GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
208                                 prop_name, dev->of_node);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  *
1030  * Allows platform initialisation code to define and constrain
1031  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1032  * Constraints *must* be set by platform code in order for some
1033  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1034  * set_mode.
1035  */
1036 static int set_machine_constraints(struct regulator_dev *rdev)
1037 {
1038         int ret = 0;
1039         const struct regulator_ops *ops = rdev->desc->ops;
1040
1041         ret = machine_constraints_voltage(rdev, rdev->constraints);
1042         if (ret != 0)
1043                 return ret;
1044
1045         ret = machine_constraints_current(rdev, rdev->constraints);
1046         if (ret != 0)
1047                 return ret;
1048
1049         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1050                 ret = ops->set_input_current_limit(rdev,
1051                                                    rdev->constraints->ilim_uA);
1052                 if (ret < 0) {
1053                         rdev_err(rdev, "failed to set input limit\n");
1054                         return ret;
1055                 }
1056         }
1057
1058         /* do we need to setup our suspend state */
1059         if (rdev->constraints->initial_state) {
1060                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1061                 if (ret < 0) {
1062                         rdev_err(rdev, "failed to set suspend state\n");
1063                         return ret;
1064                 }
1065         }
1066
1067         if (rdev->constraints->initial_mode) {
1068                 if (!ops->set_mode) {
1069                         rdev_err(rdev, "no set_mode operation\n");
1070                         return -EINVAL;
1071                 }
1072
1073                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1074                 if (ret < 0) {
1075                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1076                         return ret;
1077                 }
1078         }
1079
1080         /* If the constraints say the regulator should be on at this point
1081          * and we have control then make sure it is enabled.
1082          */
1083         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1084                 /* If we want to enable this regulator, make sure that we know
1085                  * the supplying regulator.
1086                  */
1087                 if (rdev->supply_name && !rdev->supply)
1088                         return -EPROBE_DEFER;
1089
1090                 ret = _regulator_do_enable(rdev);
1091                 if (ret < 0 && ret != -EINVAL) {
1092                         rdev_err(rdev, "failed to enable\n");
1093                         return ret;
1094                 }
1095         }
1096
1097         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1098                 && ops->set_ramp_delay) {
1099                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1100                 if (ret < 0) {
1101                         rdev_err(rdev, "failed to set ramp_delay\n");
1102                         return ret;
1103                 }
1104         }
1105
1106         if (rdev->constraints->pull_down && ops->set_pull_down) {
1107                 ret = ops->set_pull_down(rdev);
1108                 if (ret < 0) {
1109                         rdev_err(rdev, "failed to set pull down\n");
1110                         return ret;
1111                 }
1112         }
1113
1114         if (rdev->constraints->soft_start && ops->set_soft_start) {
1115                 ret = ops->set_soft_start(rdev);
1116                 if (ret < 0) {
1117                         rdev_err(rdev, "failed to set soft start\n");
1118                         return ret;
1119                 }
1120         }
1121
1122         if (rdev->constraints->over_current_protection
1123                 && ops->set_over_current_protection) {
1124                 ret = ops->set_over_current_protection(rdev);
1125                 if (ret < 0) {
1126                         rdev_err(rdev, "failed to set over current protection\n");
1127                         return ret;
1128                 }
1129         }
1130
1131         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1132                 bool ad_state = (rdev->constraints->active_discharge ==
1133                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1134
1135                 ret = ops->set_active_discharge(rdev, ad_state);
1136                 if (ret < 0) {
1137                         rdev_err(rdev, "failed to set active discharge\n");
1138                         return ret;
1139                 }
1140         }
1141
1142         print_constraints(rdev);
1143         return 0;
1144 }
1145
1146 /**
1147  * set_supply - set regulator supply regulator
1148  * @rdev: regulator name
1149  * @supply_rdev: supply regulator name
1150  *
1151  * Called by platform initialisation code to set the supply regulator for this
1152  * regulator. This ensures that a regulators supply will also be enabled by the
1153  * core if it's child is enabled.
1154  */
1155 static int set_supply(struct regulator_dev *rdev,
1156                       struct regulator_dev *supply_rdev)
1157 {
1158         int err;
1159
1160         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1161
1162         if (!try_module_get(supply_rdev->owner))
1163                 return -ENODEV;
1164
1165         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1166         if (rdev->supply == NULL) {
1167                 module_put(supply_rdev->owner);
1168                 err = -ENOMEM;
1169                 return err;
1170         }
1171         supply_rdev->open_count++;
1172
1173         return 0;
1174 }
1175
1176 /**
1177  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1178  * @rdev:         regulator source
1179  * @consumer_dev_name: dev_name() string for device supply applies to
1180  * @supply:       symbolic name for supply
1181  *
1182  * Allows platform initialisation code to map physical regulator
1183  * sources to symbolic names for supplies for use by devices.  Devices
1184  * should use these symbolic names to request regulators, avoiding the
1185  * need to provide board-specific regulator names as platform data.
1186  */
1187 static int set_consumer_device_supply(struct regulator_dev *rdev,
1188                                       const char *consumer_dev_name,
1189                                       const char *supply)
1190 {
1191         struct regulator_map *node, *new_node;
1192         int has_dev;
1193
1194         if (supply == NULL)
1195                 return -EINVAL;
1196
1197         if (consumer_dev_name != NULL)
1198                 has_dev = 1;
1199         else
1200                 has_dev = 0;
1201
1202         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1203         if (new_node == NULL)
1204                 return -ENOMEM;
1205
1206         new_node->regulator = rdev;
1207         new_node->supply = supply;
1208
1209         if (has_dev) {
1210                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1211                 if (new_node->dev_name == NULL) {
1212                         kfree(new_node);
1213                         return -ENOMEM;
1214                 }
1215         }
1216
1217         mutex_lock(&regulator_list_mutex);
1218         list_for_each_entry(node, &regulator_map_list, list) {
1219                 if (node->dev_name && consumer_dev_name) {
1220                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1221                                 continue;
1222                 } else if (node->dev_name || consumer_dev_name) {
1223                         continue;
1224                 }
1225
1226                 if (strcmp(node->supply, supply) != 0)
1227                         continue;
1228
1229                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1230                          consumer_dev_name,
1231                          dev_name(&node->regulator->dev),
1232                          node->regulator->desc->name,
1233                          supply,
1234                          dev_name(&rdev->dev), rdev_get_name(rdev));
1235                 goto fail;
1236         }
1237
1238         list_add(&new_node->list, &regulator_map_list);
1239         mutex_unlock(&regulator_list_mutex);
1240
1241         return 0;
1242
1243 fail:
1244         mutex_unlock(&regulator_list_mutex);
1245         kfree(new_node->dev_name);
1246         kfree(new_node);
1247         return -EBUSY;
1248 }
1249
1250 static void unset_regulator_supplies(struct regulator_dev *rdev)
1251 {
1252         struct regulator_map *node, *n;
1253
1254         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1255                 if (rdev == node->regulator) {
1256                         list_del(&node->list);
1257                         kfree(node->dev_name);
1258                         kfree(node);
1259                 }
1260         }
1261 }
1262
1263 #ifdef CONFIG_DEBUG_FS
1264 static ssize_t constraint_flags_read_file(struct file *file,
1265                                           char __user *user_buf,
1266                                           size_t count, loff_t *ppos)
1267 {
1268         const struct regulator *regulator = file->private_data;
1269         const struct regulation_constraints *c = regulator->rdev->constraints;
1270         char *buf;
1271         ssize_t ret;
1272
1273         if (!c)
1274                 return 0;
1275
1276         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1277         if (!buf)
1278                 return -ENOMEM;
1279
1280         ret = snprintf(buf, PAGE_SIZE,
1281                         "always_on: %u\n"
1282                         "boot_on: %u\n"
1283                         "apply_uV: %u\n"
1284                         "ramp_disable: %u\n"
1285                         "soft_start: %u\n"
1286                         "pull_down: %u\n"
1287                         "over_current_protection: %u\n",
1288                         c->always_on,
1289                         c->boot_on,
1290                         c->apply_uV,
1291                         c->ramp_disable,
1292                         c->soft_start,
1293                         c->pull_down,
1294                         c->over_current_protection);
1295
1296         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1297         kfree(buf);
1298
1299         return ret;
1300 }
1301
1302 #endif
1303
1304 static const struct file_operations constraint_flags_fops = {
1305 #ifdef CONFIG_DEBUG_FS
1306         .open = simple_open,
1307         .read = constraint_flags_read_file,
1308         .llseek = default_llseek,
1309 #endif
1310 };
1311
1312 #define REG_STR_SIZE    64
1313
1314 static struct regulator *create_regulator(struct regulator_dev *rdev,
1315                                           struct device *dev,
1316                                           const char *supply_name)
1317 {
1318         struct regulator *regulator;
1319         char buf[REG_STR_SIZE];
1320         int err, size;
1321
1322         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1323         if (regulator == NULL)
1324                 return NULL;
1325
1326         mutex_lock(&rdev->mutex);
1327         regulator->rdev = rdev;
1328         list_add(&regulator->list, &rdev->consumer_list);
1329
1330         if (dev) {
1331                 regulator->dev = dev;
1332
1333                 /* Add a link to the device sysfs entry */
1334                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1335                                 dev->kobj.name, supply_name);
1336                 if (size >= REG_STR_SIZE)
1337                         goto overflow_err;
1338
1339                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1340                 if (regulator->supply_name == NULL)
1341                         goto overflow_err;
1342
1343                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1344                                         buf);
1345                 if (err) {
1346                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1347                                   dev->kobj.name, err);
1348                         /* non-fatal */
1349                 }
1350         } else {
1351                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1352                 if (regulator->supply_name == NULL)
1353                         goto overflow_err;
1354         }
1355
1356         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1357                                                 rdev->debugfs);
1358         if (!regulator->debugfs) {
1359                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1360         } else {
1361                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1362                                    &regulator->uA_load);
1363                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1364                                    &regulator->min_uV);
1365                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1366                                    &regulator->max_uV);
1367                 debugfs_create_file("constraint_flags", 0444,
1368                                     regulator->debugfs, regulator,
1369                                     &constraint_flags_fops);
1370         }
1371
1372         /*
1373          * Check now if the regulator is an always on regulator - if
1374          * it is then we don't need to do nearly so much work for
1375          * enable/disable calls.
1376          */
1377         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1378             _regulator_is_enabled(rdev))
1379                 regulator->always_on = true;
1380
1381         mutex_unlock(&rdev->mutex);
1382         return regulator;
1383 overflow_err:
1384         list_del(&regulator->list);
1385         kfree(regulator);
1386         mutex_unlock(&rdev->mutex);
1387         return NULL;
1388 }
1389
1390 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1391 {
1392         if (rdev->constraints && rdev->constraints->enable_time)
1393                 return rdev->constraints->enable_time;
1394         if (!rdev->desc->ops->enable_time)
1395                 return rdev->desc->enable_time;
1396         return rdev->desc->ops->enable_time(rdev);
1397 }
1398
1399 static struct regulator_supply_alias *regulator_find_supply_alias(
1400                 struct device *dev, const char *supply)
1401 {
1402         struct regulator_supply_alias *map;
1403
1404         list_for_each_entry(map, &regulator_supply_alias_list, list)
1405                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1406                         return map;
1407
1408         return NULL;
1409 }
1410
1411 static void regulator_supply_alias(struct device **dev, const char **supply)
1412 {
1413         struct regulator_supply_alias *map;
1414
1415         map = regulator_find_supply_alias(*dev, *supply);
1416         if (map) {
1417                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1418                                 *supply, map->alias_supply,
1419                                 dev_name(map->alias_dev));
1420                 *dev = map->alias_dev;
1421                 *supply = map->alias_supply;
1422         }
1423 }
1424
1425 static int of_node_match(struct device *dev, const void *data)
1426 {
1427         return dev->of_node == data;
1428 }
1429
1430 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1431 {
1432         struct device *dev;
1433
1434         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1435
1436         return dev ? dev_to_rdev(dev) : NULL;
1437 }
1438
1439 static int regulator_match(struct device *dev, const void *data)
1440 {
1441         struct regulator_dev *r = dev_to_rdev(dev);
1442
1443         return strcmp(rdev_get_name(r), data) == 0;
1444 }
1445
1446 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1447 {
1448         struct device *dev;
1449
1450         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1451
1452         return dev ? dev_to_rdev(dev) : NULL;
1453 }
1454
1455 /**
1456  * regulator_dev_lookup - lookup a regulator device.
1457  * @dev: device for regulator "consumer".
1458  * @supply: Supply name or regulator ID.
1459  *
1460  * If successful, returns a struct regulator_dev that corresponds to the name
1461  * @supply and with the embedded struct device refcount incremented by one.
1462  * The refcount must be dropped by calling put_device().
1463  * On failure one of the following ERR-PTR-encoded values is returned:
1464  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1465  * in the future.
1466  */
1467 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1468                                                   const char *supply)
1469 {
1470         struct regulator_dev *r = NULL;
1471         struct device_node *node;
1472         struct regulator_map *map;
1473         const char *devname = NULL;
1474
1475         regulator_supply_alias(&dev, &supply);
1476
1477         /* first do a dt based lookup */
1478         if (dev && dev->of_node) {
1479                 node = of_get_regulator(dev, supply);
1480                 if (node) {
1481                         r = of_find_regulator_by_node(node);
1482                         of_node_put(node);
1483                         if (r)
1484                                 return r;
1485
1486                         /*
1487                          * We have a node, but there is no device.
1488                          * assume it has not registered yet.
1489                          */
1490                         return ERR_PTR(-EPROBE_DEFER);
1491                 }
1492         }
1493
1494         /* if not found, try doing it non-dt way */
1495         if (dev)
1496                 devname = dev_name(dev);
1497
1498         mutex_lock(&regulator_list_mutex);
1499         list_for_each_entry(map, &regulator_map_list, list) {
1500                 /* If the mapping has a device set up it must match */
1501                 if (map->dev_name &&
1502                     (!devname || strcmp(map->dev_name, devname)))
1503                         continue;
1504
1505                 if (strcmp(map->supply, supply) == 0 &&
1506                     get_device(&map->regulator->dev)) {
1507                         r = map->regulator;
1508                         break;
1509                 }
1510         }
1511         mutex_unlock(&regulator_list_mutex);
1512
1513         if (r)
1514                 return r;
1515
1516         r = regulator_lookup_by_name(supply);
1517         if (r)
1518                 return r;
1519
1520         return ERR_PTR(-ENODEV);
1521 }
1522
1523 static int regulator_resolve_supply(struct regulator_dev *rdev)
1524 {
1525         struct regulator_dev *r;
1526         struct device *dev = rdev->dev.parent;
1527         int ret;
1528
1529         /* No supply to resovle? */
1530         if (!rdev->supply_name)
1531                 return 0;
1532
1533         /* Supply already resolved? */
1534         if (rdev->supply)
1535                 return 0;
1536
1537         r = regulator_dev_lookup(dev, rdev->supply_name);
1538         if (IS_ERR(r)) {
1539                 ret = PTR_ERR(r);
1540
1541                 /* Did the lookup explicitly defer for us? */
1542                 if (ret == -EPROBE_DEFER)
1543                         return ret;
1544
1545                 if (have_full_constraints()) {
1546                         r = dummy_regulator_rdev;
1547                         get_device(&r->dev);
1548                 } else {
1549                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1550                                 rdev->supply_name, rdev->desc->name);
1551                         return -EPROBE_DEFER;
1552                 }
1553         }
1554
1555         if (r == rdev) {
1556                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1557                         rdev->desc->name, rdev->supply_name);
1558                 if (!have_full_constraints())
1559                         return -EINVAL;
1560                 r = dummy_regulator_rdev;
1561                 get_device(&r->dev);
1562         }
1563
1564         /*
1565          * If the supply's parent device is not the same as the
1566          * regulator's parent device, then ensure the parent device
1567          * is bound before we resolve the supply, in case the parent
1568          * device get probe deferred and unregisters the supply.
1569          */
1570         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1571                 if (!device_is_bound(r->dev.parent)) {
1572                         put_device(&r->dev);
1573                         return -EPROBE_DEFER;
1574                 }
1575         }
1576
1577         /* Recursively resolve the supply of the supply */
1578         ret = regulator_resolve_supply(r);
1579         if (ret < 0) {
1580                 put_device(&r->dev);
1581                 return ret;
1582         }
1583
1584         ret = set_supply(rdev, r);
1585         if (ret < 0) {
1586                 put_device(&r->dev);
1587                 return ret;
1588         }
1589
1590         /* Cascade always-on state to supply */
1591         if (_regulator_is_enabled(rdev)) {
1592                 ret = regulator_enable(rdev->supply);
1593                 if (ret < 0) {
1594                         _regulator_put(rdev->supply);
1595                         rdev->supply = NULL;
1596                         return ret;
1597                 }
1598         }
1599
1600         return 0;
1601 }
1602
1603 /* Internal regulator request function */
1604 struct regulator *_regulator_get(struct device *dev, const char *id,
1605                                  enum regulator_get_type get_type)
1606 {
1607         struct regulator_dev *rdev;
1608         struct regulator *regulator;
1609         const char *devname = dev ? dev_name(dev) : "deviceless";
1610         int ret;
1611
1612         if (get_type >= MAX_GET_TYPE) {
1613                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1614                 return ERR_PTR(-EINVAL);
1615         }
1616
1617         if (id == NULL) {
1618                 pr_err("get() with no identifier\n");
1619                 return ERR_PTR(-EINVAL);
1620         }
1621
1622         rdev = regulator_dev_lookup(dev, id);
1623         if (IS_ERR(rdev)) {
1624                 ret = PTR_ERR(rdev);
1625
1626                 /*
1627                  * If regulator_dev_lookup() fails with error other
1628                  * than -ENODEV our job here is done, we simply return it.
1629                  */
1630                 if (ret != -ENODEV)
1631                         return ERR_PTR(ret);
1632
1633                 if (!have_full_constraints()) {
1634                         dev_warn(dev,
1635                                  "incomplete constraints, dummy supplies not allowed\n");
1636                         return ERR_PTR(-ENODEV);
1637                 }
1638
1639                 switch (get_type) {
1640                 case NORMAL_GET:
1641                         /*
1642                          * Assume that a regulator is physically present and
1643                          * enabled, even if it isn't hooked up, and just
1644                          * provide a dummy.
1645                          */
1646                         dev_warn(dev,
1647                                  "%s supply %s not found, using dummy regulator\n",
1648                                  devname, id);
1649                         rdev = dummy_regulator_rdev;
1650                         get_device(&rdev->dev);
1651                         break;
1652
1653                 case EXCLUSIVE_GET:
1654                         dev_warn(dev,
1655                                  "dummy supplies not allowed for exclusive requests\n");
1656                         /* fall through */
1657
1658                 default:
1659                         return ERR_PTR(-ENODEV);
1660                 }
1661         }
1662
1663         if (rdev->exclusive) {
1664                 regulator = ERR_PTR(-EPERM);
1665                 put_device(&rdev->dev);
1666                 return regulator;
1667         }
1668
1669         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1670                 regulator = ERR_PTR(-EBUSY);
1671                 put_device(&rdev->dev);
1672                 return regulator;
1673         }
1674
1675         ret = regulator_resolve_supply(rdev);
1676         if (ret < 0) {
1677                 regulator = ERR_PTR(ret);
1678                 put_device(&rdev->dev);
1679                 return regulator;
1680         }
1681
1682         if (!try_module_get(rdev->owner)) {
1683                 regulator = ERR_PTR(-EPROBE_DEFER);
1684                 put_device(&rdev->dev);
1685                 return regulator;
1686         }
1687
1688         regulator = create_regulator(rdev, dev, id);
1689         if (regulator == NULL) {
1690                 regulator = ERR_PTR(-ENOMEM);
1691                 put_device(&rdev->dev);
1692                 module_put(rdev->owner);
1693                 return regulator;
1694         }
1695
1696         rdev->open_count++;
1697         if (get_type == EXCLUSIVE_GET) {
1698                 rdev->exclusive = 1;
1699
1700                 ret = _regulator_is_enabled(rdev);
1701                 if (ret > 0)
1702                         rdev->use_count = 1;
1703                 else
1704                         rdev->use_count = 0;
1705         }
1706
1707         return regulator;
1708 }
1709
1710 /**
1711  * regulator_get - lookup and obtain a reference to a regulator.
1712  * @dev: device for regulator "consumer"
1713  * @id: Supply name or regulator ID.
1714  *
1715  * Returns a struct regulator corresponding to the regulator producer,
1716  * or IS_ERR() condition containing errno.
1717  *
1718  * Use of supply names configured via regulator_set_device_supply() is
1719  * strongly encouraged.  It is recommended that the supply name used
1720  * should match the name used for the supply and/or the relevant
1721  * device pins in the datasheet.
1722  */
1723 struct regulator *regulator_get(struct device *dev, const char *id)
1724 {
1725         return _regulator_get(dev, id, NORMAL_GET);
1726 }
1727 EXPORT_SYMBOL_GPL(regulator_get);
1728
1729 /**
1730  * regulator_get_exclusive - obtain exclusive access to a regulator.
1731  * @dev: device for regulator "consumer"
1732  * @id: Supply name or regulator ID.
1733  *
1734  * Returns a struct regulator corresponding to the regulator producer,
1735  * or IS_ERR() condition containing errno.  Other consumers will be
1736  * unable to obtain this regulator while this reference is held and the
1737  * use count for the regulator will be initialised to reflect the current
1738  * state of the regulator.
1739  *
1740  * This is intended for use by consumers which cannot tolerate shared
1741  * use of the regulator such as those which need to force the
1742  * regulator off for correct operation of the hardware they are
1743  * controlling.
1744  *
1745  * Use of supply names configured via regulator_set_device_supply() is
1746  * strongly encouraged.  It is recommended that the supply name used
1747  * should match the name used for the supply and/or the relevant
1748  * device pins in the datasheet.
1749  */
1750 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1751 {
1752         return _regulator_get(dev, id, EXCLUSIVE_GET);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1755
1756 /**
1757  * regulator_get_optional - obtain optional access to a regulator.
1758  * @dev: device for regulator "consumer"
1759  * @id: Supply name or regulator ID.
1760  *
1761  * Returns a struct regulator corresponding to the regulator producer,
1762  * or IS_ERR() condition containing errno.
1763  *
1764  * This is intended for use by consumers for devices which can have
1765  * some supplies unconnected in normal use, such as some MMC devices.
1766  * It can allow the regulator core to provide stub supplies for other
1767  * supplies requested using normal regulator_get() calls without
1768  * disrupting the operation of drivers that can handle absent
1769  * supplies.
1770  *
1771  * Use of supply names configured via regulator_set_device_supply() is
1772  * strongly encouraged.  It is recommended that the supply name used
1773  * should match the name used for the supply and/or the relevant
1774  * device pins in the datasheet.
1775  */
1776 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1777 {
1778         return _regulator_get(dev, id, OPTIONAL_GET);
1779 }
1780 EXPORT_SYMBOL_GPL(regulator_get_optional);
1781
1782 /* regulator_list_mutex lock held by regulator_put() */
1783 static void _regulator_put(struct regulator *regulator)
1784 {
1785         struct regulator_dev *rdev;
1786
1787         if (IS_ERR_OR_NULL(regulator))
1788                 return;
1789
1790         lockdep_assert_held_once(&regulator_list_mutex);
1791
1792         rdev = regulator->rdev;
1793
1794         debugfs_remove_recursive(regulator->debugfs);
1795
1796         /* remove any sysfs entries */
1797         if (regulator->dev)
1798                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1799         mutex_lock(&rdev->mutex);
1800         list_del(&regulator->list);
1801
1802         rdev->open_count--;
1803         rdev->exclusive = 0;
1804         put_device(&rdev->dev);
1805         mutex_unlock(&rdev->mutex);
1806
1807         kfree_const(regulator->supply_name);
1808         kfree(regulator);
1809
1810         module_put(rdev->owner);
1811 }
1812
1813 /**
1814  * regulator_put - "free" the regulator source
1815  * @regulator: regulator source
1816  *
1817  * Note: drivers must ensure that all regulator_enable calls made on this
1818  * regulator source are balanced by regulator_disable calls prior to calling
1819  * this function.
1820  */
1821 void regulator_put(struct regulator *regulator)
1822 {
1823         mutex_lock(&regulator_list_mutex);
1824         _regulator_put(regulator);
1825         mutex_unlock(&regulator_list_mutex);
1826 }
1827 EXPORT_SYMBOL_GPL(regulator_put);
1828
1829 /**
1830  * regulator_register_supply_alias - Provide device alias for supply lookup
1831  *
1832  * @dev: device that will be given as the regulator "consumer"
1833  * @id: Supply name or regulator ID
1834  * @alias_dev: device that should be used to lookup the supply
1835  * @alias_id: Supply name or regulator ID that should be used to lookup the
1836  * supply
1837  *
1838  * All lookups for id on dev will instead be conducted for alias_id on
1839  * alias_dev.
1840  */
1841 int regulator_register_supply_alias(struct device *dev, const char *id,
1842                                     struct device *alias_dev,
1843                                     const char *alias_id)
1844 {
1845         struct regulator_supply_alias *map;
1846
1847         map = regulator_find_supply_alias(dev, id);
1848         if (map)
1849                 return -EEXIST;
1850
1851         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1852         if (!map)
1853                 return -ENOMEM;
1854
1855         map->src_dev = dev;
1856         map->src_supply = id;
1857         map->alias_dev = alias_dev;
1858         map->alias_supply = alias_id;
1859
1860         list_add(&map->list, &regulator_supply_alias_list);
1861
1862         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1863                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1864
1865         return 0;
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1868
1869 /**
1870  * regulator_unregister_supply_alias - Remove device alias
1871  *
1872  * @dev: device that will be given as the regulator "consumer"
1873  * @id: Supply name or regulator ID
1874  *
1875  * Remove a lookup alias if one exists for id on dev.
1876  */
1877 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1878 {
1879         struct regulator_supply_alias *map;
1880
1881         map = regulator_find_supply_alias(dev, id);
1882         if (map) {
1883                 list_del(&map->list);
1884                 kfree(map);
1885         }
1886 }
1887 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1888
1889 /**
1890  * regulator_bulk_register_supply_alias - register multiple aliases
1891  *
1892  * @dev: device that will be given as the regulator "consumer"
1893  * @id: List of supply names or regulator IDs
1894  * @alias_dev: device that should be used to lookup the supply
1895  * @alias_id: List of supply names or regulator IDs that should be used to
1896  * lookup the supply
1897  * @num_id: Number of aliases to register
1898  *
1899  * @return 0 on success, an errno on failure.
1900  *
1901  * This helper function allows drivers to register several supply
1902  * aliases in one operation.  If any of the aliases cannot be
1903  * registered any aliases that were registered will be removed
1904  * before returning to the caller.
1905  */
1906 int regulator_bulk_register_supply_alias(struct device *dev,
1907                                          const char *const *id,
1908                                          struct device *alias_dev,
1909                                          const char *const *alias_id,
1910                                          int num_id)
1911 {
1912         int i;
1913         int ret;
1914
1915         for (i = 0; i < num_id; ++i) {
1916                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1917                                                       alias_id[i]);
1918                 if (ret < 0)
1919                         goto err;
1920         }
1921
1922         return 0;
1923
1924 err:
1925         dev_err(dev,
1926                 "Failed to create supply alias %s,%s -> %s,%s\n",
1927                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1928
1929         while (--i >= 0)
1930                 regulator_unregister_supply_alias(dev, id[i]);
1931
1932         return ret;
1933 }
1934 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1935
1936 /**
1937  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1938  *
1939  * @dev: device that will be given as the regulator "consumer"
1940  * @id: List of supply names or regulator IDs
1941  * @num_id: Number of aliases to unregister
1942  *
1943  * This helper function allows drivers to unregister several supply
1944  * aliases in one operation.
1945  */
1946 void regulator_bulk_unregister_supply_alias(struct device *dev,
1947                                             const char *const *id,
1948                                             int num_id)
1949 {
1950         int i;
1951
1952         for (i = 0; i < num_id; ++i)
1953                 regulator_unregister_supply_alias(dev, id[i]);
1954 }
1955 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1956
1957
1958 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1959 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1960                                 const struct regulator_config *config)
1961 {
1962         struct regulator_enable_gpio *pin;
1963         struct gpio_desc *gpiod;
1964         int ret;
1965
1966         gpiod = gpio_to_desc(config->ena_gpio);
1967
1968         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1969                 if (pin->gpiod == gpiod) {
1970                         rdev_dbg(rdev, "GPIO %d is already used\n",
1971                                 config->ena_gpio);
1972                         goto update_ena_gpio_to_rdev;
1973                 }
1974         }
1975
1976         ret = gpio_request_one(config->ena_gpio,
1977                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1978                                 rdev_get_name(rdev));
1979         if (ret)
1980                 return ret;
1981
1982         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1983         if (pin == NULL) {
1984                 gpio_free(config->ena_gpio);
1985                 return -ENOMEM;
1986         }
1987
1988         pin->gpiod = gpiod;
1989         pin->ena_gpio_invert = config->ena_gpio_invert;
1990         list_add(&pin->list, &regulator_ena_gpio_list);
1991
1992 update_ena_gpio_to_rdev:
1993         pin->request_count++;
1994         rdev->ena_pin = pin;
1995         return 0;
1996 }
1997
1998 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1999 {
2000         struct regulator_enable_gpio *pin, *n;
2001
2002         if (!rdev->ena_pin)
2003                 return;
2004
2005         /* Free the GPIO only in case of no use */
2006         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2007                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2008                         if (pin->request_count <= 1) {
2009                                 pin->request_count = 0;
2010                                 gpiod_put(pin->gpiod);
2011                                 list_del(&pin->list);
2012                                 kfree(pin);
2013                                 rdev->ena_pin = NULL;
2014                                 return;
2015                         } else {
2016                                 pin->request_count--;
2017                         }
2018                 }
2019         }
2020 }
2021
2022 /**
2023  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2024  * @rdev: regulator_dev structure
2025  * @enable: enable GPIO at initial use?
2026  *
2027  * GPIO is enabled in case of initial use. (enable_count is 0)
2028  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2029  */
2030 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2031 {
2032         struct regulator_enable_gpio *pin = rdev->ena_pin;
2033
2034         if (!pin)
2035                 return -EINVAL;
2036
2037         if (enable) {
2038                 /* Enable GPIO at initial use */
2039                 if (pin->enable_count == 0)
2040                         gpiod_set_value_cansleep(pin->gpiod,
2041                                                  !pin->ena_gpio_invert);
2042
2043                 pin->enable_count++;
2044         } else {
2045                 if (pin->enable_count > 1) {
2046                         pin->enable_count--;
2047                         return 0;
2048                 }
2049
2050                 /* Disable GPIO if not used */
2051                 if (pin->enable_count <= 1) {
2052                         gpiod_set_value_cansleep(pin->gpiod,
2053                                                  pin->ena_gpio_invert);
2054                         pin->enable_count = 0;
2055                 }
2056         }
2057
2058         return 0;
2059 }
2060
2061 /**
2062  * _regulator_enable_delay - a delay helper function
2063  * @delay: time to delay in microseconds
2064  *
2065  * Delay for the requested amount of time as per the guidelines in:
2066  *
2067  *     Documentation/timers/timers-howto.txt
2068  *
2069  * The assumption here is that regulators will never be enabled in
2070  * atomic context and therefore sleeping functions can be used.
2071  */
2072 static void _regulator_enable_delay(unsigned int delay)
2073 {
2074         unsigned int ms = delay / 1000;
2075         unsigned int us = delay % 1000;
2076
2077         if (ms > 0) {
2078                 /*
2079                  * For small enough values, handle super-millisecond
2080                  * delays in the usleep_range() call below.
2081                  */
2082                 if (ms < 20)
2083                         us += ms * 1000;
2084                 else
2085                         msleep(ms);
2086         }
2087
2088         /*
2089          * Give the scheduler some room to coalesce with any other
2090          * wakeup sources. For delays shorter than 10 us, don't even
2091          * bother setting up high-resolution timers and just busy-
2092          * loop.
2093          */
2094         if (us >= 10)
2095                 usleep_range(us, us + 100);
2096         else
2097                 udelay(us);
2098 }
2099
2100 static int _regulator_do_enable(struct regulator_dev *rdev)
2101 {
2102         int ret, delay;
2103
2104         /* Query before enabling in case configuration dependent.  */
2105         ret = _regulator_get_enable_time(rdev);
2106         if (ret >= 0) {
2107                 delay = ret;
2108         } else {
2109                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2110                 delay = 0;
2111         }
2112
2113         trace_regulator_enable(rdev_get_name(rdev));
2114
2115         if (rdev->desc->off_on_delay) {
2116                 /* if needed, keep a distance of off_on_delay from last time
2117                  * this regulator was disabled.
2118                  */
2119                 unsigned long start_jiffy = jiffies;
2120                 unsigned long intended, max_delay, remaining;
2121
2122                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2123                 intended = rdev->last_off_jiffy + max_delay;
2124
2125                 if (time_before(start_jiffy, intended)) {
2126                         /* calc remaining jiffies to deal with one-time
2127                          * timer wrapping.
2128                          * in case of multiple timer wrapping, either it can be
2129                          * detected by out-of-range remaining, or it cannot be
2130                          * detected and we gets a panelty of
2131                          * _regulator_enable_delay().
2132                          */
2133                         remaining = intended - start_jiffy;
2134                         if (remaining <= max_delay)
2135                                 _regulator_enable_delay(
2136                                                 jiffies_to_usecs(remaining));
2137                 }
2138         }
2139
2140         if (rdev->ena_pin) {
2141                 if (!rdev->ena_gpio_state) {
2142                         ret = regulator_ena_gpio_ctrl(rdev, true);
2143                         if (ret < 0)
2144                                 return ret;
2145                         rdev->ena_gpio_state = 1;
2146                 }
2147         } else if (rdev->desc->ops->enable) {
2148                 ret = rdev->desc->ops->enable(rdev);
2149                 if (ret < 0)
2150                         return ret;
2151         } else {
2152                 return -EINVAL;
2153         }
2154
2155         /* Allow the regulator to ramp; it would be useful to extend
2156          * this for bulk operations so that the regulators can ramp
2157          * together.  */
2158         trace_regulator_enable_delay(rdev_get_name(rdev));
2159
2160         _regulator_enable_delay(delay);
2161
2162         trace_regulator_enable_complete(rdev_get_name(rdev));
2163
2164         return 0;
2165 }
2166
2167 /* locks held by regulator_enable() */
2168 static int _regulator_enable(struct regulator_dev *rdev)
2169 {
2170         int ret;
2171
2172         lockdep_assert_held_once(&rdev->mutex);
2173
2174         /* check voltage and requested load before enabling */
2175         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2176                 drms_uA_update(rdev);
2177
2178         if (rdev->use_count == 0) {
2179                 /* The regulator may on if it's not switchable or left on */
2180                 ret = _regulator_is_enabled(rdev);
2181                 if (ret == -EINVAL || ret == 0) {
2182                         if (!regulator_ops_is_valid(rdev,
2183                                         REGULATOR_CHANGE_STATUS))
2184                                 return -EPERM;
2185
2186                         ret = _regulator_do_enable(rdev);
2187                         if (ret < 0)
2188                                 return ret;
2189
2190                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2191                                              NULL);
2192                 } else if (ret < 0) {
2193                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2194                         return ret;
2195                 }
2196                 /* Fallthrough on positive return values - already enabled */
2197         }
2198
2199         rdev->use_count++;
2200
2201         return 0;
2202 }
2203
2204 /**
2205  * regulator_enable - enable regulator output
2206  * @regulator: regulator source
2207  *
2208  * Request that the regulator be enabled with the regulator output at
2209  * the predefined voltage or current value.  Calls to regulator_enable()
2210  * must be balanced with calls to regulator_disable().
2211  *
2212  * NOTE: the output value can be set by other drivers, boot loader or may be
2213  * hardwired in the regulator.
2214  */
2215 int regulator_enable(struct regulator *regulator)
2216 {
2217         struct regulator_dev *rdev = regulator->rdev;
2218         int ret = 0;
2219
2220         if (regulator->always_on)
2221                 return 0;
2222
2223         if (rdev->supply) {
2224                 ret = regulator_enable(rdev->supply);
2225                 if (ret != 0)
2226                         return ret;
2227         }
2228
2229         mutex_lock(&rdev->mutex);
2230         ret = _regulator_enable(rdev);
2231         mutex_unlock(&rdev->mutex);
2232
2233         if (ret != 0 && rdev->supply)
2234                 regulator_disable(rdev->supply);
2235
2236         return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(regulator_enable);
2239
2240 static int _regulator_do_disable(struct regulator_dev *rdev)
2241 {
2242         int ret;
2243
2244         trace_regulator_disable(rdev_get_name(rdev));
2245
2246         if (rdev->ena_pin) {
2247                 if (rdev->ena_gpio_state) {
2248                         ret = regulator_ena_gpio_ctrl(rdev, false);
2249                         if (ret < 0)
2250                                 return ret;
2251                         rdev->ena_gpio_state = 0;
2252                 }
2253
2254         } else if (rdev->desc->ops->disable) {
2255                 ret = rdev->desc->ops->disable(rdev);
2256                 if (ret != 0)
2257                         return ret;
2258         }
2259
2260         /* cares about last_off_jiffy only if off_on_delay is required by
2261          * device.
2262          */
2263         if (rdev->desc->off_on_delay)
2264                 rdev->last_off_jiffy = jiffies;
2265
2266         trace_regulator_disable_complete(rdev_get_name(rdev));
2267
2268         return 0;
2269 }
2270
2271 /* locks held by regulator_disable() */
2272 static int _regulator_disable(struct regulator_dev *rdev)
2273 {
2274         int ret = 0;
2275
2276         lockdep_assert_held_once(&rdev->mutex);
2277
2278         if (WARN(rdev->use_count <= 0,
2279                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2280                 return -EIO;
2281
2282         /* are we the last user and permitted to disable ? */
2283         if (rdev->use_count == 1 &&
2284             (rdev->constraints && !rdev->constraints->always_on)) {
2285
2286                 /* we are last user */
2287                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2288                         ret = _notifier_call_chain(rdev,
2289                                                    REGULATOR_EVENT_PRE_DISABLE,
2290                                                    NULL);
2291                         if (ret & NOTIFY_STOP_MASK)
2292                                 return -EINVAL;
2293
2294                         ret = _regulator_do_disable(rdev);
2295                         if (ret < 0) {
2296                                 rdev_err(rdev, "failed to disable\n");
2297                                 _notifier_call_chain(rdev,
2298                                                 REGULATOR_EVENT_ABORT_DISABLE,
2299                                                 NULL);
2300                                 return ret;
2301                         }
2302                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2303                                         NULL);
2304                 }
2305
2306                 rdev->use_count = 0;
2307         } else if (rdev->use_count > 1) {
2308                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2309                         drms_uA_update(rdev);
2310
2311                 rdev->use_count--;
2312         }
2313
2314         return ret;
2315 }
2316
2317 /**
2318  * regulator_disable - disable regulator output
2319  * @regulator: regulator source
2320  *
2321  * Disable the regulator output voltage or current.  Calls to
2322  * regulator_enable() must be balanced with calls to
2323  * regulator_disable().
2324  *
2325  * NOTE: this will only disable the regulator output if no other consumer
2326  * devices have it enabled, the regulator device supports disabling and
2327  * machine constraints permit this operation.
2328  */
2329 int regulator_disable(struct regulator *regulator)
2330 {
2331         struct regulator_dev *rdev = regulator->rdev;
2332         int ret = 0;
2333
2334         if (regulator->always_on)
2335                 return 0;
2336
2337         mutex_lock(&rdev->mutex);
2338         ret = _regulator_disable(rdev);
2339         mutex_unlock(&rdev->mutex);
2340
2341         if (ret == 0 && rdev->supply)
2342                 regulator_disable(rdev->supply);
2343
2344         return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_disable);
2347
2348 /* locks held by regulator_force_disable() */
2349 static int _regulator_force_disable(struct regulator_dev *rdev)
2350 {
2351         int ret = 0;
2352
2353         lockdep_assert_held_once(&rdev->mutex);
2354
2355         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2356                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2357         if (ret & NOTIFY_STOP_MASK)
2358                 return -EINVAL;
2359
2360         ret = _regulator_do_disable(rdev);
2361         if (ret < 0) {
2362                 rdev_err(rdev, "failed to force disable\n");
2363                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2364                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2365                 return ret;
2366         }
2367
2368         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2369                         REGULATOR_EVENT_DISABLE, NULL);
2370
2371         return 0;
2372 }
2373
2374 /**
2375  * regulator_force_disable - force disable regulator output
2376  * @regulator: regulator source
2377  *
2378  * Forcibly disable the regulator output voltage or current.
2379  * NOTE: this *will* disable the regulator output even if other consumer
2380  * devices have it enabled. This should be used for situations when device
2381  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2382  */
2383 int regulator_force_disable(struct regulator *regulator)
2384 {
2385         struct regulator_dev *rdev = regulator->rdev;
2386         int ret;
2387
2388         mutex_lock(&rdev->mutex);
2389         regulator->uA_load = 0;
2390         ret = _regulator_force_disable(regulator->rdev);
2391         mutex_unlock(&rdev->mutex);
2392
2393         if (rdev->supply)
2394                 while (rdev->open_count--)
2395                         regulator_disable(rdev->supply);
2396
2397         return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(regulator_force_disable);
2400
2401 static void regulator_disable_work(struct work_struct *work)
2402 {
2403         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2404                                                   disable_work.work);
2405         int count, i, ret;
2406
2407         mutex_lock(&rdev->mutex);
2408
2409         BUG_ON(!rdev->deferred_disables);
2410
2411         count = rdev->deferred_disables;
2412         rdev->deferred_disables = 0;
2413
2414         /*
2415          * Workqueue functions queue the new work instance while the previous
2416          * work instance is being processed. Cancel the queued work instance
2417          * as the work instance under processing does the job of the queued
2418          * work instance.
2419          */
2420         cancel_delayed_work(&rdev->disable_work);
2421
2422         for (i = 0; i < count; i++) {
2423                 ret = _regulator_disable(rdev);
2424                 if (ret != 0)
2425                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2426         }
2427
2428         mutex_unlock(&rdev->mutex);
2429
2430         if (rdev->supply) {
2431                 for (i = 0; i < count; i++) {
2432                         ret = regulator_disable(rdev->supply);
2433                         if (ret != 0) {
2434                                 rdev_err(rdev,
2435                                          "Supply disable failed: %d\n", ret);
2436                         }
2437                 }
2438         }
2439 }
2440
2441 /**
2442  * regulator_disable_deferred - disable regulator output with delay
2443  * @regulator: regulator source
2444  * @ms: miliseconds until the regulator is disabled
2445  *
2446  * Execute regulator_disable() on the regulator after a delay.  This
2447  * is intended for use with devices that require some time to quiesce.
2448  *
2449  * NOTE: this will only disable the regulator output if no other consumer
2450  * devices have it enabled, the regulator device supports disabling and
2451  * machine constraints permit this operation.
2452  */
2453 int regulator_disable_deferred(struct regulator *regulator, int ms)
2454 {
2455         struct regulator_dev *rdev = regulator->rdev;
2456
2457         if (regulator->always_on)
2458                 return 0;
2459
2460         if (!ms)
2461                 return regulator_disable(regulator);
2462
2463         mutex_lock(&rdev->mutex);
2464         rdev->deferred_disables++;
2465         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2466                          msecs_to_jiffies(ms));
2467         mutex_unlock(&rdev->mutex);
2468
2469         return 0;
2470 }
2471 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2472
2473 static int _regulator_is_enabled(struct regulator_dev *rdev)
2474 {
2475         /* A GPIO control always takes precedence */
2476         if (rdev->ena_pin)
2477                 return rdev->ena_gpio_state;
2478
2479         /* If we don't know then assume that the regulator is always on */
2480         if (!rdev->desc->ops->is_enabled)
2481                 return 1;
2482
2483         return rdev->desc->ops->is_enabled(rdev);
2484 }
2485
2486 static int _regulator_list_voltage(struct regulator *regulator,
2487                                     unsigned selector, int lock)
2488 {
2489         struct regulator_dev *rdev = regulator->rdev;
2490         const struct regulator_ops *ops = rdev->desc->ops;
2491         int ret;
2492
2493         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2494                 return rdev->desc->fixed_uV;
2495
2496         if (ops->list_voltage) {
2497                 if (selector >= rdev->desc->n_voltages)
2498                         return -EINVAL;
2499                 if (lock)
2500                         mutex_lock(&rdev->mutex);
2501                 ret = ops->list_voltage(rdev, selector);
2502                 if (lock)
2503                         mutex_unlock(&rdev->mutex);
2504         } else if (rdev->is_switch && rdev->supply) {
2505                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2506         } else {
2507                 return -EINVAL;
2508         }
2509
2510         if (ret > 0) {
2511                 if (ret < rdev->constraints->min_uV)
2512                         ret = 0;
2513                 else if (ret > rdev->constraints->max_uV)
2514                         ret = 0;
2515         }
2516
2517         return ret;
2518 }
2519
2520 /**
2521  * regulator_is_enabled - is the regulator output enabled
2522  * @regulator: regulator source
2523  *
2524  * Returns positive if the regulator driver backing the source/client
2525  * has requested that the device be enabled, zero if it hasn't, else a
2526  * negative errno code.
2527  *
2528  * Note that the device backing this regulator handle can have multiple
2529  * users, so it might be enabled even if regulator_enable() was never
2530  * called for this particular source.
2531  */
2532 int regulator_is_enabled(struct regulator *regulator)
2533 {
2534         int ret;
2535
2536         if (regulator->always_on)
2537                 return 1;
2538
2539         mutex_lock(&regulator->rdev->mutex);
2540         ret = _regulator_is_enabled(regulator->rdev);
2541         mutex_unlock(&regulator->rdev->mutex);
2542
2543         return ret;
2544 }
2545 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2546
2547 /**
2548  * regulator_count_voltages - count regulator_list_voltage() selectors
2549  * @regulator: regulator source
2550  *
2551  * Returns number of selectors, or negative errno.  Selectors are
2552  * numbered starting at zero, and typically correspond to bitfields
2553  * in hardware registers.
2554  */
2555 int regulator_count_voltages(struct regulator *regulator)
2556 {
2557         struct regulator_dev    *rdev = regulator->rdev;
2558
2559         if (rdev->desc->n_voltages)
2560                 return rdev->desc->n_voltages;
2561
2562         if (!rdev->is_switch || !rdev->supply)
2563                 return -EINVAL;
2564
2565         return regulator_count_voltages(rdev->supply);
2566 }
2567 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2568
2569 /**
2570  * regulator_list_voltage - enumerate supported voltages
2571  * @regulator: regulator source
2572  * @selector: identify voltage to list
2573  * Context: can sleep
2574  *
2575  * Returns a voltage that can be passed to @regulator_set_voltage(),
2576  * zero if this selector code can't be used on this system, or a
2577  * negative errno.
2578  */
2579 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2580 {
2581         return _regulator_list_voltage(regulator, selector, 1);
2582 }
2583 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2584
2585 /**
2586  * regulator_get_regmap - get the regulator's register map
2587  * @regulator: regulator source
2588  *
2589  * Returns the register map for the given regulator, or an ERR_PTR value
2590  * if the regulator doesn't use regmap.
2591  */
2592 struct regmap *regulator_get_regmap(struct regulator *regulator)
2593 {
2594         struct regmap *map = regulator->rdev->regmap;
2595
2596         return map ? map : ERR_PTR(-EOPNOTSUPP);
2597 }
2598
2599 /**
2600  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2601  * @regulator: regulator source
2602  * @vsel_reg: voltage selector register, output parameter
2603  * @vsel_mask: mask for voltage selector bitfield, output parameter
2604  *
2605  * Returns the hardware register offset and bitmask used for setting the
2606  * regulator voltage. This might be useful when configuring voltage-scaling
2607  * hardware or firmware that can make I2C requests behind the kernel's back,
2608  * for example.
2609  *
2610  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2611  * and 0 is returned, otherwise a negative errno is returned.
2612  */
2613 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2614                                          unsigned *vsel_reg,
2615                                          unsigned *vsel_mask)
2616 {
2617         struct regulator_dev *rdev = regulator->rdev;
2618         const struct regulator_ops *ops = rdev->desc->ops;
2619
2620         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2621                 return -EOPNOTSUPP;
2622
2623          *vsel_reg = rdev->desc->vsel_reg;
2624          *vsel_mask = rdev->desc->vsel_mask;
2625
2626          return 0;
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2629
2630 /**
2631  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2632  * @regulator: regulator source
2633  * @selector: identify voltage to list
2634  *
2635  * Converts the selector to a hardware-specific voltage selector that can be
2636  * directly written to the regulator registers. The address of the voltage
2637  * register can be determined by calling @regulator_get_hardware_vsel_register.
2638  *
2639  * On error a negative errno is returned.
2640  */
2641 int regulator_list_hardware_vsel(struct regulator *regulator,
2642                                  unsigned selector)
2643 {
2644         struct regulator_dev *rdev = regulator->rdev;
2645         const struct regulator_ops *ops = rdev->desc->ops;
2646
2647         if (selector >= rdev->desc->n_voltages)
2648                 return -EINVAL;
2649         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2650                 return -EOPNOTSUPP;
2651
2652         return selector;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2655
2656 /**
2657  * regulator_get_linear_step - return the voltage step size between VSEL values
2658  * @regulator: regulator source
2659  *
2660  * Returns the voltage step size between VSEL values for linear
2661  * regulators, or return 0 if the regulator isn't a linear regulator.
2662  */
2663 unsigned int regulator_get_linear_step(struct regulator *regulator)
2664 {
2665         struct regulator_dev *rdev = regulator->rdev;
2666
2667         return rdev->desc->uV_step;
2668 }
2669 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2670
2671 /**
2672  * regulator_is_supported_voltage - check if a voltage range can be supported
2673  *
2674  * @regulator: Regulator to check.
2675  * @min_uV: Minimum required voltage in uV.
2676  * @max_uV: Maximum required voltage in uV.
2677  *
2678  * Returns a boolean or a negative error code.
2679  */
2680 int regulator_is_supported_voltage(struct regulator *regulator,
2681                                    int min_uV, int max_uV)
2682 {
2683         struct regulator_dev *rdev = regulator->rdev;
2684         int i, voltages, ret;
2685
2686         /* If we can't change voltage check the current voltage */
2687         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2688                 ret = regulator_get_voltage(regulator);
2689                 if (ret >= 0)
2690                         return min_uV <= ret && ret <= max_uV;
2691                 else
2692                         return ret;
2693         }
2694
2695         /* Any voltage within constrains range is fine? */
2696         if (rdev->desc->continuous_voltage_range)
2697                 return min_uV >= rdev->constraints->min_uV &&
2698                                 max_uV <= rdev->constraints->max_uV;
2699
2700         ret = regulator_count_voltages(regulator);
2701         if (ret < 0)
2702                 return ret;
2703         voltages = ret;
2704
2705         for (i = 0; i < voltages; i++) {
2706                 ret = regulator_list_voltage(regulator, i);
2707
2708                 if (ret >= min_uV && ret <= max_uV)
2709                         return 1;
2710         }
2711
2712         return 0;
2713 }
2714 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2715
2716 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2717                                  int max_uV)
2718 {
2719         const struct regulator_desc *desc = rdev->desc;
2720
2721         if (desc->ops->map_voltage)
2722                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2723
2724         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2725                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2726
2727         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2728                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2729
2730         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2731 }
2732
2733 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2734                                        int min_uV, int max_uV,
2735                                        unsigned *selector)
2736 {
2737         struct pre_voltage_change_data data;
2738         int ret;
2739
2740         data.old_uV = _regulator_get_voltage(rdev);
2741         data.min_uV = min_uV;
2742         data.max_uV = max_uV;
2743         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2744                                    &data);
2745         if (ret & NOTIFY_STOP_MASK)
2746                 return -EINVAL;
2747
2748         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2749         if (ret >= 0)
2750                 return ret;
2751
2752         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2753                              (void *)data.old_uV);
2754
2755         return ret;
2756 }
2757
2758 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2759                                            int uV, unsigned selector)
2760 {
2761         struct pre_voltage_change_data data;
2762         int ret;
2763
2764         data.old_uV = _regulator_get_voltage(rdev);
2765         data.min_uV = uV;
2766         data.max_uV = uV;
2767         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2768                                    &data);
2769         if (ret & NOTIFY_STOP_MASK)
2770                 return -EINVAL;
2771
2772         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2773         if (ret >= 0)
2774                 return ret;
2775
2776         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2777                              (void *)data.old_uV);
2778
2779         return ret;
2780 }
2781
2782 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2783                                        int old_uV, int new_uV)
2784 {
2785         unsigned int ramp_delay = 0;
2786
2787         if (rdev->constraints->ramp_delay)
2788                 ramp_delay = rdev->constraints->ramp_delay;
2789         else if (rdev->desc->ramp_delay)
2790                 ramp_delay = rdev->desc->ramp_delay;
2791         else if (rdev->constraints->settling_time)
2792                 return rdev->constraints->settling_time;
2793         else if (rdev->constraints->settling_time_up &&
2794                  (new_uV > old_uV))
2795                 return rdev->constraints->settling_time_up;
2796         else if (rdev->constraints->settling_time_down &&
2797                  (new_uV < old_uV))
2798                 return rdev->constraints->settling_time_down;
2799
2800         if (ramp_delay == 0) {
2801                 rdev_dbg(rdev, "ramp_delay not set\n");
2802                 return 0;
2803         }
2804
2805         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2806 }
2807
2808 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2809                                      int min_uV, int max_uV)
2810 {
2811         int ret;
2812         int delay = 0;
2813         int best_val = 0;
2814         unsigned int selector;
2815         int old_selector = -1;
2816         const struct regulator_ops *ops = rdev->desc->ops;
2817         int old_uV = _regulator_get_voltage(rdev);
2818
2819         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2820
2821         min_uV += rdev->constraints->uV_offset;
2822         max_uV += rdev->constraints->uV_offset;
2823
2824         /*
2825          * If we can't obtain the old selector there is not enough
2826          * info to call set_voltage_time_sel().
2827          */
2828         if (_regulator_is_enabled(rdev) &&
2829             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2830                 old_selector = ops->get_voltage_sel(rdev);
2831                 if (old_selector < 0)
2832                         return old_selector;
2833         }
2834
2835         if (ops->set_voltage) {
2836                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2837                                                   &selector);
2838
2839                 if (ret >= 0) {
2840                         if (ops->list_voltage)
2841                                 best_val = ops->list_voltage(rdev,
2842                                                              selector);
2843                         else
2844                                 best_val = _regulator_get_voltage(rdev);
2845                 }
2846
2847         } else if (ops->set_voltage_sel) {
2848                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2849                 if (ret >= 0) {
2850                         best_val = ops->list_voltage(rdev, ret);
2851                         if (min_uV <= best_val && max_uV >= best_val) {
2852                                 selector = ret;
2853                                 if (old_selector == selector)
2854                                         ret = 0;
2855                                 else
2856                                         ret = _regulator_call_set_voltage_sel(
2857                                                 rdev, best_val, selector);
2858                         } else {
2859                                 ret = -EINVAL;
2860                         }
2861                 }
2862         } else {
2863                 ret = -EINVAL;
2864         }
2865
2866         if (ret)
2867                 goto out;
2868
2869         if (ops->set_voltage_time_sel) {
2870                 /*
2871                  * Call set_voltage_time_sel if successfully obtained
2872                  * old_selector
2873                  */
2874                 if (old_selector >= 0 && old_selector != selector)
2875                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2876                                                           selector);
2877         } else {
2878                 if (old_uV != best_val) {
2879                         if (ops->set_voltage_time)
2880                                 delay = ops->set_voltage_time(rdev, old_uV,
2881                                                               best_val);
2882                         else
2883                                 delay = _regulator_set_voltage_time(rdev,
2884                                                                     old_uV,
2885                                                                     best_val);
2886                 }
2887         }
2888
2889         if (delay < 0) {
2890                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2891                 delay = 0;
2892         }
2893
2894         /* Insert any necessary delays */
2895         if (delay >= 1000) {
2896                 mdelay(delay / 1000);
2897                 udelay(delay % 1000);
2898         } else if (delay) {
2899                 udelay(delay);
2900         }
2901
2902         if (best_val >= 0) {
2903                 unsigned long data = best_val;
2904
2905                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2906                                      (void *)data);
2907         }
2908
2909 out:
2910         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2911
2912         return ret;
2913 }
2914
2915 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2916                                           int min_uV, int max_uV)
2917 {
2918         struct regulator_dev *rdev = regulator->rdev;
2919         int ret = 0;
2920         int old_min_uV, old_max_uV;
2921         int current_uV;
2922         int best_supply_uV = 0;
2923         int supply_change_uV = 0;
2924
2925         /* If we're setting the same range as last time the change
2926          * should be a noop (some cpufreq implementations use the same
2927          * voltage for multiple frequencies, for example).
2928          */
2929         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2930                 goto out;
2931
2932         /* If we're trying to set a range that overlaps the current voltage,
2933          * return successfully even though the regulator does not support
2934          * changing the voltage.
2935          */
2936         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2937                 current_uV = _regulator_get_voltage(rdev);
2938                 if (min_uV <= current_uV && current_uV <= max_uV) {
2939                         regulator->min_uV = min_uV;
2940                         regulator->max_uV = max_uV;
2941                         goto out;
2942                 }
2943         }
2944
2945         /* sanity check */
2946         if (!rdev->desc->ops->set_voltage &&
2947             !rdev->desc->ops->set_voltage_sel) {
2948                 ret = -EINVAL;
2949                 goto out;
2950         }
2951
2952         /* constraints check */
2953         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2954         if (ret < 0)
2955                 goto out;
2956
2957         /* restore original values in case of error */
2958         old_min_uV = regulator->min_uV;
2959         old_max_uV = regulator->max_uV;
2960         regulator->min_uV = min_uV;
2961         regulator->max_uV = max_uV;
2962
2963         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2964         if (ret < 0)
2965                 goto out2;
2966
2967         if (rdev->supply &&
2968             regulator_ops_is_valid(rdev->supply->rdev,
2969                                    REGULATOR_CHANGE_VOLTAGE) &&
2970             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2971                                            rdev->desc->ops->get_voltage_sel))) {
2972                 int current_supply_uV;
2973                 int selector;
2974
2975                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2976                 if (selector < 0) {
2977                         ret = selector;
2978                         goto out2;
2979                 }
2980
2981                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2982                 if (best_supply_uV < 0) {
2983                         ret = best_supply_uV;
2984                         goto out2;
2985                 }
2986
2987                 best_supply_uV += rdev->desc->min_dropout_uV;
2988
2989                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2990                 if (current_supply_uV < 0) {
2991                         ret = current_supply_uV;
2992                         goto out2;
2993                 }
2994
2995                 supply_change_uV = best_supply_uV - current_supply_uV;
2996         }
2997
2998         if (supply_change_uV > 0) {
2999                 ret = regulator_set_voltage_unlocked(rdev->supply,
3000                                 best_supply_uV, INT_MAX);
3001                 if (ret) {
3002                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3003                                         ret);
3004                         goto out2;
3005                 }
3006         }
3007
3008         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3009         if (ret < 0)
3010                 goto out2;
3011
3012         if (supply_change_uV < 0) {
3013                 ret = regulator_set_voltage_unlocked(rdev->supply,
3014                                 best_supply_uV, INT_MAX);
3015                 if (ret)
3016                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3017                                         ret);
3018                 /* No need to fail here */
3019                 ret = 0;
3020         }
3021
3022 out:
3023         return ret;
3024 out2:
3025         regulator->min_uV = old_min_uV;
3026         regulator->max_uV = old_max_uV;
3027
3028         return ret;
3029 }
3030
3031 /**
3032  * regulator_set_voltage - set regulator output voltage
3033  * @regulator: regulator source
3034  * @min_uV: Minimum required voltage in uV
3035  * @max_uV: Maximum acceptable voltage in uV
3036  *
3037  * Sets a voltage regulator to the desired output voltage. This can be set
3038  * during any regulator state. IOW, regulator can be disabled or enabled.
3039  *
3040  * If the regulator is enabled then the voltage will change to the new value
3041  * immediately otherwise if the regulator is disabled the regulator will
3042  * output at the new voltage when enabled.
3043  *
3044  * NOTE: If the regulator is shared between several devices then the lowest
3045  * request voltage that meets the system constraints will be used.
3046  * Regulator system constraints must be set for this regulator before
3047  * calling this function otherwise this call will fail.
3048  */
3049 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3050 {
3051         int ret = 0;
3052
3053         regulator_lock_supply(regulator->rdev);
3054
3055         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3056
3057         regulator_unlock_supply(regulator->rdev);
3058
3059         return ret;
3060 }
3061 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3062
3063 /**
3064  * regulator_set_voltage_time - get raise/fall time
3065  * @regulator: regulator source
3066  * @old_uV: starting voltage in microvolts
3067  * @new_uV: target voltage in microvolts
3068  *
3069  * Provided with the starting and ending voltage, this function attempts to
3070  * calculate the time in microseconds required to rise or fall to this new
3071  * voltage.
3072  */
3073 int regulator_set_voltage_time(struct regulator *regulator,
3074                                int old_uV, int new_uV)
3075 {
3076         struct regulator_dev *rdev = regulator->rdev;
3077         const struct regulator_ops *ops = rdev->desc->ops;
3078         int old_sel = -1;
3079         int new_sel = -1;
3080         int voltage;
3081         int i;
3082
3083         if (ops->set_voltage_time)
3084                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3085         else if (!ops->set_voltage_time_sel)
3086                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3087
3088         /* Currently requires operations to do this */
3089         if (!ops->list_voltage || !rdev->desc->n_voltages)
3090                 return -EINVAL;
3091
3092         for (i = 0; i < rdev->desc->n_voltages; i++) {
3093                 /* We only look for exact voltage matches here */
3094                 voltage = regulator_list_voltage(regulator, i);
3095                 if (voltage < 0)
3096                         return -EINVAL;
3097                 if (voltage == 0)
3098                         continue;
3099                 if (voltage == old_uV)
3100                         old_sel = i;
3101                 if (voltage == new_uV)
3102                         new_sel = i;
3103         }
3104
3105         if (old_sel < 0 || new_sel < 0)
3106                 return -EINVAL;
3107
3108         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3109 }
3110 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3111
3112 /**
3113  * regulator_set_voltage_time_sel - get raise/fall time
3114  * @rdev: regulator source device
3115  * @old_selector: selector for starting voltage
3116  * @new_selector: selector for target voltage
3117  *
3118  * Provided with the starting and target voltage selectors, this function
3119  * returns time in microseconds required to rise or fall to this new voltage
3120  *
3121  * Drivers providing ramp_delay in regulation_constraints can use this as their
3122  * set_voltage_time_sel() operation.
3123  */
3124 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3125                                    unsigned int old_selector,
3126                                    unsigned int new_selector)
3127 {
3128         int old_volt, new_volt;
3129
3130         /* sanity check */
3131         if (!rdev->desc->ops->list_voltage)
3132                 return -EINVAL;
3133
3134         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3135         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3136
3137         if (rdev->desc->ops->set_voltage_time)
3138                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3139                                                          new_volt);
3140         else
3141                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3144
3145 /**
3146  * regulator_sync_voltage - re-apply last regulator output voltage
3147  * @regulator: regulator source
3148  *
3149  * Re-apply the last configured voltage.  This is intended to be used
3150  * where some external control source the consumer is cooperating with
3151  * has caused the configured voltage to change.
3152  */
3153 int regulator_sync_voltage(struct regulator *regulator)
3154 {
3155         struct regulator_dev *rdev = regulator->rdev;
3156         int ret, min_uV, max_uV;
3157
3158         mutex_lock(&rdev->mutex);
3159
3160         if (!rdev->desc->ops->set_voltage &&
3161             !rdev->desc->ops->set_voltage_sel) {
3162                 ret = -EINVAL;
3163                 goto out;
3164         }
3165
3166         /* This is only going to work if we've had a voltage configured. */
3167         if (!regulator->min_uV && !regulator->max_uV) {
3168                 ret = -EINVAL;
3169                 goto out;
3170         }
3171
3172         min_uV = regulator->min_uV;
3173         max_uV = regulator->max_uV;
3174
3175         /* This should be a paranoia check... */
3176         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3177         if (ret < 0)
3178                 goto out;
3179
3180         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3181         if (ret < 0)
3182                 goto out;
3183
3184         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3185
3186 out:
3187         mutex_unlock(&rdev->mutex);
3188         return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3191
3192 static int _regulator_get_voltage(struct regulator_dev *rdev)
3193 {
3194         int sel, ret;
3195         bool bypassed;
3196
3197         if (rdev->desc->ops->get_bypass) {
3198                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3199                 if (ret < 0)
3200                         return ret;
3201                 if (bypassed) {
3202                         /* if bypassed the regulator must have a supply */
3203                         if (!rdev->supply) {
3204                                 rdev_err(rdev,
3205                                          "bypassed regulator has no supply!\n");
3206                                 return -EPROBE_DEFER;
3207                         }
3208
3209                         return _regulator_get_voltage(rdev->supply->rdev);
3210                 }
3211         }
3212
3213         if (rdev->desc->ops->get_voltage_sel) {
3214                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3215                 if (sel < 0)
3216                         return sel;
3217                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3218         } else if (rdev->desc->ops->get_voltage) {
3219                 ret = rdev->desc->ops->get_voltage(rdev);
3220         } else if (rdev->desc->ops->list_voltage) {
3221                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3222         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3223                 ret = rdev->desc->fixed_uV;
3224         } else if (rdev->supply) {
3225                 ret = _regulator_get_voltage(rdev->supply->rdev);
3226         } else if (rdev->supply_name) {
3227                 return -EPROBE_DEFER;
3228         } else {
3229                 return -EINVAL;
3230         }
3231
3232         if (ret < 0)
3233                 return ret;
3234         return ret - rdev->constraints->uV_offset;
3235 }
3236
3237 /**
3238  * regulator_get_voltage - get regulator output voltage
3239  * @regulator: regulator source
3240  *
3241  * This returns the current regulator voltage in uV.
3242  *
3243  * NOTE: If the regulator is disabled it will return the voltage value. This
3244  * function should not be used to determine regulator state.
3245  */
3246 int regulator_get_voltage(struct regulator *regulator)
3247 {
3248         int ret;
3249
3250         regulator_lock_supply(regulator->rdev);
3251
3252         ret = _regulator_get_voltage(regulator->rdev);
3253
3254         regulator_unlock_supply(regulator->rdev);
3255
3256         return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3259
3260 /**
3261  * regulator_set_current_limit - set regulator output current limit
3262  * @regulator: regulator source
3263  * @min_uA: Minimum supported current in uA
3264  * @max_uA: Maximum supported current in uA
3265  *
3266  * Sets current sink to the desired output current. This can be set during
3267  * any regulator state. IOW, regulator can be disabled or enabled.
3268  *
3269  * If the regulator is enabled then the current will change to the new value
3270  * immediately otherwise if the regulator is disabled the regulator will
3271  * output at the new current when enabled.
3272  *
3273  * NOTE: Regulator system constraints must be set for this regulator before
3274  * calling this function otherwise this call will fail.
3275  */
3276 int regulator_set_current_limit(struct regulator *regulator,
3277                                int min_uA, int max_uA)
3278 {
3279         struct regulator_dev *rdev = regulator->rdev;
3280         int ret;
3281
3282         mutex_lock(&rdev->mutex);
3283
3284         /* sanity check */
3285         if (!rdev->desc->ops->set_current_limit) {
3286                 ret = -EINVAL;
3287                 goto out;
3288         }
3289
3290         /* constraints check */
3291         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3292         if (ret < 0)
3293                 goto out;
3294
3295         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3296 out:
3297         mutex_unlock(&rdev->mutex);
3298         return ret;
3299 }
3300 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3301
3302 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3303 {
3304         int ret;
3305
3306         mutex_lock(&rdev->mutex);
3307
3308         /* sanity check */
3309         if (!rdev->desc->ops->get_current_limit) {
3310                 ret = -EINVAL;
3311                 goto out;
3312         }
3313
3314         ret = rdev->desc->ops->get_current_limit(rdev);
3315 out:
3316         mutex_unlock(&rdev->mutex);
3317         return ret;
3318 }
3319
3320 /**
3321  * regulator_get_current_limit - get regulator output current
3322  * @regulator: regulator source
3323  *
3324  * This returns the current supplied by the specified current sink in uA.
3325  *
3326  * NOTE: If the regulator is disabled it will return the current value. This
3327  * function should not be used to determine regulator state.
3328  */
3329 int regulator_get_current_limit(struct regulator *regulator)
3330 {
3331         return _regulator_get_current_limit(regulator->rdev);
3332 }
3333 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3334
3335 /**
3336  * regulator_set_mode - set regulator operating mode
3337  * @regulator: regulator source
3338  * @mode: operating mode - one of the REGULATOR_MODE constants
3339  *
3340  * Set regulator operating mode to increase regulator efficiency or improve
3341  * regulation performance.
3342  *
3343  * NOTE: Regulator system constraints must be set for this regulator before
3344  * calling this function otherwise this call will fail.
3345  */
3346 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3347 {
3348         struct regulator_dev *rdev = regulator->rdev;
3349         int ret;
3350         int regulator_curr_mode;
3351
3352         mutex_lock(&rdev->mutex);
3353
3354         /* sanity check */
3355         if (!rdev->desc->ops->set_mode) {
3356                 ret = -EINVAL;
3357                 goto out;
3358         }
3359
3360         /* return if the same mode is requested */
3361         if (rdev->desc->ops->get_mode) {
3362                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3363                 if (regulator_curr_mode == mode) {
3364                         ret = 0;
3365                         goto out;
3366                 }
3367         }
3368
3369         /* constraints check */
3370         ret = regulator_mode_constrain(rdev, &mode);
3371         if (ret < 0)
3372                 goto out;
3373
3374         ret = rdev->desc->ops->set_mode(rdev, mode);
3375 out:
3376         mutex_unlock(&rdev->mutex);
3377         return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(regulator_set_mode);
3380
3381 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3382 {
3383         int ret;
3384
3385         mutex_lock(&rdev->mutex);
3386
3387         /* sanity check */
3388         if (!rdev->desc->ops->get_mode) {
3389                 ret = -EINVAL;
3390                 goto out;
3391         }
3392
3393         ret = rdev->desc->ops->get_mode(rdev);
3394 out:
3395         mutex_unlock(&rdev->mutex);
3396         return ret;
3397 }
3398
3399 /**
3400  * regulator_get_mode - get regulator operating mode
3401  * @regulator: regulator source
3402  *
3403  * Get the current regulator operating mode.
3404  */
3405 unsigned int regulator_get_mode(struct regulator *regulator)
3406 {
3407         return _regulator_get_mode(regulator->rdev);
3408 }
3409 EXPORT_SYMBOL_GPL(regulator_get_mode);
3410
3411 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3412                                         unsigned int *flags)
3413 {
3414         int ret;
3415
3416         mutex_lock(&rdev->mutex);
3417
3418         /* sanity check */
3419         if (!rdev->desc->ops->get_error_flags) {
3420                 ret = -EINVAL;
3421                 goto out;
3422         }
3423
3424         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3425 out:
3426         mutex_unlock(&rdev->mutex);
3427         return ret;
3428 }
3429
3430 /**
3431  * regulator_get_error_flags - get regulator error information
3432  * @regulator: regulator source
3433  * @flags: pointer to store error flags
3434  *
3435  * Get the current regulator error information.
3436  */
3437 int regulator_get_error_flags(struct regulator *regulator,
3438                                 unsigned int *flags)
3439 {
3440         return _regulator_get_error_flags(regulator->rdev, flags);
3441 }
3442 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3443
3444 /**
3445  * regulator_set_load - set regulator load
3446  * @regulator: regulator source
3447  * @uA_load: load current
3448  *
3449  * Notifies the regulator core of a new device load. This is then used by
3450  * DRMS (if enabled by constraints) to set the most efficient regulator
3451  * operating mode for the new regulator loading.
3452  *
3453  * Consumer devices notify their supply regulator of the maximum power
3454  * they will require (can be taken from device datasheet in the power
3455  * consumption tables) when they change operational status and hence power
3456  * state. Examples of operational state changes that can affect power
3457  * consumption are :-
3458  *
3459  *    o Device is opened / closed.
3460  *    o Device I/O is about to begin or has just finished.
3461  *    o Device is idling in between work.
3462  *
3463  * This information is also exported via sysfs to userspace.
3464  *
3465  * DRMS will sum the total requested load on the regulator and change
3466  * to the most efficient operating mode if platform constraints allow.
3467  *
3468  * On error a negative errno is returned.
3469  */
3470 int regulator_set_load(struct regulator *regulator, int uA_load)
3471 {
3472         struct regulator_dev *rdev = regulator->rdev;
3473         int ret;
3474
3475         mutex_lock(&rdev->mutex);
3476         regulator->uA_load = uA_load;
3477         ret = drms_uA_update(rdev);
3478         mutex_unlock(&rdev->mutex);
3479
3480         return ret;
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_set_load);
3483
3484 /**
3485  * regulator_allow_bypass - allow the regulator to go into bypass mode
3486  *
3487  * @regulator: Regulator to configure
3488  * @enable: enable or disable bypass mode
3489  *
3490  * Allow the regulator to go into bypass mode if all other consumers
3491  * for the regulator also enable bypass mode and the machine
3492  * constraints allow this.  Bypass mode means that the regulator is
3493  * simply passing the input directly to the output with no regulation.
3494  */
3495 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3496 {
3497         struct regulator_dev *rdev = regulator->rdev;
3498         int ret = 0;
3499
3500         if (!rdev->desc->ops->set_bypass)
3501                 return 0;
3502
3503         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3504                 return 0;
3505
3506         mutex_lock(&rdev->mutex);
3507
3508         if (enable && !regulator->bypass) {
3509                 rdev->bypass_count++;
3510
3511                 if (rdev->bypass_count == rdev->open_count) {
3512                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3513                         if (ret != 0)
3514                                 rdev->bypass_count--;
3515                 }
3516
3517         } else if (!enable && regulator->bypass) {
3518                 rdev->bypass_count--;
3519
3520                 if (rdev->bypass_count != rdev->open_count) {
3521                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3522                         if (ret != 0)
3523                                 rdev->bypass_count++;
3524                 }
3525         }
3526
3527         if (ret == 0)
3528                 regulator->bypass = enable;
3529
3530         mutex_unlock(&rdev->mutex);
3531
3532         return ret;
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3535
3536 /**
3537  * regulator_register_notifier - register regulator event notifier
3538  * @regulator: regulator source
3539  * @nb: notifier block
3540  *
3541  * Register notifier block to receive regulator events.
3542  */
3543 int regulator_register_notifier(struct regulator *regulator,
3544                               struct notifier_block *nb)
3545 {
3546         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3547                                                 nb);
3548 }
3549 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3550
3551 /**
3552  * regulator_unregister_notifier - unregister regulator event notifier
3553  * @regulator: regulator source
3554  * @nb: notifier block
3555  *
3556  * Unregister regulator event notifier block.
3557  */
3558 int regulator_unregister_notifier(struct regulator *regulator,
3559                                 struct notifier_block *nb)
3560 {
3561         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3562                                                   nb);
3563 }
3564 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3565
3566 /* notify regulator consumers and downstream regulator consumers.
3567  * Note mutex must be held by caller.
3568  */
3569 static int _notifier_call_chain(struct regulator_dev *rdev,
3570                                   unsigned long event, void *data)
3571 {
3572         /* call rdev chain first */
3573         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3574 }
3575
3576 /**
3577  * regulator_bulk_get - get multiple regulator consumers
3578  *
3579  * @dev:           Device to supply
3580  * @num_consumers: Number of consumers to register
3581  * @consumers:     Configuration of consumers; clients are stored here.
3582  *
3583  * @return 0 on success, an errno on failure.
3584  *
3585  * This helper function allows drivers to get several regulator
3586  * consumers in one operation.  If any of the regulators cannot be
3587  * acquired then any regulators that were allocated will be freed
3588  * before returning to the caller.
3589  */
3590 int regulator_bulk_get(struct device *dev, int num_consumers,
3591                        struct regulator_bulk_data *consumers)
3592 {
3593         int i;
3594         int ret;
3595
3596         for (i = 0; i < num_consumers; i++)
3597                 consumers[i].consumer = NULL;
3598
3599         for (i = 0; i < num_consumers; i++) {
3600                 consumers[i].consumer = regulator_get(dev,
3601                                                       consumers[i].supply);
3602                 if (IS_ERR(consumers[i].consumer)) {
3603                         ret = PTR_ERR(consumers[i].consumer);
3604                         dev_err(dev, "Failed to get supply '%s': %d\n",
3605                                 consumers[i].supply, ret);
3606                         consumers[i].consumer = NULL;
3607                         goto err;
3608                 }
3609         }
3610
3611         return 0;
3612
3613 err:
3614         while (--i >= 0)
3615                 regulator_put(consumers[i].consumer);
3616
3617         return ret;
3618 }
3619 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3620
3621 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3622 {
3623         struct regulator_bulk_data *bulk = data;
3624
3625         bulk->ret = regulator_enable(bulk->consumer);
3626 }
3627
3628 /**
3629  * regulator_bulk_enable - enable multiple regulator consumers
3630  *
3631  * @num_consumers: Number of consumers
3632  * @consumers:     Consumer data; clients are stored here.
3633  * @return         0 on success, an errno on failure
3634  *
3635  * This convenience API allows consumers to enable multiple regulator
3636  * clients in a single API call.  If any consumers cannot be enabled
3637  * then any others that were enabled will be disabled again prior to
3638  * return.
3639  */
3640 int regulator_bulk_enable(int num_consumers,
3641                           struct regulator_bulk_data *consumers)
3642 {
3643         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3644         int i;
3645         int ret = 0;
3646
3647         for (i = 0; i < num_consumers; i++) {
3648                 if (consumers[i].consumer->always_on)
3649                         consumers[i].ret = 0;
3650                 else
3651                         async_schedule_domain(regulator_bulk_enable_async,
3652                                               &consumers[i], &async_domain);
3653         }
3654
3655         async_synchronize_full_domain(&async_domain);
3656
3657         /* If any consumer failed we need to unwind any that succeeded */
3658         for (i = 0; i < num_consumers; i++) {
3659                 if (consumers[i].ret != 0) {
3660                         ret = consumers[i].ret;
3661                         goto err;
3662                 }
3663         }
3664
3665         return 0;
3666
3667 err:
3668         for (i = 0; i < num_consumers; i++) {
3669                 if (consumers[i].ret < 0)
3670                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3671                                consumers[i].ret);
3672                 else
3673                         regulator_disable(consumers[i].consumer);
3674         }
3675
3676         return ret;
3677 }
3678 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3679
3680 /**
3681  * regulator_bulk_disable - disable multiple regulator consumers
3682  *
3683  * @num_consumers: Number of consumers
3684  * @consumers:     Consumer data; clients are stored here.
3685  * @return         0 on success, an errno on failure
3686  *
3687  * This convenience API allows consumers to disable multiple regulator
3688  * clients in a single API call.  If any consumers cannot be disabled
3689  * then any others that were disabled will be enabled again prior to
3690  * return.
3691  */
3692 int regulator_bulk_disable(int num_consumers,
3693                            struct regulator_bulk_data *consumers)
3694 {
3695         int i;
3696         int ret, r;
3697
3698         for (i = num_consumers - 1; i >= 0; --i) {
3699                 ret = regulator_disable(consumers[i].consumer);
3700                 if (ret != 0)
3701                         goto err;
3702         }
3703
3704         return 0;
3705
3706 err:
3707         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3708         for (++i; i < num_consumers; ++i) {
3709                 r = regulator_enable(consumers[i].consumer);
3710                 if (r != 0)
3711                         pr_err("Failed to re-enable %s: %d\n",
3712                                consumers[i].supply, r);
3713         }
3714
3715         return ret;
3716 }
3717 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3718
3719 /**
3720  * regulator_bulk_force_disable - force disable multiple regulator consumers
3721  *
3722  * @num_consumers: Number of consumers
3723  * @consumers:     Consumer data; clients are stored here.
3724  * @return         0 on success, an errno on failure
3725  *
3726  * This convenience API allows consumers to forcibly disable multiple regulator
3727  * clients in a single API call.
3728  * NOTE: This should be used for situations when device damage will
3729  * likely occur if the regulators are not disabled (e.g. over temp).
3730  * Although regulator_force_disable function call for some consumers can
3731  * return error numbers, the function is called for all consumers.
3732  */
3733 int regulator_bulk_force_disable(int num_consumers,
3734                            struct regulator_bulk_data *consumers)
3735 {
3736         int i;
3737         int ret = 0;
3738
3739         for (i = 0; i < num_consumers; i++) {
3740                 consumers[i].ret =
3741                             regulator_force_disable(consumers[i].consumer);
3742
3743                 /* Store first error for reporting */
3744                 if (consumers[i].ret && !ret)
3745                         ret = consumers[i].ret;
3746         }
3747
3748         return ret;
3749 }
3750 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3751
3752 /**
3753  * regulator_bulk_free - free multiple regulator consumers
3754  *
3755  * @num_consumers: Number of consumers
3756  * @consumers:     Consumer data; clients are stored here.
3757  *
3758  * This convenience API allows consumers to free multiple regulator
3759  * clients in a single API call.
3760  */
3761 void regulator_bulk_free(int num_consumers,
3762                          struct regulator_bulk_data *consumers)
3763 {
3764         int i;
3765
3766         for (i = 0; i < num_consumers; i++) {
3767                 regulator_put(consumers[i].consumer);
3768                 consumers[i].consumer = NULL;
3769         }
3770 }
3771 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3772
3773 /**
3774  * regulator_notifier_call_chain - call regulator event notifier
3775  * @rdev: regulator source
3776  * @event: notifier block
3777  * @data: callback-specific data.
3778  *
3779  * Called by regulator drivers to notify clients a regulator event has
3780  * occurred. We also notify regulator clients downstream.
3781  * Note lock must be held by caller.
3782  */
3783 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3784                                   unsigned long event, void *data)
3785 {
3786         lockdep_assert_held_once(&rdev->mutex);
3787
3788         _notifier_call_chain(rdev, event, data);
3789         return NOTIFY_DONE;
3790
3791 }
3792 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3793
3794 /**
3795  * regulator_mode_to_status - convert a regulator mode into a status
3796  *
3797  * @mode: Mode to convert
3798  *
3799  * Convert a regulator mode into a status.
3800  */
3801 int regulator_mode_to_status(unsigned int mode)
3802 {
3803         switch (mode) {
3804         case REGULATOR_MODE_FAST:
3805                 return REGULATOR_STATUS_FAST;
3806         case REGULATOR_MODE_NORMAL:
3807                 return REGULATOR_STATUS_NORMAL;
3808         case REGULATOR_MODE_IDLE:
3809                 return REGULATOR_STATUS_IDLE;
3810         case REGULATOR_MODE_STANDBY:
3811                 return REGULATOR_STATUS_STANDBY;
3812         default:
3813                 return REGULATOR_STATUS_UNDEFINED;
3814         }
3815 }
3816 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3817
3818 static struct attribute *regulator_dev_attrs[] = {
3819         &dev_attr_name.attr,
3820         &dev_attr_num_users.attr,
3821         &dev_attr_type.attr,
3822         &dev_attr_microvolts.attr,
3823         &dev_attr_microamps.attr,
3824         &dev_attr_opmode.attr,
3825         &dev_attr_state.attr,
3826         &dev_attr_status.attr,
3827         &dev_attr_bypass.attr,
3828         &dev_attr_requested_microamps.attr,
3829         &dev_attr_min_microvolts.attr,
3830         &dev_attr_max_microvolts.attr,
3831         &dev_attr_min_microamps.attr,
3832         &dev_attr_max_microamps.attr,
3833         &dev_attr_suspend_standby_state.attr,
3834         &dev_attr_suspend_mem_state.attr,
3835         &dev_attr_suspend_disk_state.attr,
3836         &dev_attr_suspend_standby_microvolts.attr,
3837         &dev_attr_suspend_mem_microvolts.attr,
3838         &dev_attr_suspend_disk_microvolts.attr,
3839         &dev_attr_suspend_standby_mode.attr,
3840         &dev_attr_suspend_mem_mode.attr,
3841         &dev_attr_suspend_disk_mode.attr,
3842         NULL
3843 };
3844
3845 /*
3846  * To avoid cluttering sysfs (and memory) with useless state, only
3847  * create attributes that can be meaningfully displayed.
3848  */
3849 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3850                                          struct attribute *attr, int idx)
3851 {
3852         struct device *dev = kobj_to_dev(kobj);
3853         struct regulator_dev *rdev = dev_to_rdev(dev);
3854         const struct regulator_ops *ops = rdev->desc->ops;
3855         umode_t mode = attr->mode;
3856
3857         /* these three are always present */
3858         if (attr == &dev_attr_name.attr ||
3859             attr == &dev_attr_num_users.attr ||
3860             attr == &dev_attr_type.attr)
3861                 return mode;
3862
3863         /* some attributes need specific methods to be displayed */
3864         if (attr == &dev_attr_microvolts.attr) {
3865                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3866                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3867                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3868                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3869                         return mode;
3870                 return 0;
3871         }
3872
3873         if (attr == &dev_attr_microamps.attr)
3874                 return ops->get_current_limit ? mode : 0;
3875
3876         if (attr == &dev_attr_opmode.attr)
3877                 return ops->get_mode ? mode : 0;
3878
3879         if (attr == &dev_attr_state.attr)
3880                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3881
3882         if (attr == &dev_attr_status.attr)
3883                 return ops->get_status ? mode : 0;
3884
3885         if (attr == &dev_attr_bypass.attr)
3886                 return ops->get_bypass ? mode : 0;
3887
3888         /* some attributes are type-specific */
3889         if (attr == &dev_attr_requested_microamps.attr)
3890                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3891
3892         /* constraints need specific supporting methods */
3893         if (attr == &dev_attr_min_microvolts.attr ||
3894             attr == &dev_attr_max_microvolts.attr)
3895                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3896
3897         if (attr == &dev_attr_min_microamps.attr ||
3898             attr == &dev_attr_max_microamps.attr)
3899                 return ops->set_current_limit ? mode : 0;
3900
3901         if (attr == &dev_attr_suspend_standby_state.attr ||
3902             attr == &dev_attr_suspend_mem_state.attr ||
3903             attr == &dev_attr_suspend_disk_state.attr)
3904                 return mode;
3905
3906         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3907             attr == &dev_attr_suspend_mem_microvolts.attr ||
3908             attr == &dev_attr_suspend_disk_microvolts.attr)
3909                 return ops->set_suspend_voltage ? mode : 0;
3910
3911         if (attr == &dev_attr_suspend_standby_mode.attr ||
3912             attr == &dev_attr_suspend_mem_mode.attr ||
3913             attr == &dev_attr_suspend_disk_mode.attr)
3914                 return ops->set_suspend_mode ? mode : 0;
3915
3916         return mode;
3917 }
3918
3919 static const struct attribute_group regulator_dev_group = {
3920         .attrs = regulator_dev_attrs,
3921         .is_visible = regulator_attr_is_visible,
3922 };
3923
3924 static const struct attribute_group *regulator_dev_groups[] = {
3925         &regulator_dev_group,
3926         NULL
3927 };
3928
3929 static void regulator_dev_release(struct device *dev)
3930 {
3931         struct regulator_dev *rdev = dev_get_drvdata(dev);
3932
3933         kfree(rdev->constraints);
3934         of_node_put(rdev->dev.of_node);
3935         kfree(rdev);
3936 }
3937
3938 static struct class regulator_class = {
3939         .name = "regulator",
3940         .dev_release = regulator_dev_release,
3941         .dev_groups = regulator_dev_groups,
3942 };
3943
3944 static void rdev_init_debugfs(struct regulator_dev *rdev)
3945 {
3946         struct device *parent = rdev->dev.parent;
3947         const char *rname = rdev_get_name(rdev);
3948         char name[NAME_MAX];
3949
3950         /* Avoid duplicate debugfs directory names */
3951         if (parent && rname == rdev->desc->name) {
3952                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3953                          rname);
3954                 rname = name;
3955         }
3956
3957         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3958         if (IS_ERR(rdev->debugfs)) {
3959                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3960                 return;
3961         }
3962
3963         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3964                            &rdev->use_count);
3965         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3966                            &rdev->open_count);
3967         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3968                            &rdev->bypass_count);
3969 }
3970
3971 static int regulator_register_resolve_supply(struct device *dev, void *data)
3972 {
3973         struct regulator_dev *rdev = dev_to_rdev(dev);
3974
3975         if (regulator_resolve_supply(rdev))
3976                 rdev_dbg(rdev, "unable to resolve supply\n");
3977
3978         return 0;
3979 }
3980
3981 /**
3982  * regulator_register - register regulator
3983  * @regulator_desc: regulator to register
3984  * @cfg: runtime configuration for regulator
3985  *
3986  * Called by regulator drivers to register a regulator.
3987  * Returns a valid pointer to struct regulator_dev on success
3988  * or an ERR_PTR() on error.
3989  */
3990 struct regulator_dev *
3991 regulator_register(const struct regulator_desc *regulator_desc,
3992                    const struct regulator_config *cfg)
3993 {
3994         const struct regulator_init_data *init_data;
3995         struct regulator_config *config = NULL;
3996         static atomic_t regulator_no = ATOMIC_INIT(-1);
3997         struct regulator_dev *rdev;
3998         struct device *dev;
3999         int ret, i;
4000
4001         if (regulator_desc == NULL || cfg == NULL)
4002                 return ERR_PTR(-EINVAL);
4003
4004         dev = cfg->dev;
4005         WARN_ON(!dev);
4006
4007         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4008                 return ERR_PTR(-EINVAL);
4009
4010         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4011             regulator_desc->type != REGULATOR_CURRENT)
4012                 return ERR_PTR(-EINVAL);
4013
4014         /* Only one of each should be implemented */
4015         WARN_ON(regulator_desc->ops->get_voltage &&
4016                 regulator_desc->ops->get_voltage_sel);
4017         WARN_ON(regulator_desc->ops->set_voltage &&
4018                 regulator_desc->ops->set_voltage_sel);
4019
4020         /* If we're using selectors we must implement list_voltage. */
4021         if (regulator_desc->ops->get_voltage_sel &&
4022             !regulator_desc->ops->list_voltage) {
4023                 return ERR_PTR(-EINVAL);
4024         }
4025         if (regulator_desc->ops->set_voltage_sel &&
4026             !regulator_desc->ops->list_voltage) {
4027                 return ERR_PTR(-EINVAL);
4028         }
4029
4030         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4031         if (rdev == NULL)
4032                 return ERR_PTR(-ENOMEM);
4033
4034         /*
4035          * Duplicate the config so the driver could override it after
4036          * parsing init data.
4037          */
4038         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4039         if (config == NULL) {
4040                 kfree(rdev);
4041                 return ERR_PTR(-ENOMEM);
4042         }
4043
4044         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4045                                                &rdev->dev.of_node);
4046         if (!init_data) {
4047                 init_data = config->init_data;
4048                 rdev->dev.of_node = of_node_get(config->of_node);
4049         }
4050
4051         mutex_init(&rdev->mutex);
4052         rdev->reg_data = config->driver_data;
4053         rdev->owner = regulator_desc->owner;
4054         rdev->desc = regulator_desc;
4055         if (config->regmap)
4056                 rdev->regmap = config->regmap;
4057         else if (dev_get_regmap(dev, NULL))
4058                 rdev->regmap = dev_get_regmap(dev, NULL);
4059         else if (dev->parent)
4060                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4061         INIT_LIST_HEAD(&rdev->consumer_list);
4062         INIT_LIST_HEAD(&rdev->list);
4063         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4064         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4065
4066         /* preform any regulator specific init */
4067         if (init_data && init_data->regulator_init) {
4068                 ret = init_data->regulator_init(rdev->reg_data);
4069                 if (ret < 0)
4070                         goto clean;
4071         }
4072
4073         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4074             gpio_is_valid(config->ena_gpio)) {
4075                 mutex_lock(&regulator_list_mutex);
4076                 ret = regulator_ena_gpio_request(rdev, config);
4077                 mutex_unlock(&regulator_list_mutex);
4078                 if (ret != 0) {
4079                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4080                                  config->ena_gpio, ret);
4081                         goto clean;
4082                 }
4083         }
4084
4085         /* register with sysfs */
4086         rdev->dev.class = &regulator_class;
4087         rdev->dev.parent = dev;
4088         dev_set_name(&rdev->dev, "regulator.%lu",
4089                     (unsigned long) atomic_inc_return(&regulator_no));
4090
4091         /* set regulator constraints */
4092         if (init_data)
4093                 rdev->constraints = kmemdup(&init_data->constraints,
4094                                             sizeof(*rdev->constraints),
4095                                             GFP_KERNEL);
4096         else
4097                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4098                                             GFP_KERNEL);
4099         if (!rdev->constraints) {
4100                 ret = -ENOMEM;
4101                 goto wash;
4102         }
4103
4104         if (init_data && init_data->supply_regulator)
4105                 rdev->supply_name = init_data->supply_regulator;
4106         else if (regulator_desc->supply_name)
4107                 rdev->supply_name = regulator_desc->supply_name;
4108
4109         ret = set_machine_constraints(rdev);
4110         if (ret == -EPROBE_DEFER) {
4111                 /* Regulator might be in bypass mode and so needs its supply
4112                  * to set the constraints */
4113                 /* FIXME: this currently triggers a chicken-and-egg problem
4114                  * when creating -SUPPLY symlink in sysfs to a regulator
4115                  * that is just being created */
4116                 ret = regulator_resolve_supply(rdev);
4117                 if (!ret)
4118                         ret = set_machine_constraints(rdev);
4119                 else
4120                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4121                                  ERR_PTR(ret));
4122         }
4123         if (ret < 0)
4124                 goto wash;
4125
4126         /* add consumers devices */
4127         if (init_data) {
4128                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4129                         ret = set_consumer_device_supply(rdev,
4130                                 init_data->consumer_supplies[i].dev_name,
4131                                 init_data->consumer_supplies[i].supply);
4132                         if (ret < 0) {
4133                                 dev_err(dev, "Failed to set supply %s\n",
4134                                         init_data->consumer_supplies[i].supply);
4135                                 goto unset_supplies;
4136                         }
4137                 }
4138         }
4139
4140         if (!rdev->desc->ops->get_voltage &&
4141             !rdev->desc->ops->list_voltage &&
4142             !rdev->desc->fixed_uV)
4143                 rdev->is_switch = true;
4144
4145         dev_set_drvdata(&rdev->dev, rdev);
4146         ret = device_register(&rdev->dev);
4147         if (ret != 0) {
4148                 put_device(&rdev->dev);
4149                 goto unset_supplies;
4150         }
4151
4152         rdev_init_debugfs(rdev);
4153
4154         /* try to resolve regulators supply since a new one was registered */
4155         class_for_each_device(&regulator_class, NULL, NULL,
4156                               regulator_register_resolve_supply);
4157         kfree(config);
4158         return rdev;
4159
4160 unset_supplies:
4161         mutex_lock(&regulator_list_mutex);
4162         unset_regulator_supplies(rdev);
4163         mutex_unlock(&regulator_list_mutex);
4164 wash:
4165         kfree(rdev->constraints);
4166         mutex_lock(&regulator_list_mutex);
4167         regulator_ena_gpio_free(rdev);
4168         mutex_unlock(&regulator_list_mutex);
4169 clean:
4170         kfree(rdev);
4171         kfree(config);
4172         return ERR_PTR(ret);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_register);
4175
4176 /**
4177  * regulator_unregister - unregister regulator
4178  * @rdev: regulator to unregister
4179  *
4180  * Called by regulator drivers to unregister a regulator.
4181  */
4182 void regulator_unregister(struct regulator_dev *rdev)
4183 {
4184         if (rdev == NULL)
4185                 return;
4186
4187         if (rdev->supply) {
4188                 while (rdev->use_count--)
4189                         regulator_disable(rdev->supply);
4190                 regulator_put(rdev->supply);
4191         }
4192         mutex_lock(&regulator_list_mutex);
4193         debugfs_remove_recursive(rdev->debugfs);
4194         flush_work(&rdev->disable_work.work);
4195         WARN_ON(rdev->open_count);
4196         unset_regulator_supplies(rdev);
4197         list_del(&rdev->list);
4198         regulator_ena_gpio_free(rdev);
4199         mutex_unlock(&regulator_list_mutex);
4200         device_unregister(&rdev->dev);
4201 }
4202 EXPORT_SYMBOL_GPL(regulator_unregister);
4203
4204 static int _regulator_suspend_prepare(struct device *dev, void *data)
4205 {
4206         struct regulator_dev *rdev = dev_to_rdev(dev);
4207         const suspend_state_t *state = data;
4208         int ret;
4209
4210         mutex_lock(&rdev->mutex);
4211         ret = suspend_prepare(rdev, *state);
4212         mutex_unlock(&rdev->mutex);
4213
4214         return ret;
4215 }
4216
4217 /**
4218  * regulator_suspend_prepare - prepare regulators for system wide suspend
4219  * @state: system suspend state
4220  *
4221  * Configure each regulator with it's suspend operating parameters for state.
4222  * This will usually be called by machine suspend code prior to supending.
4223  */
4224 int regulator_suspend_prepare(suspend_state_t state)
4225 {
4226         /* ON is handled by regulator active state */
4227         if (state == PM_SUSPEND_ON)
4228                 return -EINVAL;
4229
4230         return class_for_each_device(&regulator_class, NULL, &state,
4231                                      _regulator_suspend_prepare);
4232 }
4233 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4234
4235 static int _regulator_suspend_finish(struct device *dev, void *data)
4236 {
4237         struct regulator_dev *rdev = dev_to_rdev(dev);
4238         int ret;
4239
4240         mutex_lock(&rdev->mutex);
4241         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4242                 if (!_regulator_is_enabled(rdev)) {
4243                         ret = _regulator_do_enable(rdev);
4244                         if (ret)
4245                                 dev_err(dev,
4246                                         "Failed to resume regulator %d\n",
4247                                         ret);
4248                 }
4249         } else {
4250                 if (!have_full_constraints())
4251                         goto unlock;
4252                 if (!_regulator_is_enabled(rdev))
4253                         goto unlock;
4254
4255                 ret = _regulator_do_disable(rdev);
4256                 if (ret)
4257                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4258         }
4259 unlock:
4260         mutex_unlock(&rdev->mutex);
4261
4262         /* Keep processing regulators in spite of any errors */
4263         return 0;
4264 }
4265
4266 /**
4267  * regulator_suspend_finish - resume regulators from system wide suspend
4268  *
4269  * Turn on regulators that might be turned off by regulator_suspend_prepare
4270  * and that should be turned on according to the regulators properties.
4271  */
4272 int regulator_suspend_finish(void)
4273 {
4274         return class_for_each_device(&regulator_class, NULL, NULL,
4275                                      _regulator_suspend_finish);
4276 }
4277 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4278
4279 /**
4280  * regulator_has_full_constraints - the system has fully specified constraints
4281  *
4282  * Calling this function will cause the regulator API to disable all
4283  * regulators which have a zero use count and don't have an always_on
4284  * constraint in a late_initcall.
4285  *
4286  * The intention is that this will become the default behaviour in a
4287  * future kernel release so users are encouraged to use this facility
4288  * now.
4289  */
4290 void regulator_has_full_constraints(void)
4291 {
4292         has_full_constraints = 1;
4293 }
4294 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4295
4296 /**
4297  * rdev_get_drvdata - get rdev regulator driver data
4298  * @rdev: regulator
4299  *
4300  * Get rdev regulator driver private data. This call can be used in the
4301  * regulator driver context.
4302  */
4303 void *rdev_get_drvdata(struct regulator_dev *rdev)
4304 {
4305         return rdev->reg_data;
4306 }
4307 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4308
4309 /**
4310  * regulator_get_drvdata - get regulator driver data
4311  * @regulator: regulator
4312  *
4313  * Get regulator driver private data. This call can be used in the consumer
4314  * driver context when non API regulator specific functions need to be called.
4315  */
4316 void *regulator_get_drvdata(struct regulator *regulator)
4317 {
4318         return regulator->rdev->reg_data;
4319 }
4320 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4321
4322 /**
4323  * regulator_set_drvdata - set regulator driver data
4324  * @regulator: regulator
4325  * @data: data
4326  */
4327 void regulator_set_drvdata(struct regulator *regulator, void *data)
4328 {
4329         regulator->rdev->reg_data = data;
4330 }
4331 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4332
4333 /**
4334  * regulator_get_id - get regulator ID
4335  * @rdev: regulator
4336  */
4337 int rdev_get_id(struct regulator_dev *rdev)
4338 {
4339         return rdev->desc->id;
4340 }
4341 EXPORT_SYMBOL_GPL(rdev_get_id);
4342
4343 struct device *rdev_get_dev(struct regulator_dev *rdev)
4344 {
4345         return &rdev->dev;
4346 }
4347 EXPORT_SYMBOL_GPL(rdev_get_dev);
4348
4349 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4350 {
4351         return reg_init_data->driver_data;
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4354
4355 #ifdef CONFIG_DEBUG_FS
4356 static int supply_map_show(struct seq_file *sf, void *data)
4357 {
4358         struct regulator_map *map;
4359
4360         list_for_each_entry(map, &regulator_map_list, list) {
4361                 seq_printf(sf, "%s -> %s.%s\n",
4362                                 rdev_get_name(map->regulator), map->dev_name,
4363                                 map->supply);
4364         }
4365
4366         return 0;
4367 }
4368
4369 static int supply_map_open(struct inode *inode, struct file *file)
4370 {
4371         return single_open(file, supply_map_show, inode->i_private);
4372 }
4373 #endif
4374
4375 static const struct file_operations supply_map_fops = {
4376 #ifdef CONFIG_DEBUG_FS
4377         .open = supply_map_open,
4378         .read = seq_read,
4379         .llseek = seq_lseek,
4380         .release = single_release,
4381 #endif
4382 };
4383
4384 #ifdef CONFIG_DEBUG_FS
4385 struct summary_data {
4386         struct seq_file *s;
4387         struct regulator_dev *parent;
4388         int level;
4389 };
4390
4391 static void regulator_summary_show_subtree(struct seq_file *s,
4392                                            struct regulator_dev *rdev,
4393                                            int level);
4394
4395 static int regulator_summary_show_children(struct device *dev, void *data)
4396 {
4397         struct regulator_dev *rdev = dev_to_rdev(dev);
4398         struct summary_data *summary_data = data;
4399
4400         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4401                 regulator_summary_show_subtree(summary_data->s, rdev,
4402                                                summary_data->level + 1);
4403
4404         return 0;
4405 }
4406
4407 static void regulator_summary_show_subtree(struct seq_file *s,
4408                                            struct regulator_dev *rdev,
4409                                            int level)
4410 {
4411         struct regulation_constraints *c;
4412         struct regulator *consumer;
4413         struct summary_data summary_data;
4414
4415         if (!rdev)
4416                 return;
4417
4418         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4419                    level * 3 + 1, "",
4420                    30 - level * 3, rdev_get_name(rdev),
4421                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4422
4423         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4424         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4425
4426         c = rdev->constraints;
4427         if (c) {
4428                 switch (rdev->desc->type) {
4429                 case REGULATOR_VOLTAGE:
4430                         seq_printf(s, "%5dmV %5dmV ",
4431                                    c->min_uV / 1000, c->max_uV / 1000);
4432                         break;
4433                 case REGULATOR_CURRENT:
4434                         seq_printf(s, "%5dmA %5dmA ",
4435                                    c->min_uA / 1000, c->max_uA / 1000);
4436                         break;
4437                 }
4438         }
4439
4440         seq_puts(s, "\n");
4441
4442         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4443                 if (consumer->dev && consumer->dev->class == &regulator_class)
4444                         continue;
4445
4446                 seq_printf(s, "%*s%-*s ",
4447                            (level + 1) * 3 + 1, "",
4448                            30 - (level + 1) * 3,
4449                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4450
4451                 switch (rdev->desc->type) {
4452                 case REGULATOR_VOLTAGE:
4453                         seq_printf(s, "%37dmV %5dmV",
4454                                    consumer->min_uV / 1000,
4455                                    consumer->max_uV / 1000);
4456                         break;
4457                 case REGULATOR_CURRENT:
4458                         break;
4459                 }
4460
4461                 seq_puts(s, "\n");
4462         }
4463
4464         summary_data.s = s;
4465         summary_data.level = level;
4466         summary_data.parent = rdev;
4467
4468         class_for_each_device(&regulator_class, NULL, &summary_data,
4469                               regulator_summary_show_children);
4470 }
4471
4472 static int regulator_summary_show_roots(struct device *dev, void *data)
4473 {
4474         struct regulator_dev *rdev = dev_to_rdev(dev);
4475         struct seq_file *s = data;
4476
4477         if (!rdev->supply)
4478                 regulator_summary_show_subtree(s, rdev, 0);
4479
4480         return 0;
4481 }
4482
4483 static int regulator_summary_show(struct seq_file *s, void *data)
4484 {
4485         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4486         seq_puts(s, "-------------------------------------------------------------------------------\n");
4487
4488         class_for_each_device(&regulator_class, NULL, s,
4489                               regulator_summary_show_roots);
4490
4491         return 0;
4492 }
4493
4494 static int regulator_summary_open(struct inode *inode, struct file *file)
4495 {
4496         return single_open(file, regulator_summary_show, inode->i_private);
4497 }
4498 #endif
4499
4500 static const struct file_operations regulator_summary_fops = {
4501 #ifdef CONFIG_DEBUG_FS
4502         .open           = regulator_summary_open,
4503         .read           = seq_read,
4504         .llseek         = seq_lseek,
4505         .release        = single_release,
4506 #endif
4507 };
4508
4509 static int __init regulator_init(void)
4510 {
4511         int ret;
4512
4513         ret = class_register(&regulator_class);
4514
4515         debugfs_root = debugfs_create_dir("regulator", NULL);
4516         if (IS_ERR(debugfs_root))
4517                 pr_warn("regulator: Failed to create debugfs directory\n");
4518
4519         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4520                             &supply_map_fops);
4521
4522         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4523                             NULL, &regulator_summary_fops);
4524
4525         regulator_dummy_init();
4526
4527         return ret;
4528 }
4529
4530 /* init early to allow our consumers to complete system booting */
4531 core_initcall(regulator_init);
4532
4533 static int __init regulator_late_cleanup(struct device *dev, void *data)
4534 {
4535         struct regulator_dev *rdev = dev_to_rdev(dev);
4536         const struct regulator_ops *ops = rdev->desc->ops;
4537         struct regulation_constraints *c = rdev->constraints;
4538         int enabled, ret;
4539
4540         if (c && c->always_on)
4541                 return 0;
4542
4543         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4544                 return 0;
4545
4546         mutex_lock(&rdev->mutex);
4547
4548         if (rdev->use_count)
4549                 goto unlock;
4550
4551         /* If we can't read the status assume it's on. */
4552         if (ops->is_enabled)
4553                 enabled = ops->is_enabled(rdev);
4554         else
4555                 enabled = 1;
4556
4557         if (!enabled)
4558                 goto unlock;
4559
4560         if (have_full_constraints()) {
4561                 /* We log since this may kill the system if it goes
4562                  * wrong. */
4563                 rdev_info(rdev, "disabling\n");
4564                 ret = _regulator_do_disable(rdev);
4565                 if (ret != 0)
4566                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4567         } else {
4568                 /* The intention is that in future we will
4569                  * assume that full constraints are provided
4570                  * so warn even if we aren't going to do
4571                  * anything here.
4572                  */
4573                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4574         }
4575
4576 unlock:
4577         mutex_unlock(&rdev->mutex);
4578
4579         return 0;
4580 }
4581
4582 static int __init regulator_init_complete(void)
4583 {
4584         /*
4585          * Since DT doesn't provide an idiomatic mechanism for
4586          * enabling full constraints and since it's much more natural
4587          * with DT to provide them just assume that a DT enabled
4588          * system has full constraints.
4589          */
4590         if (of_have_populated_dt())
4591                 has_full_constraints = true;
4592
4593         /*
4594          * Regulators may had failed to resolve their input supplies
4595          * when were registered, either because the input supply was
4596          * not registered yet or because its parent device was not
4597          * bound yet. So attempt to resolve the input supplies for
4598          * pending regulators before trying to disable unused ones.
4599          */
4600         class_for_each_device(&regulator_class, NULL, NULL,
4601                               regulator_register_resolve_supply);
4602
4603         /* If we have a full configuration then disable any regulators
4604          * we have permission to change the status for and which are
4605          * not in use or always_on.  This is effectively the default
4606          * for DT and ACPI as they have full constraints.
4607          */
4608         class_for_each_device(&regulator_class, NULL, NULL,
4609                               regulator_late_cleanup);
4610
4611         return 0;
4612 }
4613 late_initcall_sync(regulator_init_complete);