voltage_sel(rdev);
3535                 if (old_selector < 0)
3536                         return old_selector;
3537         }
3538
3539         if (ops->set_voltage) {
3540                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3541                                                   &selector);
3542
3543                 if (ret >= 0) {
3544                         if (ops->list_voltage)
3545                                 best_val = ops->list_voltage(rdev,
3546                                                              selector);
3547                         else
3548                                 best_val = regulator_get_voltage_rdev(rdev);
3549                 }
3550
3551         } else if (ops->set_voltage_sel) {
3552                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3553                 if (ret >= 0) {
3554                         best_val = ops->list_voltage(rdev, ret);
3555                         if (min_uV <= best_val && max_uV >= best_val) {
3556                                 selector = ret;
3557                                 if (old_selector == selector)
3558                                         ret = 0;
3559                                 else if (rdev->desc->vsel_step)
3560                                         ret = _regulator_set_voltage_sel_step(
3561                                                 rdev, best_val, selector);
3562                                 else
3563                                         ret = _regulator_call_set_voltage_sel(
3564                                                 rdev, best_val, selector);
3565                         } else {
3566                                 ret = -EINVAL;
3567                         }
3568                 }
3569         } else {
3570                 ret = -EINVAL;
3571         }
3572
3573         if (ret)
3574                 goto out;
3575
3576         if (ops->set_voltage_time_sel) {
3577                 /*
3578                  * Call set_voltage_time_sel if successfully obtained
3579                  * old_selector
3580                  */
3581                 if (old_selector >= 0 && old_selector != selector)
3582                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3583                                                           selector);
3584         } else {
3585                 if (old_uV != best_val) {
3586                         if (ops->set_voltage_time)
3587                                 delay = ops->set_voltage_time(rdev, old_uV,
3588                                                               best_val);
3589                         else
3590                                 delay = _regulator_set_voltage_time(rdev,
3591                                                                     old_uV,
3592                                                                     best_val);
3593                 }
3594         }
3595
3596         if (delay < 0) {
3597                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3598                 delay = 0;
3599         }
3600
3601         /* Insert any necessary delays */
3602         _regulator_delay_helper(delay);
3603
3604         if (best_val >= 0) {
3605                 unsigned long data = best_val;
3606
3607                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3608                                      (void *)data);
3609         }
3610
3611 out:
3612         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3613
3614         return ret;
3615 }
3616
3617 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3618                                   int min_uV, int max_uV, suspend_state_t state)
3619 {
3620         struct regulator_state *rstate;
3621         int uV, sel;
3622
3623         rstate = regulator_get_suspend_state(rdev, state);
3624         if (rstate == NULL)
3625                 return -EINVAL;
3626
3627         if (min_uV < rstate->min_uV)
3628                 min_uV = rstate->min_uV;
3629         if (max_uV > rstate->max_uV)
3630                 max_uV = rstate->max_uV;
3631
3632         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3633         if (sel < 0)
3634                 return sel;
3635
3636         uV = rdev->desc->ops->list_voltage(rdev, sel);
3637         if (uV >= min_uV && uV <= max_uV)
3638                 rstate->uV = uV;
3639
3640         return 0;
3641 }
3642
3643 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3644                                           int min_uV, int max_uV,
3645                                           suspend_state_t state)
3646 {
3647         struct regulator_dev *rdev = regulator->rdev;
3648         struct regulator_voltage *voltage = &regulator->voltage[state];
3649         int ret = 0;
3650         int old_min_uV, old_max_uV;
3651         int current_uV;
3652
3653         /* If we're setting the same range as last time the change
3654          * should be a noop (some cpufreq implementations use the same
3655          * voltage for multiple frequencies, for example).
3656          */
3657         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3658                 goto out;
3659
3660         /* If we're trying to set a range that overlaps the current voltage,
3661          * return successfully even though the regulator does not support
3662          * changing the voltage.
3663          */
3664         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3665                 current_uV = regulator_get_voltage_rdev(rdev);
3666                 if (min_uV <= current_uV && current_uV <= max_uV) {
3667                         voltage->min_uV = min_uV;
3668                         voltage->max_uV = max_uV;
3669                         goto out;
3670                 }
3671         }
3672
3673         /* sanity check */
3674         if (!rdev->desc->ops->set_voltage &&
3675             !rdev->desc->ops->set_voltage_sel) {
3676                 ret = -EINVAL;
3677                 goto out;
3678         }
3679
3680         /* constraints check */
3681         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3682         if (ret < 0)
3683                 goto out;
3684
3685         /* restore original values in case of error */
3686         old_min_uV = voltage->min_uV;
3687         old_max_uV = voltage->max_uV;
3688         voltage->min_uV = min_uV;
3689         voltage->max_uV = max_uV;
3690
3691         /* for not coupled regulators this will just set the voltage */
3692         ret = regulator_balance_voltage(rdev, state);
3693         if (ret < 0) {
3694                 voltage->min_uV = old_min_uV;
3695                 voltage->max_uV = old_max_uV;
3696         }
3697
3698 out:
3699         return ret;
3700 }
3701
3702 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3703                                int max_uV, suspend_state_t state)
3704 {
3705         int best_supply_uV = 0;
3706         int supply_change_uV = 0;
3707         int ret;
3708
3709         if (rdev->supply &&
3710             regulator_ops_is_valid(rdev->supply->rdev,
3711                                    REGULATOR_CHANGE_VOLTAGE) &&
3712             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3713                                            rdev->desc->ops->get_voltage_sel))) {
3714                 int current_supply_uV;
3715                 int selector;
3716
3717                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3718                 if (selector < 0) {
3719                         ret = selector;
3720                         goto out;
3721                 }
3722
3723                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3724                 if (best_supply_uV < 0) {
3725                         ret = best_supply_uV;
3726                         goto out;
3727                 }
3728
3729                 best_supply_uV += rdev->desc->min_dropout_uV;
3730
3731                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3732                 if (current_supply_uV < 0) {
3733                         ret = current_supply_uV;
3734                         goto out;
3735                 }
3736
3737                 supply_change_uV = best_supply_uV - current_supply_uV;
3738         }
3739
3740         if (supply_change_uV > 0) {
3741                 ret = regulator_set_voltage_unlocked(rdev->supply,
3742                                 best_supply_uV, INT_MAX, state);
3743                 if (ret) {
3744                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3745                                 ERR_PTR(ret));
3746                         goto out;
3747                 }
3748         }
3749
3750         if (state == PM_SUSPEND_ON)
3751                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3752         else
3753                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3754                                                         max_uV, state);
3755         if (ret < 0)
3756                 goto out;
3757
3758         if (supply_change_uV < 0) {
3759                 ret = regulator_set_voltage_unlocked(rdev->supply,
3760                                 best_supply_uV, INT_MAX, state);
3761                 if (ret)
3762                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3763                                  ERR_PTR(ret));
3764                 /* No need to fail here */
3765                 ret = 0;
3766         }
3767
3768 out:
3769         return ret;
3770 }
3771 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3772
3773 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3774                                         int *current_uV, int *min_uV)
3775 {
3776         struct regulation_constraints *constraints = rdev->constraints;
3777
3778         /* Limit voltage change only if necessary */
3779         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3780                 return 1;
3781
3782         if (*current_uV < 0) {
3783                 *current_uV = regulator_get_voltage_rdev(rdev);
3784
3785                 if (*current_uV < 0)
3786                         return *current_uV;
3787         }
3788
3789         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3790                 return 1;
3791
3792         /* Clamp target voltage within the given step */
3793         if (*current_uV < *min_uV)
3794                 *min_uV = min(*current_uV + constraints->max_uV_step,
3795                               *min_uV);
3796         else
3797                 *min_uV = max(*current_uV - constraints->max_uV_step,
3798                               *min_uV);
3799
3800         return 0;
3801 }
3802
3803 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3804                                          int *current_uV,
3805                                          int *min_uV, int *max_uV,
3806                                          suspend_state_t state,
3807                                          int n_coupled)
3808 {
3809         struct coupling_desc *c_desc = &rdev->coupling_desc;
3810         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3811         struct regulation_constraints *constraints = rdev->constraints;
3812         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3813         int max_current_uV = 0, min_current_uV = INT_MAX;
3814         int highest_min_uV = 0, target_uV, possible_uV;
3815         int i, ret, max_spread;
3816         bool done;
3817
3818         *current_uV = -1;
3819
3820         /*
3821          * If there are no coupled regulators, simply set the voltage
3822          * demanded by consumers.
3823          */
3824         if (n_coupled == 1) {
3825                 /*
3826                  * If consumers don't provide any demands, set voltage
3827                  * to min_uV
3828                  */
3829                 desired_min_uV = constraints->min_uV;
3830                 desired_max_uV = constraints->max_uV;
3831
3832                 ret = regulator_check_consumers(rdev,
3833                                                 &desired_min_uV,
3834                                                 &desired_max_uV, state);
3835                 if (ret < 0)
3836                         return ret;
3837
3838                 possible_uV = desired_min_uV;
3839                 done = true;
3840
3841                 goto finish;
3842         }
3843
3844         /* Find highest min desired voltage */
3845         for (i = 0; i < n_coupled; i++) {
3846                 int tmp_min = 0;
3847                 int tmp_max = INT_MAX;
3848
3849                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3850
3851                 ret = regulator_check_consumers(c_rdevs[i],
3852                                                 &tmp_min,
3853                                                 &tmp_max, state);
3854                 if (ret < 0)
3855                         return ret;
3856
3857                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3858                 if (ret < 0)
3859                         return ret;
3860
3861                 highest_min_uV = max(highest_min_uV, tmp_min);
3862
3863                 if (i == 0) {
3864                         desired_min_uV = tmp_min;
3865                         desired_max_uV = tmp_max;
3866                 }
3867         }
3868
3869         max_spread = constraints->max_spread[0];
3870
3871         /*
3872          * Let target_uV be equal to the desired one if possible.
3873          * If not, set it to minimum voltage, allowed by other coupled
3874          * regulators.
3875          */
3876         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3877
3878         /*
3879          * Find min and max voltages, which currently aren't violating
3880          * max_spread.
3881          */
3882         for (i = 1; i < n_coupled; i++) {
3883                 int tmp_act;
3884
3885                 if (!_regulator_is_enabled(c_rdevs[i]))
3886                         continue;
3887
3888                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3889                 if (tmp_act < 0)
3890                         return tmp_act;
3891
3892                 min_current_uV = min(tmp_act, min_current_uV);
3893                 max_current_uV = max(tmp_act, max_current_uV);
3894         }
3895
3896         /* There aren't any other regulators enabled */
3897         if (max_current_uV == 0) {
3898                 possible_uV = target_uV;
3899         } else {
3900                 /*
3901                  * Correct target voltage, so as it currently isn't
3902                  * violating max_spread
3903                  */
3904                 possible_uV = max(target_uV, max_current_uV - max_spread);
3905                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3906         }
3907
3908         if (possible_uV > desired_max_uV)
3909                 return -EINVAL;
3910
3911         done = (possible_uV == target_uV);
3912         desired_min_uV = possible_uV;
3913
3914 finish:
3915         /* Apply max_uV_step constraint if necessary */
3916         if (state == PM_SUSPEND_ON) {
3917                 ret = regulator_limit_voltage_step(rdev, current_uV,
3918                                                    &desired_min_uV);
3919                 if (ret < 0)
3920                         return ret;
3921
3922                 if (ret == 0)
3923                         done = false;
3924         }
3925
3926         /* Set current_uV if wasn't done earlier in the code and if necessary */
3927         if (n_coupled > 1 && *current_uV == -1) {
3928
3929                 if (_regulator_is_enabled(rdev)) {
3930                         ret = regulator_get_voltage_rdev(rdev);
3931                         if (ret < 0)
3932                                 return ret;
3933
3934                         *current_uV = ret;
3935                 } else {
3936                         *current_uV = desired_min_uV;
3937                 }
3938         }
3939
3940         *min_uV = desired_min_uV;
3941         *max_uV = desired_max_uV;
3942
3943         return done;
3944 }
3945
3946 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3947                                  suspend_state_t state, bool skip_coupled)
3948 {
3949         struct regulator_dev **c_rdevs;
3950         struct regulator_dev *best_rdev;
3951         struct coupling_desc *c_desc = &rdev->coupling_desc;
3952         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3953         unsigned int delta, best_delta;
3954         unsigned long c_rdev_done = 0;
3955         bool best_c_rdev_done;
3956
3957         c_rdevs = c_desc->coupled_rdevs;
3958         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3959
3960         /*
3961          * Find the best possible voltage change on each loop. Leave the loop
3962          * if there isn't any possible change.
3963          */
3964         do {
3965                 best_c_rdev_done = false;
3966                 best_delta = 0;
3967                 best_min_uV = 0;
3968                 best_max_uV = 0;
3969                 best_c_rdev = 0;
3970                 best_rdev = NULL;
3971
3972                 /*
3973                  * Find highest difference between optimal voltage
3974                  * and current voltage.
3975                  */
3976                 for (i = 0; i < n_coupled; i++) {
3977                         /*
3978                          * optimal_uV is the best voltage that can be set for
3979                          * i-th regulator at the moment without violating
3980                          * max_spread constraint in order to balance
3981                          * the coupled voltages.
3982                          */
3983                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3984
3985                         if (test_bit(i, &c_rdev_done))
3986                                 continue;
3987
3988                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3989                                                             &current_uV,
3990                                                             &optimal_uV,
3991                                                             &optimal_max_uV,
3992                                                             state, n_coupled);
3993                         if (ret < 0)
3994                                 goto out;
3995
3996                         delta = abs(optimal_uV - current_uV);
3997
3998                         if (delta && best_delta <= delta) {
3999                                 best_c_rdev_done = ret;
4000                                 best_delta = delta;
4001                                 best_rdev = c_rdevs[i];
4002                                 best_min_uV = optimal_uV;
4003                                 best_max_uV = optimal_max_uV;
4004                                 best_c_rdev = i;
4005                         }
4006                 }
4007
4008                 /* Nothing to change, return successfully */
4009                 if (!best_rdev) {
4010                         ret = 0;
4011                         goto out;
4012                 }
4013
4014                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4015                                                  best_max_uV, state);
4016
4017                 if (ret < 0)
4018                         goto out;
4019
4020                 if (best_c_rdev_done)
4021                         set_bit(best_c_rdev, &c_rdev_done);
4022
4023         } while (n_coupled > 1);
4024
4025 out:
4026         return ret;
4027 }
4028
4029 static int regulator_balance_voltage(struct regulator_dev *rdev,
4030                                      suspend_state_t state)
4031 {
4032         struct coupling_desc *c_desc = &rdev->coupling_desc;
4033         struct regulator_coupler *coupler = c_desc->coupler;
4034         bool skip_coupled = false;
4035
4036         /*
4037          * If system is in a state other than PM_SUSPEND_ON, don't check
4038          * other coupled regulators.
4039          */
4040         if (state != PM_SUSPEND_ON)
4041                 skip_coupled = true;
4042
4043         if (c_desc->n_resolved < c_desc->n_coupled) {
4044                 rdev_err(rdev, "Not all coupled regulators registered\n");
4045                 return -EPERM;
4046         }
4047
4048         /* Invoke custom balancer for customized couplers */
4049         if (coupler && coupler->balance_voltage)
4050                 return coupler->balance_voltage(coupler, rdev, state);
4051
4052         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4053 }
4054
4055 /**
4056  * regulator_set_voltage - set regulator output voltage
4057  * @regulator: regulator source
4058  * @min_uV: Minimum required voltage in uV
4059  * @max_uV: Maximum acceptable voltage in uV
4060  *
4061  * Sets a voltage regulator to the desired output voltage. This can be set
4062  * during any regulator state. IOW, regulator can be disabled or enabled.
4063  *
4064  * If the regulator is enabled then the voltage will change to the new value
4065  * immediately otherwise if the regulator is disabled the regulator will
4066  * output at the new voltage when enabled.
4067  *
4068  * NOTE: If the regulator is shared between several devices then the lowest
4069  * request voltage that meets the system constraints will be used.
4070  * Regulator system constraints must be set for this regulator before
4071  * calling this function otherwise this call will fail.
4072  */
4073 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4074 {
4075         struct ww_acquire_ctx ww_ctx;
4076         int ret;
4077
4078         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4079
4080         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4081                                              PM_SUSPEND_ON);
4082
4083         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4084
4085         return ret;
4086 }
4087 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4088
4089 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4090                                            suspend_state_t state, bool en)
4091 {
4092         struct regulator_state *rstate;
4093
4094         rstate = regulator_get_suspend_state(rdev, state);
4095         if (rstate == NULL)
4096                 return -EINVAL;
4097
4098         if (!rstate->changeable)
4099                 return -EPERM;
4100
4101         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4102
4103         return 0;
4104 }
4105
4106 int regulator_suspend_enable(struct regulator_dev *rdev,
4107                                     suspend_state_t state)
4108 {
4109         return regulator_suspend_toggle(rdev, state, true);
4110 }
4111 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4112
4113 int regulator_suspend_disable(struct regulator_dev *rdev,
4114                                      suspend_state_t state)
4115 {
4116         struct regulator *regulator;
4117         struct regulator_voltage *voltage;
4118
4119         /*
4120          * if any consumer wants this regulator device keeping on in
4121          * suspend states, don't set it as disabled.
4122          */
4123         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4124                 voltage = &regulator->voltage[state];
4125                 if (voltage->min_uV || voltage->max_uV)
4126                         return 0;
4127         }
4128
4129         return regulator_suspend_toggle(rdev, state, false);
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4132
4133 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4134                                           int min_uV, int max_uV,
4135                                           suspend_state_t state)
4136 {
4137         struct regulator_dev *rdev = regulator->rdev;
4138         struct regulator_state *rstate;
4139
4140         rstate = regulator_get_suspend_state(rdev, state);
4141         if (rstate == NULL)
4142                 return -EINVAL;
4143
4144         if (rstate->min_uV == rstate->max_uV) {
4145                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4146                 return -EPERM;
4147         }
4148
4149         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4150 }
4151
4152 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4153                                   int max_uV, suspend_state_t state)
4154 {
4155         struct ww_acquire_ctx ww_ctx;
4156         int ret;
4157
4158         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4159         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4160                 return -EINVAL;
4161
4162         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4163
4164         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4165                                              max_uV, state);
4166
4167         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4168
4169         return ret;
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4172
4173 /**
4174  * regulator_set_voltage_time - get raise/fall time
4175  * @regulator: regulator source
4176  * @old_uV: starting voltage in microvolts
4177  * @new_uV: target voltage in microvolts
4178  *
4179  * Provided with the starting and ending voltage, this function attempts to
4180  * calculate the time in microseconds required to rise or fall to this new
4181  * voltage.
4182  */
4183 int regulator_set_voltage_time(struct regulator *regulator,
4184                                int old_uV, int new_uV)
4185 {
4186         struct regulator_dev *rdev = regulator->rdev;
4187         const struct regulator_ops *ops = rdev->desc->ops;
4188         int old_sel = -1;
4189         int new_sel = -1;
4190         int voltage;
4191         int i;
4192
4193         if (ops->set_voltage_time)
4194                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4195         else if (!ops->set_voltage_time_sel)
4196                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4197
4198         /* Currently requires operations to do this */
4199         if (!ops->list_voltage || !rdev->desc->n_voltages)
4200                 return -EINVAL;
4201
4202         for (i = 0; i < rdev->desc->n_voltages; i++) {
4203                 /* We only look for exact voltage matches here */
4204                 if (i < rdev->desc->linear_min_sel)
4205                         continue;
4206
4207                 if (old_sel >= 0 && new_sel >= 0)
4208                         break;
4209
4210                 voltage = regulator_list_voltage(regulator, i);
4211                 if (voltage < 0)
4212                         return -EINVAL;
4213                 if (voltage == 0)
4214                         continue;
4215                 if (voltage == old_uV)
4216                         old_sel = i;
4217                 if (voltage == new_uV)
4218                         new_sel = i;
4219         }
4220
4221         if (old_sel < 0 || new_sel < 0)
4222                 return -EINVAL;
4223
4224         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4225 }
4226 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4227
4228 /**
4229  * regulator_set_voltage_time_sel - get raise/fall time
4230  * @rdev: regulator source device
4231  * @old_selector: selector for starting voltage
4232  * @new_selector: selector for target voltage
4233  *
4234  * Provided with the starting and target voltage selectors, this function
4235  * returns time in microseconds required to rise or fall to this new voltage
4236  *
4237  * Drivers providing ramp_delay in regulation_constraints can use this as their
4238  * set_voltage_time_sel() operation.
4239  */
4240 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4241                                    unsigned int old_selector,
4242                                    unsigned int new_selector)
4243 {
4244         int old_volt, new_volt;
4245
4246         /* sanity check */
4247         if (!rdev->desc->ops->list_voltage)
4248                 return -EINVAL;
4249
4250         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4251         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4252
4253         if (rdev->desc->ops->set_voltage_time)
4254                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4255                                                          new_volt);
4256         else
4257                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4258 }
4259 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4260
4261 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4262 {
4263         int ret;
4264
4265         regulator_lock(rdev);
4266
4267         if (!rdev->desc->ops->set_voltage &&
4268             !rdev->desc->ops->set_voltage_sel) {
4269                 ret = -EINVAL;
4270                 goto out;
4271         }
4272
4273         /* balance only, if regulator is coupled */
4274         if (rdev->coupling_desc.n_coupled > 1)
4275                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4276         else
4277                 ret = -EOPNOTSUPP;
4278
4279 out:
4280         regulator_unlock(rdev);
4281         return ret;
4282 }
4283
4284 /**
4285  * regulator_sync_voltage - re-apply last regulator output voltage
4286  * @regulator: regulator source
4287  *
4288  * Re-apply the last configured voltage.  This is intended to be used
4289  * where some external control source the consumer is cooperating with
4290  * has caused the configured voltage to change.
4291  */
4292 int regulator_sync_voltage(struct regulator *regulator)
4293 {
4294         struct regulator_dev *rdev = regulator->rdev;
4295         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4296         int ret, min_uV, max_uV;
4297
4298         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4299                 return 0;
4300
4301         regulator_lock(rdev);
4302
4303         if (!rdev->desc->ops->set_voltage &&
4304             !rdev->desc->ops->set_voltage_sel) {
4305                 ret = -EINVAL;
4306                 goto out;
4307         }
4308
4309         /* This is only going to work if we've had a voltage configured. */
4310         if (!voltage->min_uV && !voltage->max_uV) {
4311                 ret = -EINVAL;
4312                 goto out;
4313         }
4314
4315         min_uV = voltage->min_uV;
4316         max_uV = voltage->max_uV;
4317
4318         /* This should be a paranoia check... */
4319         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4320         if (ret < 0)
4321                 goto out;
4322
4323         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4324         if (ret < 0)
4325                 goto out;
4326
4327         /* balance only, if regulator is coupled */
4328         if (rdev->coupling_desc.n_coupled > 1)
4329                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4330         else
4331                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4332
4333 out:
4334         regulator_unlock(rdev);
4335         return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4338
4339 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4340 {
4341         int sel, ret;
4342         bool bypassed;
4343
4344         if (rdev->desc->ops->get_bypass) {
4345                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4346                 if (ret < 0)
4347                         return ret;
4348                 if (bypassed) {
4349                         /* if bypassed the regulator must have a supply */
4350                         if (!rdev->supply) {
4351                                 rdev_err(rdev,
4352                                          "bypassed regulator has no supply!\n");
4353                                 return -EPROBE_DEFER;
4354                         }
4355
4356                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4357                 }
4358         }
4359
4360         if (rdev->desc->ops->get_voltage_sel) {
4361                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4362                 if (sel < 0)
4363                         return sel;
4364                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4365         } else if (rdev->desc->ops->get_voltage) {
4366                 ret = rdev->desc->ops->get_voltage(rdev);
4367         } else if (rdev->desc->ops->list_voltage) {
4368                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4369         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4370                 ret = rdev->desc->fixed_uV;
4371         } else if (rdev->supply) {
4372                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4373         } else if (rdev->supply_name) {
4374                 return -EPROBE_DEFER;
4375         } else {
4376                 return -EINVAL;
4377         }
4378
4379         if (ret < 0)
4380                 return ret;
4381         return ret - rdev->constraints->uV_offset;
4382 }
4383 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4384
4385 /**
4386  * regulator_get_voltage - get regulator output voltage
4387  * @regulator: regulator source
4388  *
4389  * This returns the current regulator voltage in uV.
4390  *
4391  * NOTE: If the regulator is disabled it will return the voltage value. This
4392  * function should not be used to determine regulator state.
4393  */
4394 int regulator_get_voltage(struct regulator *regulator)
4395 {
4396         struct ww_acquire_ctx ww_ctx;
4397         int ret;
4398
4399         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4400         ret = regulator_get_voltage_rdev(regulator->rdev);
4401         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4402
4403         return ret;
4404 }
4405 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4406
4407 /**
4408  * regulator_set_current_limit - set regulator output current limit
4409  * @regulator: regulator source
4410  * @min_uA: Minimum supported current in uA
4411  * @max_uA: Maximum supported current in uA
4412  *
4413  * Sets current sink to the desired output current. This can be set during
4414  * any regulator state. IOW, regulator can be disabled or enabled.
4415  *
4416  * If the regulator is enabled then the current will change to the new value
4417  * immediately otherwise if the regulator is disabled the regulator will
4418  * output at the new current when enabled.
4419  *
4420  * NOTE: Regulator system constraints must be set for this regulator before
4421  * calling this function otherwise this call will fail.
4422  */
4423 int regulator_set_current_limit(struct regulator *regulator,
4424                                int min_uA, int max_uA)
4425 {
4426         struct regulator_dev *rdev = regulator->rdev;
4427         int ret;
4428
4429         regulator_lock(rdev);
4430
4431         /* sanity check */
4432         if (!rdev->desc->ops->set_current_limit) {
4433                 ret = -EINVAL;
4434                 goto out;
4435         }
4436
4437         /* constraints check */
4438         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4439         if (ret < 0)
4440                 goto out;
4441
4442         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4443 out:
4444         regulator_unlock(rdev);
4445         return ret;
4446 }
4447 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4448
4449 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4450 {
4451         /* sanity check */
4452         if (!rdev->desc->ops->get_current_limit)
4453                 return -EINVAL;
4454
4455         return rdev->desc->ops->get_current_limit(rdev);
4456 }
4457
4458 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4459 {
4460         int ret;
4461
4462         regulator_lock(rdev);
4463         ret = _regulator_get_current_limit_unlocked(rdev);
4464         regulator_unlock(rdev);
4465
4466         return ret;
4467 }
4468
4469 /**
4470  * regulator_get_current_limit - get regulator output current
4471  * @regulator: regulator source
4472  *
4473  * This returns the current supplied by the specified current sink in uA.
4474  *
4475  * NOTE: If the regulator is disabled it will return the current value. This
4476  * function should not be used to determine regulator state.
4477  */
4478 int regulator_get_current_limit(struct regulator *regulator)
4479 {
4480         return _regulator_get_current_limit(regulator->rdev);
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4483
4484 /**
4485  * regulator_set_mode - set regulator operating mode
4486  * @regulator: regulator source
4487  * @mode: operating mode - one of the REGULATOR_MODE constants
4488  *
4489  * Set regulator operating mode to increase regulator efficiency or improve
4490  * regulation performance.
4491  *
4492  * NOTE: Regulator system constraints must be set for this regulator before
4493  * calling this function otherwise this call will fail.
4494  */
4495 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4496 {
4497         struct regulator_dev *rdev = regulator->rdev;
4498         int ret;
4499         int regulator_curr_mode;
4500
4501         regulator_lock(rdev);
4502
4503         /* sanity check */
4504         if (!rdev->desc->ops->set_mode) {
4505                 ret = -EINVAL;
4506                 goto out;
4507         }
4508
4509         /* return if the same mode is requested */
4510         if (rdev->desc->ops->get_mode) {
4511                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4512                 if (regulator_curr_mode == mode) {
4513                         ret = 0;
4514                         goto out;
4515                 }
4516         }
4517
4518         /* constraints check */
4519         ret = regulator_mode_constrain(rdev, &mode);
4520         if (ret < 0)
4521                 goto out;
4522
4523         ret = rdev->desc->ops->set_mode(rdev, mode);
4524 out:
4525         regulator_unlock(rdev);
4526         return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(regulator_set_mode);
4529
4530 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4531 {
4532         /* sanity check */
4533         if (!rdev->desc->ops->get_mode)
4534                 return -EINVAL;
4535
4536         return rdev->desc->ops->get_mode(rdev);
4537 }
4538
4539 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4540 {
4541         int ret;
4542
4543         regulator_lock(rdev);
4544         ret = _regulator_get_mode_unlocked(rdev);
4545         regulator_unlock(rdev);
4546
4547         return ret;
4548 }
4549
4550 /**
4551  * regulator_get_mode - get regulator operating mode
4552  * @regulator: regulator source
4553  *
4554  * Get the current regulator operating mode.
4555  */
4556 unsigned int regulator_get_mode(struct regulator *regulator)
4557 {
4558         return _regulator_get_mode(regulator->rdev);
4559 }
4560 EXPORT_SYMBOL_GPL(regulator_get_mode);
4561
4562 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4563 {
4564         int ret = 0;
4565
4566         if (rdev->use_cached_err) {
4567                 spin_lock(&rdev->err_lock);
4568                 ret = rdev->cached_err;
4569                 spin_unlock(&rdev->err_lock);
4570         }
4571         return ret;
4572 }
4573
4574 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4575                                         unsigned int *flags)
4576 {
4577         int cached_flags, ret = 0;
4578
4579         regulator_lock(rdev);
4580
4581         cached_flags = rdev_get_cached_err_flags(rdev);
4582
4583         if (rdev->desc->ops->get_error_flags)
4584                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4585         else if (!rdev->use_cached_err)
4586                 ret = -EINVAL;
4587
4588         *flags |= cached_flags;
4589
4590         regulator_unlock(rdev);
4591
4592         return ret;
4593 }
4594
4595 /**
4596  * regulator_get_error_flags - get regulator error information
4597  * @regulator: regulator source
4598  * @flags: pointer to store error flags
4599  *
4600  * Get the current regulator error information.
4601  */
4602 int regulator_get_error_flags(struct regulator *regulator,
4603                                 unsigned int *flags)
4604 {
4605         return _regulator_get_error_flags(regulator->rdev, flags);
4606 }
4607 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4608
4609 /**
4610  * regulator_set_load - set regulator load
4611  * @regulator: regulator source
4612  * @uA_load: load current
4613  *
4614  * Notifies the regulator core of a new device load. This is then used by
4615  * DRMS (if enabled by constraints) to set the most efficient regulator
4616  * operating mode for the new regulator loading.
4617  *
4618  * Consumer devices notify their supply regulator of the maximum power
4619  * they will require (can be taken from device datasheet in the power
4620  * consumption tables) when they change operational status and hence power
4621  * state. Examples of operational state changes that can affect power
4622  * consumption are :-
4623  *
4624  *    o Device is opened / closed.
4625  *    o Device I/O is about to begin or has just finished.
4626  *    o Device is idling in between work.
4627  *
4628  * This information is also exported via sysfs to userspace.
4629  *
4630  * DRMS will sum the total requested load on the regulator and change
4631  * to the most efficient operating mode if platform constraints allow.
4632  *
4633  * NOTE: when a regulator consumer requests to have a regulator
4634  * disabled then any load that consumer requested no longer counts
4635  * toward the total requested load.  If the regulator is re-enabled
4636  * then the previously requested load will start counting again.
4637  *
4638  * If a regulator is an always-on regulator then an individual consumer's
4639  * load will still be removed if that consumer is fully disabled.
4640  *
4641  * On error a negative errno is returned.
4642  */
4643 int regulator_set_load(struct regulator *regulator, int uA_load)
4644 {
4645         struct regulator_dev *rdev = regulator->rdev;
4646         int old_uA_load;
4647         int ret = 0;
4648
4649         regulator_lock(rdev);
4650         old_uA_load = regulator->uA_load;
4651         regulator->uA_load = uA_load;
4652         if (regulator->enable_count && old_uA_load != uA_load) {
4653                 ret = drms_uA_update(rdev);
4654                 if (ret < 0)
4655                         regulator->uA_load = old_uA_load;
4656         }
4657         regulator_unlock(rdev);
4658
4659         return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(regulator_set_load);
4662
4663 /**
4664  * regulator_allow_bypass - allow the regulator to go into bypass mode
4665  *
4666  * @regulator: Regulator to configure
4667  * @enable: enable or disable bypass mode
4668  *
4669  * Allow the regulator to go into bypass mode if all other consumers
4670  * for the regulator also enable bypass mode and the machine
4671  * constraints allow this.  Bypass mode means that the regulator is
4672  * simply passing the input directly to the output with no regulation.
4673  */
4674 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4675 {
4676         struct regulator_dev *rdev = regulator->rdev;
4677         const char *name = rdev_get_name(rdev);
4678         int ret = 0;
4679
4680         if (!rdev->desc->ops->set_bypass)
4681                 return 0;
4682
4683         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4684                 return 0;
4685
4686         regulator_lock(rdev);
4687
4688         if (enable && !regulator->bypass) {
4689                 rdev->bypass_count++;
4690
4691                 if (rdev->bypass_count == rdev->open_count) {
4692                         trace_regulator_bypass_enable(name);
4693
4694                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4695                         if (ret != 0)
4696                                 rdev->bypass_count--;
4697                         else
4698                                 trace_regulator_bypass_enable_complete(name);
4699                 }
4700
4701         } else if (!enable && regulator->bypass) {
4702                 rdev->bypass_count--;
4703
4704                 if (rdev->bypass_count != rdev->open_count) {
4705                         trace_regulator_bypass_disable(name);
4706
4707                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4708                         if (ret != 0)
4709                                 rdev->bypass_count++;
4710                         else
4711                                 trace_regulator_bypass_disable_complete(name);
4712                 }
4713         }
4714
4715         if (ret == 0)
4716                 regulator->bypass = enable;
4717
4718         regulator_unlock(rdev);
4719
4720         return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4723
4724 /**
4725  * regulator_register_notifier - register regulator event notifier
4726  * @regulator: regulator source
4727  * @nb: notifier block
4728  *
4729  * Register notifier block to receive regulator events.
4730  */
4731 int regulator_register_notifier(struct regulator *regulator,
4732                               struct notifier_block *nb)
4733 {
4734         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4735                                                 nb);
4736 }
4737 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4738
4739 /**
4740  * regulator_unregister_notifier - unregister regulator event notifier
4741  * @regulator: regulator source
4742  * @nb: notifier block
4743  *
4744  * Unregister regulator event notifier block.
4745  */
4746 int regulator_unregister_notifier(struct regulator *regulator,
4747                                 struct notifier_block *nb)
4748 {
4749         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4750                                                   nb);
4751 }
4752 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4753
4754 /* notify regulator consumers and downstream regulator consumers.
4755  * Note mutex must be held by caller.
4756  */
4757 static int _notifier_call_chain(struct regulator_dev *rdev,
4758                                   unsigned long event, void *data)
4759 {
4760         /* call rdev chain first */
4761         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4762 }
4763
4764 /**
4765  * regulator_bulk_get - get multiple regulator consumers
4766  *
4767  * @dev:           Device to supply
4768  * @num_consumers: Number of consumers to register
4769  * @consumers:     Configuration of consumers; clients are stored here.
4770  *
4771  * @return 0 on success, an errno on failure.
4772  *
4773  * This helper function allows drivers to get several regulator
4774  * consumers in one operation.  If any of the regulators cannot be
4775  * acquired then any regulators that were allocated will be freed
4776  * before returning to the caller.
4777  */
4778 int regulator_bulk_get(struct device *dev, int num_consumers,
4779                        struct regulator_bulk_data *consumers)
4780 {
4781         int i;
4782         int ret;
4783
4784         for (i = 0; i < num_consumers; i++)
4785                 consumers[i].consumer = NULL;
4786
4787         for (i = 0; i < num_consumers; i++) {
4788                 consumers[i].consumer = regulator_get(dev,
4789                                                       consumers[i].supply);
4790                 if (IS_ERR(consumers[i].consumer)) {
4791                         ret = PTR_ERR(consumers[i].consumer);
4792                         consumers[i].consumer = NULL;
4793                         goto err;
4794                 }
4795         }
4796
4797         return 0;
4798
4799 err:
4800         if (ret != -EPROBE_DEFER)
4801                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4802                         consumers[i].supply, ERR_PTR(ret));
4803         else
4804                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4805                         consumers[i].supply);
4806
4807         while (--i >= 0)
4808                 regulator_put(consumers[i].consumer);
4809
4810         return ret;
4811 }
4812 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4813
4814 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4815 {
4816         struct regulator_bulk_data *bulk = data;
4817
4818         bulk->ret = regulator_enable(bulk->consumer);
4819 }
4820
4821 /**
4822  * regulator_bulk_enable - enable multiple regulator consumers
4823  *
4824  * @num_consumers: Number of consumers
4825  * @consumers:     Consumer data; clients are stored here.
4826  * @return         0 on success, an errno on failure
4827  *
4828  * This convenience API allows consumers to enable multiple regulator
4829  * clients in a single API call.  If any consumers cannot be enabled
4830  * then any others that were enabled will be disabled again prior to
4831  * return.
4832  */
4833 int regulator_bulk_enable(int num_consumers,
4834                           struct regulator_bulk_data *consumers)
4835 {
4836         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4837         int i;
4838         int ret = 0;
4839
4840         for (i = 0; i < num_consumers; i++) {
4841                 async_schedule_domain(regulator_bulk_enable_async,
4842                                       &consumers[i], &async_domain);
4843         }
4844
4845         async_synchronize_full_domain(&async_domain);
4846
4847         /* If any consumer failed we need to unwind any that succeeded */
4848         for (i = 0; i < num_consumers; i++) {
4849                 if (consumers[i].ret != 0) {
4850                         ret = consumers[i].ret;
4851                         goto err;
4852                 }
4853         }
4854
4855         return 0;
4856
4857 err:
4858         for (i = 0; i < num_consumers; i++) {
4859                 if (consumers[i].ret < 0)
4860                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4861                                ERR_PTR(consumers[i].ret));
4862                 else
4863                         regulator_disable(consumers[i].consumer);
4864         }
4865
4866         return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4869
4870 /**
4871  * regulator_bulk_disable - disable multiple regulator consumers
4872  *
4873  * @num_consumers: Number of consumers
4874  * @consumers:     Consumer data; clients are stored here.
4875  * @return         0 on success, an errno on failure
4876  *
4877  * This convenience API allows consumers to disable multiple regulator
4878  * clients in a single API call.  If any consumers cannot be disabled
4879  * then any others that were disabled will be enabled again prior to
4880  * return.
4881  */
4882 int regulator_bulk_disable(int num_consumers,
4883                            struct regulator_bulk_data *consumers)
4884 {
4885         int i;
4886         int ret, r;
4887
4888         for (i = num_consumers - 1; i >= 0; --i) {
4889                 ret = regulator_disable(consumers[i].consumer);
4890                 if (ret != 0)
4891                         goto err;
4892         }
4893
4894         return 0;
4895
4896 err:
4897         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4898         for (++i; i < num_consumers; ++i) {
4899                 r = regulator_enable(consumers[i].consumer);
4900                 if (r != 0)
4901                         pr_err("Failed to re-enable %s: %pe\n",
4902                                consumers[i].supply, ERR_PTR(r));
4903         }
4904
4905         return ret;
4906 }
4907 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4908
4909 /**
4910  * regulator_bulk_force_disable - force disable multiple regulator consumers
4911  *
4912  * @num_consumers: Number of consumers
4913  * @consumers:     Consumer data; clients are stored here.
4914  * @return         0 on success, an errno on failure
4915  *
4916  * This convenience API allows consumers to forcibly disable multiple regulator
4917  * clients in a single API call.
4918  * NOTE: This should be used for situations when device damage will
4919  * likely occur if the regulators are not disabled (e.g. over temp).
4920  * Although regulator_force_disable function call for some consumers can
4921  * return error numbers, the function is called for all consumers.
4922  */
4923 int regulator_bulk_force_disable(int num_consumers,
4924                            struct regulator_bulk_data *consumers)
4925 {
4926         int i;
4927         int ret = 0;
4928
4929         for (i = 0; i < num_consumers; i++) {
4930                 consumers[i].ret =
4931                             regulator_force_disable(consumers[i].consumer);
4932
4933                 /* Store first error for reporting */
4934                 if (consumers[i].ret && !ret)
4935                         ret = consumers[i].ret;
4936         }
4937
4938         return ret;
4939 }
4940 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4941
4942 /**
4943  * regulator_bulk_free - free multiple regulator consumers
4944  *
4945  * @num_consumers: Number of consumers
4946  * @consumers:     Consumer data; clients are stored here.
4947  *
4948  * This convenience API allows consumers to free multiple regulator
4949  * clients in a single API call.
4950  */
4951 void regulator_bulk_free(int num_consumers,
4952                          struct regulator_bulk_data *consumers)
4953 {
4954         int i;
4955
4956         for (i = 0; i < num_consumers; i++) {
4957                 regulator_put(consumers[i].consumer);
4958                 consumers[i].consumer = NULL;
4959         }
4960 }
4961 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4962
4963 /**
4964  * regulator_notifier_call_chain - call regulator event notifier
4965  * @rdev: regulator source
4966  * @event: notifier block
4967  * @data: callback-specific data.
4968  *
4969  * Called by regulator drivers to notify clients a regulator event has
4970  * occurred.
4971  */
4972 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4973                                   unsigned long event, void *data)
4974 {
4975         _notifier_call_chain(rdev, event, data);
4976         return NOTIFY_DONE;
4977
4978 }
4979 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4980
4981 /**
4982  * regulator_mode_to_status - convert a regulator mode into a status
4983  *
4984  * @mode: Mode to convert
4985  *
4986  * Convert a regulator mode into a status.
4987  */
4988 int regulator_mode_to_status(unsigned int mode)
4989 {
4990         switch (mode) {
4991         case REGULATOR_MODE_FAST:
4992                 return REGULATOR_STATUS_FAST;
4993         case REGULATOR_MODE_NORMAL:
4994                 return REGULATOR_STATUS_NORMAL;
4995         case REGULATOR_MODE_IDLE:
4996                 return REGULATOR_STATUS_IDLE;
4997         case REGULATOR_MODE_STANDBY:
4998                 return REGULATOR_STATUS_STANDBY;
4999         default:
5000                 return REGULATOR_STATUS_UNDEFINED;
5001         }
5002 }
5003 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5004
5005 static struct attribute *regulator_dev_attrs[] = {
5006         &dev_attr_name.attr,
5007         &dev_attr_num_users.attr,
5008         &dev_attr_type.attr,
5009         &dev_attr_microvolts.attr,
5010         &dev_attr_microamps.attr,
5011         &dev_attr_opmode.attr,
5012         &dev_attr_state.attr,
5013         &dev_attr_status.attr,
5014         &dev_attr_bypass.attr,
5015         &dev_attr_requested_microamps.attr,
5016         &dev_attr_min_microvolts.attr,
5017         &dev_attr_max_microvolts.attr,
5018         &dev_attr_min_microamps.attr,
5019         &dev_attr_max_microamps.attr,
5020         &dev_attr_under_voltage.attr,
5021         &dev_attr_over_current.attr,
5022         &dev_attr_regulation_out.attr,
5023         &dev_attr_fail.attr,
5024         &dev_attr_over_temp.attr,
5025         &dev_attr_under_voltage_warn.attr,
5026         &dev_attr_over_current_warn.attr,
5027         &dev_attr_over_voltage_warn.attr,
5028         &dev_attr_over_temp_warn.attr,
5029         &dev_attr_suspend_standby_state.attr,
5030         &dev_attr_suspend_mem_state.attr,
5031         &dev_attr_suspend_disk_state.attr,
5032         &dev_attr_suspend_standby_microvolts.attr,
5033         &dev_attr_suspend_mem_microvolts.attr,
5034         &dev_attr_suspend_disk_microvolts.attr,
5035         &dev_attr_suspend_standby_mode.attr,
5036         &dev_attr_suspend_mem_mode.attr,
5037         &dev_attr_suspend_disk_mode.attr,
5038         NULL
5039 };
5040
5041 /*
5042  * To avoid cluttering sysfs (and memory) with useless state, only
5043  * create attributes that can be meaningfully displayed.
5044  */
5045 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5046                                          struct attribute *attr, int idx)
5047 {
5048         struct device *dev = kobj_to_dev(kobj);
5049         struct regulator_dev *rdev = dev_to_rdev(dev);
5050         const struct regulator_ops *ops = rdev->desc->ops;
5051         umode_t mode = attr->mode;
5052
5053         /* these three are always present */
5054         if (attr == &dev_attr_name.attr ||
5055             attr == &dev_attr_num_users.attr ||
5056             attr == &dev_attr_type.attr)
5057                 return mode;
5058
5059         /* some attributes need specific methods to be displayed */
5060         if (attr == &dev_attr_microvolts.attr) {
5061                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5062                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5063                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5064                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5065                         return mode;
5066                 return 0;
5067         }
5068
5069         if (attr == &dev_attr_microamps.attr)
5070                 return ops->get_current_limit ? mode : 0;
5071
5072         if (attr == &dev_attr_opmode.attr)
5073                 return ops->get_mode ? mode : 0;
5074
5075         if (attr == &dev_attr_state.attr)
5076                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5077
5078         if (attr == &dev_attr_status.attr)
5079                 return ops->get_status ? mode : 0;
5080
5081         if (attr == &dev_attr_bypass.attr)
5082                 return ops->get_bypass ? mode : 0;
5083
5084         if (attr == &dev_attr_under_voltage.attr ||
5085             attr == &dev_attr_over_current.attr ||
5086             attr == &dev_attr_regulation_out.attr ||
5087             attr == &dev_attr_fail.attr ||
5088             attr == &dev_attr_over_temp.attr ||
5089             attr == &dev_attr_under_voltage_warn.attr ||
5090             attr == &dev_attr_over_current_warn.attr ||
5091             attr == &dev_attr_over_voltage_warn.attr ||
5092             attr == &dev_attr_over_temp_warn.attr)
5093                 return ops->get_error_flags ? mode : 0;
5094
5095         /* constraints need specific supporting methods */
5096         if (attr == &dev_attr_min_microvolts.attr ||
5097             attr == &dev_attr_max_microvolts.attr)
5098                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5099
5100         if (attr == &dev_attr_min_microamps.attr ||
5101             attr == &dev_attr_max_microamps.attr)
5102                 return ops->set_current_limit ? mode : 0;
5103
5104         if (attr == &dev_attr_suspend_standby_state.attr ||
5105             attr == &dev_attr_suspend_mem_state.attr ||
5106             attr == &dev_attr_suspend_disk_state.attr)
5107                 return mode;
5108
5109         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5110             attr == &dev_attr_suspend_mem_microvolts.attr ||
5111             attr == &dev_attr_suspend_disk_microvolts.attr)
5112                 return ops->set_suspend_voltage ? mode : 0;
5113
5114         if (attr == &dev_attr_suspend_standby_mode.attr ||
5115             attr == &dev_attr_suspend_mem_mode.attr ||
5116             attr == &dev_attr_suspend_disk_mode.attr)
5117                 return ops->set_suspend_mode ? mode : 0;
5118
5119         return mode;
5120 }
5121
5122 static const struct attribute_group regulator_dev_group = {
5123         .attrs = regulator_dev_attrs,
5124         .is_visible = regulator_attr_is_visible,
5125 };
5126
5127 static const struct attribute_group *regulator_dev_groups[] = {
5128         &regulator_dev_group,
5129         NULL
5130 };
5131
5132 static void regulator_dev_release(struct device *dev)
5133 {
5134         struct regulator_dev *rdev = dev_get_drvdata(dev);
5135
5136         kfree(rdev->constraints);
5137         of_node_put(rdev->dev.of_node);
5138         kfree(rdev);
5139 }
5140
5141 static void rdev_init_debugfs(struct regulator_dev *rdev)
5142 {
5143         struct device *parent = rdev->dev.parent;
5144         const char *rname = rdev_get_name(rdev);
5145         char name[NAME_MAX];
5146
5147         /* Avoid duplicate debugfs directory names */
5148         if (parent && rname == rdev->desc->name) {
5149                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5150                          rname);
5151                 rname = name;
5152         }
5153
5154         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5155         if (!rdev->debugfs) {
5156                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5157                 return;
5158         }
5159
5160         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5161                            &rdev->use_count);
5162         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5163                            &rdev->open_count);
5164         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5165                            &rdev->bypass_count);
5166 }
5167
5168 static int regulator_register_resolve_supply(struct device *dev, void *data)
5169 {
5170         struct regulator_dev *rdev = dev_to_rdev(dev);
5171
5172         if (regulator_resolve_supply(rdev))
5173                 rdev_dbg(rdev, "unable to resolve supply\n");
5174
5175         return 0;
5176 }
5177
5178 int regulator_coupler_register(struct regulator_coupler *coupler)
5179 {
5180         mutex_lock(&regulator_list_mutex);
5181         list_add_tail(&coupler->list, &regulator_coupler_list);
5182         mutex_unlock(&regulator_list_mutex);
5183
5184         return 0;
5185 }
5186
5187 static struct regulator_coupler *
5188 regulator_find_coupler(struct regulator_dev *rdev)
5189 {
5190         struct regulator_coupler *coupler;
5191         int err;
5192
5193         /*
5194          * Note that regulators are appended to the list and the generic
5195          * coupler is registered first, hence it will be attached at last
5196          * if nobody cared.
5197          */
5198         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5199                 err = coupler->attach_regulator(coupler, rdev);
5200                 if (!err) {
5201                         if (!coupler->balance_voltage &&
5202                             rdev->coupling_desc.n_coupled > 2)
5203                                 goto err_unsupported;
5204
5205                         return coupler;
5206                 }
5207
5208                 if (err < 0)
5209                         return ERR_PTR(err);
5210
5211                 if (err == 1)
5212                         continue;
5213
5214                 break;
5215         }
5216
5217         return ERR_PTR(-EINVAL);
5218
5219 err_unsupported:
5220         if (coupler->detach_regulator)
5221                 coupler->detach_regulator(coupler, rdev);
5222
5223         rdev_err(rdev,
5224                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5225
5226         return ERR_PTR(-EPERM);
5227 }
5228
5229 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5230 {
5231         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5232         struct coupling_desc *c_desc = &rdev->coupling_desc;
5233         int n_coupled = c_desc->n_coupled;
5234         struct regulator_dev *c_rdev;
5235         int i;
5236
5237         for (i = 1; i < n_coupled; i++) {
5238                 /* already resolved */
5239                 if (c_desc->coupled_rdevs[i])
5240                         continue;
5241
5242                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5243
5244                 if (!c_rdev)
5245                         continue;
5246
5247                 if (c_rdev->coupling_desc.coupler != coupler) {
5248                         rdev_err(rdev, "coupler mismatch with %s\n",
5249                                  rdev_get_name(c_rdev));
5250                         return;
5251                 }
5252
5253                 c_desc->coupled_rdevs[i] = c_rdev;
5254                 c_desc->n_resolved++;
5255
5256                 regulator_resolve_coupling(c_rdev);
5257         }
5258 }
5259
5260 static void regulator_remove_coupling(struct regulator_dev *rdev)
5261 {
5262         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5263         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5264         struct regulator_dev *__c_rdev, *c_rdev;
5265         unsigned int __n_coupled, n_coupled;
5266         int i, k;
5267         int err;
5268
5269         n_coupled = c_desc->n_coupled;
5270
5271         for (i = 1; i < n_coupled; i++) {
5272                 c_rdev = c_desc->coupled_rdevs[i];
5273
5274                 if (!c_rdev)
5275                         continue;
5276
5277                 regulator_lock(c_rdev);
5278
5279                 __c_desc = &c_rdev->coupling_desc;
5280                 __n_coupled = __c_desc->n_coupled;
5281
5282                 for (k = 1; k < __n_coupled; k++) {
5283                         __c_rdev = __c_desc->coupled_rdevs[k];
5284
5285                         if (__c_rdev == rdev) {
5286                                 __c_desc->coupled_rdevs[k] = NULL;
5287                                 __c_desc->n_resolved--;
5288                                 break;
5289                         }
5290                 }
5291
5292                 regulator_unlock(c_rdev);
5293
5294                 c_desc->coupled_rdevs[i] = NULL;
5295                 c_desc->n_resolved--;
5296         }
5297
5298         if (coupler && coupler->detach_regulator) {
5299                 err = coupler->detach_regulator(coupler, rdev);
5300                 if (err)
5301                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5302                                  ERR_PTR(err));
5303         }
5304
5305         kfree(rdev->coupling_desc.coupled_rdevs);
5306         rdev->coupling_desc.coupled_rdevs = NULL;
5307 }
5308
5309 static int regulator_init_coupling(struct regulator_dev *rdev)
5310 {
5311         struct regulator_dev **coupled;
5312         int err, n_phandles;
5313
5314         if (!IS_ENABLED(CONFIG_OF))
5315                 n_phandles = 0;
5316         else
5317                 n_phandles = of_get_n_coupled(rdev);
5318
5319         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5320         if (!coupled)
5321                 return -ENOMEM;
5322
5323         rdev->coupling_desc.coupled_rdevs = coupled;
5324
5325         /*
5326          * Every regulator should always have coupling descriptor filled with
5327          * at least pointer to itself.
5328          */
5329         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5330         rdev->coupling_desc.n_coupled = n_phandles + 1;
5331         rdev->coupling_desc.n_resolved++;
5332
5333         /* regulator isn't coupled */
5334         if (n_phandles == 0)
5335                 return 0;
5336
5337         if (!of_check_coupling_data(rdev))
5338                 return -EPERM;
5339
5340         mutex_lock(&regulator_list_mutex);
5341         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5342         mutex_unlock(&regulator_list_mutex);
5343
5344         if (IS_ERR(rdev->coupling_desc.coupler)) {
5345                 err = PTR_ERR(rdev->coupling_desc.coupler);
5346                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5347                 return err;
5348         }
5349
5350         return 0;
5351 }
5352
5353 static int generic_coupler_attach(struct regulator_coupler *coupler,
5354                                   struct regulator_dev *rdev)
5355 {
5356         if (rdev->coupling_desc.n_coupled > 2) {
5357                 rdev_err(rdev,
5358                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5359                 return -EPERM;
5360         }
5361
5362         if (!rdev->constraints->always_on) {
5363                 rdev_err(rdev,
5364                          "Coupling of a non always-on regulator is unimplemented\n");
5365                 return -ENOTSUPP;
5366         }
5367
5368         return 0;
5369 }
5370
5371 static struct regulator_coupler generic_regulator_coupler = {
5372         .attach_regulator = generic_coupler_attach,
5373 };
5374
5375 /**
5376  * regulator_register - register regulator
5377  * @regulator_desc: regulator to register
5378  * @cfg: runtime configuration for regulator
5379  *
5380  * Called by regulator drivers to register a regulator.
5381  * Returns a valid pointer to struct regulator_dev on success
5382  * or an ERR_PTR() on error.
5383  */
5384 struct regulator_dev *
5385 regulator_register(const struct regulator_desc *regulator_desc,
5386                    const struct regulator_config *cfg)
5387 {
5388         const struct regulator_init_data *init_data;
5389         struct regulator_config *config = NULL;
5390         static atomic_t regulator_no = ATOMIC_INIT(-1);
5391         struct regulator_dev *rdev;
5392         bool dangling_cfg_gpiod = false;
5393         bool dangling_of_gpiod = false;
5394         struct device *dev;
5395         int ret, i;
5396
5397         if (cfg == NULL)
5398                 return ERR_PTR(-EINVAL);
5399         if (cfg->ena_gpiod)
5400                 dangling_cfg_gpiod = true;
5401         if (regulator_desc == NULL) {
5402                 ret = -EINVAL;
5403                 goto rinse;
5404         }
5405
5406         dev = cfg->dev;
5407         WARN_ON(!dev);
5408
5409         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5410                 ret = -EINVAL;
5411                 goto rinse;
5412         }
5413
5414         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5415             regulator_desc->type != REGULATOR_CURRENT) {
5416                 ret = -EINVAL;
5417                 goto rinse;
5418         }
5419
5420         /* Only one of each should be implemented */
5421         WARN_ON(regulator_desc->ops->get_voltage &&
5422                 regulator_desc->ops->get_voltage_sel);
5423         WARN_ON(regulator_desc->ops->set_voltage &&
5424                 regulator_desc->ops->set_voltage_sel);
5425
5426         /* If we're using selectors we must implement list_voltage. */
5427         if (regulator_desc->ops->get_voltage_sel &&
5428             !regulator_desc->ops->list_voltage) {
5429                 ret = -EINVAL;
5430                 goto rinse;
5431         }
5432         if (regulator_desc->ops->set_voltage_sel &&
5433             !regulator_desc->ops->list_voltage) {
5434                 ret = -EINVAL;
5435                 goto rinse;
5436         }
5437
5438         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5439         if (rdev == NULL) {
5440                 ret = -ENOMEM;
5441                 goto rinse;
5442         }
5443         device_initialize(&rdev->dev);
5444         spin_lock_init(&rdev->err_lock);
5445
5446         /*
5447          * Duplicate the config so the driver could override it after
5448          * parsing init data.
5449          */
5450         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5451         if (config == NULL) {
5452                 ret = -ENOMEM;
5453                 goto clean;
5454         }
5455
5456         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5457                                                &rdev->dev.of_node);
5458
5459         /*
5460          * Sometimes not all resources are probed already so we need to take
5461          * that into account. This happens most the time if the ena_gpiod comes
5462          * from a gpio extender or something else.
5463          */
5464         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5465                 ret = -EPROBE_DEFER;
5466                 goto clean;
5467         }
5468
5469         /*
5470          * We need to keep track of any GPIO descriptor coming from the
5471          * device tree until we have handled it over to the core. If the
5472          * config that was passed in to this function DOES NOT contain
5473          * a descriptor, and the config after this call DOES contain
5474          * a descriptor, we definitely got one from parsing the device
5475          * tree.
5476          */
5477         if (!cfg->ena_gpiod && config->ena_gpiod)
5478                 dangling_of_gpiod = true;
5479         if (!init_data) {
5480                 init_data = config->init_data;
5481                 rdev->dev.of_node = of_node_get(config->of_node);
5482         }
5483
5484         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5485         rdev->reg_data = config->driver_data;
5486         rdev->owner = regulator_desc->owner;
5487         rdev->desc = regulator_desc;
5488         if (config->regmap)
5489                 rdev->regmap = config->regmap;
5490         else if (dev_get_regmap(dev, NULL))
5491                 rdev->regmap = dev_get_regmap(dev, NULL);
5492         else if (dev->parent)
5493                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5494         INIT_LIST_HEAD(&rdev->consumer_list);
5495         INIT_LIST_HEAD(&rdev->list);
5496         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5497         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5498
5499         /* preform any regulator specific init */
5500         if (init_data && init_data->regulator_init) {
5501                 ret = init_data->regulator_init(rdev->reg_data);
5502                 if (ret < 0)
5503                         goto clean;
5504         }
5505
5506         if (config->ena_gpiod) {
5507                 ret = regulator_ena_gpio_request(rdev, config);
5508                 if (ret != 0) {
5509                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5510                                  ERR_PTR(ret));
5511                         goto clean;
5512                 }
5513                 /* The regulator core took over the GPIO descriptor */
5514                 dangling_cfg_gpiod = false;
5515                 dangling_of_gpiod = false;
5516         }
5517
5518         /* register with sysfs */
5519         rdev->dev.class = &regulator_class;
5520         rdev->dev.parent = dev;
5521         dev_set_name(&rdev->dev, "regulator.%lu",
5522                     (unsigned long) atomic_inc_return(&regulator_no));
5523         dev_set_drvdata(&rdev->dev, rdev);
5524
5525         /* set regulator constraints */
5526         if (init_data)
5527                 rdev->constraints = kmemdup(&init_data->constraints,
5528                                             sizeof(*rdev->constraints),
5529                                             GFP_KERNEL);
5530         else
5531                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5532                                             GFP_KERNEL);
5533         if (!rdev->constraints) {
5534                 ret = -ENOMEM;
5535                 goto wash;
5536         }
5537
5538         if (init_data && init_data->supply_regulator)
5539                 rdev->supply_name = init_data->supply_regulator;
5540         else if (regulator_desc->supply_name)
5541                 rdev->supply_name = regulator_desc->supply_name;
5542
5543         ret = set_machine_constraints(rdev);
5544         if (ret == -EPROBE_DEFER) {
5545                 /* Regulator might be in bypass mode and so needs its supply
5546                  * to set the constraints
5547                  */
5548                 /* FIXME: this currently triggers a chicken-and-egg problem
5549                  * when creating -SUPPLY symlink in sysfs to a regulator
5550                  * that is just being created
5551                  */
5552                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5553                          rdev->supply_name);
5554                 ret = regulator_resolve_supply(rdev);
5555                 if (!ret)
5556                         ret = set_machine_constraints(rdev);
5557                 else
5558                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5559                                  ERR_PTR(ret));
5560         }
5561         if (ret < 0)
5562                 goto wash;
5563
5564         ret = regulator_init_coupling(rdev);
5565         if (ret < 0)
5566                 goto wash;
5567
5568         /* add consumers devices */
5569         if (init_data) {
5570                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5571                         ret = set_consumer_device_supply(rdev,
5572                                 init_data->consumer_supplies[i].dev_name,
5573                                 init_data->consumer_supplies[i].supply);
5574                         if (ret < 0) {
5575                                 dev_err(dev, "Failed to set supply %s\n",
5576                                         init_data->consumer_supplies[i].supply);
5577                                 goto unset_supplies;
5578                         }
5579                 }
5580         }
5581
5582         if (!rdev->desc->ops->get_voltage &&
5583             !rdev->desc->ops->list_voltage &&
5584             !rdev->desc->fixed_uV)
5585                 rdev->is_switch = true;
5586
5587         ret = device_add(&rdev->dev);
5588         if (ret != 0)
5589                 goto unset_supplies;
5590
5591         rdev_init_debugfs(rdev);
5592
5593         /* try to resolve regulators coupling since a new one was registered */
5594         mutex_lock(&regulator_list_mutex);
5595         regulator_resolve_coupling(rdev);
5596         mutex_unlock(&regulator_list_mutex);
5597
5598         /* try to resolve regulators supply since a new one was registered */
5599         class_for_each_device(&regulator_class, NULL, NULL,
5600                               regulator_register_resolve_supply);
5601         kfree(config);
5602         return rdev;
5603
5604 unset_supplies:
5605         mutex_lock(&regulator_list_mutex);
5606         unset_regulator_supplies(rdev);
5607         regulator_remove_coupling(rdev);
5608         mutex_unlock(&regulator_list_mutex);
5609 wash:
5610         kfree(rdev->coupling_desc.coupled_rdevs);
5611         mutex_lock(&regulator_list_mutex);
5612         regulator_ena_gpio_free(rdev);
5613         mutex_unlock(&regulator_list_mutex);
5614 clean:
5615         if (dangling_of_gpiod)
5616                 gpiod_put(config->ena_gpiod);
5617         kfree(config);
5618         put_device(&rdev->dev);
5619 rinse:
5620         if (dangling_cfg_gpiod)
5621                 gpiod_put(cfg->ena_gpiod);
5622         return ERR_PTR(ret);
5623 }
5624 EXPORT_SYMBOL_GPL(regulator_register);
5625
5626 /**
5627  * regulator_unregister - unregister regulator
5628  * @rdev: regulator to unregister
5629  *
5630  * Called by regulator drivers to unregister a regulator.
5631  */
5632 void regulator_unregister(struct regulator_dev *rdev)
5633 {
5634         if (rdev == NULL)
5635                 return;
5636
5637         if (rdev->supply) {
5638                 while (rdev->use_count--)
5639                         regulator_disable(rdev->supply);
5640                 regulator_put(rdev->supply);
5641         }
5642
5643         flush_work(&rdev->disable_work.work);
5644
5645         mutex_lock(&regulator_list_mutex);
5646
5647         debugfs_remove_recursive(rdev->debugfs);
5648         WARN_ON(rdev->open_count);
5649         regulator_remove_coupling(rdev);
5650         unset_regulator_supplies(rdev);
5651         list_del(&rdev->list);
5652         regulator_ena_gpio_free(rdev);
5653         device_unregister(&rdev->dev);
5654
5655         mutex_unlock(&regulator_list_mutex);
5656 }
5657 EXPORT_SYMBOL_GPL(regulator_unregister);
5658
5659 #ifdef CONFIG_SUSPEND
5660 /**
5661  * regulator_suspend - prepare regulators for system wide suspend
5662  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5663  *
5664  * Configure each regulator with it's suspend operating parameters for state.
5665  */
5666 static int regulator_suspend(struct device *dev)
5667 {
5668         struct regulator_dev *rdev = dev_to_rdev(dev);
5669         suspend_state_t state = pm_suspend_target_state;
5670         int ret;
5671         const struct regulator_state *rstate;
5672
5673         rstate = regulator_get_suspend_state_check(rdev, state);
5674         if (!rstate)
5675                 return 0;
5676
5677         regulator_lock(rdev);
5678         ret = __suspend_set_state(rdev, rstate);
5679         regulator_unlock(rdev);
5680
5681         return ret;
5682 }
5683
5684 static int regulator_resume(struct device *dev)
5685 {
5686         suspend_state_t state = pm_suspend_target_state;
5687         struct regulator_dev *rdev = dev_to_rdev(dev);
5688         struct regulator_state *rstate;
5689         int ret = 0;
5690
5691         rstate = regulator_get_suspend_state(rdev, state);
5692         if (rstate == NULL)
5693                 return 0;
5694
5695         /* Avoid grabbing the lock if we don't need to */
5696         if (!rdev->desc->ops->resume)
5697                 return 0;
5698
5699         regulator_lock(rdev);
5700
5701         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5702             rstate->enabled == DISABLE_IN_SUSPEND)
5703                 ret = rdev->desc->ops->resume(rdev);
5704
5705         regulator_unlock(rdev);
5706
5707         return ret;
5708 }
5709 #else /* !CONFIG_SUSPEND */
5710
5711 #define regulator_suspend       NULL
5712 #define regulator_resume        NULL
5713
5714 #endif /* !CONFIG_SUSPEND */
5715
5716 #ifdef CONFIG_PM
5717 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5718         .suspend        = regulator_suspend,
5719         .resume         = regulator_resume,
5720 };
5721 #endif
5722
5723 struct class regulator_class = {
5724         .name = "regulator",
5725         .dev_release = regulator_dev_release,
5726         .dev_groups = regulator_dev_groups,
5727 #ifdef CONFIG_PM
5728         .pm = &regulator_pm_ops,
5729 #endif
5730 };
5731 /**
5732  * regulator_has_full_constraints - the system has fully specified constraints
5733  *
5734  * Calling this function will cause the regulator API to disable all
5735  * regulators which have a zero use count and don't have an always_on
5736  * constraint in a late_initcall.
5737  *
5738  * The intention is that this will become the default behaviour in a
5739  * future kernel release so users are encouraged to use this facility
5740  * now.
5741  */
5742 void regulator_has_full_constraints(void)
5743 {
5744         has_full_constraints = 1;
5745 }
5746 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5747
5748 /**
5749  * rdev_get_drvdata - get rdev regulator driver data
5750  * @rdev: regulator
5751  *
5752  * Get rdev regulator driver private data. This call can be used in the
5753  * regulator driver context.
5754  */
5755 void *rdev_get_drvdata(struct regulator_dev *rdev)
5756 {
5757         return rdev->reg_data;
5758 }
5759 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5760
5761 /**
5762  * regulator_get_drvdata - get regulator driver data
5763  * @regulator: regulator
5764  *
5765  * Get regulator driver private data. This call can be used in the consumer
5766  * driver context when non API regulator specific functions need to be called.
5767  */
5768 void *regulator_get_drvdata(struct regulator *regulator)
5769 {
5770         return regulator->rdev->reg_data;
5771 }
5772 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5773
5774 /**
5775  * regulator_set_drvdata - set regulator driver data
5776  * @regulator: regulator
5777  * @data: data
5778  */
5779 void regulator_set_drvdata(struct regulator *regulator, void *data)
5780 {
5781         regulator->rdev->reg_data = data;
5782 }
5783 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5784
5785 /**
5786  * rdev_get_id - get regulator ID
5787  * @rdev: regulator
5788  */
5789 int rdev_get_id(struct regulator_dev *rdev)
5790 {
5791         return rdev->desc->id;
5792 }
5793 EXPORT_SYMBOL_GPL(rdev_get_id);
5794
5795 struct device *rdev_get_dev(struct regulator_dev *rdev)
5796 {
5797         return &rdev->dev;
5798 }
5799 EXPORT_SYMBOL_GPL(rdev_get_dev);
5800
5801 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5802 {
5803         return rdev->regmap;
5804 }
5805 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5806
5807 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5808 {
5809         return reg_init_data->driver_data;
5810 }
5811 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5812
5813 #ifdef CONFIG_DEBUG_FS
5814 static int supply_map_show(struct seq_file *sf, void *data)
5815 {
5816         struct regulator_map *map;
5817
5818         list_for_each_entry(map, &regulator_map_list, list) {
5819                 seq_printf(sf, "%s -> %s.%s\n",
5820                                 rdev_get_name(map->regulator), map->dev_name,
5821                                 map->supply);
5822         }
5823
5824         return 0;
5825 }
5826 DEFINE_SHOW_ATTRIBUTE(supply_map);
5827
5828 struct summary_data {
5829         struct seq_file *s;
5830         struct regulator_dev *parent;
5831         int level;
5832 };
5833
5834 static void regulator_summary_show_subtree(struct seq_file *s,
5835                                            struct regulator_dev *rdev,
5836                                            int level);
5837
5838 static int regulator_summary_show_children(struct device *dev, void *data)
5839 {
5840         struct regulator_dev *rdev = dev_to_rdev(dev);
5841         struct summary_data *summary_data = data;
5842
5843         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5844                 regulator_summary_show_subtree(summary_data->s, rdev,
5845                                                summary_data->level + 1);
5846
5847         return 0;
5848 }
5849
5850 static void regulator_summary_show_subtree(struct seq_file *s,
5851                                            struct regulator_dev *rdev,
5852                                            int level)
5853 {
5854         struct regulation_constraints *c;
5855         struct regulator *consumer;
5856         struct summary_data summary_data;
5857         unsigned int opmode;
5858
5859         if (!rdev)
5860                 return;
5861
5862         opmode = _regulator_get_mode_unlocked(rdev);
5863         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5864                    level * 3 + 1, "",
5865                    30 - level * 3, rdev_get_name(rdev),
5866                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5867                    regulator_opmode_to_str(opmode));
5868
5869         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5870         seq_printf(s, "%5dmA ",
5871                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5872
5873         c = rdev->constraints;
5874         if (c) {
5875                 switch (rdev->desc->type) {
5876                 case REGULATOR_VOLTAGE:
5877                         seq_printf(s, "%5dmV %5dmV ",
5878                                    c->min_uV / 1000, c->max_uV / 1000);
5879                         break;
5880                 case REGULATOR_CURRENT:
5881                         seq_printf(s, "%5dmA %5dmA ",
5882                                    c->min_uA / 1000, c->max_uA / 1000);
5883                         break;
5884                 }
5885         }
5886
5887         seq_puts(s, "\n");
5888
5889         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5890                 if (consumer->dev && consumer->dev->class == &regulator_class)
5891                         continue;
5892
5893                 seq_printf(s, "%*s%-*s ",
5894                            (level + 1) * 3 + 1, "",
5895                            30 - (level + 1) * 3,
5896                            consumer->supply_name ? consumer->supply_name :
5897                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5898
5899                 switch (rdev->desc->type) {
5900                 case REGULATOR_VOLTAGE:
5901                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5902                                    consumer->enable_count,
5903                                    consumer->uA_load / 1000,
5904                                    consumer->uA_load && !consumer->enable_count ?
5905                                    '*' : ' ',
5906                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5907                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5908                         break;
5909                 case REGULATOR_CURRENT:
5910                         break;
5911                 }
5912
5913                 seq_puts(s, "\n");
5914         }
5915
5916         summary_data.s = s;
5917         summary_data.level = level;
5918         summary_data.parent = rdev;
5919
5920         class_for_each_device(&regulator_class, NULL, &summary_data,
5921                               regulator_summary_show_children);
5922 }
5923
5924 struct summary_lock_data {
5925         struct ww_acquire_ctx *ww_ctx;
5926         struct regulator_dev **new_contended_rdev;
5927         struct regulator_dev **old_contended_rdev;
5928 };
5929
5930 static int regulator_summary_lock_one(struct device *dev, void *data)
5931 {
5932         struct regulator_dev *rdev = dev_to_rdev(dev);
5933         struct summary_lock_data *lock_data = data;
5934         int ret = 0;
5935
5936         if (rdev != *lock_data->old_contended_rdev) {
5937                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5938
5939                 if (ret == -EDEADLK)
5940                         *lock_data->new_contended_rdev = rdev;
5941                 else
5942                         WARN_ON_ONCE(ret);
5943         } else {
5944                 *lock_data->old_contended_rdev = NULL;
5945         }
5946
5947         return ret;
5948 }
5949
5950 static int regulator_summary_unlock_one(struct device *dev, void *data)
5951 {
5952         struct regulator_dev *rdev = dev_to_rdev(dev);
5953         struct summary_lock_data *lock_data = data;
5954
5955         if (lock_data) {
5956                 if (rdev == *lock_data->new_contended_rdev)
5957                         return -EDEADLK;
5958         }
5959
5960         regulator_unlock(rdev);
5961
5962         return 0;
5963 }
5964
5965 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5966                                       struct regulator_dev **new_contended_rdev,
5967                                       struct regulator_dev **old_contended_rdev)
5968 {
5969         struct summary_lock_data lock_data;
5970         int ret;
5971
5972         lock_data.ww_ctx = ww_ctx;
5973         lock_data.new_contended_rdev = new_contended_rdev;
5974         lock_data.old_contended_rdev = old_contended_rdev;
5975
5976         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5977                                     regulator_summary_lock_one);
5978         if (ret)
5979                 class_for_each_device(&regulator_class, NULL, &lock_data,
5980                                       regulator_summary_unlock_one);
5981
5982         return ret;
5983 }
5984
5985 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5986 {
5987         struct regulator_dev *new_contended_rdev = NULL;
5988         struct regulator_dev *old_contended_rdev = NULL;
5989         int err;
5990
5991         mutex_lock(&regulator_list_mutex);
5992
5993         ww_acquire_init(ww_ctx, &regulator_ww_class);
5994
5995         do {
5996                 if (new_contended_rdev) {
5997                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5998                         old_contended_rdev = new_contended_rdev;
5999                         old_contended_rdev->ref_cnt++;
6000                 }
6001
6002                 err = regulator_summary_lock_all(ww_ctx,
6003                                                  &new_contended_rdev,
6004                                                  &old_contended_rdev);
6005
6006                 if (old_contended_rdev)
6007                         regulator_unlock(old_contended_rdev);
6008
6009         } while (err == -EDEADLK);
6010
6011         ww_acquire_done(ww_ctx);
6012 }
6013
6014 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6015 {
6016         class_for_each_device(&regulator_class, NULL, NULL,
6017                               regulator_summary_unlock_one);
6018         ww_acquire_fini(ww_ctx);
6019
6020         mutex_unlock(&regulator_list_mutex);
6021 }
6022
6023 static int regulator_summary_show_roots(struct device *dev, void *data)
6024 {
6025         struct regulator_dev *rdev = dev_to_rdev(dev);
6026         struct seq_file *s = data;
6027
6028         if (!rdev->supply)
6029                 regulator_summary_show_subtree(s, rdev, 0);
6030
6031         return 0;
6032 }
6033
6034 static int regulator_summary_show(struct seq_file *s, void *data)
6035 {
6036         struct ww_acquire_ctx ww_ctx;
6037
6038         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6039         seq_puts(s, "---------------------------------------------------------------------------------------\n");
6040
6041         regulator_summary_lock(&ww_ctx);
6042
6043         class_for_each_device(&regulator_class, NULL, s,
6044                               regulator_summary_show_roots);
6045
6046         regulator_summary_unlock(&ww_ctx);
6047
6048         return 0;
6049 }
6050 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6051 #endif /* CONFIG_DEBUG_FS */
6052
6053 static int __init regulator_init(void)
6054 {
6055         int ret;
6056
6057         ret = class_register(&regulator_class);
6058
6059         debugfs_root = debugfs_create_dir("regulator", NULL);
6060         if (!debugfs_root)
6061                 pr_warn("regulator: Failed to create debugfs directory\n");
6062
6063 #ifdef CONFIG_DEBUG_FS
6064         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6065                             &supply_map_fops);
6066
6067         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6068                             NULL, &regulator_summary_fops);
6069 #endif
6070         regulator_dummy_init();
6071
6072         regulator_coupler_register(&generic_regulator_coupler);
6073
6074         return ret;
6075 }
6076
6077 /* init early to allow our consumers to complete system booting */
6078 core_initcall(regulator_init);
6079
6080 static int regulator_late_cleanup(struct device *dev, void *data)
6081 {
6082         struct regulator_dev *rdev = dev_to_rdev(dev);
6083         struct regulation_constraints *c = rdev->constraints;
6084         int ret;
6085
6086         if (c && c->always_on)
6087                 return 0;
6088
6089         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6090                 return 0;
6091
6092         regulator_lock(rdev);
6093
6094         if (rdev->use_count)
6095                 goto unlock;
6096
6097         /* If reading the status failed, assume that it's off. */
6098         if (_regulator_is_enabled(rdev) <= 0)
6099                 goto unlock;
6100
6101         if (have_full_constraints()) {
6102                 /* We log since this may kill the system if it goes
6103                  * wrong.
6104                  */
6105                 rdev_info(rdev, "disabling\n");
6106                 ret = _regulator_do_disable(rdev);
6107                 if (ret != 0)
6108                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6109         } else {
6110                 /* The intention is that in future we will
6111                  * assume that full constraints are provided
6112                  * so warn even if we aren't going to do
6113                  * anything here.
6114                  */
6115                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6116         }
6117
6118 unlock:
6119         regulator_unlock(rdev);
6120
6121         return 0;
6122 }
6123
6124 static void regulator_init_complete_work_function(struct work_struct *work)
6125 {
6126         /*
6127          * Regulators may had failed to resolve their input supplies
6128          * when were registered, either because the input supply was
6129          * not registered yet or because its parent device was not
6130          * bound yet. So attempt to resolve the input supplies for
6131          * pending regulators before trying to disable unused ones.
6132          */
6133         class_for_each_device(&regulator_class, NULL, NULL,
6134                               regulator_register_resolve_supply);
6135
6136         /* If we have a full configuration then disable any regulators
6137          * we have permission to change the status for and which are
6138          * not in use or always_on.  This is effectively the default
6139          * for DT and ACPI as they have full constraints.
6140          */
6141         class_for_each_device(&regulator_class, NULL, NULL,
6142                               regulator_late_cleanup);
6143 }
6144
6145 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6146                             regulator_init_complete_work_function);
6147
6148 static int __init regulator_init_complete(void)
6149 {
6150         /*
6151          * Since DT doesn't provide an idiomatic mechanism for
6152          * enabling full constraints and since it's much more natural
6153          * with DT to provide them just assume that a DT enabled
6154          * system has full constraints.
6155          */
6156         if (of_have_populated_dt())
6157                 has_full_constraints = true;
6158
6159         /*
6160          * We punt completion for an arbitrary amount of time since
6161          * systems like distros will load many drivers from userspace
6162          * so consumers might not always be ready yet, this is
6163          * particularly an issue with laptops where this might bounce
6164          * the display off then on.  Ideally we'd get a notification
6165          * from userspace when this happens but we don't so just wait
6166          * a bit and hope we waited long enough.  It'd be better if
6167          * we'd only do this on systems that need it, and a kernel
6168          * command line option might be useful.
6169          */
6170         schedule_delayed_work(&regulator_init_complete_work,
6171                               msecs_to_jiffies(30000));
6172
6173         return 0;
6174 }
6175 late_initcall_sync(regulator_init_complete);