GNU Linux-libre 4.9.292-gnu1
[releases.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297 {
298         switch (*mode) {
299         case REGULATOR_MODE_FAST:
300         case REGULATOR_MODE_NORMAL:
301         case REGULATOR_MODE_IDLE:
302         case REGULATOR_MODE_STANDBY:
303                 break;
304         default:
305                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
306                 return -EINVAL;
307         }
308
309         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310                 rdev_err(rdev, "mode operation not allowed\n");
311                 return -EPERM;
312         }
313
314         /* The modes are bitmasks, the most power hungry modes having
315          * the lowest values. If the requested mode isn't supported
316          * try higher modes. */
317         while (*mode) {
318                 if (rdev->constraints->valid_modes_mask & *mode)
319                         return 0;
320                 *mode /= 2;
321         }
322
323         return -EINVAL;
324 }
325
326 static ssize_t regulator_uV_show(struct device *dev,
327                                 struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330         ssize_t ret;
331
332         mutex_lock(&rdev->mutex);
333         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
334         mutex_unlock(&rdev->mutex);
335
336         return ret;
337 }
338 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339
340 static ssize_t regulator_uA_show(struct device *dev,
341                                 struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
346 }
347 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348
349 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
350                          char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return sprintf(buf, "%s\n", rdev_get_name(rdev));
355 }
356 static DEVICE_ATTR_RO(name);
357
358 static ssize_t regulator_print_opmode(char *buf, int mode)
359 {
360         switch (mode) {
361         case REGULATOR_MODE_FAST:
362                 return sprintf(buf, "fast\n");
363         case REGULATOR_MODE_NORMAL:
364                 return sprintf(buf, "normal\n");
365         case REGULATOR_MODE_IDLE:
366                 return sprintf(buf, "idle\n");
367         case REGULATOR_MODE_STANDBY:
368                 return sprintf(buf, "standby\n");
369         }
370         return sprintf(buf, "unknown\n");
371 }
372
373 static ssize_t regulator_opmode_show(struct device *dev,
374                                     struct device_attribute *attr, char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
379 }
380 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
381
382 static ssize_t regulator_print_state(char *buf, int state)
383 {
384         if (state > 0)
385                 return sprintf(buf, "enabled\n");
386         else if (state == 0)
387                 return sprintf(buf, "disabled\n");
388         else
389                 return sprintf(buf, "unknown\n");
390 }
391
392 static ssize_t regulator_state_show(struct device *dev,
393                                    struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         ssize_t ret;
397
398         mutex_lock(&rdev->mutex);
399         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
400         mutex_unlock(&rdev->mutex);
401
402         return ret;
403 }
404 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
405
406 static ssize_t regulator_status_show(struct device *dev,
407                                    struct device_attribute *attr, char *buf)
408 {
409         struct regulator_dev *rdev = dev_get_drvdata(dev);
410         int status;
411         char *label;
412
413         status = rdev->desc->ops->get_status(rdev);
414         if (status < 0)
415                 return status;
416
417         switch (status) {
418         case REGULATOR_STATUS_OFF:
419                 label = "off";
420                 break;
421         case REGULATOR_STATUS_ON:
422                 label = "on";
423                 break;
424         case REGULATOR_STATUS_ERROR:
425                 label = "error";
426                 break;
427         case REGULATOR_STATUS_FAST:
428                 label = "fast";
429                 break;
430         case REGULATOR_STATUS_NORMAL:
431                 label = "normal";
432                 break;
433         case REGULATOR_STATUS_IDLE:
434                 label = "idle";
435                 break;
436         case REGULATOR_STATUS_STANDBY:
437                 label = "standby";
438                 break;
439         case REGULATOR_STATUS_BYPASS:
440                 label = "bypass";
441                 break;
442         case REGULATOR_STATUS_UNDEFINED:
443                 label = "undefined";
444                 break;
445         default:
446                 return -ERANGE;
447         }
448
449         return sprintf(buf, "%s\n", label);
450 }
451 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
452
453 static ssize_t regulator_min_uA_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
462 }
463 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464
465 static ssize_t regulator_max_uA_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
474 }
475 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476
477 static ssize_t regulator_min_uV_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
486 }
487 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488
489 static ssize_t regulator_max_uV_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
498 }
499 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500
501 static ssize_t regulator_total_uA_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         struct regulator *regulator;
506         int uA = 0;
507
508         mutex_lock(&rdev->mutex);
509         list_for_each_entry(regulator, &rdev->consumer_list, list)
510                 uA += regulator->uA_load;
511         mutex_unlock(&rdev->mutex);
512         return sprintf(buf, "%d\n", uA);
513 }
514 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515
516 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
517                               char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520         return sprintf(buf, "%d\n", rdev->use_count);
521 }
522 static DEVICE_ATTR_RO(num_users);
523
524 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
525                          char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         switch (rdev->desc->type) {
530         case REGULATOR_VOLTAGE:
531                 return sprintf(buf, "voltage\n");
532         case REGULATOR_CURRENT:
533                 return sprintf(buf, "current\n");
534         }
535         return sprintf(buf, "unknown\n");
536 }
537 static DEVICE_ATTR_RO(type);
538
539 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
540                                 struct device_attribute *attr, char *buf)
541 {
542         struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
545 }
546 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
547                 regulator_suspend_mem_uV_show, NULL);
548
549 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
550                                 struct device_attribute *attr, char *buf)
551 {
552         struct regulator_dev *rdev = dev_get_drvdata(dev);
553
554         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
555 }
556 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
557                 regulator_suspend_disk_uV_show, NULL);
558
559 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
560                                 struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
565 }
566 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
567                 regulator_suspend_standby_uV_show, NULL);
568
569 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_mem.mode);
576 }
577 static DEVICE_ATTR(suspend_mem_mode, 0444,
578                 regulator_suspend_mem_mode_show, NULL);
579
580 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
581                                 struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_opmode(buf,
586                 rdev->constraints->state_disk.mode);
587 }
588 static DEVICE_ATTR(suspend_disk_mode, 0444,
589                 regulator_suspend_disk_mode_show, NULL);
590
591 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
592                                 struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_opmode(buf,
597                 rdev->constraints->state_standby.mode);
598 }
599 static DEVICE_ATTR(suspend_standby_mode, 0444,
600                 regulator_suspend_standby_mode_show, NULL);
601
602 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_mem.enabled);
609 }
610 static DEVICE_ATTR(suspend_mem_state, 0444,
611                 regulator_suspend_mem_state_show, NULL);
612
613 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
614                                    struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617
618         return regulator_print_state(buf,
619                         rdev->constraints->state_disk.enabled);
620 }
621 static DEVICE_ATTR(suspend_disk_state, 0444,
622                 regulator_suspend_disk_state_show, NULL);
623
624 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
625                                    struct device_attribute *attr, char *buf)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629         return regulator_print_state(buf,
630                         rdev->constraints->state_standby.enabled);
631 }
632 static DEVICE_ATTR(suspend_standby_state, 0444,
633                 regulator_suspend_standby_state_show, NULL);
634
635 static ssize_t regulator_bypass_show(struct device *dev,
636                                      struct device_attribute *attr, char *buf)
637 {
638         struct regulator_dev *rdev = dev_get_drvdata(dev);
639         const char *report;
640         bool bypass;
641         int ret;
642
643         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
644
645         if (ret != 0)
646                 report = "unknown";
647         else if (bypass)
648                 report = "enabled";
649         else
650                 report = "disabled";
651
652         return sprintf(buf, "%s\n", report);
653 }
654 static DEVICE_ATTR(bypass, 0444,
655                    regulator_bypass_show, NULL);
656
657 /* Calculate the new optimum regulator operating mode based on the new total
658  * consumer load. All locks held by caller */
659 static int drms_uA_update(struct regulator_dev *rdev)
660 {
661         struct regulator *sibling;
662         int current_uA = 0, output_uV, input_uV, err;
663         unsigned int mode;
664
665         lockdep_assert_held_once(&rdev->mutex);
666
667         /*
668          * first check to see if we can set modes at all, otherwise just
669          * tell the consumer everything is OK.
670          */
671         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672                 return 0;
673
674         if (!rdev->desc->ops->get_optimum_mode &&
675             !rdev->desc->ops->set_load)
676                 return 0;
677
678         if (!rdev->desc->ops->set_mode &&
679             !rdev->desc->ops->set_load)
680                 return -EINVAL;
681
682         /* calc total requested load */
683         list_for_each_entry(sibling, &rdev->consumer_list, list)
684                 current_uA += sibling->uA_load;
685
686         current_uA += rdev->constraints->system_load;
687
688         if (rdev->desc->ops->set_load) {
689                 /* set the optimum mode for our new total regulator load */
690                 err = rdev->desc->ops->set_load(rdev, current_uA);
691                 if (err < 0)
692                         rdev_err(rdev, "failed to set load %d\n", current_uA);
693         } else {
694                 /* get output voltage */
695                 output_uV = _regulator_get_voltage(rdev);
696                 if (output_uV <= 0) {
697                         rdev_err(rdev, "invalid output voltage found\n");
698                         return -EINVAL;
699                 }
700
701                 /* get input voltage */
702                 input_uV = 0;
703                 if (rdev->supply)
704                         input_uV = regulator_get_voltage(rdev->supply);
705                 if (input_uV <= 0)
706                         input_uV = rdev->constraints->input_uV;
707                 if (input_uV <= 0) {
708                         rdev_err(rdev, "invalid input voltage found\n");
709                         return -EINVAL;
710                 }
711
712                 /* now get the optimum mode for our new total regulator load */
713                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
714                                                          output_uV, current_uA);
715
716                 /* check the new mode is allowed */
717                 err = regulator_mode_constrain(rdev, &mode);
718                 if (err < 0) {
719                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
720                                  current_uA, input_uV, output_uV);
721                         return err;
722                 }
723
724                 err = rdev->desc->ops->set_mode(rdev, mode);
725                 if (err < 0)
726                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727         }
728
729         return err;
730 }
731
732 static int suspend_set_state(struct regulator_dev *rdev,
733         struct regulator_state *rstate)
734 {
735         int ret = 0;
736
737         /* If we have no suspend mode configration don't set anything;
738          * only warn if the driver implements set_suspend_voltage or
739          * set_suspend_mode callback.
740          */
741         if (!rstate->enabled && !rstate->disabled) {
742                 if (rdev->desc->ops->set_suspend_voltage ||
743                     rdev->desc->ops->set_suspend_mode)
744                         rdev_warn(rdev, "No configuration\n");
745                 return 0;
746         }
747
748         if (rstate->enabled && rstate->disabled) {
749                 rdev_err(rdev, "invalid configuration\n");
750                 return -EINVAL;
751         }
752
753         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754                 ret = rdev->desc->ops->set_suspend_enable(rdev);
755         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756                 ret = rdev->desc->ops->set_suspend_disable(rdev);
757         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
758                 ret = 0;
759
760         if (ret < 0) {
761                 rdev_err(rdev, "failed to enabled/disable\n");
762                 return ret;
763         }
764
765         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
766                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
767                 if (ret < 0) {
768                         rdev_err(rdev, "failed to set voltage\n");
769                         return ret;
770                 }
771         }
772
773         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
774                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
775                 if (ret < 0) {
776                         rdev_err(rdev, "failed to set mode\n");
777                         return ret;
778                 }
779         }
780         return ret;
781 }
782
783 /* locks held by caller */
784 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
785 {
786         if (!rdev->constraints)
787                 return -EINVAL;
788
789         switch (state) {
790         case PM_SUSPEND_STANDBY:
791                 return suspend_set_state(rdev,
792                         &rdev->constraints->state_standby);
793         case PM_SUSPEND_MEM:
794                 return suspend_set_state(rdev,
795                         &rdev->constraints->state_mem);
796         case PM_SUSPEND_MAX:
797                 return suspend_set_state(rdev,
798                         &rdev->constraints->state_disk);
799         default:
800                 return -EINVAL;
801         }
802 }
803
804 static void print_constraints(struct regulator_dev *rdev)
805 {
806         struct regulation_constraints *constraints = rdev->constraints;
807         char buf[160] = "";
808         size_t len = sizeof(buf) - 1;
809         int count = 0;
810         int ret;
811
812         if (constraints->min_uV && constraints->max_uV) {
813                 if (constraints->min_uV == constraints->max_uV)
814                         count += scnprintf(buf + count, len - count, "%d mV ",
815                                            constraints->min_uV / 1000);
816                 else
817                         count += scnprintf(buf + count, len - count,
818                                            "%d <--> %d mV ",
819                                            constraints->min_uV / 1000,
820                                            constraints->max_uV / 1000);
821         }
822
823         if (!constraints->min_uV ||
824             constraints->min_uV != constraints->max_uV) {
825                 ret = _regulator_get_voltage(rdev);
826                 if (ret > 0)
827                         count += scnprintf(buf + count, len - count,
828                                            "at %d mV ", ret / 1000);
829         }
830
831         if (constraints->uV_offset)
832                 count += scnprintf(buf + count, len - count, "%dmV offset ",
833                                    constraints->uV_offset / 1000);
834
835         if (constraints->min_uA && constraints->max_uA) {
836                 if (constraints->min_uA == constraints->max_uA)
837                         count += scnprintf(buf + count, len - count, "%d mA ",
838                                            constraints->min_uA / 1000);
839                 else
840                         count += scnprintf(buf + count, len - count,
841                                            "%d <--> %d mA ",
842                                            constraints->min_uA / 1000,
843                                            constraints->max_uA / 1000);
844         }
845
846         if (!constraints->min_uA ||
847             constraints->min_uA != constraints->max_uA) {
848                 ret = _regulator_get_current_limit(rdev);
849                 if (ret > 0)
850                         count += scnprintf(buf + count, len - count,
851                                            "at %d mA ", ret / 1000);
852         }
853
854         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855                 count += scnprintf(buf + count, len - count, "fast ");
856         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857                 count += scnprintf(buf + count, len - count, "normal ");
858         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859                 count += scnprintf(buf + count, len - count, "idle ");
860         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861                 count += scnprintf(buf + count, len - count, "standby");
862
863         if (!count)
864                 scnprintf(buf, len, "no parameters");
865
866         rdev_dbg(rdev, "%s\n", buf);
867
868         if ((constraints->min_uV != constraints->max_uV) &&
869             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870                 rdev_warn(rdev,
871                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 }
873
874 static int machine_constraints_voltage(struct regulator_dev *rdev,
875         struct regulation_constraints *constraints)
876 {
877         const struct regulator_ops *ops = rdev->desc->ops;
878         int ret;
879
880         /* do we need to apply the constraint voltage */
881         if (rdev->constraints->apply_uV &&
882             rdev->constraints->min_uV && rdev->constraints->max_uV) {
883                 int target_min, target_max;
884                 int current_uV = _regulator_get_voltage(rdev);
885                 if (current_uV < 0) {
886                         rdev_err(rdev,
887                                  "failed to get the current voltage(%d)\n",
888                                  current_uV);
889                         return current_uV;
890                 }
891
892                 /*
893                  * If we're below the minimum voltage move up to the
894                  * minimum voltage, if we're above the maximum voltage
895                  * then move down to the maximum.
896                  */
897                 target_min = current_uV;
898                 target_max = current_uV;
899
900                 if (current_uV < rdev->constraints->min_uV) {
901                         target_min = rdev->constraints->min_uV;
902                         target_max = rdev->constraints->min_uV;
903                 }
904
905                 if (current_uV > rdev->constraints->max_uV) {
906                         target_min = rdev->constraints->max_uV;
907                         target_max = rdev->constraints->max_uV;
908                 }
909
910                 if (target_min != current_uV || target_max != current_uV) {
911                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
912                                   current_uV, target_min, target_max);
913                         ret = _regulator_do_set_voltage(
914                                 rdev, target_min, target_max);
915                         if (ret < 0) {
916                                 rdev_err(rdev,
917                                         "failed to apply %d-%duV constraint(%d)\n",
918                                         target_min, target_max, ret);
919                                 return ret;
920                         }
921                 }
922         }
923
924         /* constrain machine-level voltage specs to fit
925          * the actual range supported by this regulator.
926          */
927         if (ops->list_voltage && rdev->desc->n_voltages) {
928                 int     count = rdev->desc->n_voltages;
929                 int     i;
930                 int     min_uV = INT_MAX;
931                 int     max_uV = INT_MIN;
932                 int     cmin = constraints->min_uV;
933                 int     cmax = constraints->max_uV;
934
935                 /* it's safe to autoconfigure fixed-voltage supplies
936                    and the constraints are used by list_voltage. */
937                 if (count == 1 && !cmin) {
938                         cmin = 1;
939                         cmax = INT_MAX;
940                         constraints->min_uV = cmin;
941                         constraints->max_uV = cmax;
942                 }
943
944                 /* voltage constraints are optional */
945                 if ((cmin == 0) && (cmax == 0))
946                         return 0;
947
948                 /* else require explicit machine-level constraints */
949                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950                         rdev_err(rdev, "invalid voltage constraints\n");
951                         return -EINVAL;
952                 }
953
954                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
955                 for (i = 0; i < count; i++) {
956                         int     value;
957
958                         value = ops->list_voltage(rdev, i);
959                         if (value <= 0)
960                                 continue;
961
962                         /* maybe adjust [min_uV..max_uV] */
963                         if (value >= cmin && value < min_uV)
964                                 min_uV = value;
965                         if (value <= cmax && value > max_uV)
966                                 max_uV = value;
967                 }
968
969                 /* final: [min_uV..max_uV] valid iff constraints valid */
970                 if (max_uV < min_uV) {
971                         rdev_err(rdev,
972                                  "unsupportable voltage constraints %u-%uuV\n",
973                                  min_uV, max_uV);
974                         return -EINVAL;
975                 }
976
977                 /* use regulator's subset of machine constraints */
978                 if (constraints->min_uV < min_uV) {
979                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
980                                  constraints->min_uV, min_uV);
981                         constraints->min_uV = min_uV;
982                 }
983                 if (constraints->max_uV > max_uV) {
984                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
985                                  constraints->max_uV, max_uV);
986                         constraints->max_uV = max_uV;
987                 }
988         }
989
990         return 0;
991 }
992
993 static int machine_constraints_current(struct regulator_dev *rdev,
994         struct regulation_constraints *constraints)
995 {
996         const struct regulator_ops *ops = rdev->desc->ops;
997         int ret;
998
999         if (!constraints->min_uA && !constraints->max_uA)
1000                 return 0;
1001
1002         if (constraints->min_uA > constraints->max_uA) {
1003                 rdev_err(rdev, "Invalid current constraints\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (!ops->set_current_limit || !ops->get_current_limit) {
1008                 rdev_warn(rdev, "Operation of current configuration missing\n");
1009                 return 0;
1010         }
1011
1012         /* Set regulator current in constraints range */
1013         ret = ops->set_current_limit(rdev, constraints->min_uA,
1014                         constraints->max_uA);
1015         if (ret < 0) {
1016                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1017                 return ret;
1018         }
1019
1020         return 0;
1021 }
1022
1023 static int _regulator_do_enable(struct regulator_dev *rdev);
1024
1025 /**
1026  * set_machine_constraints - sets regulator constraints
1027  * @rdev: regulator source
1028  *
1029  * Allows platform initialisation code to define and constrain
1030  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1031  * Constraints *must* be set by platform code in order for some
1032  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1033  * set_mode.
1034  */
1035 static int set_machine_constraints(struct regulator_dev *rdev)
1036 {
1037         int ret = 0;
1038         const struct regulator_ops *ops = rdev->desc->ops;
1039
1040         ret = machine_constraints_voltage(rdev, rdev->constraints);
1041         if (ret != 0)
1042                 return ret;
1043
1044         ret = machine_constraints_current(rdev, rdev->constraints);
1045         if (ret != 0)
1046                 return ret;
1047
1048         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1049                 ret = ops->set_input_current_limit(rdev,
1050                                                    rdev->constraints->ilim_uA);
1051                 if (ret < 0) {
1052                         rdev_err(rdev, "failed to set input limit\n");
1053                         return ret;
1054                 }
1055         }
1056
1057         /* do we need to setup our suspend state */
1058         if (rdev->constraints->initial_state) {
1059                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1060                 if (ret < 0) {
1061                         rdev_err(rdev, "failed to set suspend state\n");
1062                         return ret;
1063                 }
1064         }
1065
1066         if (rdev->constraints->initial_mode) {
1067                 if (!ops->set_mode) {
1068                         rdev_err(rdev, "no set_mode operation\n");
1069                         return -EINVAL;
1070                 }
1071
1072                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1073                 if (ret < 0) {
1074                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1075                         return ret;
1076                 }
1077         }
1078
1079         /* If the constraints say the regulator should be on at this point
1080          * and we have control then make sure it is enabled.
1081          */
1082         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1083                 ret = _regulator_do_enable(rdev);
1084                 if (ret < 0 && ret != -EINVAL) {
1085                         rdev_err(rdev, "failed to enable\n");
1086                         return ret;
1087                 }
1088         }
1089
1090         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1091                 && ops->set_ramp_delay) {
1092                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1093                 if (ret < 0) {
1094                         rdev_err(rdev, "failed to set ramp_delay\n");
1095                         return ret;
1096                 }
1097         }
1098
1099         if (rdev->constraints->pull_down && ops->set_pull_down) {
1100                 ret = ops->set_pull_down(rdev);
1101                 if (ret < 0) {
1102                         rdev_err(rdev, "failed to set pull down\n");
1103                         return ret;
1104                 }
1105         }
1106
1107         if (rdev->constraints->soft_start && ops->set_soft_start) {
1108                 ret = ops->set_soft_start(rdev);
1109                 if (ret < 0) {
1110                         rdev_err(rdev, "failed to set soft start\n");
1111                         return ret;
1112                 }
1113         }
1114
1115         if (rdev->constraints->over_current_protection
1116                 && ops->set_over_current_protection) {
1117                 ret = ops->set_over_current_protection(rdev);
1118                 if (ret < 0) {
1119                         rdev_err(rdev, "failed to set over current protection\n");
1120                         return ret;
1121                 }
1122         }
1123
1124         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1125                 bool ad_state = (rdev->constraints->active_discharge ==
1126                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1127
1128                 ret = ops->set_active_discharge(rdev, ad_state);
1129                 if (ret < 0) {
1130                         rdev_err(rdev, "failed to set active discharge\n");
1131                         return ret;
1132                 }
1133         }
1134
1135         print_constraints(rdev);
1136         return 0;
1137 }
1138
1139 /**
1140  * set_supply - set regulator supply regulator
1141  * @rdev: regulator name
1142  * @supply_rdev: supply regulator name
1143  *
1144  * Called by platform initialisation code to set the supply regulator for this
1145  * regulator. This ensures that a regulators supply will also be enabled by the
1146  * core if it's child is enabled.
1147  */
1148 static int set_supply(struct regulator_dev *rdev,
1149                       struct regulator_dev *supply_rdev)
1150 {
1151         int err;
1152
1153         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1154
1155         if (!try_module_get(supply_rdev->owner))
1156                 return -ENODEV;
1157
1158         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1159         if (rdev->supply == NULL) {
1160                 err = -ENOMEM;
1161                 return err;
1162         }
1163         supply_rdev->open_count++;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1170  * @rdev:         regulator source
1171  * @consumer_dev_name: dev_name() string for device supply applies to
1172  * @supply:       symbolic name for supply
1173  *
1174  * Allows platform initialisation code to map physical regulator
1175  * sources to symbolic names for supplies for use by devices.  Devices
1176  * should use these symbolic names to request regulators, avoiding the
1177  * need to provide board-specific regulator names as platform data.
1178  */
1179 static int set_consumer_device_supply(struct regulator_dev *rdev,
1180                                       const char *consumer_dev_name,
1181                                       const char *supply)
1182 {
1183         struct regulator_map *node, *new_node;
1184         int has_dev;
1185
1186         if (supply == NULL)
1187                 return -EINVAL;
1188
1189         if (consumer_dev_name != NULL)
1190                 has_dev = 1;
1191         else
1192                 has_dev = 0;
1193
1194         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1195         if (new_node == NULL)
1196                 return -ENOMEM;
1197
1198         new_node->regulator = rdev;
1199         new_node->supply = supply;
1200
1201         if (has_dev) {
1202                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1203                 if (new_node->dev_name == NULL) {
1204                         kfree(new_node);
1205                         return -ENOMEM;
1206                 }
1207         }
1208
1209         mutex_lock(&regulator_list_mutex);
1210         list_for_each_entry(node, &regulator_map_list, list) {
1211                 if (node->dev_name && consumer_dev_name) {
1212                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1213                                 continue;
1214                 } else if (node->dev_name || consumer_dev_name) {
1215                         continue;
1216                 }
1217
1218                 if (strcmp(node->supply, supply) != 0)
1219                         continue;
1220
1221                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1222                          consumer_dev_name,
1223                          dev_name(&node->regulator->dev),
1224                          node->regulator->desc->name,
1225                          supply,
1226                          dev_name(&rdev->dev), rdev_get_name(rdev));
1227                 goto fail;
1228         }
1229
1230         list_add(&new_node->list, &regulator_map_list);
1231         mutex_unlock(&regulator_list_mutex);
1232
1233         return 0;
1234
1235 fail:
1236         mutex_unlock(&regulator_list_mutex);
1237         kfree(new_node->dev_name);
1238         kfree(new_node);
1239         return -EBUSY;
1240 }
1241
1242 static void unset_regulator_supplies(struct regulator_dev *rdev)
1243 {
1244         struct regulator_map *node, *n;
1245
1246         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1247                 if (rdev == node->regulator) {
1248                         list_del(&node->list);
1249                         kfree(node->dev_name);
1250                         kfree(node);
1251                 }
1252         }
1253 }
1254
1255 #ifdef CONFIG_DEBUG_FS
1256 static ssize_t constraint_flags_read_file(struct file *file,
1257                                           char __user *user_buf,
1258                                           size_t count, loff_t *ppos)
1259 {
1260         const struct regulator *regulator = file->private_data;
1261         const struct regulation_constraints *c = regulator->rdev->constraints;
1262         char *buf;
1263         ssize_t ret;
1264
1265         if (!c)
1266                 return 0;
1267
1268         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1269         if (!buf)
1270                 return -ENOMEM;
1271
1272         ret = snprintf(buf, PAGE_SIZE,
1273                         "always_on: %u\n"
1274                         "boot_on: %u\n"
1275                         "apply_uV: %u\n"
1276                         "ramp_disable: %u\n"
1277                         "soft_start: %u\n"
1278                         "pull_down: %u\n"
1279                         "over_current_protection: %u\n",
1280                         c->always_on,
1281                         c->boot_on,
1282                         c->apply_uV,
1283                         c->ramp_disable,
1284                         c->soft_start,
1285                         c->pull_down,
1286                         c->over_current_protection);
1287
1288         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1289         kfree(buf);
1290
1291         return ret;
1292 }
1293
1294 #endif
1295
1296 static const struct file_operations constraint_flags_fops = {
1297 #ifdef CONFIG_DEBUG_FS
1298         .open = simple_open,
1299         .read = constraint_flags_read_file,
1300         .llseek = default_llseek,
1301 #endif
1302 };
1303
1304 #define REG_STR_SIZE    64
1305
1306 static struct regulator *create_regulator(struct regulator_dev *rdev,
1307                                           struct device *dev,
1308                                           const char *supply_name)
1309 {
1310         struct regulator *regulator;
1311         char buf[REG_STR_SIZE];
1312         int err, size;
1313
1314         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1315         if (regulator == NULL)
1316                 return NULL;
1317
1318         mutex_lock(&rdev->mutex);
1319         regulator->rdev = rdev;
1320         list_add(&regulator->list, &rdev->consumer_list);
1321
1322         if (dev) {
1323                 regulator->dev = dev;
1324
1325                 /* Add a link to the device sysfs entry */
1326                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1327                                  dev->kobj.name, supply_name);
1328                 if (size >= REG_STR_SIZE)
1329                         goto overflow_err;
1330
1331                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1332                 if (regulator->supply_name == NULL)
1333                         goto overflow_err;
1334
1335                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1336                                         buf);
1337                 if (err) {
1338                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1339                                   dev->kobj.name, err);
1340                         /* non-fatal */
1341                 }
1342         } else {
1343                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1344                 if (regulator->supply_name == NULL)
1345                         goto overflow_err;
1346         }
1347
1348         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1349                                                 rdev->debugfs);
1350         if (!regulator->debugfs) {
1351                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1352         } else {
1353                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1354                                    &regulator->uA_load);
1355                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1356                                    &regulator->min_uV);
1357                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1358                                    &regulator->max_uV);
1359                 debugfs_create_file("constraint_flags", 0444,
1360                                     regulator->debugfs, regulator,
1361                                     &constraint_flags_fops);
1362         }
1363
1364         /*
1365          * Check now if the regulator is an always on regulator - if
1366          * it is then we don't need to do nearly so much work for
1367          * enable/disable calls.
1368          */
1369         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1370             _regulator_is_enabled(rdev))
1371                 regulator->always_on = true;
1372
1373         mutex_unlock(&rdev->mutex);
1374         return regulator;
1375 overflow_err:
1376         list_del(&regulator->list);
1377         kfree(regulator);
1378         mutex_unlock(&rdev->mutex);
1379         return NULL;
1380 }
1381
1382 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1383 {
1384         if (rdev->constraints && rdev->constraints->enable_time)
1385                 return rdev->constraints->enable_time;
1386         if (!rdev->desc->ops->enable_time)
1387                 return rdev->desc->enable_time;
1388         return rdev->desc->ops->enable_time(rdev);
1389 }
1390
1391 static struct regulator_supply_alias *regulator_find_supply_alias(
1392                 struct device *dev, const char *supply)
1393 {
1394         struct regulator_supply_alias *map;
1395
1396         list_for_each_entry(map, &regulator_supply_alias_list, list)
1397                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1398                         return map;
1399
1400         return NULL;
1401 }
1402
1403 static void regulator_supply_alias(struct device **dev, const char **supply)
1404 {
1405         struct regulator_supply_alias *map;
1406
1407         map = regulator_find_supply_alias(*dev, *supply);
1408         if (map) {
1409                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1410                                 *supply, map->alias_supply,
1411                                 dev_name(map->alias_dev));
1412                 *dev = map->alias_dev;
1413                 *supply = map->alias_supply;
1414         }
1415 }
1416
1417 static int of_node_match(struct device *dev, const void *data)
1418 {
1419         return dev->of_node == data;
1420 }
1421
1422 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1423 {
1424         struct device *dev;
1425
1426         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1427
1428         return dev ? dev_to_rdev(dev) : NULL;
1429 }
1430
1431 static int regulator_match(struct device *dev, const void *data)
1432 {
1433         struct regulator_dev *r = dev_to_rdev(dev);
1434
1435         return strcmp(rdev_get_name(r), data) == 0;
1436 }
1437
1438 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1439 {
1440         struct device *dev;
1441
1442         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1443
1444         return dev ? dev_to_rdev(dev) : NULL;
1445 }
1446
1447 /**
1448  * regulator_dev_lookup - lookup a regulator device.
1449  * @dev: device for regulator "consumer".
1450  * @supply: Supply name or regulator ID.
1451  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1452  * lookup could succeed in the future.
1453  *
1454  * If successful, returns a struct regulator_dev that corresponds to the name
1455  * @supply and with the embedded struct device refcount incremented by one,
1456  * or NULL on failure. The refcount must be dropped by calling put_device().
1457  */
1458 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1459                                                   const char *supply,
1460                                                   int *ret)
1461 {
1462         struct regulator_dev *r;
1463         struct device_node *node;
1464         struct regulator_map *map;
1465         const char *devname = NULL;
1466
1467         regulator_supply_alias(&dev, &supply);
1468
1469         /* first do a dt based lookup */
1470         if (dev && dev->of_node) {
1471                 node = of_get_regulator(dev, supply);
1472                 if (node) {
1473                         r = of_find_regulator_by_node(node);
1474                         if (r)
1475                                 return r;
1476                         *ret = -EPROBE_DEFER;
1477                         return NULL;
1478                 } else {
1479                         /*
1480                          * If we couldn't even get the node then it's
1481                          * not just that the device didn't register
1482                          * yet, there's no node and we'll never
1483                          * succeed.
1484                          */
1485                         *ret = -ENODEV;
1486                 }
1487         }
1488
1489         /* if not found, try doing it non-dt way */
1490         if (dev)
1491                 devname = dev_name(dev);
1492
1493         r = regulator_lookup_by_name(supply);
1494         if (r)
1495                 return r;
1496
1497         mutex_lock(&regulator_list_mutex);
1498         list_for_each_entry(map, &regulator_map_list, list) {
1499                 /* If the mapping has a device set up it must match */
1500                 if (map->dev_name &&
1501                     (!devname || strcmp(map->dev_name, devname)))
1502                         continue;
1503
1504                 if (strcmp(map->supply, supply) == 0 &&
1505                     get_device(&map->regulator->dev)) {
1506                         mutex_unlock(&regulator_list_mutex);
1507                         return map->regulator;
1508                 }
1509         }
1510         mutex_unlock(&regulator_list_mutex);
1511
1512         return NULL;
1513 }
1514
1515 static int regulator_resolve_supply(struct regulator_dev *rdev)
1516 {
1517         struct regulator_dev *r;
1518         struct device *dev = rdev->dev.parent;
1519         int ret;
1520
1521         /* No supply to resovle? */
1522         if (!rdev->supply_name)
1523                 return 0;
1524
1525         /* Supply already resolved? */
1526         if (rdev->supply)
1527                 return 0;
1528
1529         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1530         if (!r) {
1531                 if (ret == -ENODEV) {
1532                         /*
1533                          * No supply was specified for this regulator and
1534                          * there will never be one.
1535                          */
1536                         return 0;
1537                 }
1538
1539                 /* Did the lookup explicitly defer for us? */
1540                 if (ret == -EPROBE_DEFER)
1541                         return ret;
1542
1543                 if (have_full_constraints()) {
1544                         r = dummy_regulator_rdev;
1545                         get_device(&r->dev);
1546                 } else {
1547                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1548                                 rdev->supply_name, rdev->desc->name);
1549                         return -EPROBE_DEFER;
1550                 }
1551         }
1552
1553         if (r == rdev) {
1554                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1555                         rdev->desc->name, rdev->supply_name);
1556                 if (!have_full_constraints())
1557                         return -EINVAL;
1558                 r = dummy_regulator_rdev;
1559                 get_device(&r->dev);
1560         }
1561
1562         /* Recursively resolve the supply of the supply */
1563         ret = regulator_resolve_supply(r);
1564         if (ret < 0) {
1565                 put_device(&r->dev);
1566                 return ret;
1567         }
1568
1569         ret = set_supply(rdev, r);
1570         if (ret < 0) {
1571                 put_device(&r->dev);
1572                 return ret;
1573         }
1574
1575         /* Cascade always-on state to supply */
1576         if (_regulator_is_enabled(rdev)) {
1577                 ret = regulator_enable(rdev->supply);
1578                 if (ret < 0) {
1579                         _regulator_put(rdev->supply);
1580                         rdev->supply = NULL;
1581                         return ret;
1582                 }
1583         }
1584
1585         return 0;
1586 }
1587
1588 /* Internal regulator request function */
1589 static struct regulator *_regulator_get(struct device *dev, const char *id,
1590                                         bool exclusive, bool allow_dummy)
1591 {
1592         struct regulator_dev *rdev;
1593         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1594         const char *devname = NULL;
1595         int ret;
1596
1597         if (id == NULL) {
1598                 pr_err("get() with no identifier\n");
1599                 return ERR_PTR(-EINVAL);
1600         }
1601
1602         if (dev)
1603                 devname = dev_name(dev);
1604
1605         if (have_full_constraints())
1606                 ret = -ENODEV;
1607         else
1608                 ret = -EPROBE_DEFER;
1609
1610         rdev = regulator_dev_lookup(dev, id, &ret);
1611         if (rdev)
1612                 goto found;
1613
1614         regulator = ERR_PTR(ret);
1615
1616         /*
1617          * If we have return value from dev_lookup fail, we do not expect to
1618          * succeed, so, quit with appropriate error value
1619          */
1620         if (ret && ret != -ENODEV)
1621                 return regulator;
1622
1623         if (!devname)
1624                 devname = "deviceless";
1625
1626         /*
1627          * Assume that a regulator is physically present and enabled
1628          * even if it isn't hooked up and just provide a dummy.
1629          */
1630         if (have_full_constraints() && allow_dummy) {
1631                 pr_warn("%s supply %s not found, using dummy regulator\n",
1632                         devname, id);
1633
1634                 rdev = dummy_regulator_rdev;
1635                 get_device(&rdev->dev);
1636                 goto found;
1637         /* Don't log an error when called from regulator_get_optional() */
1638         } else if (!have_full_constraints() || exclusive) {
1639                 dev_warn(dev, "dummy supplies not allowed\n");
1640         }
1641
1642         return regulator;
1643
1644 found:
1645         if (rdev->exclusive) {
1646                 regulator = ERR_PTR(-EPERM);
1647                 put_device(&rdev->dev);
1648                 return regulator;
1649         }
1650
1651         if (exclusive && rdev->open_count) {
1652                 regulator = ERR_PTR(-EBUSY);
1653                 put_device(&rdev->dev);
1654                 return regulator;
1655         }
1656
1657         ret = regulator_resolve_supply(rdev);
1658         if (ret < 0) {
1659                 regulator = ERR_PTR(ret);
1660                 put_device(&rdev->dev);
1661                 return regulator;
1662         }
1663
1664         if (!try_module_get(rdev->owner)) {
1665                 put_device(&rdev->dev);
1666                 return regulator;
1667         }
1668
1669         regulator = create_regulator(rdev, dev, id);
1670         if (regulator == NULL) {
1671                 regulator = ERR_PTR(-ENOMEM);
1672                 put_device(&rdev->dev);
1673                 module_put(rdev->owner);
1674                 return regulator;
1675         }
1676
1677         rdev->open_count++;
1678         if (exclusive) {
1679                 rdev->exclusive = 1;
1680
1681                 ret = _regulator_is_enabled(rdev);
1682                 if (ret > 0)
1683                         rdev->use_count = 1;
1684                 else
1685                         rdev->use_count = 0;
1686         }
1687
1688         return regulator;
1689 }
1690
1691 /**
1692  * regulator_get - lookup and obtain a reference to a regulator.
1693  * @dev: device for regulator "consumer"
1694  * @id: Supply name or regulator ID.
1695  *
1696  * Returns a struct regulator corresponding to the regulator producer,
1697  * or IS_ERR() condition containing errno.
1698  *
1699  * Use of supply names configured via regulator_set_device_supply() is
1700  * strongly encouraged.  It is recommended that the supply name used
1701  * should match the name used for the supply and/or the relevant
1702  * device pins in the datasheet.
1703  */
1704 struct regulator *regulator_get(struct device *dev, const char *id)
1705 {
1706         return _regulator_get(dev, id, false, true);
1707 }
1708 EXPORT_SYMBOL_GPL(regulator_get);
1709
1710 /**
1711  * regulator_get_exclusive - obtain exclusive access to a regulator.
1712  * @dev: device for regulator "consumer"
1713  * @id: Supply name or regulator ID.
1714  *
1715  * Returns a struct regulator corresponding to the regulator producer,
1716  * or IS_ERR() condition containing errno.  Other consumers will be
1717  * unable to obtain this regulator while this reference is held and the
1718  * use count for the regulator will be initialised to reflect the current
1719  * state of the regulator.
1720  *
1721  * This is intended for use by consumers which cannot tolerate shared
1722  * use of the regulator such as those which need to force the
1723  * regulator off for correct operation of the hardware they are
1724  * controlling.
1725  *
1726  * Use of supply names configured via regulator_set_device_supply() is
1727  * strongly encouraged.  It is recommended that the supply name used
1728  * should match the name used for the supply and/or the relevant
1729  * device pins in the datasheet.
1730  */
1731 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1732 {
1733         return _regulator_get(dev, id, true, false);
1734 }
1735 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1736
1737 /**
1738  * regulator_get_optional - obtain optional access to a regulator.
1739  * @dev: device for regulator "consumer"
1740  * @id: Supply name or regulator ID.
1741  *
1742  * Returns a struct regulator corresponding to the regulator producer,
1743  * or IS_ERR() condition containing errno.
1744  *
1745  * This is intended for use by consumers for devices which can have
1746  * some supplies unconnected in normal use, such as some MMC devices.
1747  * It can allow the regulator core to provide stub supplies for other
1748  * supplies requested using normal regulator_get() calls without
1749  * disrupting the operation of drivers that can handle absent
1750  * supplies.
1751  *
1752  * Use of supply names configured via regulator_set_device_supply() is
1753  * strongly encouraged.  It is recommended that the supply name used
1754  * should match the name used for the supply and/or the relevant
1755  * device pins in the datasheet.
1756  */
1757 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1758 {
1759         return _regulator_get(dev, id, false, false);
1760 }
1761 EXPORT_SYMBOL_GPL(regulator_get_optional);
1762
1763 /* regulator_list_mutex lock held by regulator_put() */
1764 static void _regulator_put(struct regulator *regulator)
1765 {
1766         struct regulator_dev *rdev;
1767
1768         if (IS_ERR_OR_NULL(regulator))
1769                 return;
1770
1771         lockdep_assert_held_once(&regulator_list_mutex);
1772
1773         rdev = regulator->rdev;
1774
1775         debugfs_remove_recursive(regulator->debugfs);
1776
1777         /* remove any sysfs entries */
1778         if (regulator->dev)
1779                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1780         mutex_lock(&rdev->mutex);
1781         list_del(&regulator->list);
1782
1783         rdev->open_count--;
1784         rdev->exclusive = 0;
1785         put_device(&rdev->dev);
1786         mutex_unlock(&rdev->mutex);
1787
1788         kfree(regulator->supply_name);
1789         kfree(regulator);
1790
1791         module_put(rdev->owner);
1792 }
1793
1794 /**
1795  * regulator_put - "free" the regulator source
1796  * @regulator: regulator source
1797  *
1798  * Note: drivers must ensure that all regulator_enable calls made on this
1799  * regulator source are balanced by regulator_disable calls prior to calling
1800  * this function.
1801  */
1802 void regulator_put(struct regulator *regulator)
1803 {
1804         mutex_lock(&regulator_list_mutex);
1805         _regulator_put(regulator);
1806         mutex_unlock(&regulator_list_mutex);
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_put);
1809
1810 /**
1811  * regulator_register_supply_alias - Provide device alias for supply lookup
1812  *
1813  * @dev: device that will be given as the regulator "consumer"
1814  * @id: Supply name or regulator ID
1815  * @alias_dev: device that should be used to lookup the supply
1816  * @alias_id: Supply name or regulator ID that should be used to lookup the
1817  * supply
1818  *
1819  * All lookups for id on dev will instead be conducted for alias_id on
1820  * alias_dev.
1821  */
1822 int regulator_register_supply_alias(struct device *dev, const char *id,
1823                                     struct device *alias_dev,
1824                                     const char *alias_id)
1825 {
1826         struct regulator_supply_alias *map;
1827
1828         map = regulator_find_supply_alias(dev, id);
1829         if (map)
1830                 return -EEXIST;
1831
1832         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1833         if (!map)
1834                 return -ENOMEM;
1835
1836         map->src_dev = dev;
1837         map->src_supply = id;
1838         map->alias_dev = alias_dev;
1839         map->alias_supply = alias_id;
1840
1841         list_add(&map->list, &regulator_supply_alias_list);
1842
1843         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1844                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1845
1846         return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1849
1850 /**
1851  * regulator_unregister_supply_alias - Remove device alias
1852  *
1853  * @dev: device that will be given as the regulator "consumer"
1854  * @id: Supply name or regulator ID
1855  *
1856  * Remove a lookup alias if one exists for id on dev.
1857  */
1858 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1859 {
1860         struct regulator_supply_alias *map;
1861
1862         map = regulator_find_supply_alias(dev, id);
1863         if (map) {
1864                 list_del(&map->list);
1865                 kfree(map);
1866         }
1867 }
1868 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1869
1870 /**
1871  * regulator_bulk_register_supply_alias - register multiple aliases
1872  *
1873  * @dev: device that will be given as the regulator "consumer"
1874  * @id: List of supply names or regulator IDs
1875  * @alias_dev: device that should be used to lookup the supply
1876  * @alias_id: List of supply names or regulator IDs that should be used to
1877  * lookup the supply
1878  * @num_id: Number of aliases to register
1879  *
1880  * @return 0 on success, an errno on failure.
1881  *
1882  * This helper function allows drivers to register several supply
1883  * aliases in one operation.  If any of the aliases cannot be
1884  * registered any aliases that were registered will be removed
1885  * before returning to the caller.
1886  */
1887 int regulator_bulk_register_supply_alias(struct device *dev,
1888                                          const char *const *id,
1889                                          struct device *alias_dev,
1890                                          const char *const *alias_id,
1891                                          int num_id)
1892 {
1893         int i;
1894         int ret;
1895
1896         for (i = 0; i < num_id; ++i) {
1897                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1898                                                       alias_id[i]);
1899                 if (ret < 0)
1900                         goto err;
1901         }
1902
1903         return 0;
1904
1905 err:
1906         dev_err(dev,
1907                 "Failed to create supply alias %s,%s -> %s,%s\n",
1908                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1909
1910         while (--i >= 0)
1911                 regulator_unregister_supply_alias(dev, id[i]);
1912
1913         return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1916
1917 /**
1918  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1919  *
1920  * @dev: device that will be given as the regulator "consumer"
1921  * @id: List of supply names or regulator IDs
1922  * @num_id: Number of aliases to unregister
1923  *
1924  * This helper function allows drivers to unregister several supply
1925  * aliases in one operation.
1926  */
1927 void regulator_bulk_unregister_supply_alias(struct device *dev,
1928                                             const char *const *id,
1929                                             int num_id)
1930 {
1931         int i;
1932
1933         for (i = 0; i < num_id; ++i)
1934                 regulator_unregister_supply_alias(dev, id[i]);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1937
1938
1939 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1940 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1941                                 const struct regulator_config *config)
1942 {
1943         struct regulator_enable_gpio *pin;
1944         struct gpio_desc *gpiod;
1945         int ret;
1946
1947         gpiod = gpio_to_desc(config->ena_gpio);
1948
1949         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1950                 if (pin->gpiod == gpiod) {
1951                         rdev_dbg(rdev, "GPIO %d is already used\n",
1952                                 config->ena_gpio);
1953                         goto update_ena_gpio_to_rdev;
1954                 }
1955         }
1956
1957         ret = gpio_request_one(config->ena_gpio,
1958                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1959                                 rdev_get_name(rdev));
1960         if (ret)
1961                 return ret;
1962
1963         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1964         if (pin == NULL) {
1965                 gpio_free(config->ena_gpio);
1966                 return -ENOMEM;
1967         }
1968
1969         pin->gpiod = gpiod;
1970         pin->ena_gpio_invert = config->ena_gpio_invert;
1971         list_add(&pin->list, &regulator_ena_gpio_list);
1972
1973 update_ena_gpio_to_rdev:
1974         pin->request_count++;
1975         rdev->ena_pin = pin;
1976         return 0;
1977 }
1978
1979 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1980 {
1981         struct regulator_enable_gpio *pin, *n;
1982
1983         if (!rdev->ena_pin)
1984                 return;
1985
1986         /* Free the GPIO only in case of no use */
1987         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1988                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1989                         if (pin->request_count <= 1) {
1990                                 pin->request_count = 0;
1991                                 gpiod_put(pin->gpiod);
1992                                 list_del(&pin->list);
1993                                 kfree(pin);
1994                                 rdev->ena_pin = NULL;
1995                                 return;
1996                         } else {
1997                                 pin->request_count--;
1998                         }
1999                 }
2000         }
2001 }
2002
2003 /**
2004  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2005  * @rdev: regulator_dev structure
2006  * @enable: enable GPIO at initial use?
2007  *
2008  * GPIO is enabled in case of initial use. (enable_count is 0)
2009  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2010  */
2011 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2012 {
2013         struct regulator_enable_gpio *pin = rdev->ena_pin;
2014
2015         if (!pin)
2016                 return -EINVAL;
2017
2018         if (enable) {
2019                 /* Enable GPIO at initial use */
2020                 if (pin->enable_count == 0)
2021                         gpiod_set_value_cansleep(pin->gpiod,
2022                                                  !pin->ena_gpio_invert);
2023
2024                 pin->enable_count++;
2025         } else {
2026                 if (pin->enable_count > 1) {
2027                         pin->enable_count--;
2028                         return 0;
2029                 }
2030
2031                 /* Disable GPIO if not used */
2032                 if (pin->enable_count <= 1) {
2033                         gpiod_set_value_cansleep(pin->gpiod,
2034                                                  pin->ena_gpio_invert);
2035                         pin->enable_count = 0;
2036                 }
2037         }
2038
2039         return 0;
2040 }
2041
2042 /**
2043  * _regulator_enable_delay - a delay helper function
2044  * @delay: time to delay in microseconds
2045  *
2046  * Delay for the requested amount of time as per the guidelines in:
2047  *
2048  *     Documentation/timers/timers-howto.txt
2049  *
2050  * The assumption here is that regulators will never be enabled in
2051  * atomic context and therefore sleeping functions can be used.
2052  */
2053 static void _regulator_enable_delay(unsigned int delay)
2054 {
2055         unsigned int ms = delay / 1000;
2056         unsigned int us = delay % 1000;
2057
2058         if (ms > 0) {
2059                 /*
2060                  * For small enough values, handle super-millisecond
2061                  * delays in the usleep_range() call below.
2062                  */
2063                 if (ms < 20)
2064                         us += ms * 1000;
2065                 else
2066                         msleep(ms);
2067         }
2068
2069         /*
2070          * Give the scheduler some room to coalesce with any other
2071          * wakeup sources. For delays shorter than 10 us, don't even
2072          * bother setting up high-resolution timers and just busy-
2073          * loop.
2074          */
2075         if (us >= 10)
2076                 usleep_range(us, us + 100);
2077         else
2078                 udelay(us);
2079 }
2080
2081 static int _regulator_do_enable(struct regulator_dev *rdev)
2082 {
2083         int ret, delay;
2084
2085         /* Query before enabling in case configuration dependent.  */
2086         ret = _regulator_get_enable_time(rdev);
2087         if (ret >= 0) {
2088                 delay = ret;
2089         } else {
2090                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2091                 delay = 0;
2092         }
2093
2094         trace_regulator_enable(rdev_get_name(rdev));
2095
2096         if (rdev->desc->off_on_delay) {
2097                 /* if needed, keep a distance of off_on_delay from last time
2098                  * this regulator was disabled.
2099                  */
2100                 unsigned long start_jiffy = jiffies;
2101                 unsigned long intended, max_delay, remaining;
2102
2103                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2104                 intended = rdev->last_off_jiffy + max_delay;
2105
2106                 if (time_before(start_jiffy, intended)) {
2107                         /* calc remaining jiffies to deal with one-time
2108                          * timer wrapping.
2109                          * in case of multiple timer wrapping, either it can be
2110                          * detected by out-of-range remaining, or it cannot be
2111                          * detected and we gets a panelty of
2112                          * _regulator_enable_delay().
2113                          */
2114                         remaining = intended - start_jiffy;
2115                         if (remaining <= max_delay)
2116                                 _regulator_enable_delay(
2117                                                 jiffies_to_usecs(remaining));
2118                 }
2119         }
2120
2121         if (rdev->ena_pin) {
2122                 if (!rdev->ena_gpio_state) {
2123                         ret = regulator_ena_gpio_ctrl(rdev, true);
2124                         if (ret < 0)
2125                                 return ret;
2126                         rdev->ena_gpio_state = 1;
2127                 }
2128         } else if (rdev->desc->ops->enable) {
2129                 ret = rdev->desc->ops->enable(rdev);
2130                 if (ret < 0)
2131                         return ret;
2132         } else {
2133                 return -EINVAL;
2134         }
2135
2136         /* Allow the regulator to ramp; it would be useful to extend
2137          * this for bulk operations so that the regulators can ramp
2138          * together.  */
2139         trace_regulator_enable_delay(rdev_get_name(rdev));
2140
2141         _regulator_enable_delay(delay);
2142
2143         trace_regulator_enable_complete(rdev_get_name(rdev));
2144
2145         return 0;
2146 }
2147
2148 /* locks held by regulator_enable() */
2149 static int _regulator_enable(struct regulator_dev *rdev)
2150 {
2151         int ret;
2152
2153         lockdep_assert_held_once(&rdev->mutex);
2154
2155         /* check voltage and requested load before enabling */
2156         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2157                 drms_uA_update(rdev);
2158
2159         if (rdev->use_count == 0) {
2160                 /* The regulator may on if it's not switchable or left on */
2161                 ret = _regulator_is_enabled(rdev);
2162                 if (ret == -EINVAL || ret == 0) {
2163                         if (!regulator_ops_is_valid(rdev,
2164                                         REGULATOR_CHANGE_STATUS))
2165                                 return -EPERM;
2166
2167                         ret = _regulator_do_enable(rdev);
2168                         if (ret < 0)
2169                                 return ret;
2170
2171                 } else if (ret < 0) {
2172                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2173                         return ret;
2174                 }
2175                 /* Fallthrough on positive return values - already enabled */
2176         }
2177
2178         rdev->use_count++;
2179
2180         return 0;
2181 }
2182
2183 /**
2184  * regulator_enable - enable regulator output
2185  * @regulator: regulator source
2186  *
2187  * Request that the regulator be enabled with the regulator output at
2188  * the predefined voltage or current value.  Calls to regulator_enable()
2189  * must be balanced with calls to regulator_disable().
2190  *
2191  * NOTE: the output value can be set by other drivers, boot loader or may be
2192  * hardwired in the regulator.
2193  */
2194 int regulator_enable(struct regulator *regulator)
2195 {
2196         struct regulator_dev *rdev = regulator->rdev;
2197         int ret = 0;
2198
2199         if (regulator->always_on)
2200                 return 0;
2201
2202         if (rdev->supply) {
2203                 ret = regulator_enable(rdev->supply);
2204                 if (ret != 0)
2205                         return ret;
2206         }
2207
2208         mutex_lock(&rdev->mutex);
2209         ret = _regulator_enable(rdev);
2210         mutex_unlock(&rdev->mutex);
2211
2212         if (ret != 0 && rdev->supply)
2213                 regulator_disable(rdev->supply);
2214
2215         return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(regulator_enable);
2218
2219 static int _regulator_do_disable(struct regulator_dev *rdev)
2220 {
2221         int ret;
2222
2223         trace_regulator_disable(rdev_get_name(rdev));
2224
2225         if (rdev->ena_pin) {
2226                 if (rdev->ena_gpio_state) {
2227                         ret = regulator_ena_gpio_ctrl(rdev, false);
2228                         if (ret < 0)
2229                                 return ret;
2230                         rdev->ena_gpio_state = 0;
2231                 }
2232
2233         } else if (rdev->desc->ops->disable) {
2234                 ret = rdev->desc->ops->disable(rdev);
2235                 if (ret != 0)
2236                         return ret;
2237         }
2238
2239         /* cares about last_off_jiffy only if off_on_delay is required by
2240          * device.
2241          */
2242         if (rdev->desc->off_on_delay)
2243                 rdev->last_off_jiffy = jiffies;
2244
2245         trace_regulator_disable_complete(rdev_get_name(rdev));
2246
2247         return 0;
2248 }
2249
2250 /* locks held by regulator_disable() */
2251 static int _regulator_disable(struct regulator_dev *rdev)
2252 {
2253         int ret = 0;
2254
2255         lockdep_assert_held_once(&rdev->mutex);
2256
2257         if (WARN(rdev->use_count <= 0,
2258                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2259                 return -EIO;
2260
2261         /* are we the last user and permitted to disable ? */
2262         if (rdev->use_count == 1 &&
2263             (rdev->constraints && !rdev->constraints->always_on)) {
2264
2265                 /* we are last user */
2266                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2267                         ret = _notifier_call_chain(rdev,
2268                                                    REGULATOR_EVENT_PRE_DISABLE,
2269                                                    NULL);
2270                         if (ret & NOTIFY_STOP_MASK)
2271                                 return -EINVAL;
2272
2273                         ret = _regulator_do_disable(rdev);
2274                         if (ret < 0) {
2275                                 rdev_err(rdev, "failed to disable\n");
2276                                 _notifier_call_chain(rdev,
2277                                                 REGULATOR_EVENT_ABORT_DISABLE,
2278                                                 NULL);
2279                                 return ret;
2280                         }
2281                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2282                                         NULL);
2283                 }
2284
2285                 rdev->use_count = 0;
2286         } else if (rdev->use_count > 1) {
2287                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2288                         drms_uA_update(rdev);
2289
2290                 rdev->use_count--;
2291         }
2292
2293         return ret;
2294 }
2295
2296 /**
2297  * regulator_disable - disable regulator output
2298  * @regulator: regulator source
2299  *
2300  * Disable the regulator output voltage or current.  Calls to
2301  * regulator_enable() must be balanced with calls to
2302  * regulator_disable().
2303  *
2304  * NOTE: this will only disable the regulator output if no other consumer
2305  * devices have it enabled, the regulator device supports disabling and
2306  * machine constraints permit this operation.
2307  */
2308 int regulator_disable(struct regulator *regulator)
2309 {
2310         struct regulator_dev *rdev = regulator->rdev;
2311         int ret = 0;
2312
2313         if (regulator->always_on)
2314                 return 0;
2315
2316         mutex_lock(&rdev->mutex);
2317         ret = _regulator_disable(rdev);
2318         mutex_unlock(&rdev->mutex);
2319
2320         if (ret == 0 && rdev->supply)
2321                 regulator_disable(rdev->supply);
2322
2323         return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_disable);
2326
2327 /* locks held by regulator_force_disable() */
2328 static int _regulator_force_disable(struct regulator_dev *rdev)
2329 {
2330         int ret = 0;
2331
2332         lockdep_assert_held_once(&rdev->mutex);
2333
2334         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2335                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2336         if (ret & NOTIFY_STOP_MASK)
2337                 return -EINVAL;
2338
2339         ret = _regulator_do_disable(rdev);
2340         if (ret < 0) {
2341                 rdev_err(rdev, "failed to force disable\n");
2342                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2343                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2344                 return ret;
2345         }
2346
2347         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2348                         REGULATOR_EVENT_DISABLE, NULL);
2349
2350         return 0;
2351 }
2352
2353 /**
2354  * regulator_force_disable - force disable regulator output
2355  * @regulator: regulator source
2356  *
2357  * Forcibly disable the regulator output voltage or current.
2358  * NOTE: this *will* disable the regulator output even if other consumer
2359  * devices have it enabled. This should be used for situations when device
2360  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2361  */
2362 int regulator_force_disable(struct regulator *regulator)
2363 {
2364         struct regulator_dev *rdev = regulator->rdev;
2365         int ret;
2366
2367         mutex_lock(&rdev->mutex);
2368         regulator->uA_load = 0;
2369         ret = _regulator_force_disable(regulator->rdev);
2370         mutex_unlock(&rdev->mutex);
2371
2372         if (rdev->supply)
2373                 while (rdev->open_count--)
2374                         regulator_disable(rdev->supply);
2375
2376         return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_force_disable);
2379
2380 static void regulator_disable_work(struct work_struct *work)
2381 {
2382         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2383                                                   disable_work.work);
2384         int count, i, ret;
2385
2386         mutex_lock(&rdev->mutex);
2387
2388         BUG_ON(!rdev->deferred_disables);
2389
2390         count = rdev->deferred_disables;
2391         rdev->deferred_disables = 0;
2392
2393         for (i = 0; i < count; i++) {
2394                 ret = _regulator_disable(rdev);
2395                 if (ret != 0)
2396                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2397         }
2398
2399         mutex_unlock(&rdev->mutex);
2400
2401         if (rdev->supply) {
2402                 for (i = 0; i < count; i++) {
2403                         ret = regulator_disable(rdev->supply);
2404                         if (ret != 0) {
2405                                 rdev_err(rdev,
2406                                          "Supply disable failed: %d\n", ret);
2407                         }
2408                 }
2409         }
2410 }
2411
2412 /**
2413  * regulator_disable_deferred - disable regulator output with delay
2414  * @regulator: regulator source
2415  * @ms: miliseconds until the regulator is disabled
2416  *
2417  * Execute regulator_disable() on the regulator after a delay.  This
2418  * is intended for use with devices that require some time to quiesce.
2419  *
2420  * NOTE: this will only disable the regulator output if no other consumer
2421  * devices have it enabled, the regulator device supports disabling and
2422  * machine constraints permit this operation.
2423  */
2424 int regulator_disable_deferred(struct regulator *regulator, int ms)
2425 {
2426         struct regulator_dev *rdev = regulator->rdev;
2427
2428         if (regulator->always_on)
2429                 return 0;
2430
2431         if (!ms)
2432                 return regulator_disable(regulator);
2433
2434         mutex_lock(&rdev->mutex);
2435         rdev->deferred_disables++;
2436         mutex_unlock(&rdev->mutex);
2437
2438         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2439                            msecs_to_jiffies(ms));
2440         return 0;
2441 }
2442 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2443
2444 static int _regulator_is_enabled(struct regulator_dev *rdev)
2445 {
2446         /* A GPIO control always takes precedence */
2447         if (rdev->ena_pin)
2448                 return rdev->ena_gpio_state;
2449
2450         /* If we don't know then assume that the regulator is always on */
2451         if (!rdev->desc->ops->is_enabled)
2452                 return 1;
2453
2454         return rdev->desc->ops->is_enabled(rdev);
2455 }
2456
2457 static int _regulator_list_voltage(struct regulator *regulator,
2458                                     unsigned selector, int lock)
2459 {
2460         struct regulator_dev *rdev = regulator->rdev;
2461         const struct regulator_ops *ops = rdev->desc->ops;
2462         int ret;
2463
2464         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2465                 return rdev->desc->fixed_uV;
2466
2467         if (ops->list_voltage) {
2468                 if (selector >= rdev->desc->n_voltages)
2469                         return -EINVAL;
2470                 if (lock)
2471                         mutex_lock(&rdev->mutex);
2472                 ret = ops->list_voltage(rdev, selector);
2473                 if (lock)
2474                         mutex_unlock(&rdev->mutex);
2475         } else if (rdev->is_switch && rdev->supply) {
2476                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2477         } else {
2478                 return -EINVAL;
2479         }
2480
2481         if (ret > 0) {
2482                 if (ret < rdev->constraints->min_uV)
2483                         ret = 0;
2484                 else if (ret > rdev->constraints->max_uV)
2485                         ret = 0;
2486         }
2487
2488         return ret;
2489 }
2490
2491 /**
2492  * regulator_is_enabled - is the regulator output enabled
2493  * @regulator: regulator source
2494  *
2495  * Returns positive if the regulator driver backing the source/client
2496  * has requested that the device be enabled, zero if it hasn't, else a
2497  * negative errno code.
2498  *
2499  * Note that the device backing this regulator handle can have multiple
2500  * users, so it might be enabled even if regulator_enable() was never
2501  * called for this particular source.
2502  */
2503 int regulator_is_enabled(struct regulator *regulator)
2504 {
2505         int ret;
2506
2507         if (regulator->always_on)
2508                 return 1;
2509
2510         mutex_lock(&regulator->rdev->mutex);
2511         ret = _regulator_is_enabled(regulator->rdev);
2512         mutex_unlock(&regulator->rdev->mutex);
2513
2514         return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2517
2518 /**
2519  * regulator_count_voltages - count regulator_list_voltage() selectors
2520  * @regulator: regulator source
2521  *
2522  * Returns number of selectors, or negative errno.  Selectors are
2523  * numbered starting at zero, and typically correspond to bitfields
2524  * in hardware registers.
2525  */
2526 int regulator_count_voltages(struct regulator *regulator)
2527 {
2528         struct regulator_dev    *rdev = regulator->rdev;
2529
2530         if (rdev->desc->n_voltages)
2531                 return rdev->desc->n_voltages;
2532
2533         if (!rdev->is_switch || !rdev->supply)
2534                 return -EINVAL;
2535
2536         return regulator_count_voltages(rdev->supply);
2537 }
2538 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2539
2540 /**
2541  * regulator_list_voltage - enumerate supported voltages
2542  * @regulator: regulator source
2543  * @selector: identify voltage to list
2544  * Context: can sleep
2545  *
2546  * Returns a voltage that can be passed to @regulator_set_voltage(),
2547  * zero if this selector code can't be used on this system, or a
2548  * negative errno.
2549  */
2550 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2551 {
2552         return _regulator_list_voltage(regulator, selector, 1);
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2555
2556 /**
2557  * regulator_get_regmap - get the regulator's register map
2558  * @regulator: regulator source
2559  *
2560  * Returns the register map for the given regulator, or an ERR_PTR value
2561  * if the regulator doesn't use regmap.
2562  */
2563 struct regmap *regulator_get_regmap(struct regulator *regulator)
2564 {
2565         struct regmap *map = regulator->rdev->regmap;
2566
2567         return map ? map : ERR_PTR(-EOPNOTSUPP);
2568 }
2569
2570 /**
2571  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2572  * @regulator: regulator source
2573  * @vsel_reg: voltage selector register, output parameter
2574  * @vsel_mask: mask for voltage selector bitfield, output parameter
2575  *
2576  * Returns the hardware register offset and bitmask used for setting the
2577  * regulator voltage. This might be useful when configuring voltage-scaling
2578  * hardware or firmware that can make I2C requests behind the kernel's back,
2579  * for example.
2580  *
2581  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2582  * and 0 is returned, otherwise a negative errno is returned.
2583  */
2584 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2585                                          unsigned *vsel_reg,
2586                                          unsigned *vsel_mask)
2587 {
2588         struct regulator_dev *rdev = regulator->rdev;
2589         const struct regulator_ops *ops = rdev->desc->ops;
2590
2591         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2592                 return -EOPNOTSUPP;
2593
2594          *vsel_reg = rdev->desc->vsel_reg;
2595          *vsel_mask = rdev->desc->vsel_mask;
2596
2597          return 0;
2598 }
2599 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2600
2601 /**
2602  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2603  * @regulator: regulator source
2604  * @selector: identify voltage to list
2605  *
2606  * Converts the selector to a hardware-specific voltage selector that can be
2607  * directly written to the regulator registers. The address of the voltage
2608  * register can be determined by calling @regulator_get_hardware_vsel_register.
2609  *
2610  * On error a negative errno is returned.
2611  */
2612 int regulator_list_hardware_vsel(struct regulator *regulator,
2613                                  unsigned selector)
2614 {
2615         struct regulator_dev *rdev = regulator->rdev;
2616         const struct regulator_ops *ops = rdev->desc->ops;
2617
2618         if (selector >= rdev->desc->n_voltages)
2619                 return -EINVAL;
2620         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2621                 return -EOPNOTSUPP;
2622
2623         return selector;
2624 }
2625 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2626
2627 /**
2628  * regulator_get_linear_step - return the voltage step size between VSEL values
2629  * @regulator: regulator source
2630  *
2631  * Returns the voltage step size between VSEL values for linear
2632  * regulators, or return 0 if the regulator isn't a linear regulator.
2633  */
2634 unsigned int regulator_get_linear_step(struct regulator *regulator)
2635 {
2636         struct regulator_dev *rdev = regulator->rdev;
2637
2638         return rdev->desc->uV_step;
2639 }
2640 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2641
2642 /**
2643  * regulator_is_supported_voltage - check if a voltage range can be supported
2644  *
2645  * @regulator: Regulator to check.
2646  * @min_uV: Minimum required voltage in uV.
2647  * @max_uV: Maximum required voltage in uV.
2648  *
2649  * Returns a boolean or a negative error code.
2650  */
2651 int regulator_is_supported_voltage(struct regulator *regulator,
2652                                    int min_uV, int max_uV)
2653 {
2654         struct regulator_dev *rdev = regulator->rdev;
2655         int i, voltages, ret;
2656
2657         /* If we can't change voltage check the current voltage */
2658         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2659                 ret = regulator_get_voltage(regulator);
2660                 if (ret >= 0)
2661                         return min_uV <= ret && ret <= max_uV;
2662                 else
2663                         return ret;
2664         }
2665
2666         /* Any voltage within constrains range is fine? */
2667         if (rdev->desc->continuous_voltage_range)
2668                 return min_uV >= rdev->constraints->min_uV &&
2669                                 max_uV <= rdev->constraints->max_uV;
2670
2671         ret = regulator_count_voltages(regulator);
2672         if (ret < 0)
2673                 return ret;
2674         voltages = ret;
2675
2676         for (i = 0; i < voltages; i++) {
2677                 ret = regulator_list_voltage(regulator, i);
2678
2679                 if (ret >= min_uV && ret <= max_uV)
2680                         return 1;
2681         }
2682
2683         return 0;
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2686
2687 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2688                                  int max_uV)
2689 {
2690         const struct regulator_desc *desc = rdev->desc;
2691
2692         if (desc->ops->map_voltage)
2693                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2694
2695         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2696                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2697
2698         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2699                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2700
2701         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2702 }
2703
2704 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2705                                        int min_uV, int max_uV,
2706                                        unsigned *selector)
2707 {
2708         struct pre_voltage_change_data data;
2709         int ret;
2710
2711         data.old_uV = _regulator_get_voltage(rdev);
2712         data.min_uV = min_uV;
2713         data.max_uV = max_uV;
2714         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2715                                    &data);
2716         if (ret & NOTIFY_STOP_MASK)
2717                 return -EINVAL;
2718
2719         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2720         if (ret >= 0)
2721                 return ret;
2722
2723         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2724                              (void *)data.old_uV);
2725
2726         return ret;
2727 }
2728
2729 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2730                                            int uV, unsigned selector)
2731 {
2732         struct pre_voltage_change_data data;
2733         int ret;
2734
2735         data.old_uV = _regulator_get_voltage(rdev);
2736         data.min_uV = uV;
2737         data.max_uV = uV;
2738         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2739                                    &data);
2740         if (ret & NOTIFY_STOP_MASK)
2741                 return -EINVAL;
2742
2743         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2744         if (ret >= 0)
2745                 return ret;
2746
2747         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2748                              (void *)data.old_uV);
2749
2750         return ret;
2751 }
2752
2753 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2754                                        int old_uV, int new_uV)
2755 {
2756         unsigned int ramp_delay = 0;
2757
2758         if (rdev->constraints->ramp_delay)
2759                 ramp_delay = rdev->constraints->ramp_delay;
2760         else if (rdev->desc->ramp_delay)
2761                 ramp_delay = rdev->desc->ramp_delay;
2762
2763         if (ramp_delay == 0) {
2764                 rdev_dbg(rdev, "ramp_delay not set\n");
2765                 return 0;
2766         }
2767
2768         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2769 }
2770
2771 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2772                                      int min_uV, int max_uV)
2773 {
2774         int ret;
2775         int delay = 0;
2776         int best_val = 0;
2777         unsigned int selector;
2778         int old_selector = -1;
2779         const struct regulator_ops *ops = rdev->desc->ops;
2780         int old_uV = _regulator_get_voltage(rdev);
2781
2782         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2783
2784         min_uV += rdev->constraints->uV_offset;
2785         max_uV += rdev->constraints->uV_offset;
2786
2787         /*
2788          * If we can't obtain the old selector there is not enough
2789          * info to call set_voltage_time_sel().
2790          */
2791         if (_regulator_is_enabled(rdev) &&
2792             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2793                 old_selector = ops->get_voltage_sel(rdev);
2794                 if (old_selector < 0)
2795                         return old_selector;
2796         }
2797
2798         if (ops->set_voltage) {
2799                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2800                                                   &selector);
2801
2802                 if (ret >= 0) {
2803                         if (ops->list_voltage)
2804                                 best_val = ops->list_voltage(rdev,
2805                                                              selector);
2806                         else
2807                                 best_val = _regulator_get_voltage(rdev);
2808                 }
2809
2810         } else if (ops->set_voltage_sel) {
2811                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2812                 if (ret >= 0) {
2813                         best_val = ops->list_voltage(rdev, ret);
2814                         if (min_uV <= best_val && max_uV >= best_val) {
2815                                 selector = ret;
2816                                 if (old_selector == selector)
2817                                         ret = 0;
2818                                 else
2819                                         ret = _regulator_call_set_voltage_sel(
2820                                                 rdev, best_val, selector);
2821                         } else {
2822                                 ret = -EINVAL;
2823                         }
2824                 }
2825         } else {
2826                 ret = -EINVAL;
2827         }
2828
2829         if (ret)
2830                 goto out;
2831
2832         if (ops->set_voltage_time_sel) {
2833                 /*
2834                  * Call set_voltage_time_sel if successfully obtained
2835                  * old_selector
2836                  */
2837                 if (old_selector >= 0 && old_selector != selector)
2838                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2839                                                           selector);
2840         } else {
2841                 if (old_uV != best_val) {
2842                         if (ops->set_voltage_time)
2843                                 delay = ops->set_voltage_time(rdev, old_uV,
2844                                                               best_val);
2845                         else
2846                                 delay = _regulator_set_voltage_time(rdev,
2847                                                                     old_uV,
2848                                                                     best_val);
2849                 }
2850         }
2851
2852         if (delay < 0) {
2853                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2854                 delay = 0;
2855         }
2856
2857         /* Insert any necessary delays */
2858         if (delay >= 1000) {
2859                 mdelay(delay / 1000);
2860                 udelay(delay % 1000);
2861         } else if (delay) {
2862                 udelay(delay);
2863         }
2864
2865         if (best_val >= 0) {
2866                 unsigned long data = best_val;
2867
2868                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2869                                      (void *)data);
2870         }
2871
2872 out:
2873         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2874
2875         return ret;
2876 }
2877
2878 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2879                                           int min_uV, int max_uV)
2880 {
2881         struct regulator_dev *rdev = regulator->rdev;
2882         int ret = 0;
2883         int old_min_uV, old_max_uV;
2884         int current_uV;
2885         int best_supply_uV = 0;
2886         int supply_change_uV = 0;
2887
2888         /* If we're setting the same range as last time the change
2889          * should be a noop (some cpufreq implementations use the same
2890          * voltage for multiple frequencies, for example).
2891          */
2892         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2893                 goto out;
2894
2895         /* If we're trying to set a range that overlaps the current voltage,
2896          * return successfully even though the regulator does not support
2897          * changing the voltage.
2898          */
2899         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2900                 current_uV = _regulator_get_voltage(rdev);
2901                 if (min_uV <= current_uV && current_uV <= max_uV) {
2902                         regulator->min_uV = min_uV;
2903                         regulator->max_uV = max_uV;
2904                         goto out;
2905                 }
2906         }
2907
2908         /* sanity check */
2909         if (!rdev->desc->ops->set_voltage &&
2910             !rdev->desc->ops->set_voltage_sel) {
2911                 ret = -EINVAL;
2912                 goto out;
2913         }
2914
2915         /* constraints check */
2916         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2917         if (ret < 0)
2918                 goto out;
2919
2920         /* restore original values in case of error */
2921         old_min_uV = regulator->min_uV;
2922         old_max_uV = regulator->max_uV;
2923         regulator->min_uV = min_uV;
2924         regulator->max_uV = max_uV;
2925
2926         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2927         if (ret < 0)
2928                 goto out2;
2929
2930         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2931                                 !rdev->desc->ops->get_voltage)) {
2932                 int current_supply_uV;
2933                 int selector;
2934
2935                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2936                 if (selector < 0) {
2937                         ret = selector;
2938                         goto out2;
2939                 }
2940
2941                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2942                 if (best_supply_uV < 0) {
2943                         ret = best_supply_uV;
2944                         goto out2;
2945                 }
2946
2947                 best_supply_uV += rdev->desc->min_dropout_uV;
2948
2949                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2950                 if (current_supply_uV < 0) {
2951                         ret = current_supply_uV;
2952                         goto out2;
2953                 }
2954
2955                 supply_change_uV = best_supply_uV - current_supply_uV;
2956         }
2957
2958         if (supply_change_uV > 0) {
2959                 ret = regulator_set_voltage_unlocked(rdev->supply,
2960                                 best_supply_uV, INT_MAX);
2961                 if (ret) {
2962                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2963                                         ret);
2964                         goto out2;
2965                 }
2966         }
2967
2968         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2969         if (ret < 0)
2970                 goto out2;
2971
2972         if (supply_change_uV < 0) {
2973                 ret = regulator_set_voltage_unlocked(rdev->supply,
2974                                 best_supply_uV, INT_MAX);
2975                 if (ret)
2976                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2977                                         ret);
2978                 /* No need to fail here */
2979                 ret = 0;
2980         }
2981
2982 out:
2983         return ret;
2984 out2:
2985         regulator->min_uV = old_min_uV;
2986         regulator->max_uV = old_max_uV;
2987
2988         return ret;
2989 }
2990
2991 /**
2992  * regulator_set_voltage - set regulator output voltage
2993  * @regulator: regulator source
2994  * @min_uV: Minimum required voltage in uV
2995  * @max_uV: Maximum acceptable voltage in uV
2996  *
2997  * Sets a voltage regulator to the desired output voltage. This can be set
2998  * during any regulator state. IOW, regulator can be disabled or enabled.
2999  *
3000  * If the regulator is enabled then the voltage will change to the new value
3001  * immediately otherwise if the regulator is disabled the regulator will
3002  * output at the new voltage when enabled.
3003  *
3004  * NOTE: If the regulator is shared between several devices then the lowest
3005  * request voltage that meets the system constraints will be used.
3006  * Regulator system constraints must be set for this regulator before
3007  * calling this function otherwise this call will fail.
3008  */
3009 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3010 {
3011         int ret = 0;
3012
3013         regulator_lock_supply(regulator->rdev);
3014
3015         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3016
3017         regulator_unlock_supply(regulator->rdev);
3018
3019         return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3022
3023 /**
3024  * regulator_set_voltage_time - get raise/fall time
3025  * @regulator: regulator source
3026  * @old_uV: starting voltage in microvolts
3027  * @new_uV: target voltage in microvolts
3028  *
3029  * Provided with the starting and ending voltage, this function attempts to
3030  * calculate the time in microseconds required to rise or fall to this new
3031  * voltage.
3032  */
3033 int regulator_set_voltage_time(struct regulator *regulator,
3034                                int old_uV, int new_uV)
3035 {
3036         struct regulator_dev *rdev = regulator->rdev;
3037         const struct regulator_ops *ops = rdev->desc->ops;
3038         int old_sel = -1;
3039         int new_sel = -1;
3040         int voltage;
3041         int i;
3042
3043         if (ops->set_voltage_time)
3044                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3045         else if (!ops->set_voltage_time_sel)
3046                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3047
3048         /* Currently requires operations to do this */
3049         if (!ops->list_voltage || !rdev->desc->n_voltages)
3050                 return -EINVAL;
3051
3052         for (i = 0; i < rdev->desc->n_voltages; i++) {
3053                 /* We only look for exact voltage matches here */
3054                 voltage = regulator_list_voltage(regulator, i);
3055                 if (voltage < 0)
3056                         return -EINVAL;
3057                 if (voltage == 0)
3058                         continue;
3059                 if (voltage == old_uV)
3060                         old_sel = i;
3061                 if (voltage == new_uV)
3062                         new_sel = i;
3063         }
3064
3065         if (old_sel < 0 || new_sel < 0)
3066                 return -EINVAL;
3067
3068         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3071
3072 /**
3073  * regulator_set_voltage_time_sel - get raise/fall time
3074  * @rdev: regulator source device
3075  * @old_selector: selector for starting voltage
3076  * @new_selector: selector for target voltage
3077  *
3078  * Provided with the starting and target voltage selectors, this function
3079  * returns time in microseconds required to rise or fall to this new voltage
3080  *
3081  * Drivers providing ramp_delay in regulation_constraints can use this as their
3082  * set_voltage_time_sel() operation.
3083  */
3084 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3085                                    unsigned int old_selector,
3086                                    unsigned int new_selector)
3087 {
3088         int old_volt, new_volt;
3089
3090         /* sanity check */
3091         if (!rdev->desc->ops->list_voltage)
3092                 return -EINVAL;
3093
3094         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3095         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3096
3097         if (rdev->desc->ops->set_voltage_time)
3098                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3099                                                          new_volt);
3100         else
3101                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3102 }
3103 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3104
3105 /**
3106  * regulator_sync_voltage - re-apply last regulator output voltage
3107  * @regulator: regulator source
3108  *
3109  * Re-apply the last configured voltage.  This is intended to be used
3110  * where some external control source the consumer is cooperating with
3111  * has caused the configured voltage to change.
3112  */
3113 int regulator_sync_voltage(struct regulator *regulator)
3114 {
3115         struct regulator_dev *rdev = regulator->rdev;
3116         int ret, min_uV, max_uV;
3117
3118         mutex_lock(&rdev->mutex);
3119
3120         if (!rdev->desc->ops->set_voltage &&
3121             !rdev->desc->ops->set_voltage_sel) {
3122                 ret = -EINVAL;
3123                 goto out;
3124         }
3125
3126         /* This is only going to work if we've had a voltage configured. */
3127         if (!regulator->min_uV && !regulator->max_uV) {
3128                 ret = -EINVAL;
3129                 goto out;
3130         }
3131
3132         min_uV = regulator->min_uV;
3133         max_uV = regulator->max_uV;
3134
3135         /* This should be a paranoia check... */
3136         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3137         if (ret < 0)
3138                 goto out;
3139
3140         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3141         if (ret < 0)
3142                 goto out;
3143
3144         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3145
3146 out:
3147         mutex_unlock(&rdev->mutex);
3148         return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3151
3152 static int _regulator_get_voltage(struct regulator_dev *rdev)
3153 {
3154         int sel, ret;
3155         bool bypassed;
3156
3157         if (rdev->desc->ops->get_bypass) {
3158                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3159                 if (ret < 0)
3160                         return ret;
3161                 if (bypassed) {
3162                         /* if bypassed the regulator must have a supply */
3163                         if (!rdev->supply) {
3164                                 rdev_err(rdev,
3165                                          "bypassed regulator has no supply!\n");
3166                                 return -EPROBE_DEFER;
3167                         }
3168
3169                         return _regulator_get_voltage(rdev->supply->rdev);
3170                 }
3171         }
3172
3173         if (rdev->desc->ops->get_voltage_sel) {
3174                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3175                 if (sel < 0)
3176                         return sel;
3177                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3178         } else if (rdev->desc->ops->get_voltage) {
3179                 ret = rdev->desc->ops->get_voltage(rdev);
3180         } else if (rdev->desc->ops->list_voltage) {
3181                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3182         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3183                 ret = rdev->desc->fixed_uV;
3184         } else if (rdev->supply) {
3185                 ret = _regulator_get_voltage(rdev->supply->rdev);
3186         } else if (rdev->supply_name) {
3187                 return -EPROBE_DEFER;
3188         } else {
3189                 return -EINVAL;
3190         }
3191
3192         if (ret < 0)
3193                 return ret;
3194         return ret - rdev->constraints->uV_offset;
3195 }
3196
3197 /**
3198  * regulator_get_voltage - get regulator output voltage
3199  * @regulator: regulator source
3200  *
3201  * This returns the current regulator voltage in uV.
3202  *
3203  * NOTE: If the regulator is disabled it will return the voltage value. This
3204  * function should not be used to determine regulator state.
3205  */
3206 int regulator_get_voltage(struct regulator *regulator)
3207 {
3208         int ret;
3209
3210         regulator_lock_supply(regulator->rdev);
3211
3212         ret = _regulator_get_voltage(regulator->rdev);
3213
3214         regulator_unlock_supply(regulator->rdev);
3215
3216         return ret;
3217 }
3218 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3219
3220 /**
3221  * regulator_set_current_limit - set regulator output current limit
3222  * @regulator: regulator source
3223  * @min_uA: Minimum supported current in uA
3224  * @max_uA: Maximum supported current in uA
3225  *
3226  * Sets current sink to the desired output current. This can be set during
3227  * any regulator state. IOW, regulator can be disabled or enabled.
3228  *
3229  * If the regulator is enabled then the current will change to the new value
3230  * immediately otherwise if the regulator is disabled the regulator will
3231  * output at the new current when enabled.
3232  *
3233  * NOTE: Regulator system constraints must be set for this regulator before
3234  * calling this function otherwise this call will fail.
3235  */
3236 int regulator_set_current_limit(struct regulator *regulator,
3237                                int min_uA, int max_uA)
3238 {
3239         struct regulator_dev *rdev = regulator->rdev;
3240         int ret;
3241
3242         mutex_lock(&rdev->mutex);
3243
3244         /* sanity check */
3245         if (!rdev->desc->ops->set_current_limit) {
3246                 ret = -EINVAL;
3247                 goto out;
3248         }
3249
3250         /* constraints check */
3251         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3252         if (ret < 0)
3253                 goto out;
3254
3255         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3256 out:
3257         mutex_unlock(&rdev->mutex);
3258         return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3261
3262 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3263 {
3264         int ret;
3265
3266         mutex_lock(&rdev->mutex);
3267
3268         /* sanity check */
3269         if (!rdev->desc->ops->get_current_limit) {
3270                 ret = -EINVAL;
3271                 goto out;
3272         }
3273
3274         ret = rdev->desc->ops->get_current_limit(rdev);
3275 out:
3276         mutex_unlock(&rdev->mutex);
3277         return ret;
3278 }
3279
3280 /**
3281  * regulator_get_current_limit - get regulator output current
3282  * @regulator: regulator source
3283  *
3284  * This returns the current supplied by the specified current sink in uA.
3285  *
3286  * NOTE: If the regulator is disabled it will return the current value. This
3287  * function should not be used to determine regulator state.
3288  */
3289 int regulator_get_current_limit(struct regulator *regulator)
3290 {
3291         return _regulator_get_current_limit(regulator->rdev);
3292 }
3293 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3294
3295 /**
3296  * regulator_set_mode - set regulator operating mode
3297  * @regulator: regulator source
3298  * @mode: operating mode - one of the REGULATOR_MODE constants
3299  *
3300  * Set regulator operating mode to increase regulator efficiency or improve
3301  * regulation performance.
3302  *
3303  * NOTE: Regulator system constraints must be set for this regulator before
3304  * calling this function otherwise this call will fail.
3305  */
3306 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3307 {
3308         struct regulator_dev *rdev = regulator->rdev;
3309         int ret;
3310         int regulator_curr_mode;
3311
3312         mutex_lock(&rdev->mutex);
3313
3314         /* sanity check */
3315         if (!rdev->desc->ops->set_mode) {
3316                 ret = -EINVAL;
3317                 goto out;
3318         }
3319
3320         /* return if the same mode is requested */
3321         if (rdev->desc->ops->get_mode) {
3322                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3323                 if (regulator_curr_mode == mode) {
3324                         ret = 0;
3325                         goto out;
3326                 }
3327         }
3328
3329         /* constraints check */
3330         ret = regulator_mode_constrain(rdev, &mode);
3331         if (ret < 0)
3332                 goto out;
3333
3334         ret = rdev->desc->ops->set_mode(rdev, mode);
3335 out:
3336         mutex_unlock(&rdev->mutex);
3337         return ret;
3338 }
3339 EXPORT_SYMBOL_GPL(regulator_set_mode);
3340
3341 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3342 {
3343         int ret;
3344
3345         mutex_lock(&rdev->mutex);
3346
3347         /* sanity check */
3348         if (!rdev->desc->ops->get_mode) {
3349                 ret = -EINVAL;
3350                 goto out;
3351         }
3352
3353         ret = rdev->desc->ops->get_mode(rdev);
3354 out:
3355         mutex_unlock(&rdev->mutex);
3356         return ret;
3357 }
3358
3359 /**
3360  * regulator_get_mode - get regulator operating mode
3361  * @regulator: regulator source
3362  *
3363  * Get the current regulator operating mode.
3364  */
3365 unsigned int regulator_get_mode(struct regulator *regulator)
3366 {
3367         return _regulator_get_mode(regulator->rdev);
3368 }
3369 EXPORT_SYMBOL_GPL(regulator_get_mode);
3370
3371 /**
3372  * regulator_set_load - set regulator load
3373  * @regulator: regulator source
3374  * @uA_load: load current
3375  *
3376  * Notifies the regulator core of a new device load. This is then used by
3377  * DRMS (if enabled by constraints) to set the most efficient regulator
3378  * operating mode for the new regulator loading.
3379  *
3380  * Consumer devices notify their supply regulator of the maximum power
3381  * they will require (can be taken from device datasheet in the power
3382  * consumption tables) when they change operational status and hence power
3383  * state. Examples of operational state changes that can affect power
3384  * consumption are :-
3385  *
3386  *    o Device is opened / closed.
3387  *    o Device I/O is about to begin or has just finished.
3388  *    o Device is idling in between work.
3389  *
3390  * This information is also exported via sysfs to userspace.
3391  *
3392  * DRMS will sum the total requested load on the regulator and change
3393  * to the most efficient operating mode if platform constraints allow.
3394  *
3395  * On error a negative errno is returned.
3396  */
3397 int regulator_set_load(struct regulator *regulator, int uA_load)
3398 {
3399         struct regulator_dev *rdev = regulator->rdev;
3400         int ret;
3401
3402         mutex_lock(&rdev->mutex);
3403         regulator->uA_load = uA_load;
3404         ret = drms_uA_update(rdev);
3405         mutex_unlock(&rdev->mutex);
3406
3407         return ret;
3408 }
3409 EXPORT_SYMBOL_GPL(regulator_set_load);
3410
3411 /**
3412  * regulator_allow_bypass - allow the regulator to go into bypass mode
3413  *
3414  * @regulator: Regulator to configure
3415  * @enable: enable or disable bypass mode
3416  *
3417  * Allow the regulator to go into bypass mode if all other consumers
3418  * for the regulator also enable bypass mode and the machine
3419  * constraints allow this.  Bypass mode means that the regulator is
3420  * simply passing the input directly to the output with no regulation.
3421  */
3422 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3423 {
3424         struct regulator_dev *rdev = regulator->rdev;
3425         int ret = 0;
3426
3427         if (!rdev->desc->ops->set_bypass)
3428                 return 0;
3429
3430         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3431                 return 0;
3432
3433         mutex_lock(&rdev->mutex);
3434
3435         if (enable && !regulator->bypass) {
3436                 rdev->bypass_count++;
3437
3438                 if (rdev->bypass_count == rdev->open_count) {
3439                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3440                         if (ret != 0)
3441                                 rdev->bypass_count--;
3442                 }
3443
3444         } else if (!enable && regulator->bypass) {
3445                 rdev->bypass_count--;
3446
3447                 if (rdev->bypass_count != rdev->open_count) {
3448                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3449                         if (ret != 0)
3450                                 rdev->bypass_count++;
3451                 }
3452         }
3453
3454         if (ret == 0)
3455                 regulator->bypass = enable;
3456
3457         mutex_unlock(&rdev->mutex);
3458
3459         return ret;
3460 }
3461 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3462
3463 /**
3464  * regulator_register_notifier - register regulator event notifier
3465  * @regulator: regulator source
3466  * @nb: notifier block
3467  *
3468  * Register notifier block to receive regulator events.
3469  */
3470 int regulator_register_notifier(struct regulator *regulator,
3471                               struct notifier_block *nb)
3472 {
3473         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3474                                                 nb);
3475 }
3476 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3477
3478 /**
3479  * regulator_unregister_notifier - unregister regulator event notifier
3480  * @regulator: regulator source
3481  * @nb: notifier block
3482  *
3483  * Unregister regulator event notifier block.
3484  */
3485 int regulator_unregister_notifier(struct regulator *regulator,
3486                                 struct notifier_block *nb)
3487 {
3488         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3489                                                   nb);
3490 }
3491 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3492
3493 /* notify regulator consumers and downstream regulator consumers.
3494  * Note mutex must be held by caller.
3495  */
3496 static int _notifier_call_chain(struct regulator_dev *rdev,
3497                                   unsigned long event, void *data)
3498 {
3499         /* call rdev chain first */
3500         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3501 }
3502
3503 /**
3504  * regulator_bulk_get - get multiple regulator consumers
3505  *
3506  * @dev:           Device to supply
3507  * @num_consumers: Number of consumers to register
3508  * @consumers:     Configuration of consumers; clients are stored here.
3509  *
3510  * @return 0 on success, an errno on failure.
3511  *
3512  * This helper function allows drivers to get several regulator
3513  * consumers in one operation.  If any of the regulators cannot be
3514  * acquired then any regulators that were allocated will be freed
3515  * before returning to the caller.
3516  */
3517 int regulator_bulk_get(struct device *dev, int num_consumers,
3518                        struct regulator_bulk_data *consumers)
3519 {
3520         int i;
3521         int ret;
3522
3523         for (i = 0; i < num_consumers; i++)
3524                 consumers[i].consumer = NULL;
3525
3526         for (i = 0; i < num_consumers; i++) {
3527                 consumers[i].consumer = regulator_get(dev,
3528                                                       consumers[i].supply);
3529                 if (IS_ERR(consumers[i].consumer)) {
3530                         ret = PTR_ERR(consumers[i].consumer);
3531                         dev_err(dev, "Failed to get supply '%s': %d\n",
3532                                 consumers[i].supply, ret);
3533                         consumers[i].consumer = NULL;
3534                         goto err;
3535                 }
3536         }
3537
3538         return 0;
3539
3540 err:
3541         while (--i >= 0)
3542                 regulator_put(consumers[i].consumer);
3543
3544         return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3547
3548 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3549 {
3550         struct regulator_bulk_data *bulk = data;
3551
3552         bulk->ret = regulator_enable(bulk->consumer);
3553 }
3554
3555 /**
3556  * regulator_bulk_enable - enable multiple regulator consumers
3557  *
3558  * @num_consumers: Number of consumers
3559  * @consumers:     Consumer data; clients are stored here.
3560  * @return         0 on success, an errno on failure
3561  *
3562  * This convenience API allows consumers to enable multiple regulator
3563  * clients in a single API call.  If any consumers cannot be enabled
3564  * then any others that were enabled will be disabled again prior to
3565  * return.
3566  */
3567 int regulator_bulk_enable(int num_consumers,
3568                           struct regulator_bulk_data *consumers)
3569 {
3570         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3571         int i;
3572         int ret = 0;
3573
3574         for (i = 0; i < num_consumers; i++) {
3575                 if (consumers[i].consumer->always_on)
3576                         consumers[i].ret = 0;
3577                 else
3578                         async_schedule_domain(regulator_bulk_enable_async,
3579                                               &consumers[i], &async_domain);
3580         }
3581
3582         async_synchronize_full_domain(&async_domain);
3583
3584         /* If any consumer failed we need to unwind any that succeeded */
3585         for (i = 0; i < num_consumers; i++) {
3586                 if (consumers[i].ret != 0) {
3587                         ret = consumers[i].ret;
3588                         goto err;
3589                 }
3590         }
3591
3592         return 0;
3593
3594 err:
3595         for (i = 0; i < num_consumers; i++) {
3596                 if (consumers[i].ret < 0)
3597                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3598                                consumers[i].ret);
3599                 else
3600                         regulator_disable(consumers[i].consumer);
3601         }
3602
3603         return ret;
3604 }
3605 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3606
3607 /**
3608  * regulator_bulk_disable - disable multiple regulator consumers
3609  *
3610  * @num_consumers: Number of consumers
3611  * @consumers:     Consumer data; clients are stored here.
3612  * @return         0 on success, an errno on failure
3613  *
3614  * This convenience API allows consumers to disable multiple regulator
3615  * clients in a single API call.  If any consumers cannot be disabled
3616  * then any others that were disabled will be enabled again prior to
3617  * return.
3618  */
3619 int regulator_bulk_disable(int num_consumers,
3620                            struct regulator_bulk_data *consumers)
3621 {
3622         int i;
3623         int ret, r;
3624
3625         for (i = num_consumers - 1; i >= 0; --i) {
3626                 ret = regulator_disable(consumers[i].consumer);
3627                 if (ret != 0)
3628                         goto err;
3629         }
3630
3631         return 0;
3632
3633 err:
3634         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3635         for (++i; i < num_consumers; ++i) {
3636                 r = regulator_enable(consumers[i].consumer);
3637                 if (r != 0)
3638                         pr_err("Failed to reename %s: %d\n",
3639                                consumers[i].supply, r);
3640         }
3641
3642         return ret;
3643 }
3644 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3645
3646 /**
3647  * regulator_bulk_force_disable - force disable multiple regulator consumers
3648  *
3649  * @num_consumers: Number of consumers
3650  * @consumers:     Consumer data; clients are stored here.
3651  * @return         0 on success, an errno on failure
3652  *
3653  * This convenience API allows consumers to forcibly disable multiple regulator
3654  * clients in a single API call.
3655  * NOTE: This should be used for situations when device damage will
3656  * likely occur if the regulators are not disabled (e.g. over temp).
3657  * Although regulator_force_disable function call for some consumers can
3658  * return error numbers, the function is called for all consumers.
3659  */
3660 int regulator_bulk_force_disable(int num_consumers,
3661                            struct regulator_bulk_data *consumers)
3662 {
3663         int i;
3664         int ret;
3665
3666         for (i = 0; i < num_consumers; i++)
3667                 consumers[i].ret =
3668                             regulator_force_disable(consumers[i].consumer);
3669
3670         for (i = 0; i < num_consumers; i++) {
3671                 if (consumers[i].ret != 0) {
3672                         ret = consumers[i].ret;
3673                         goto out;
3674                 }
3675         }
3676
3677         return 0;
3678 out:
3679         return ret;
3680 }
3681 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3682
3683 /**
3684  * regulator_bulk_free - free multiple regulator consumers
3685  *
3686  * @num_consumers: Number of consumers
3687  * @consumers:     Consumer data; clients are stored here.
3688  *
3689  * This convenience API allows consumers to free multiple regulator
3690  * clients in a single API call.
3691  */
3692 void regulator_bulk_free(int num_consumers,
3693                          struct regulator_bulk_data *consumers)
3694 {
3695         int i;
3696
3697         for (i = 0; i < num_consumers; i++) {
3698                 regulator_put(consumers[i].consumer);
3699                 consumers[i].consumer = NULL;
3700         }
3701 }
3702 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3703
3704 /**
3705  * regulator_notifier_call_chain - call regulator event notifier
3706  * @rdev: regulator source
3707  * @event: notifier block
3708  * @data: callback-specific data.
3709  *
3710  * Called by regulator drivers to notify clients a regulator event has
3711  * occurred. We also notify regulator clients downstream.
3712  * Note lock must be held by caller.
3713  */
3714 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3715                                   unsigned long event, void *data)
3716 {
3717         lockdep_assert_held_once(&rdev->mutex);
3718
3719         _notifier_call_chain(rdev, event, data);
3720         return NOTIFY_DONE;
3721
3722 }
3723 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3724
3725 /**
3726  * regulator_mode_to_status - convert a regulator mode into a status
3727  *
3728  * @mode: Mode to convert
3729  *
3730  * Convert a regulator mode into a status.
3731  */
3732 int regulator_mode_to_status(unsigned int mode)
3733 {
3734         switch (mode) {
3735         case REGULATOR_MODE_FAST:
3736                 return REGULATOR_STATUS_FAST;
3737         case REGULATOR_MODE_NORMAL:
3738                 return REGULATOR_STATUS_NORMAL;
3739         case REGULATOR_MODE_IDLE:
3740                 return REGULATOR_STATUS_IDLE;
3741         case REGULATOR_MODE_STANDBY:
3742                 return REGULATOR_STATUS_STANDBY;
3743         default:
3744                 return REGULATOR_STATUS_UNDEFINED;
3745         }
3746 }
3747 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3748
3749 static struct attribute *regulator_dev_attrs[] = {
3750         &dev_attr_name.attr,
3751         &dev_attr_num_users.attr,
3752         &dev_attr_type.attr,
3753         &dev_attr_microvolts.attr,
3754         &dev_attr_microamps.attr,
3755         &dev_attr_opmode.attr,
3756         &dev_attr_state.attr,
3757         &dev_attr_status.attr,
3758         &dev_attr_bypass.attr,
3759         &dev_attr_requested_microamps.attr,
3760         &dev_attr_min_microvolts.attr,
3761         &dev_attr_max_microvolts.attr,
3762         &dev_attr_min_microamps.attr,
3763         &dev_attr_max_microamps.attr,
3764         &dev_attr_suspend_standby_state.attr,
3765         &dev_attr_suspend_mem_state.attr,
3766         &dev_attr_suspend_disk_state.attr,
3767         &dev_attr_suspend_standby_microvolts.attr,
3768         &dev_attr_suspend_mem_microvolts.attr,
3769         &dev_attr_suspend_disk_microvolts.attr,
3770         &dev_attr_suspend_standby_mode.attr,
3771         &dev_attr_suspend_mem_mode.attr,
3772         &dev_attr_suspend_disk_mode.attr,
3773         NULL
3774 };
3775
3776 /*
3777  * To avoid cluttering sysfs (and memory) with useless state, only
3778  * create attributes that can be meaningfully displayed.
3779  */
3780 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3781                                          struct attribute *attr, int idx)
3782 {
3783         struct device *dev = kobj_to_dev(kobj);
3784         struct regulator_dev *rdev = dev_to_rdev(dev);
3785         const struct regulator_ops *ops = rdev->desc->ops;
3786         umode_t mode = attr->mode;
3787
3788         /* these three are always present */
3789         if (attr == &dev_attr_name.attr ||
3790             attr == &dev_attr_num_users.attr ||
3791             attr == &dev_attr_type.attr)
3792                 return mode;
3793
3794         /* some attributes need specific methods to be displayed */
3795         if (attr == &dev_attr_microvolts.attr) {
3796                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3797                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3798                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3799                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3800                         return mode;
3801                 return 0;
3802         }
3803
3804         if (attr == &dev_attr_microamps.attr)
3805                 return ops->get_current_limit ? mode : 0;
3806
3807         if (attr == &dev_attr_opmode.attr)
3808                 return ops->get_mode ? mode : 0;
3809
3810         if (attr == &dev_attr_state.attr)
3811                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3812
3813         if (attr == &dev_attr_status.attr)
3814                 return ops->get_status ? mode : 0;
3815
3816         if (attr == &dev_attr_bypass.attr)
3817                 return ops->get_bypass ? mode : 0;
3818
3819         /* some attributes are type-specific */
3820         if (attr == &dev_attr_requested_microamps.attr)
3821                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3822
3823         /* constraints need specific supporting methods */
3824         if (attr == &dev_attr_min_microvolts.attr ||
3825             attr == &dev_attr_max_microvolts.attr)
3826                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3827
3828         if (attr == &dev_attr_min_microamps.attr ||
3829             attr == &dev_attr_max_microamps.attr)
3830                 return ops->set_current_limit ? mode : 0;
3831
3832         if (attr == &dev_attr_suspend_standby_state.attr ||
3833             attr == &dev_attr_suspend_mem_state.attr ||
3834             attr == &dev_attr_suspend_disk_state.attr)
3835                 return mode;
3836
3837         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3838             attr == &dev_attr_suspend_mem_microvolts.attr ||
3839             attr == &dev_attr_suspend_disk_microvolts.attr)
3840                 return ops->set_suspend_voltage ? mode : 0;
3841
3842         if (attr == &dev_attr_suspend_standby_mode.attr ||
3843             attr == &dev_attr_suspend_mem_mode.attr ||
3844             attr == &dev_attr_suspend_disk_mode.attr)
3845                 return ops->set_suspend_mode ? mode : 0;
3846
3847         return mode;
3848 }
3849
3850 static const struct attribute_group regulator_dev_group = {
3851         .attrs = regulator_dev_attrs,
3852         .is_visible = regulator_attr_is_visible,
3853 };
3854
3855 static const struct attribute_group *regulator_dev_groups[] = {
3856         &regulator_dev_group,
3857         NULL
3858 };
3859
3860 static void regulator_dev_release(struct device *dev)
3861 {
3862         struct regulator_dev *rdev = dev_get_drvdata(dev);
3863
3864         kfree(rdev->constraints);
3865         of_node_put(rdev->dev.of_node);
3866         kfree(rdev);
3867 }
3868
3869 static struct class regulator_class = {
3870         .name = "regulator",
3871         .dev_release = regulator_dev_release,
3872         .dev_groups = regulator_dev_groups,
3873 };
3874
3875 static void rdev_init_debugfs(struct regulator_dev *rdev)
3876 {
3877         struct device *parent = rdev->dev.parent;
3878         const char *rname = rdev_get_name(rdev);
3879         char name[NAME_MAX];
3880
3881         /* Avoid duplicate debugfs directory names */
3882         if (parent && rname == rdev->desc->name) {
3883                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3884                          rname);
3885                 rname = name;
3886         }
3887
3888         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3889         if (!rdev->debugfs) {
3890                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3891                 return;
3892         }
3893
3894         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3895                            &rdev->use_count);
3896         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3897                            &rdev->open_count);
3898         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3899                            &rdev->bypass_count);
3900 }
3901
3902 static int regulator_register_resolve_supply(struct device *dev, void *data)
3903 {
3904         struct regulator_dev *rdev = dev_to_rdev(dev);
3905
3906         if (regulator_resolve_supply(rdev))
3907                 rdev_dbg(rdev, "unable to resolve supply\n");
3908
3909         return 0;
3910 }
3911
3912 /**
3913  * regulator_register - register regulator
3914  * @regulator_desc: regulator to register
3915  * @cfg: runtime configuration for regulator
3916  *
3917  * Called by regulator drivers to register a regulator.
3918  * Returns a valid pointer to struct regulator_dev on success
3919  * or an ERR_PTR() on error.
3920  */
3921 struct regulator_dev *
3922 regulator_register(const struct regulator_desc *regulator_desc,
3923                    const struct regulator_config *cfg)
3924 {
3925         const struct regulator_init_data *init_data;
3926         struct regulator_config *config = NULL;
3927         static atomic_t regulator_no = ATOMIC_INIT(-1);
3928         struct regulator_dev *rdev;
3929         struct device *dev;
3930         int ret, i;
3931
3932         if (regulator_desc == NULL || cfg == NULL)
3933                 return ERR_PTR(-EINVAL);
3934
3935         dev = cfg->dev;
3936         WARN_ON(!dev);
3937
3938         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3939                 return ERR_PTR(-EINVAL);
3940
3941         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3942             regulator_desc->type != REGULATOR_CURRENT)
3943                 return ERR_PTR(-EINVAL);
3944
3945         /* Only one of each should be implemented */
3946         WARN_ON(regulator_desc->ops->get_voltage &&
3947                 regulator_desc->ops->get_voltage_sel);
3948         WARN_ON(regulator_desc->ops->set_voltage &&
3949                 regulator_desc->ops->set_voltage_sel);
3950
3951         /* If we're using selectors we must implement list_voltage. */
3952         if (regulator_desc->ops->get_voltage_sel &&
3953             !regulator_desc->ops->list_voltage) {
3954                 return ERR_PTR(-EINVAL);
3955         }
3956         if (regulator_desc->ops->set_voltage_sel &&
3957             !regulator_desc->ops->list_voltage) {
3958                 return ERR_PTR(-EINVAL);
3959         }
3960
3961         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3962         if (rdev == NULL)
3963                 return ERR_PTR(-ENOMEM);
3964
3965         /*
3966          * Duplicate the config so the driver could override it after
3967          * parsing init data.
3968          */
3969         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3970         if (config == NULL) {
3971                 kfree(rdev);
3972                 return ERR_PTR(-ENOMEM);
3973         }
3974
3975         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3976                                                &rdev->dev.of_node);
3977         if (!init_data) {
3978                 init_data = config->init_data;
3979                 rdev->dev.of_node = of_node_get(config->of_node);
3980         }
3981
3982         mutex_init(&rdev->mutex);
3983         rdev->reg_data = config->driver_data;
3984         rdev->owner = regulator_desc->owner;
3985         rdev->desc = regulator_desc;
3986         if (config->regmap)
3987                 rdev->regmap = config->regmap;
3988         else if (dev_get_regmap(dev, NULL))
3989                 rdev->regmap = dev_get_regmap(dev, NULL);
3990         else if (dev->parent)
3991                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3992         INIT_LIST_HEAD(&rdev->consumer_list);
3993         INIT_LIST_HEAD(&rdev->list);
3994         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3995         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3996
3997         /* preform any regulator specific init */
3998         if (init_data && init_data->regulator_init) {
3999                 ret = init_data->regulator_init(rdev->reg_data);
4000                 if (ret < 0)
4001                         goto clean;
4002         }
4003
4004         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4005             gpio_is_valid(config->ena_gpio)) {
4006                 mutex_lock(&regulator_list_mutex);
4007                 ret = regulator_ena_gpio_request(rdev, config);
4008                 mutex_unlock(&regulator_list_mutex);
4009                 if (ret != 0) {
4010                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4011                                  config->ena_gpio, ret);
4012                         goto clean;
4013                 }
4014         }
4015
4016         /* register with sysfs */
4017         rdev->dev.class = &regulator_class;
4018         rdev->dev.parent = dev;
4019         dev_set_name(&rdev->dev, "regulator.%lu",
4020                     (unsigned long) atomic_inc_return(&regulator_no));
4021
4022         /* set regulator constraints */
4023         if (init_data)
4024                 rdev->constraints = kmemdup(&init_data->constraints,
4025                                             sizeof(*rdev->constraints),
4026                                             GFP_KERNEL);
4027         else
4028                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4029                                             GFP_KERNEL);
4030         if (!rdev->constraints) {
4031                 ret = -ENOMEM;
4032                 goto wash;
4033         }
4034
4035         if (init_data && init_data->supply_regulator)
4036                 rdev->supply_name = init_data->supply_regulator;
4037         else if (regulator_desc->supply_name)
4038                 rdev->supply_name = regulator_desc->supply_name;
4039
4040         ret = set_machine_constraints(rdev);
4041         if (ret == -EPROBE_DEFER) {
4042                 /* Regulator might be in bypass mode and so needs its supply
4043                  * to set the constraints */
4044                 /* FIXME: this currently triggers a chicken-and-egg problem
4045                  * when creating -SUPPLY symlink in sysfs to a regulator
4046                  * that is just being created */
4047                 ret = regulator_resolve_supply(rdev);
4048                 if (!ret)
4049                         ret = set_machine_constraints(rdev);
4050                 else
4051                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4052                                  ERR_PTR(ret));
4053         }
4054         if (ret < 0)
4055                 goto wash;
4056
4057         /* add consumers devices */
4058         if (init_data) {
4059                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4060                         ret = set_consumer_device_supply(rdev,
4061                                 init_data->consumer_supplies[i].dev_name,
4062                                 init_data->consumer_supplies[i].supply);
4063                         if (ret < 0) {
4064                                 dev_err(dev, "Failed to set supply %s\n",
4065                                         init_data->consumer_supplies[i].supply);
4066                                 goto unset_supplies;
4067                         }
4068                 }
4069         }
4070
4071         if (!rdev->desc->ops->get_voltage &&
4072             !rdev->desc->ops->list_voltage &&
4073             !rdev->desc->fixed_uV)
4074                 rdev->is_switch = true;
4075
4076         dev_set_drvdata(&rdev->dev, rdev);
4077         ret = device_register(&rdev->dev);
4078         if (ret != 0) {
4079                 put_device(&rdev->dev);
4080                 goto unset_supplies;
4081         }
4082
4083         rdev_init_debugfs(rdev);
4084
4085         /* try to resolve regulators supply since a new one was registered */
4086         class_for_each_device(&regulator_class, NULL, NULL,
4087                               regulator_register_resolve_supply);
4088         kfree(config);
4089         return rdev;
4090
4091 unset_supplies:
4092         mutex_lock(&regulator_list_mutex);
4093         unset_regulator_supplies(rdev);
4094         mutex_unlock(&regulator_list_mutex);
4095 wash:
4096         kfree(rdev->constraints);
4097         mutex_lock(&regulator_list_mutex);
4098         regulator_ena_gpio_free(rdev);
4099         mutex_unlock(&regulator_list_mutex);
4100 clean:
4101         kfree(rdev);
4102         kfree(config);
4103         return ERR_PTR(ret);
4104 }
4105 EXPORT_SYMBOL_GPL(regulator_register);
4106
4107 /**
4108  * regulator_unregister - unregister regulator
4109  * @rdev: regulator to unregister
4110  *
4111  * Called by regulator drivers to unregister a regulator.
4112  */
4113 void regulator_unregister(struct regulator_dev *rdev)
4114 {
4115         if (rdev == NULL)
4116                 return;
4117
4118         if (rdev->supply) {
4119                 while (rdev->use_count--)
4120                         regulator_disable(rdev->supply);
4121                 regulator_put(rdev->supply);
4122         }
4123         mutex_lock(&regulator_list_mutex);
4124         debugfs_remove_recursive(rdev->debugfs);
4125         flush_work(&rdev->disable_work.work);
4126         WARN_ON(rdev->open_count);
4127         unset_regulator_supplies(rdev);
4128         list_del(&rdev->list);
4129         regulator_ena_gpio_free(rdev);
4130         mutex_unlock(&regulator_list_mutex);
4131         device_unregister(&rdev->dev);
4132 }
4133 EXPORT_SYMBOL_GPL(regulator_unregister);
4134
4135 static int _regulator_suspend_prepare(struct device *dev, void *data)
4136 {
4137         struct regulator_dev *rdev = dev_to_rdev(dev);
4138         const suspend_state_t *state = data;
4139         int ret;
4140
4141         mutex_lock(&rdev->mutex);
4142         ret = suspend_prepare(rdev, *state);
4143         mutex_unlock(&rdev->mutex);
4144
4145         return ret;
4146 }
4147
4148 /**
4149  * regulator_suspend_prepare - prepare regulators for system wide suspend
4150  * @state: system suspend state
4151  *
4152  * Configure each regulator with it's suspend operating parameters for state.
4153  * This will usually be called by machine suspend code prior to supending.
4154  */
4155 int regulator_suspend_prepare(suspend_state_t state)
4156 {
4157         /* ON is handled by regulator active state */
4158         if (state == PM_SUSPEND_ON)
4159                 return -EINVAL;
4160
4161         return class_for_each_device(&regulator_class, NULL, &state,
4162                                      _regulator_suspend_prepare);
4163 }
4164 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4165
4166 static int _regulator_suspend_finish(struct device *dev, void *data)
4167 {
4168         struct regulator_dev *rdev = dev_to_rdev(dev);
4169         int ret;
4170
4171         mutex_lock(&rdev->mutex);
4172         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4173                 if (!_regulator_is_enabled(rdev)) {
4174                         ret = _regulator_do_enable(rdev);
4175                         if (ret)
4176                                 dev_err(dev,
4177                                         "Failed to resume regulator %d\n",
4178                                         ret);
4179                 }
4180         } else {
4181                 if (!have_full_constraints())
4182                         goto unlock;
4183                 if (!_regulator_is_enabled(rdev))
4184                         goto unlock;
4185
4186                 ret = _regulator_do_disable(rdev);
4187                 if (ret)
4188                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4189         }
4190 unlock:
4191         mutex_unlock(&rdev->mutex);
4192
4193         /* Keep processing regulators in spite of any errors */
4194         return 0;
4195 }
4196
4197 /**
4198  * regulator_suspend_finish - resume regulators from system wide suspend
4199  *
4200  * Turn on regulators that might be turned off by regulator_suspend_prepare
4201  * and that should be turned on according to the regulators properties.
4202  */
4203 int regulator_suspend_finish(void)
4204 {
4205         return class_for_each_device(&regulator_class, NULL, NULL,
4206                                      _regulator_suspend_finish);
4207 }
4208 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4209
4210 /**
4211  * regulator_has_full_constraints - the system has fully specified constraints
4212  *
4213  * Calling this function will cause the regulator API to disable all
4214  * regulators which have a zero use count and don't have an always_on
4215  * constraint in a late_initcall.
4216  *
4217  * The intention is that this will become the default behaviour in a
4218  * future kernel release so users are encouraged to use this facility
4219  * now.
4220  */
4221 void regulator_has_full_constraints(void)
4222 {
4223         has_full_constraints = 1;
4224 }
4225 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4226
4227 /**
4228  * rdev_get_drvdata - get rdev regulator driver data
4229  * @rdev: regulator
4230  *
4231  * Get rdev regulator driver private data. This call can be used in the
4232  * regulator driver context.
4233  */
4234 void *rdev_get_drvdata(struct regulator_dev *rdev)
4235 {
4236         return rdev->reg_data;
4237 }
4238 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4239
4240 /**
4241  * regulator_get_drvdata - get regulator driver data
4242  * @regulator: regulator
4243  *
4244  * Get regulator driver private data. This call can be used in the consumer
4245  * driver context when non API regulator specific functions need to be called.
4246  */
4247 void *regulator_get_drvdata(struct regulator *regulator)
4248 {
4249         return regulator->rdev->reg_data;
4250 }
4251 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4252
4253 /**
4254  * regulator_set_drvdata - set regulator driver data
4255  * @regulator: regulator
4256  * @data: data
4257  */
4258 void regulator_set_drvdata(struct regulator *regulator, void *data)
4259 {
4260         regulator->rdev->reg_data = data;
4261 }
4262 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4263
4264 /**
4265  * regulator_get_id - get regulator ID
4266  * @rdev: regulator
4267  */
4268 int rdev_get_id(struct regulator_dev *rdev)
4269 {
4270         return rdev->desc->id;
4271 }
4272 EXPORT_SYMBOL_GPL(rdev_get_id);
4273
4274 struct device *rdev_get_dev(struct regulator_dev *rdev)
4275 {
4276         return &rdev->dev;
4277 }
4278 EXPORT_SYMBOL_GPL(rdev_get_dev);
4279
4280 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4281 {
4282         return reg_init_data->driver_data;
4283 }
4284 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4285
4286 #ifdef CONFIG_DEBUG_FS
4287 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4288                                     size_t count, loff_t *ppos)
4289 {
4290         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4291         ssize_t len, ret = 0;
4292         struct regulator_map *map;
4293
4294         if (!buf)
4295                 return -ENOMEM;
4296
4297         list_for_each_entry(map, &regulator_map_list, list) {
4298                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4299                                "%s -> %s.%s\n",
4300                                rdev_get_name(map->regulator), map->dev_name,
4301                                map->supply);
4302                 if (len >= 0)
4303                         ret += len;
4304                 if (ret > PAGE_SIZE) {
4305                         ret = PAGE_SIZE;
4306                         break;
4307                 }
4308         }
4309
4310         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4311
4312         kfree(buf);
4313
4314         return ret;
4315 }
4316 #endif
4317
4318 static const struct file_operations supply_map_fops = {
4319 #ifdef CONFIG_DEBUG_FS
4320         .read = supply_map_read_file,
4321         .llseek = default_llseek,
4322 #endif
4323 };
4324
4325 #ifdef CONFIG_DEBUG_FS
4326 struct summary_data {
4327         struct seq_file *s;
4328         struct regulator_dev *parent;
4329         int level;
4330 };
4331
4332 static void regulator_summary_show_subtree(struct seq_file *s,
4333                                            struct regulator_dev *rdev,
4334                                            int level);
4335
4336 static int regulator_summary_show_children(struct device *dev, void *data)
4337 {
4338         struct regulator_dev *rdev = dev_to_rdev(dev);
4339         struct summary_data *summary_data = data;
4340
4341         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4342                 regulator_summary_show_subtree(summary_data->s, rdev,
4343                                                summary_data->level + 1);
4344
4345         return 0;
4346 }
4347
4348 static void regulator_summary_show_subtree(struct seq_file *s,
4349                                            struct regulator_dev *rdev,
4350                                            int level)
4351 {
4352         struct regulation_constraints *c;
4353         struct regulator *consumer;
4354         struct summary_data summary_data;
4355
4356         if (!rdev)
4357                 return;
4358
4359         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4360                    level * 3 + 1, "",
4361                    30 - level * 3, rdev_get_name(rdev),
4362                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4363
4364         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4365         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4366
4367         c = rdev->constraints;
4368         if (c) {
4369                 switch (rdev->desc->type) {
4370                 case REGULATOR_VOLTAGE:
4371                         seq_printf(s, "%5dmV %5dmV ",
4372                                    c->min_uV / 1000, c->max_uV / 1000);
4373                         break;
4374                 case REGULATOR_CURRENT:
4375                         seq_printf(s, "%5dmA %5dmA ",
4376                                    c->min_uA / 1000, c->max_uA / 1000);
4377                         break;
4378                 }
4379         }
4380
4381         seq_puts(s, "\n");
4382
4383         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4384                 if (consumer->dev && consumer->dev->class == &regulator_class)
4385                         continue;
4386
4387                 seq_printf(s, "%*s%-*s ",
4388                            (level + 1) * 3 + 1, "",
4389                            30 - (level + 1) * 3,
4390                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4391
4392                 switch (rdev->desc->type) {
4393                 case REGULATOR_VOLTAGE:
4394                         seq_printf(s, "%37dmV %5dmV",
4395                                    consumer->min_uV / 1000,
4396                                    consumer->max_uV / 1000);
4397                         break;
4398                 case REGULATOR_CURRENT:
4399                         break;
4400                 }
4401
4402                 seq_puts(s, "\n");
4403         }
4404
4405         summary_data.s = s;
4406         summary_data.level = level;
4407         summary_data.parent = rdev;
4408
4409         class_for_each_device(&regulator_class, NULL, &summary_data,
4410                               regulator_summary_show_children);
4411 }
4412
4413 static int regulator_summary_show_roots(struct device *dev, void *data)
4414 {
4415         struct regulator_dev *rdev = dev_to_rdev(dev);
4416         struct seq_file *s = data;
4417
4418         if (!rdev->supply)
4419                 regulator_summary_show_subtree(s, rdev, 0);
4420
4421         return 0;
4422 }
4423
4424 static int regulator_summary_show(struct seq_file *s, void *data)
4425 {
4426         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4427         seq_puts(s, "-------------------------------------------------------------------------------\n");
4428
4429         class_for_each_device(&regulator_class, NULL, s,
4430                               regulator_summary_show_roots);
4431
4432         return 0;
4433 }
4434
4435 static int regulator_summary_open(struct inode *inode, struct file *file)
4436 {
4437         return single_open(file, regulator_summary_show, inode->i_private);
4438 }
4439 #endif
4440
4441 static const struct file_operations regulator_summary_fops = {
4442 #ifdef CONFIG_DEBUG_FS
4443         .open           = regulator_summary_open,
4444         .read           = seq_read,
4445         .llseek         = seq_lseek,
4446         .release        = single_release,
4447 #endif
4448 };
4449
4450 static int __init regulator_init(void)
4451 {
4452         int ret;
4453
4454         ret = class_register(&regulator_class);
4455
4456         debugfs_root = debugfs_create_dir("regulator", NULL);
4457         if (!debugfs_root)
4458                 pr_warn("regulator: Failed to create debugfs directory\n");
4459
4460         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4461                             &supply_map_fops);
4462
4463         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4464                             NULL, &regulator_summary_fops);
4465
4466         regulator_dummy_init();
4467
4468         return ret;
4469 }
4470
4471 /* init early to allow our consumers to complete system booting */
4472 core_initcall(regulator_init);
4473
4474 static int __init regulator_late_cleanup(struct device *dev, void *data)
4475 {
4476         struct regulator_dev *rdev = dev_to_rdev(dev);
4477         const struct regulator_ops *ops = rdev->desc->ops;
4478         struct regulation_constraints *c = rdev->constraints;
4479         int enabled, ret;
4480
4481         if (c && c->always_on)
4482                 return 0;
4483
4484         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4485                 return 0;
4486
4487         mutex_lock(&rdev->mutex);
4488
4489         if (rdev->use_count)
4490                 goto unlock;
4491
4492         /* If we can't read the status assume it's on. */
4493         if (ops->is_enabled)
4494                 enabled = ops->is_enabled(rdev);
4495         else
4496                 enabled = 1;
4497
4498         if (!enabled)
4499                 goto unlock;
4500
4501         if (have_full_constraints()) {
4502                 /* We log since this may kill the system if it goes
4503                  * wrong. */
4504                 rdev_info(rdev, "disabling\n");
4505                 ret = _regulator_do_disable(rdev);
4506                 if (ret != 0)
4507                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4508         } else {
4509                 /* The intention is that in future we will
4510                  * assume that full constraints are provided
4511                  * so warn even if we aren't going to do
4512                  * anything here.
4513                  */
4514                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4515         }
4516
4517 unlock:
4518         mutex_unlock(&rdev->mutex);
4519
4520         return 0;
4521 }
4522
4523 static int __init regulator_init_complete(void)
4524 {
4525         /*
4526          * Since DT doesn't provide an idiomatic mechanism for
4527          * enabling full constraints and since it's much more natural
4528          * with DT to provide them just assume that a DT enabled
4529          * system has full constraints.
4530          */
4531         if (of_have_populated_dt())
4532                 has_full_constraints = true;
4533
4534         /*
4535          * Regulators may had failed to resolve their input supplies
4536          * when were registered, either because the input supply was
4537          * not registered yet or because its parent device was not
4538          * bound yet. So attempt to resolve the input supplies for
4539          * pending regulators before trying to disable unused ones.
4540          */
4541         class_for_each_device(&regulator_class, NULL, NULL,
4542                               regulator_register_resolve_supply);
4543
4544         /* If we have a full configuration then disable any regulators
4545          * we have permission to change the status for and which are
4546          * not in use or always_on.  This is effectively the default
4547          * for DT and ACPI as they have full constraints.
4548          */
4549         class_for_each_device(&regulator_class, NULL, NULL,
4550                               regulator_late_cleanup);
4551
4552         return 0;
4553 }
4554 late_initcall_sync(regulator_init_complete);