GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94                                      suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
112 static bool have_full_constraints(void)
113 {
114         return has_full_constraints || of_have_populated_dt();
115 }
116
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119         if (!rdev->constraints) {
120                 rdev_err(rdev, "no constraints\n");
121                 return false;
122         }
123
124         if (rdev->constraints->valid_ops_mask & ops)
125                 return true;
126
127         return false;
128 }
129
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:               regulator source
133  * @ww_ctx:             w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142                                         struct ww_acquire_ctx *ww_ctx)
143 {
144         bool lock = false;
145         int ret = 0;
146
147         mutex_lock(&regulator_nesting_mutex);
148
149         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150                 if (rdev->mutex_owner == current)
151                         rdev->ref_cnt++;
152                 else
153                         lock = true;
154
155                 if (lock) {
156                         mutex_unlock(&regulator_nesting_mutex);
157                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158                         mutex_lock(&regulator_nesting_mutex);
159                 }
160         } else {
161                 lock = true;
162         }
163
164         if (lock && ret != -EDEADLK) {
165                 rdev->ref_cnt++;
166                 rdev->mutex_owner = current;
167         }
168
169         mutex_unlock(&regulator_nesting_mutex);
170
171         return ret;
172 }
173
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:               regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186         regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:               regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198         mutex_lock(&regulator_nesting_mutex);
199
200         if (--rdev->ref_cnt == 0) {
201                 rdev->mutex_owner = NULL;
202                 ww_mutex_unlock(&rdev->mutex);
203         }
204
205         WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207         mutex_unlock(&regulator_nesting_mutex);
208 }
209
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212         struct regulator_dev *c_rdev;
213         int i;
214
215         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218                 if (rdev->supply->rdev == c_rdev)
219                         return true;
220         }
221
222         return false;
223 }
224
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226                                        unsigned int n_coupled)
227 {
228         struct regulator_dev *c_rdev, *supply_rdev;
229         int i, supply_n_coupled;
230
231         for (i = n_coupled; i > 0; i--) {
232                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234                 if (!c_rdev)
235                         continue;
236
237                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238                         supply_rdev = c_rdev->supply->rdev;
239                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241                         regulator_unlock_recursive(supply_rdev,
242                                                    supply_n_coupled);
243                 }
244
245                 regulator_unlock(c_rdev);
246         }
247 }
248
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250                                     struct regulator_dev **new_contended_rdev,
251                                     struct regulator_dev **old_contended_rdev,
252                                     struct ww_acquire_ctx *ww_ctx)
253 {
254         struct regulator_dev *c_rdev;
255         int i, err;
256
257         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260                 if (!c_rdev)
261                         continue;
262
263                 if (c_rdev != *old_contended_rdev) {
264                         err = regulator_lock_nested(c_rdev, ww_ctx);
265                         if (err) {
266                                 if (err == -EDEADLK) {
267                                         *new_contended_rdev = c_rdev;
268                                         goto err_unlock;
269                                 }
270
271                                 /* shouldn't happen */
272                                 WARN_ON_ONCE(err != -EALREADY);
273                         }
274                 } else {
275                         *old_contended_rdev = NULL;
276                 }
277
278                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279                         err = regulator_lock_recursive(c_rdev->supply->rdev,
280                                                        new_contended_rdev,
281                                                        old_contended_rdev,
282                                                        ww_ctx);
283                         if (err) {
284                                 regulator_unlock(c_rdev);
285                                 goto err_unlock;
286                         }
287                 }
288         }
289
290         return 0;
291
292 err_unlock:
293         regulator_unlock_recursive(rdev, i);
294
295         return err;
296 }
297
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *                              regulators
301  * @rdev:                       regulator source
302  * @ww_ctx:                     w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307                                        struct ww_acquire_ctx *ww_ctx)
308 {
309         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310         ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:                       regulator source
316  * @ww_ctx:                     w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322                                      struct ww_acquire_ctx *ww_ctx)
323 {
324         struct regulator_dev *new_contended_rdev = NULL;
325         struct regulator_dev *old_contended_rdev = NULL;
326         int err;
327
328         mutex_lock(&regulator_list_mutex);
329
330         ww_acquire_init(ww_ctx, &regulator_ww_class);
331
332         do {
333                 if (new_contended_rdev) {
334                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335                         old_contended_rdev = new_contended_rdev;
336                         old_contended_rdev->ref_cnt++;
337                 }
338
339                 err = regulator_lock_recursive(rdev,
340                                                &new_contended_rdev,
341                                                &old_contended_rdev,
342                                                ww_ctx);
343
344                 if (old_contended_rdev)
345                         regulator_unlock(old_contended_rdev);
346
347         } while (err == -EDEADLK);
348
349         ww_acquire_done(ww_ctx);
350
351         mutex_unlock(&regulator_list_mutex);
352 }
353
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366                                                   const char *prop_name)
367 {
368         struct device_node *regnode = NULL;
369         struct device_node *child = NULL;
370
371         for_each_child_of_node(parent, child) {
372                 regnode = of_parse_phandle(child, prop_name, 0);
373
374                 if (!regnode) {
375                         regnode = of_get_child_regulator(child, prop_name);
376                         if (regnode)
377                                 goto err_node_put;
378                 } else {
379                         goto err_node_put;
380                 }
381         }
382         return NULL;
383
384 err_node_put:
385         of_node_put(child);
386         return regnode;
387 }
388
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400         struct device_node *regnode = NULL;
401         char prop_name[64]; /* 64 is max size of property name */
402
403         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405         snprintf(prop_name, 64, "%s-supply", supply);
406         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408         if (!regnode) {
409                 regnode = of_get_child_regulator(dev->of_node, prop_name);
410                 if (regnode)
411                         return regnode;
412
413                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414                                 prop_name, dev->of_node);
415                 return NULL;
416         }
417         return regnode;
418 }
419
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422                             int *min_uV, int *max_uV)
423 {
424         BUG_ON(*min_uV > *max_uV);
425
426         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427                 rdev_err(rdev, "voltage operation not allowed\n");
428                 return -EPERM;
429         }
430
431         if (*max_uV > rdev->constraints->max_uV)
432                 *max_uV = rdev->constraints->max_uV;
433         if (*min_uV < rdev->constraints->min_uV)
434                 *min_uV = rdev->constraints->min_uV;
435
436         if (*min_uV > *max_uV) {
437                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438                          *min_uV, *max_uV);
439                 return -EINVAL;
440         }
441
442         return 0;
443 }
444
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455                               int *min_uV, int *max_uV,
456                               suspend_state_t state)
457 {
458         struct regulator *regulator;
459         struct regulator_voltage *voltage;
460
461         list_for_each_entry(regulator, &rdev->consumer_list, list) {
462                 voltage = &regulator->voltage[state];
463                 /*
464                  * Assume consumers that didn't say anything are OK
465                  * with anything in the constraint range.
466                  */
467                 if (!voltage->min_uV && !voltage->max_uV)
468                         continue;
469
470                 if (*max_uV > voltage->max_uV)
471                         *max_uV = voltage->max_uV;
472                 if (*min_uV < voltage->min_uV)
473                         *min_uV = voltage->min_uV;
474         }
475
476         if (*min_uV > *max_uV) {
477                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478                         *min_uV, *max_uV);
479                 return -EINVAL;
480         }
481
482         return 0;
483 }
484
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487                                         int *min_uA, int *max_uA)
488 {
489         BUG_ON(*min_uA > *max_uA);
490
491         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492                 rdev_err(rdev, "current operation not allowed\n");
493                 return -EPERM;
494         }
495
496         if (*max_uA > rdev->constraints->max_uA)
497                 *max_uA = rdev->constraints->max_uA;
498         if (*min_uA < rdev->constraints->min_uA)
499                 *min_uA = rdev->constraints->min_uA;
500
501         if (*min_uA > *max_uA) {
502                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503                          *min_uA, *max_uA);
504                 return -EINVAL;
505         }
506
507         return 0;
508 }
509
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512                                     unsigned int *mode)
513 {
514         switch (*mode) {
515         case REGULATOR_MODE_FAST:
516         case REGULATOR_MODE_NORMAL:
517         case REGULATOR_MODE_IDLE:
518         case REGULATOR_MODE_STANDBY:
519                 break;
520         default:
521                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522                 return -EINVAL;
523         }
524
525         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526                 rdev_err(rdev, "mode operation not allowed\n");
527                 return -EPERM;
528         }
529
530         /* The modes are bitmasks, the most power hungry modes having
531          * the lowest values. If the requested mode isn't supported
532          * try higher modes.
533          */
534         while (*mode) {
535                 if (rdev->constraints->valid_modes_mask & *mode)
536                         return 0;
537                 *mode /= 2;
538         }
539
540         return -EINVAL;
541 }
542
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546         if (rdev->constraints == NULL)
547                 return NULL;
548
549         switch (state) {
550         case PM_SUSPEND_STANDBY:
551                 return &rdev->constraints->state_standby;
552         case PM_SUSPEND_MEM:
553                 return &rdev->constraints->state_mem;
554         case PM_SUSPEND_MAX:
555                 return &rdev->constraints->state_disk;
556         default:
557                 return NULL;
558         }
559 }
560
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564         const struct regulator_state *rstate;
565
566         rstate = regulator_get_suspend_state(rdev, state);
567         if (rstate == NULL)
568                 return NULL;
569
570         /* If we have no suspend mode configuration don't set anything;
571          * only warn if the driver implements set_suspend_voltage or
572          * set_suspend_mode callback.
573          */
574         if (rstate->enabled != ENABLE_IN_SUSPEND &&
575             rstate->enabled != DISABLE_IN_SUSPEND) {
576                 if (rdev->desc->ops->set_suspend_voltage ||
577                     rdev->desc->ops->set_suspend_mode)
578                         rdev_warn(rdev, "No configuration\n");
579                 return NULL;
580         }
581
582         return rstate;
583 }
584
585 static ssize_t microvolts_show(struct device *dev,
586                                struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589         int uV;
590
591         regulator_lock(rdev);
592         uV = regulator_get_voltage_rdev(rdev);
593         regulator_unlock(rdev);
594
595         if (uV < 0)
596                 return uV;
597         return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
601 static ssize_t microamps_show(struct device *dev,
602                               struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
619 static const char *regulator_opmode_to_str(int mode)
620 {
621         switch (mode) {
622         case REGULATOR_MODE_FAST:
623                 return "fast";
624         case REGULATOR_MODE_NORMAL:
625                 return "normal";
626         case REGULATOR_MODE_IDLE:
627                 return "idle";
628         case REGULATOR_MODE_STANDBY:
629                 return "standby";
630         }
631         return "unknown";
632 }
633
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
639 static ssize_t opmode_show(struct device *dev,
640                            struct device_attribute *attr, char *buf)
641 {
642         struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650         if (state > 0)
651                 return sprintf(buf, "enabled\n");
652         else if (state == 0)
653                 return sprintf(buf, "disabled\n");
654         else
655                 return sprintf(buf, "unknown\n");
656 }
657
658 static ssize_t state_show(struct device *dev,
659                           struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         ssize_t ret;
663
664         regulator_lock(rdev);
665         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666         regulator_unlock(rdev);
667
668         return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
672 static ssize_t status_show(struct device *dev,
673                            struct device_attribute *attr, char *buf)
674 {
675         struct regulator_dev *rdev = dev_get_drvdata(dev);
676         int status;
677         char *label;
678
679         status = rdev->desc->ops->get_status(rdev);
680         if (status < 0)
681                 return status;
682
683         switch (status) {
684         case REGULATOR_STATUS_OFF:
685                 label = "off";
686                 break;
687         case REGULATOR_STATUS_ON:
688                 label = "on";
689                 break;
690         case REGULATOR_STATUS_ERROR:
691                 label = "error";
692                 break;
693         case REGULATOR_STATUS_FAST:
694                 label = "fast";
695                 break;
696         case REGULATOR_STATUS_NORMAL:
697                 label = "normal";
698                 break;
699         case REGULATOR_STATUS_IDLE:
700                 label = "idle";
701                 break;
702         case REGULATOR_STATUS_STANDBY:
703                 label = "standby";
704                 break;
705         case REGULATOR_STATUS_BYPASS:
706                 label = "bypass";
707                 break;
708         case REGULATOR_STATUS_UNDEFINED:
709                 label = "undefined";
710                 break;
711         default:
712                 return -ERANGE;
713         }
714
715         return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
719 static ssize_t min_microamps_show(struct device *dev,
720                                   struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
731 static ssize_t max_microamps_show(struct device *dev,
732                                   struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
743 static ssize_t min_microvolts_show(struct device *dev,
744                                    struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748         if (!rdev->constraints)
749                 return sprintf(buf, "constraint not defined\n");
750
751         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
755 static ssize_t max_microvolts_show(struct device *dev,
756                                    struct device_attribute *attr, char *buf)
757 {
758         struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760         if (!rdev->constraints)
761                 return sprintf(buf, "constraint not defined\n");
762
763         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
767 static ssize_t requested_microamps_show(struct device *dev,
768                                         struct device_attribute *attr, char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         struct regulator *regulator;
772         int uA = 0;
773
774         regulator_lock(rdev);
775         list_for_each_entry(regulator, &rdev->consumer_list, list) {
776                 if (regulator->enable_count)
777                         uA += regulator->uA_load;
778         }
779         regulator_unlock(rdev);
780         return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785                               char *buf)
786 {
787         struct regulator_dev *rdev = dev_get_drvdata(dev);
788         return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793                          char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797         switch (rdev->desc->type) {
798         case REGULATOR_VOLTAGE:
799                 return sprintf(buf, "voltage\n");
800         case REGULATOR_CURRENT:
801                 return sprintf(buf, "current\n");
802         }
803         return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808                                            struct device_attribute *attr, char *buf)
809 {
810         struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817                                             struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826                                                struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835                                      struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845                                       struct device_attribute *attr, char *buf)
846 {
847         struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849         return regulator_print_opmode(buf,
850                 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855                                          struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_opmode(buf,
860                 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
864 static ssize_t suspend_mem_state_show(struct device *dev,
865                                       struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
874 static ssize_t suspend_disk_state_show(struct device *dev,
875                                        struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
884 static ssize_t suspend_standby_state_show(struct device *dev,
885                                           struct device_attribute *attr, char *buf)
886 {
887         struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889         return regulator_print_state(buf,
890                         rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
894 static ssize_t bypass_show(struct device *dev,
895                            struct device_attribute *attr, char *buf)
896 {
897         struct regulator_dev *rdev = dev_get_drvdata(dev);
898         const char *report;
899         bool bypass;
900         int ret;
901
902         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904         if (ret != 0)
905                 report = "unknown";
906         else if (bypass)
907                 report = "enabled";
908         else
909                 report = "disabled";
910
911         return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit)                                                 \
916         static ssize_t name##_show(struct device *dev, struct device_attribute *attr,   \
917                                    char *buf)                                           \
918         {                                                                               \
919                 int ret;                                                                \
920                 unsigned int flags;                                                     \
921                 struct regulator_dev *rdev = dev_get_drvdata(dev);                      \
922                 ret = _regulator_get_error_flags(rdev, &flags);                         \
923                 if (ret)                                                                \
924                         return ret;                                                     \
925                 return sysfs_emit(buf, "%d\n", !!(flags & (bit)));                      \
926         }                                                                               \
927         static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944         struct regulator *sibling;
945         int current_uA = 0, output_uV, input_uV, err;
946         unsigned int mode;
947
948         /*
949          * first check to see if we can set modes at all, otherwise just
950          * tell the consumer everything is OK.
951          */
952         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953                 rdev_dbg(rdev, "DRMS operation not allowed\n");
954                 return 0;
955         }
956
957         if (!rdev->desc->ops->get_optimum_mode &&
958             !rdev->desc->ops->set_load)
959                 return 0;
960
961         if (!rdev->desc->ops->set_mode &&
962             !rdev->desc->ops->set_load)
963                 return -EINVAL;
964
965         /* calc total requested load */
966         list_for_each_entry(sibling, &rdev->consumer_list, list) {
967                 if (sibling->enable_count)
968                         current_uA += sibling->uA_load;
969         }
970
971         current_uA += rdev->constraints->system_load;
972
973         if (rdev->desc->ops->set_load) {
974                 /* set the optimum mode for our new total regulator load */
975                 err = rdev->desc->ops->set_load(rdev, current_uA);
976                 if (err < 0)
977                         rdev_err(rdev, "failed to set load %d: %pe\n",
978                                  current_uA, ERR_PTR(err));
979         } else {
980                 /* get output voltage */
981                 output_uV = regulator_get_voltage_rdev(rdev);
982                 if (output_uV <= 0) {
983                         rdev_err(rdev, "invalid output voltage found\n");
984                         return -EINVAL;
985                 }
986
987                 /* get input voltage */
988                 input_uV = 0;
989                 if (rdev->supply)
990                         input_uV = regulator_get_voltage(rdev->supply);
991                 if (input_uV <= 0)
992                         input_uV = rdev->constraints->input_uV;
993                 if (input_uV <= 0) {
994                         rdev_err(rdev, "invalid input voltage found\n");
995                         return -EINVAL;
996                 }
997
998                 /* now get the optimum mode for our new total regulator load */
999                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1000                                                          output_uV, current_uA);
1001
1002                 /* check the new mode is allowed */
1003                 err = regulator_mode_constrain(rdev, &mode);
1004                 if (err < 0) {
1005                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1006                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1007                         return err;
1008                 }
1009
1010                 err = rdev->desc->ops->set_mode(rdev, mode);
1011                 if (err < 0)
1012                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1013                                  mode, ERR_PTR(err));
1014         }
1015
1016         return err;
1017 }
1018
1019 static int __suspend_set_state(struct regulator_dev *rdev,
1020                                const struct regulator_state *rstate)
1021 {
1022         int ret = 0;
1023
1024         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1025                 rdev->desc->ops->set_suspend_enable)
1026                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1027         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1028                 rdev->desc->ops->set_suspend_disable)
1029                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1030         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1031                 ret = 0;
1032
1033         if (ret < 0) {
1034                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1035                 return ret;
1036         }
1037
1038         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1039                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1040                 if (ret < 0) {
1041                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1042                         return ret;
1043                 }
1044         }
1045
1046         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1047                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1048                 if (ret < 0) {
1049                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050                         return ret;
1051                 }
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int suspend_set_initial_state(struct regulator_dev *rdev)
1058 {
1059         const struct regulator_state *rstate;
1060
1061         rstate = regulator_get_suspend_state_check(rdev,
1062                         rdev->constraints->initial_state);
1063         if (!rstate)
1064                 return 0;
1065
1066         return __suspend_set_state(rdev, rstate);
1067 }
1068
1069 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1070 static void print_constraints_debug(struct regulator_dev *rdev)
1071 {
1072         struct regulation_constraints *constraints = rdev->constraints;
1073         char buf[160] = "";
1074         size_t len = sizeof(buf) - 1;
1075         int count = 0;
1076         int ret;
1077
1078         if (constraints->min_uV && constraints->max_uV) {
1079                 if (constraints->min_uV == constraints->max_uV)
1080                         count += scnprintf(buf + count, len - count, "%d mV ",
1081                                            constraints->min_uV / 1000);
1082                 else
1083                         count += scnprintf(buf + count, len - count,
1084                                            "%d <--> %d mV ",
1085                                            constraints->min_uV / 1000,
1086                                            constraints->max_uV / 1000);
1087         }
1088
1089         if (!constraints->min_uV ||
1090             constraints->min_uV != constraints->max_uV) {
1091                 ret = regulator_get_voltage_rdev(rdev);
1092                 if (ret > 0)
1093                         count += scnprintf(buf + count, len - count,
1094                                            "at %d mV ", ret / 1000);
1095         }
1096
1097         if (constraints->uV_offset)
1098                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1099                                    constraints->uV_offset / 1000);
1100
1101         if (constraints->min_uA && constraints->max_uA) {
1102                 if (constraints->min_uA == constraints->max_uA)
1103                         count += scnprintf(buf + count, len - count, "%d mA ",
1104                                            constraints->min_uA / 1000);
1105                 else
1106                         count += scnprintf(buf + count, len - count,
1107                                            "%d <--> %d mA ",
1108                                            constraints->min_uA / 1000,
1109                                            constraints->max_uA / 1000);
1110         }
1111
1112         if (!constraints->min_uA ||
1113             constraints->min_uA != constraints->max_uA) {
1114                 ret = _regulator_get_current_limit(rdev);
1115                 if (ret > 0)
1116                         count += scnprintf(buf + count, len - count,
1117                                            "at %d mA ", ret / 1000);
1118         }
1119
1120         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1121                 count += scnprintf(buf + count, len - count, "fast ");
1122         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1123                 count += scnprintf(buf + count, len - count, "normal ");
1124         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1125                 count += scnprintf(buf + count, len - count, "idle ");
1126         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1127                 count += scnprintf(buf + count, len - count, "standby ");
1128
1129         if (!count)
1130                 count = scnprintf(buf, len, "no parameters");
1131         else
1132                 --count;
1133
1134         count += scnprintf(buf + count, len - count, ", %s",
1135                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1136
1137         rdev_dbg(rdev, "%s\n", buf);
1138 }
1139 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1140 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1141 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1142
1143 static void print_constraints(struct regulator_dev *rdev)
1144 {
1145         struct regulation_constraints *constraints = rdev->constraints;
1146
1147         print_constraints_debug(rdev);
1148
1149         if ((constraints->min_uV != constraints->max_uV) &&
1150             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1151                 rdev_warn(rdev,
1152                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1153 }
1154
1155 static int machine_constraints_voltage(struct regulator_dev *rdev,
1156         struct regulation_constraints *constraints)
1157 {
1158         const struct regulator_ops *ops = rdev->desc->ops;
1159         int ret;
1160
1161         /* do we need to apply the constraint voltage */
1162         if (rdev->constraints->apply_uV &&
1163             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1164                 int target_min, target_max;
1165                 int current_uV = regulator_get_voltage_rdev(rdev);
1166
1167                 if (current_uV == -ENOTRECOVERABLE) {
1168                         /* This regulator can't be read and must be initialized */
1169                         rdev_info(rdev, "Setting %d-%duV\n",
1170                                   rdev->constraints->min_uV,
1171                                   rdev->constraints->max_uV);
1172                         _regulator_do_set_voltage(rdev,
1173                                                   rdev->constraints->min_uV,
1174                                                   rdev->constraints->max_uV);
1175                         current_uV = regulator_get_voltage_rdev(rdev);
1176                 }
1177
1178                 if (current_uV < 0) {
1179                         if (current_uV != -EPROBE_DEFER)
1180                                 rdev_err(rdev,
1181                                          "failed to get the current voltage: %pe\n",
1182                                          ERR_PTR(current_uV));
1183                         return current_uV;
1184                 }
1185
1186                 /*
1187                  * If we're below the minimum voltage move up to the
1188                  * minimum voltage, if we're above the maximum voltage
1189                  * then move down to the maximum.
1190                  */
1191                 target_min = current_uV;
1192                 target_max = current_uV;
1193
1194                 if (current_uV < rdev->constraints->min_uV) {
1195                         target_min = rdev->constraints->min_uV;
1196                         target_max = rdev->constraints->min_uV;
1197                 }
1198
1199                 if (current_uV > rdev->constraints->max_uV) {
1200                         target_min = rdev->constraints->max_uV;
1201                         target_max = rdev->constraints->max_uV;
1202                 }
1203
1204                 if (target_min != current_uV || target_max != current_uV) {
1205                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1206                                   current_uV, target_min, target_max);
1207                         ret = _regulator_do_set_voltage(
1208                                 rdev, target_min, target_max);
1209                         if (ret < 0) {
1210                                 rdev_err(rdev,
1211                                         "failed to apply %d-%duV constraint: %pe\n",
1212                                         target_min, target_max, ERR_PTR(ret));
1213                                 return ret;
1214                         }
1215                 }
1216         }
1217
1218         /* constrain machine-level voltage specs to fit
1219          * the actual range supported by this regulator.
1220          */
1221         if (ops->list_voltage && rdev->desc->n_voltages) {
1222                 int     count = rdev->desc->n_voltages;
1223                 int     i;
1224                 int     min_uV = INT_MAX;
1225                 int     max_uV = INT_MIN;
1226                 int     cmin = constraints->min_uV;
1227                 int     cmax = constraints->max_uV;
1228
1229                 /* it's safe to autoconfigure fixed-voltage supplies
1230                  * and the constraints are used by list_voltage.
1231                  */
1232                 if (count == 1 && !cmin) {
1233                         cmin = 1;
1234                         cmax = INT_MAX;
1235                         constraints->min_uV = cmin;
1236                         constraints->max_uV = cmax;
1237                 }
1238
1239                 /* voltage constraints are optional */
1240                 if ((cmin == 0) && (cmax == 0))
1241                         return 0;
1242
1243                 /* else require explicit machine-level constraints */
1244                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1245                         rdev_err(rdev, "invalid voltage constraints\n");
1246                         return -EINVAL;
1247                 }
1248
1249                 /* no need to loop voltages if range is continuous */
1250                 if (rdev->desc->continuous_voltage_range)
1251                         return 0;
1252
1253                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1254                 for (i = 0; i < count; i++) {
1255                         int     value;
1256
1257                         value = ops->list_voltage(rdev, i);
1258                         if (value <= 0)
1259                                 continue;
1260
1261                         /* maybe adjust [min_uV..max_uV] */
1262                         if (value >= cmin && value < min_uV)
1263                                 min_uV = value;
1264                         if (value <= cmax && value > max_uV)
1265                                 max_uV = value;
1266                 }
1267
1268                 /* final: [min_uV..max_uV] valid iff constraints valid */
1269                 if (max_uV < min_uV) {
1270                         rdev_err(rdev,
1271                                  "unsupportable voltage constraints %u-%uuV\n",
1272                                  min_uV, max_uV);
1273                         return -EINVAL;
1274                 }
1275
1276                 /* use regulator's subset of machine constraints */
1277                 if (constraints->min_uV < min_uV) {
1278                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1279                                  constraints->min_uV, min_uV);
1280                         constraints->min_uV = min_uV;
1281                 }
1282                 if (constraints->max_uV > max_uV) {
1283                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1284                                  constraints->max_uV, max_uV);
1285                         constraints->max_uV = max_uV;
1286                 }
1287         }
1288
1289         return 0;
1290 }
1291
1292 static int machine_constraints_current(struct regulator_dev *rdev,
1293         struct regulation_constraints *constraints)
1294 {
1295         const struct regulator_ops *ops = rdev->desc->ops;
1296         int ret;
1297
1298         if (!constraints->min_uA && !constraints->max_uA)
1299                 return 0;
1300
1301         if (constraints->min_uA > constraints->max_uA) {
1302                 rdev_err(rdev, "Invalid current constraints\n");
1303                 return -EINVAL;
1304         }
1305
1306         if (!ops->set_current_limit || !ops->get_current_limit) {
1307                 rdev_warn(rdev, "Operation of current configuration missing\n");
1308                 return 0;
1309         }
1310
1311         /* Set regulator current in constraints range */
1312         ret = ops->set_current_limit(rdev, constraints->min_uA,
1313                         constraints->max_uA);
1314         if (ret < 0) {
1315                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1316                 return ret;
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int _regulator_do_enable(struct regulator_dev *rdev);
1323
1324 static int notif_set_limit(struct regulator_dev *rdev,
1325                            int (*set)(struct regulator_dev *, int, int, bool),
1326                            int limit, int severity)
1327 {
1328         bool enable;
1329
1330         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1331                 enable = false;
1332                 limit = 0;
1333         } else {
1334                 enable = true;
1335         }
1336
1337         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1338                 limit = 0;
1339
1340         return set(rdev, limit, severity, enable);
1341 }
1342
1343 static int handle_notify_limits(struct regulator_dev *rdev,
1344                         int (*set)(struct regulator_dev *, int, int, bool),
1345                         struct notification_limit *limits)
1346 {
1347         int ret = 0;
1348
1349         if (!set)
1350                 return -EOPNOTSUPP;
1351
1352         if (limits->prot)
1353                 ret = notif_set_limit(rdev, set, limits->prot,
1354                                       REGULATOR_SEVERITY_PROT);
1355         if (ret)
1356                 return ret;
1357
1358         if (limits->err)
1359                 ret = notif_set_limit(rdev, set, limits->err,
1360                                       REGULATOR_SEVERITY_ERR);
1361         if (ret)
1362                 return ret;
1363
1364         if (limits->warn)
1365                 ret = notif_set_limit(rdev, set, limits->warn,
1366                                       REGULATOR_SEVERITY_WARN);
1367
1368         return ret;
1369 }
1370 /**
1371  * set_machine_constraints - sets regulator constraints
1372  * @rdev: regulator source
1373  *
1374  * Allows platform initialisation code to define and constrain
1375  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1376  * Constraints *must* be set by platform code in order for some
1377  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1378  * set_mode.
1379  */
1380 static int set_machine_constraints(struct regulator_dev *rdev)
1381 {
1382         int ret = 0;
1383         const struct regulator_ops *ops = rdev->desc->ops;
1384
1385         ret = machine_constraints_voltage(rdev, rdev->constraints);
1386         if (ret != 0)
1387                 return ret;
1388
1389         ret = machine_constraints_current(rdev, rdev->constraints);
1390         if (ret != 0)
1391                 return ret;
1392
1393         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1394                 ret = ops->set_input_current_limit(rdev,
1395                                                    rdev->constraints->ilim_uA);
1396                 if (ret < 0) {
1397                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1398                         return ret;
1399                 }
1400         }
1401
1402         /* do we need to setup our suspend state */
1403         if (rdev->constraints->initial_state) {
1404                 ret = suspend_set_initial_state(rdev);
1405                 if (ret < 0) {
1406                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1407                         return ret;
1408                 }
1409         }
1410
1411         if (rdev->constraints->initial_mode) {
1412                 if (!ops->set_mode) {
1413                         rdev_err(rdev, "no set_mode operation\n");
1414                         return -EINVAL;
1415                 }
1416
1417                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1418                 if (ret < 0) {
1419                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1420                         return ret;
1421                 }
1422         } else if (rdev->constraints->system_load) {
1423                 /*
1424                  * We'll only apply the initial system load if an
1425                  * initial mode wasn't specified.
1426                  */
1427                 drms_uA_update(rdev);
1428         }
1429
1430         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1431                 && ops->set_ramp_delay) {
1432                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1433                 if (ret < 0) {
1434                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1435                         return ret;
1436                 }
1437         }
1438
1439         if (rdev->constraints->pull_down && ops->set_pull_down) {
1440                 ret = ops->set_pull_down(rdev);
1441                 if (ret < 0) {
1442                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1443                         return ret;
1444                 }
1445         }
1446
1447         if (rdev->constraints->soft_start && ops->set_soft_start) {
1448                 ret = ops->set_soft_start(rdev);
1449                 if (ret < 0) {
1450                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1451                         return ret;
1452                 }
1453         }
1454
1455         /*
1456          * Existing logic does not warn if over_current_protection is given as
1457          * a constraint but driver does not support that. I think we should
1458          * warn about this type of issues as it is possible someone changes
1459          * PMIC on board to another type - and the another PMIC's driver does
1460          * not support setting protection. Board composer may happily believe
1461          * the DT limits are respected - especially if the new PMIC HW also
1462          * supports protection but the driver does not. I won't change the logic
1463          * without hearing more experienced opinion on this though.
1464          *
1465          * If warning is seen as a good idea then we can merge handling the
1466          * over-curret protection and detection and get rid of this special
1467          * handling.
1468          */
1469         if (rdev->constraints->over_current_protection
1470                 && ops->set_over_current_protection) {
1471                 int lim = rdev->constraints->over_curr_limits.prot;
1472
1473                 ret = ops->set_over_current_protection(rdev, lim,
1474                                                        REGULATOR_SEVERITY_PROT,
1475                                                        true);
1476                 if (ret < 0) {
1477                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481         }
1482
1483         if (rdev->constraints->over_current_detection)
1484                 ret = handle_notify_limits(rdev,
1485                                            ops->set_over_current_protection,
1486                                            &rdev->constraints->over_curr_limits);
1487         if (ret) {
1488                 if (ret != -EOPNOTSUPP) {
1489                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1490                                  ERR_PTR(ret));
1491                         return ret;
1492                 }
1493                 rdev_warn(rdev,
1494                           "IC does not support requested over-current limits\n");
1495         }
1496
1497         if (rdev->constraints->over_voltage_detection)
1498                 ret = handle_notify_limits(rdev,
1499                                            ops->set_over_voltage_protection,
1500                                            &rdev->constraints->over_voltage_limits);
1501         if (ret) {
1502                 if (ret != -EOPNOTSUPP) {
1503                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1504                                  ERR_PTR(ret));
1505                         return ret;
1506                 }
1507                 rdev_warn(rdev,
1508                           "IC does not support requested over voltage limits\n");
1509         }
1510
1511         if (rdev->constraints->under_voltage_detection)
1512                 ret = handle_notify_limits(rdev,
1513                                            ops->set_under_voltage_protection,
1514                                            &rdev->constraints->under_voltage_limits);
1515         if (ret) {
1516                 if (ret != -EOPNOTSUPP) {
1517                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1518                                  ERR_PTR(ret));
1519                         return ret;
1520                 }
1521                 rdev_warn(rdev,
1522                           "IC does not support requested under voltage limits\n");
1523         }
1524
1525         if (rdev->constraints->over_temp_detection)
1526                 ret = handle_notify_limits(rdev,
1527                                            ops->set_thermal_protection,
1528                                            &rdev->constraints->temp_limits);
1529         if (ret) {
1530                 if (ret != -EOPNOTSUPP) {
1531                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1532                                  ERR_PTR(ret));
1533                         return ret;
1534                 }
1535                 rdev_warn(rdev,
1536                           "IC does not support requested temperature limits\n");
1537         }
1538
1539         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1540                 bool ad_state = (rdev->constraints->active_discharge ==
1541                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1542
1543                 ret = ops->set_active_discharge(rdev, ad_state);
1544                 if (ret < 0) {
1545                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1546                         return ret;
1547                 }
1548         }
1549
1550         /*
1551          * If there is no mechanism for controlling the regulator then
1552          * flag it as always_on so we don't end up duplicating checks
1553          * for this so much.  Note that we could control the state of
1554          * a supply to control the output on a regulator that has no
1555          * direct control.
1556          */
1557         if (!rdev->ena_pin && !ops->enable) {
1558                 if (rdev->supply_name && !rdev->supply)
1559                         return -EPROBE_DEFER;
1560
1561                 if (rdev->supply)
1562                         rdev->constraints->always_on =
1563                                 rdev->supply->rdev->constraints->always_on;
1564                 else
1565                         rdev->constraints->always_on = true;
1566         }
1567
1568         /* If the constraints say the regulator should be on at this point
1569          * and we have control then make sure it is enabled.
1570          */
1571         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1572                 /* If we want to enable this regulator, make sure that we know
1573                  * the supplying regulator.
1574                  */
1575                 if (rdev->supply_name && !rdev->supply)
1576                         return -EPROBE_DEFER;
1577
1578                 if (rdev->supply) {
1579                         ret = regulator_enable(rdev->supply);
1580                         if (ret < 0) {
1581                                 _regulator_put(rdev->supply);
1582                                 rdev->supply = NULL;
1583                                 return ret;
1584                         }
1585                 }
1586
1587                 ret = _regulator_do_enable(rdev);
1588                 if (ret < 0 && ret != -EINVAL) {
1589                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1590                         return ret;
1591                 }
1592
1593                 if (rdev->constraints->always_on)
1594                         rdev->use_count++;
1595         } else if (rdev->desc->off_on_delay) {
1596                 rdev->last_off = ktime_get();
1597         }
1598
1599         print_constraints(rdev);
1600         return 0;
1601 }
1602
1603 /**
1604  * set_supply - set regulator supply regulator
1605  * @rdev: regulator name
1606  * @supply_rdev: supply regulator name
1607  *
1608  * Called by platform initialisation code to set the supply regulator for this
1609  * regulator. This ensures that a regulators supply will also be enabled by the
1610  * core if it's child is enabled.
1611  */
1612 static int set_supply(struct regulator_dev *rdev,
1613                       struct regulator_dev *supply_rdev)
1614 {
1615         int err;
1616
1617         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1618
1619         if (!try_module_get(supply_rdev->owner))
1620                 return -ENODEV;
1621
1622         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1623         if (rdev->supply == NULL) {
1624                 err = -ENOMEM;
1625                 return err;
1626         }
1627         supply_rdev->open_count++;
1628
1629         return 0;
1630 }
1631
1632 /**
1633  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1634  * @rdev:         regulator source
1635  * @consumer_dev_name: dev_name() string for device supply applies to
1636  * @supply:       symbolic name for supply
1637  *
1638  * Allows platform initialisation code to map physical regulator
1639  * sources to symbolic names for supplies for use by devices.  Devices
1640  * should use these symbolic names to request regulators, avoiding the
1641  * need to provide board-specific regulator names as platform data.
1642  */
1643 static int set_consumer_device_supply(struct regulator_dev *rdev,
1644                                       const char *consumer_dev_name,
1645                                       const char *supply)
1646 {
1647         struct regulator_map *node, *new_node;
1648         int has_dev;
1649
1650         if (supply == NULL)
1651                 return -EINVAL;
1652
1653         if (consumer_dev_name != NULL)
1654                 has_dev = 1;
1655         else
1656                 has_dev = 0;
1657
1658         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1659         if (new_node == NULL)
1660                 return -ENOMEM;
1661
1662         new_node->regulator = rdev;
1663         new_node->supply = supply;
1664
1665         if (has_dev) {
1666                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1667                 if (new_node->dev_name == NULL) {
1668                         kfree(new_node);
1669                         return -ENOMEM;
1670                 }
1671         }
1672
1673         mutex_lock(&regulator_list_mutex);
1674         list_for_each_entry(node, &regulator_map_list, list) {
1675                 if (node->dev_name && consumer_dev_name) {
1676                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1677                                 continue;
1678                 } else if (node->dev_name || consumer_dev_name) {
1679                         continue;
1680                 }
1681
1682                 if (strcmp(node->supply, supply) != 0)
1683                         continue;
1684
1685                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1686                          consumer_dev_name,
1687                          dev_name(&node->regulator->dev),
1688                          node->regulator->desc->name,
1689                          supply,
1690                          dev_name(&rdev->dev), rdev_get_name(rdev));
1691                 goto fail;
1692         }
1693
1694         list_add(&new_node->list, &regulator_map_list);
1695         mutex_unlock(&regulator_list_mutex);
1696
1697         return 0;
1698
1699 fail:
1700         mutex_unlock(&regulator_list_mutex);
1701         kfree(new_node->dev_name);
1702         kfree(new_node);
1703         return -EBUSY;
1704 }
1705
1706 static void unset_regulator_supplies(struct regulator_dev *rdev)
1707 {
1708         struct regulator_map *node, *n;
1709
1710         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1711                 if (rdev == node->regulator) {
1712                         list_del(&node->list);
1713                         kfree(node->dev_name);
1714                         kfree(node);
1715                 }
1716         }
1717 }
1718
1719 #ifdef CONFIG_DEBUG_FS
1720 static ssize_t constraint_flags_read_file(struct file *file,
1721                                           char __user *user_buf,
1722                                           size_t count, loff_t *ppos)
1723 {
1724         const struct regulator *regulator = file->private_data;
1725         const struct regulation_constraints *c = regulator->rdev->constraints;
1726         char *buf;
1727         ssize_t ret;
1728
1729         if (!c)
1730                 return 0;
1731
1732         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1733         if (!buf)
1734                 return -ENOMEM;
1735
1736         ret = snprintf(buf, PAGE_SIZE,
1737                         "always_on: %u\n"
1738                         "boot_on: %u\n"
1739                         "apply_uV: %u\n"
1740                         "ramp_disable: %u\n"
1741                         "soft_start: %u\n"
1742                         "pull_down: %u\n"
1743                         "over_current_protection: %u\n",
1744                         c->always_on,
1745                         c->boot_on,
1746                         c->apply_uV,
1747                         c->ramp_disable,
1748                         c->soft_start,
1749                         c->pull_down,
1750                         c->over_current_protection);
1751
1752         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1753         kfree(buf);
1754
1755         return ret;
1756 }
1757
1758 #endif
1759
1760 static const struct file_operations constraint_flags_fops = {
1761 #ifdef CONFIG_DEBUG_FS
1762         .open = simple_open,
1763         .read = constraint_flags_read_file,
1764         .llseek = default_llseek,
1765 #endif
1766 };
1767
1768 #define REG_STR_SIZE    64
1769
1770 static struct regulator *create_regulator(struct regulator_dev *rdev,
1771                                           struct device *dev,
1772                                           const char *supply_name)
1773 {
1774         struct regulator *regulator;
1775         int err = 0;
1776
1777         if (dev) {
1778                 char buf[REG_STR_SIZE];
1779                 int size;
1780
1781                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1782                                 dev->kobj.name, supply_name);
1783                 if (size >= REG_STR_SIZE)
1784                         return NULL;
1785
1786                 supply_name = kstrdup(buf, GFP_KERNEL);
1787                 if (supply_name == NULL)
1788                         return NULL;
1789         } else {
1790                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1791                 if (supply_name == NULL)
1792                         return NULL;
1793         }
1794
1795         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1796         if (regulator == NULL) {
1797                 kfree(supply_name);
1798                 return NULL;
1799         }
1800
1801         regulator->rdev = rdev;
1802         regulator->supply_name = supply_name;
1803
1804         regulator_lock(rdev);
1805         list_add(&regulator->list, &rdev->consumer_list);
1806         regulator_unlock(rdev);
1807
1808         if (dev) {
1809                 regulator->dev = dev;
1810
1811                 /* Add a link to the device sysfs entry */
1812                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1813                                                supply_name);
1814                 if (err) {
1815                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1816                                   dev->kobj.name, ERR_PTR(err));
1817                         /* non-fatal */
1818                 }
1819         }
1820
1821         if (err != -EEXIST)
1822                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1823         if (!regulator->debugfs) {
1824                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1825         } else {
1826                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1827                                    &regulator->uA_load);
1828                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1829                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1830                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1831                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1832                 debugfs_create_file("constraint_flags", 0444,
1833                                     regulator->debugfs, regulator,
1834                                     &constraint_flags_fops);
1835         }
1836
1837         /*
1838          * Check now if the regulator is an always on regulator - if
1839          * it is then we don't need to do nearly so much work for
1840          * enable/disable calls.
1841          */
1842         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1843             _regulator_is_enabled(rdev))
1844                 regulator->always_on = true;
1845
1846         return regulator;
1847 }
1848
1849 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1850 {
1851         if (rdev->constraints && rdev->constraints->enable_time)
1852                 return rdev->constraints->enable_time;
1853         if (rdev->desc->ops->enable_time)
1854                 return rdev->desc->ops->enable_time(rdev);
1855         return rdev->desc->enable_time;
1856 }
1857
1858 static struct regulator_supply_alias *regulator_find_supply_alias(
1859                 struct device *dev, const char *supply)
1860 {
1861         struct regulator_supply_alias *map;
1862
1863         list_for_each_entry(map, &regulator_supply_alias_list, list)
1864                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1865                         return map;
1866
1867         return NULL;
1868 }
1869
1870 static void regulator_supply_alias(struct device **dev, const char **supply)
1871 {
1872         struct regulator_supply_alias *map;
1873
1874         map = regulator_find_supply_alias(*dev, *supply);
1875         if (map) {
1876                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1877                                 *supply, map->alias_supply,
1878                                 dev_name(map->alias_dev));
1879                 *dev = map->alias_dev;
1880                 *supply = map->alias_supply;
1881         }
1882 }
1883
1884 static int regulator_match(struct device *dev, const void *data)
1885 {
1886         struct regulator_dev *r = dev_to_rdev(dev);
1887
1888         return strcmp(rdev_get_name(r), data) == 0;
1889 }
1890
1891 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1892 {
1893         struct device *dev;
1894
1895         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1896
1897         return dev ? dev_to_rdev(dev) : NULL;
1898 }
1899
1900 /**
1901  * regulator_dev_lookup - lookup a regulator device.
1902  * @dev: device for regulator "consumer".
1903  * @supply: Supply name or regulator ID.
1904  *
1905  * If successful, returns a struct regulator_dev that corresponds to the name
1906  * @supply and with the embedded struct device refcount incremented by one.
1907  * The refcount must be dropped by calling put_device().
1908  * On failure one of the following ERR-PTR-encoded values is returned:
1909  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1910  * in the future.
1911  */
1912 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1913                                                   const char *supply)
1914 {
1915         struct regulator_dev *r = NULL;
1916         struct device_node *node;
1917         struct regulator_map *map;
1918         const char *devname = NULL;
1919
1920         regulator_supply_alias(&dev, &supply);
1921
1922         /* first do a dt based lookup */
1923         if (dev && dev->of_node) {
1924                 node = of_get_regulator(dev, supply);
1925                 if (node) {
1926                         r = of_find_regulator_by_node(node);
1927                         if (r)
1928                                 return r;
1929
1930                         /*
1931                          * We have a node, but there is no device.
1932                          * assume it has not registered yet.
1933                          */
1934                         return ERR_PTR(-EPROBE_DEFER);
1935                 }
1936         }
1937
1938         /* if not found, try doing it non-dt way */
1939         if (dev)
1940                 devname = dev_name(dev);
1941
1942         mutex_lock(&regulator_list_mutex);
1943         list_for_each_entry(map, &regulator_map_list, list) {
1944                 /* If the mapping has a device set up it must match */
1945                 if (map->dev_name &&
1946                     (!devname || strcmp(map->dev_name, devname)))
1947                         continue;
1948
1949                 if (strcmp(map->supply, supply) == 0 &&
1950                     get_device(&map->regulator->dev)) {
1951                         r = map->regulator;
1952                         break;
1953                 }
1954         }
1955         mutex_unlock(&regulator_list_mutex);
1956
1957         if (r)
1958                 return r;
1959
1960         r = regulator_lookup_by_name(supply);
1961         if (r)
1962                 return r;
1963
1964         return ERR_PTR(-ENODEV);
1965 }
1966
1967 static int regulator_resolve_supply(struct regulator_dev *rdev)
1968 {
1969         struct regulator_dev *r;
1970         struct device *dev = rdev->dev.parent;
1971         int ret = 0;
1972
1973         /* No supply to resolve? */
1974         if (!rdev->supply_name)
1975                 return 0;
1976
1977         /* Supply already resolved? (fast-path without locking contention) */
1978         if (rdev->supply)
1979                 return 0;
1980
1981         r = regulator_dev_lookup(dev, rdev->supply_name);
1982         if (IS_ERR(r)) {
1983                 ret = PTR_ERR(r);
1984
1985                 /* Did the lookup explicitly defer for us? */
1986                 if (ret == -EPROBE_DEFER)
1987                         goto out;
1988
1989                 if (have_full_constraints()) {
1990                         r = dummy_regulator_rdev;
1991                         get_device(&r->dev);
1992                 } else {
1993                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1994                                 rdev->supply_name, rdev->desc->name);
1995                         ret = -EPROBE_DEFER;
1996                         goto out;
1997                 }
1998         }
1999
2000         if (r == rdev) {
2001                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2002                         rdev->desc->name, rdev->supply_name);
2003                 if (!have_full_constraints()) {
2004                         ret = -EINVAL;
2005                         goto out;
2006                 }
2007                 r = dummy_regulator_rdev;
2008                 get_device(&r->dev);
2009         }
2010
2011         /*
2012          * If the supply's parent device is not the same as the
2013          * regulator's parent device, then ensure the parent device
2014          * is bound before we resolve the supply, in case the parent
2015          * device get probe deferred and unregisters the supply.
2016          */
2017         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2018                 if (!device_is_bound(r->dev.parent)) {
2019                         put_device(&r->dev);
2020                         ret = -EPROBE_DEFER;
2021                         goto out;
2022                 }
2023         }
2024
2025         /* Recursively resolve the supply of the supply */
2026         ret = regulator_resolve_supply(r);
2027         if (ret < 0) {
2028                 put_device(&r->dev);
2029                 goto out;
2030         }
2031
2032         /*
2033          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2034          * between rdev->supply null check and setting rdev->supply in
2035          * set_supply() from concurrent tasks.
2036          */
2037         regulator_lock(rdev);
2038
2039         /* Supply just resolved by a concurrent task? */
2040         if (rdev->supply) {
2041                 regulator_unlock(rdev);
2042                 put_device(&r->dev);
2043                 goto out;
2044         }
2045
2046         ret = set_supply(rdev, r);
2047         if (ret < 0) {
2048                 regulator_unlock(rdev);
2049                 put_device(&r->dev);
2050                 goto out;
2051         }
2052
2053         regulator_unlock(rdev);
2054
2055         /*
2056          * In set_machine_constraints() we may have turned this regulator on
2057          * but we couldn't propagate to the supply if it hadn't been resolved
2058          * yet.  Do it now.
2059          */
2060         if (rdev->use_count) {
2061                 ret = regulator_enable(rdev->supply);
2062                 if (ret < 0) {
2063                         _regulator_put(rdev->supply);
2064                         rdev->supply = NULL;
2065                         goto out;
2066                 }
2067         }
2068
2069 out:
2070         return ret;
2071 }
2072
2073 /* Internal regulator request function */
2074 struct regulator *_regulator_get(struct device *dev, const char *id,
2075                                  enum regulator_get_type get_type)
2076 {
2077         struct regulator_dev *rdev;
2078         struct regulator *regulator;
2079         struct device_link *link;
2080         int ret;
2081
2082         if (get_type >= MAX_GET_TYPE) {
2083                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2084                 return ERR_PTR(-EINVAL);
2085         }
2086
2087         if (id == NULL) {
2088                 pr_err("get() with no identifier\n");
2089                 return ERR_PTR(-EINVAL);
2090         }
2091
2092         rdev = regulator_dev_lookup(dev, id);
2093         if (IS_ERR(rdev)) {
2094                 ret = PTR_ERR(rdev);
2095
2096                 /*
2097                  * If regulator_dev_lookup() fails with error other
2098                  * than -ENODEV our job here is done, we simply return it.
2099                  */
2100                 if (ret != -ENODEV)
2101                         return ERR_PTR(ret);
2102
2103                 if (!have_full_constraints()) {
2104                         dev_warn(dev,
2105                                  "incomplete constraints, dummy supplies not allowed\n");
2106                         return ERR_PTR(-ENODEV);
2107                 }
2108
2109                 switch (get_type) {
2110                 case NORMAL_GET:
2111                         /*
2112                          * Assume that a regulator is physically present and
2113                          * enabled, even if it isn't hooked up, and just
2114                          * provide a dummy.
2115                          */
2116                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2117                         rdev = dummy_regulator_rdev;
2118                         get_device(&rdev->dev);
2119                         break;
2120
2121                 case EXCLUSIVE_GET:
2122                         dev_warn(dev,
2123                                  "dummy supplies not allowed for exclusive requests\n");
2124                         fallthrough;
2125
2126                 default:
2127                         return ERR_PTR(-ENODEV);
2128                 }
2129         }
2130
2131         if (rdev->exclusive) {
2132                 regulator = ERR_PTR(-EPERM);
2133                 put_device(&rdev->dev);
2134                 return regulator;
2135         }
2136
2137         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2138                 regulator = ERR_PTR(-EBUSY);
2139                 put_device(&rdev->dev);
2140                 return regulator;
2141         }
2142
2143         mutex_lock(&regulator_list_mutex);
2144         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2145         mutex_unlock(&regulator_list_mutex);
2146
2147         if (ret != 0) {
2148                 regulator = ERR_PTR(-EPROBE_DEFER);
2149                 put_device(&rdev->dev);
2150                 return regulator;
2151         }
2152
2153         ret = regulator_resolve_supply(rdev);
2154         if (ret < 0) {
2155                 regulator = ERR_PTR(ret);
2156                 put_device(&rdev->dev);
2157                 return regulator;
2158         }
2159
2160         if (!try_module_get(rdev->owner)) {
2161                 regulator = ERR_PTR(-EPROBE_DEFER);
2162                 put_device(&rdev->dev);
2163                 return regulator;
2164         }
2165
2166         regulator = create_regulator(rdev, dev, id);
2167         if (regulator == NULL) {
2168                 regulator = ERR_PTR(-ENOMEM);
2169                 module_put(rdev->owner);
2170                 put_device(&rdev->dev);
2171                 return regulator;
2172         }
2173
2174         rdev->open_count++;
2175         if (get_type == EXCLUSIVE_GET) {
2176                 rdev->exclusive = 1;
2177
2178                 ret = _regulator_is_enabled(rdev);
2179                 if (ret > 0) {
2180                         rdev->use_count = 1;
2181                         regulator->enable_count = 1;
2182                 } else {
2183                         rdev->use_count = 0;
2184                         regulator->enable_count = 0;
2185                 }
2186         }
2187
2188         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2189         if (!IS_ERR_OR_NULL(link))
2190                 regulator->device_link = true;
2191
2192         return regulator;
2193 }
2194
2195 /**
2196  * regulator_get - lookup and obtain a reference to a regulator.
2197  * @dev: device for regulator "consumer"
2198  * @id: Supply name or regulator ID.
2199  *
2200  * Returns a struct regulator corresponding to the regulator producer,
2201  * or IS_ERR() condition containing errno.
2202  *
2203  * Use of supply names configured via set_consumer_device_supply() is
2204  * strongly encouraged.  It is recommended that the supply name used
2205  * should match the name used for the supply and/or the relevant
2206  * device pins in the datasheet.
2207  */
2208 struct regulator *regulator_get(struct device *dev, const char *id)
2209 {
2210         return _regulator_get(dev, id, NORMAL_GET);
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_get);
2213
2214 /**
2215  * regulator_get_exclusive - obtain exclusive access to a regulator.
2216  * @dev: device for regulator "consumer"
2217  * @id: Supply name or regulator ID.
2218  *
2219  * Returns a struct regulator corresponding to the regulator producer,
2220  * or IS_ERR() condition containing errno.  Other consumers will be
2221  * unable to obtain this regulator while this reference is held and the
2222  * use count for the regulator will be initialised to reflect the current
2223  * state of the regulator.
2224  *
2225  * This is intended for use by consumers which cannot tolerate shared
2226  * use of the regulator such as those which need to force the
2227  * regulator off for correct operation of the hardware they are
2228  * controlling.
2229  *
2230  * Use of supply names configured via set_consumer_device_supply() is
2231  * strongly encouraged.  It is recommended that the supply name used
2232  * should match the name used for the supply and/or the relevant
2233  * device pins in the datasheet.
2234  */
2235 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2236 {
2237         return _regulator_get(dev, id, EXCLUSIVE_GET);
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2240
2241 /**
2242  * regulator_get_optional - obtain optional access to a regulator.
2243  * @dev: device for regulator "consumer"
2244  * @id: Supply name or regulator ID.
2245  *
2246  * Returns a struct regulator corresponding to the regulator producer,
2247  * or IS_ERR() condition containing errno.
2248  *
2249  * This is intended for use by consumers for devices which can have
2250  * some supplies unconnected in normal use, such as some MMC devices.
2251  * It can allow the regulator core to provide stub supplies for other
2252  * supplies requested using normal regulator_get() calls without
2253  * disrupting the operation of drivers that can handle absent
2254  * supplies.
2255  *
2256  * Use of supply names configured via set_consumer_device_supply() is
2257  * strongly encouraged.  It is recommended that the supply name used
2258  * should match the name used for the supply and/or the relevant
2259  * device pins in the datasheet.
2260  */
2261 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2262 {
2263         return _regulator_get(dev, id, OPTIONAL_GET);
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_get_optional);
2266
2267 static void destroy_regulator(struct regulator *regulator)
2268 {
2269         struct regulator_dev *rdev = regulator->rdev;
2270
2271         debugfs_remove_recursive(regulator->debugfs);
2272
2273         if (regulator->dev) {
2274                 if (regulator->device_link)
2275                         device_link_remove(regulator->dev, &rdev->dev);
2276
2277                 /* remove any sysfs entries */
2278                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2279         }
2280
2281         regulator_lock(rdev);
2282         list_del(&regulator->list);
2283
2284         rdev->open_count--;
2285         rdev->exclusive = 0;
2286         regulator_unlock(rdev);
2287
2288         kfree_const(regulator->supply_name);
2289         kfree(regulator);
2290 }
2291
2292 /* regulator_list_mutex lock held by regulator_put() */
2293 static void _regulator_put(struct regulator *regulator)
2294 {
2295         struct regulator_dev *rdev;
2296
2297         if (IS_ERR_OR_NULL(regulator))
2298                 return;
2299
2300         lockdep_assert_held_once(&regulator_list_mutex);
2301
2302         /* Docs say you must disable before calling regulator_put() */
2303         WARN_ON(regulator->enable_count);
2304
2305         rdev = regulator->rdev;
2306
2307         destroy_regulator(regulator);
2308
2309         module_put(rdev->owner);
2310         put_device(&rdev->dev);
2311 }
2312
2313 /**
2314  * regulator_put - "free" the regulator source
2315  * @regulator: regulator source
2316  *
2317  * Note: drivers must ensure that all regulator_enable calls made on this
2318  * regulator source are balanced by regulator_disable calls prior to calling
2319  * this function.
2320  */
2321 void regulator_put(struct regulator *regulator)
2322 {
2323         mutex_lock(&regulator_list_mutex);
2324         _regulator_put(regulator);
2325         mutex_unlock(&regulator_list_mutex);
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_put);
2328
2329 /**
2330  * regulator_register_supply_alias - Provide device alias for supply lookup
2331  *
2332  * @dev: device that will be given as the regulator "consumer"
2333  * @id: Supply name or regulator ID
2334  * @alias_dev: device that should be used to lookup the supply
2335  * @alias_id: Supply name or regulator ID that should be used to lookup the
2336  * supply
2337  *
2338  * All lookups for id on dev will instead be conducted for alias_id on
2339  * alias_dev.
2340  */
2341 int regulator_register_supply_alias(struct device *dev, const char *id,
2342                                     struct device *alias_dev,
2343                                     const char *alias_id)
2344 {
2345         struct regulator_supply_alias *map;
2346
2347         map = regulator_find_supply_alias(dev, id);
2348         if (map)
2349                 return -EEXIST;
2350
2351         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2352         if (!map)
2353                 return -ENOMEM;
2354
2355         map->src_dev = dev;
2356         map->src_supply = id;
2357         map->alias_dev = alias_dev;
2358         map->alias_supply = alias_id;
2359
2360         list_add(&map->list, &regulator_supply_alias_list);
2361
2362         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2363                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2364
2365         return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2368
2369 /**
2370  * regulator_unregister_supply_alias - Remove device alias
2371  *
2372  * @dev: device that will be given as the regulator "consumer"
2373  * @id: Supply name or regulator ID
2374  *
2375  * Remove a lookup alias if one exists for id on dev.
2376  */
2377 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2378 {
2379         struct regulator_supply_alias *map;
2380
2381         map = regulator_find_supply_alias(dev, id);
2382         if (map) {
2383                 list_del(&map->list);
2384                 kfree(map);
2385         }
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2388
2389 /**
2390  * regulator_bulk_register_supply_alias - register multiple aliases
2391  *
2392  * @dev: device that will be given as the regulator "consumer"
2393  * @id: List of supply names or regulator IDs
2394  * @alias_dev: device that should be used to lookup the supply
2395  * @alias_id: List of supply names or regulator IDs that should be used to
2396  * lookup the supply
2397  * @num_id: Number of aliases to register
2398  *
2399  * @return 0 on success, an errno on failure.
2400  *
2401  * This helper function allows drivers to register several supply
2402  * aliases in one operation.  If any of the aliases cannot be
2403  * registered any aliases that were registered will be removed
2404  * before returning to the caller.
2405  */
2406 int regulator_bulk_register_supply_alias(struct device *dev,
2407                                          const char *const *id,
2408                                          struct device *alias_dev,
2409                                          const char *const *alias_id,
2410                                          int num_id)
2411 {
2412         int i;
2413         int ret;
2414
2415         for (i = 0; i < num_id; ++i) {
2416                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2417                                                       alias_id[i]);
2418                 if (ret < 0)
2419                         goto err;
2420         }
2421
2422         return 0;
2423
2424 err:
2425         dev_err(dev,
2426                 "Failed to create supply alias %s,%s -> %s,%s\n",
2427                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2428
2429         while (--i >= 0)
2430                 regulator_unregister_supply_alias(dev, id[i]);
2431
2432         return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2435
2436 /**
2437  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2438  *
2439  * @dev: device that will be given as the regulator "consumer"
2440  * @id: List of supply names or regulator IDs
2441  * @num_id: Number of aliases to unregister
2442  *
2443  * This helper function allows drivers to unregister several supply
2444  * aliases in one operation.
2445  */
2446 void regulator_bulk_unregister_supply_alias(struct device *dev,
2447                                             const char *const *id,
2448                                             int num_id)
2449 {
2450         int i;
2451
2452         for (i = 0; i < num_id; ++i)
2453                 regulator_unregister_supply_alias(dev, id[i]);
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2456
2457
2458 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2459 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2460                                 const struct regulator_config *config)
2461 {
2462         struct regulator_enable_gpio *pin, *new_pin;
2463         struct gpio_desc *gpiod;
2464
2465         gpiod = config->ena_gpiod;
2466         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2467
2468         mutex_lock(&regulator_list_mutex);
2469
2470         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2471                 if (pin->gpiod == gpiod) {
2472                         rdev_dbg(rdev, "GPIO is already used\n");
2473                         goto update_ena_gpio_to_rdev;
2474                 }
2475         }
2476
2477         if (new_pin == NULL) {
2478                 mutex_unlock(&regulator_list_mutex);
2479                 return -ENOMEM;
2480         }
2481
2482         pin = new_pin;
2483         new_pin = NULL;
2484
2485         pin->gpiod = gpiod;
2486         list_add(&pin->list, &regulator_ena_gpio_list);
2487
2488 update_ena_gpio_to_rdev:
2489         pin->request_count++;
2490         rdev->ena_pin = pin;
2491
2492         mutex_unlock(&regulator_list_mutex);
2493         kfree(new_pin);
2494
2495         return 0;
2496 }
2497
2498 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2499 {
2500         struct regulator_enable_gpio *pin, *n;
2501
2502         if (!rdev->ena_pin)
2503                 return;
2504
2505         /* Free the GPIO only in case of no use */
2506         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2507                 if (pin != rdev->ena_pin)
2508                         continue;
2509
2510                 if (--pin->request_count)
2511                         break;
2512
2513                 gpiod_put(pin->gpiod);
2514                 list_del(&pin->list);
2515                 kfree(pin);
2516                 break;
2517         }
2518
2519         rdev->ena_pin = NULL;
2520 }
2521
2522 /**
2523  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2524  * @rdev: regulator_dev structure
2525  * @enable: enable GPIO at initial use?
2526  *
2527  * GPIO is enabled in case of initial use. (enable_count is 0)
2528  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2529  */
2530 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2531 {
2532         struct regulator_enable_gpio *pin = rdev->ena_pin;
2533
2534         if (!pin)
2535                 return -EINVAL;
2536
2537         if (enable) {
2538                 /* Enable GPIO at initial use */
2539                 if (pin->enable_count == 0)
2540                         gpiod_set_value_cansleep(pin->gpiod, 1);
2541
2542                 pin->enable_count++;
2543         } else {
2544                 if (pin->enable_count > 1) {
2545                         pin->enable_count--;
2546                         return 0;
2547                 }
2548
2549                 /* Disable GPIO if not used */
2550                 if (pin->enable_count <= 1) {
2551                         gpiod_set_value_cansleep(pin->gpiod, 0);
2552                         pin->enable_count = 0;
2553                 }
2554         }
2555
2556         return 0;
2557 }
2558
2559 /**
2560  * _regulator_delay_helper - a delay helper function
2561  * @delay: time to delay in microseconds
2562  *
2563  * Delay for the requested amount of time as per the guidelines in:
2564  *
2565  *     Documentation/timers/timers-howto.rst
2566  *
2567  * The assumption here is that these regulator operations will never used in
2568  * atomic context and therefore sleeping functions can be used.
2569  */
2570 static void _regulator_delay_helper(unsigned int delay)
2571 {
2572         unsigned int ms = delay / 1000;
2573         unsigned int us = delay % 1000;
2574
2575         if (ms > 0) {
2576                 /*
2577                  * For small enough values, handle super-millisecond
2578                  * delays in the usleep_range() call below.
2579                  */
2580                 if (ms < 20)
2581                         us += ms * 1000;
2582                 else
2583                         msleep(ms);
2584         }
2585
2586         /*
2587          * Give the scheduler some room to coalesce with any other
2588          * wakeup sources. For delays shorter than 10 us, don't even
2589          * bother setting up high-resolution timers and just busy-
2590          * loop.
2591          */
2592         if (us >= 10)
2593                 usleep_range(us, us + 100);
2594         else
2595                 udelay(us);
2596 }
2597
2598 /**
2599  * _regulator_check_status_enabled
2600  *
2601  * A helper function to check if the regulator status can be interpreted
2602  * as 'regulator is enabled'.
2603  * @rdev: the regulator device to check
2604  *
2605  * Return:
2606  * * 1                  - if status shows regulator is in enabled state
2607  * * 0                  - if not enabled state
2608  * * Error Value        - as received from ops->get_status()
2609  */
2610 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2611 {
2612         int ret = rdev->desc->ops->get_status(rdev);
2613
2614         if (ret < 0) {
2615                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2616                 return ret;
2617         }
2618
2619         switch (ret) {
2620         case REGULATOR_STATUS_OFF:
2621         case REGULATOR_STATUS_ERROR:
2622         case REGULATOR_STATUS_UNDEFINED:
2623                 return 0;
2624         default:
2625                 return 1;
2626         }
2627 }
2628
2629 static int _regulator_do_enable(struct regulator_dev *rdev)
2630 {
2631         int ret, delay;
2632
2633         /* Query before enabling in case configuration dependent.  */
2634         ret = _regulator_get_enable_time(rdev);
2635         if (ret >= 0) {
2636                 delay = ret;
2637         } else {
2638                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2639                 delay = 0;
2640         }
2641
2642         trace_regulator_enable(rdev_get_name(rdev));
2643
2644         if (rdev->desc->off_on_delay && rdev->last_off) {
2645                 /* if needed, keep a distance of off_on_delay from last time
2646                  * this regulator was disabled.
2647                  */
2648                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2649                 s64 remaining = ktime_us_delta(end, ktime_get());
2650
2651                 if (remaining > 0)
2652                         _regulator_delay_helper(remaining);
2653         }
2654
2655         if (rdev->ena_pin) {
2656                 if (!rdev->ena_gpio_state) {
2657                         ret = regulator_ena_gpio_ctrl(rdev, true);
2658                         if (ret < 0)
2659                                 return ret;
2660                         rdev->ena_gpio_state = 1;
2661                 }
2662         } else if (rdev->desc->ops->enable) {
2663                 ret = rdev->desc->ops->enable(rdev);
2664                 if (ret < 0)
2665                         return ret;
2666         } else {
2667                 return -EINVAL;
2668         }
2669
2670         /* Allow the regulator to ramp; it would be useful to extend
2671          * this for bulk operations so that the regulators can ramp
2672          * together.
2673          */
2674         trace_regulator_enable_delay(rdev_get_name(rdev));
2675
2676         /* If poll_enabled_time is set, poll upto the delay calculated
2677          * above, delaying poll_enabled_time uS to check if the regulator
2678          * actually got enabled.
2679          * If the regulator isn't enabled after our delay helper has expired,
2680          * return -ETIMEDOUT.
2681          */
2682         if (rdev->desc->poll_enabled_time) {
2683                 unsigned int time_remaining = delay;
2684
2685                 while (time_remaining > 0) {
2686                         _regulator_delay_helper(rdev->desc->poll_enabled_time);
2687
2688                         if (rdev->desc->ops->get_status) {
2689                                 ret = _regulator_check_status_enabled(rdev);
2690                                 if (ret < 0)
2691                                         return ret;
2692                                 else if (ret)
2693                                         break;
2694                         } else if (rdev->desc->ops->is_enabled(rdev))
2695                                 break;
2696
2697                         time_remaining -= rdev->desc->poll_enabled_time;
2698                 }
2699
2700                 if (time_remaining <= 0) {
2701                         rdev_err(rdev, "Enabled check timed out\n");
2702                         return -ETIMEDOUT;
2703                 }
2704         } else {
2705                 _regulator_delay_helper(delay);
2706         }
2707
2708         trace_regulator_enable_complete(rdev_get_name(rdev));
2709
2710         return 0;
2711 }
2712
2713 /**
2714  * _regulator_handle_consumer_enable - handle that a consumer enabled
2715  * @regulator: regulator source
2716  *
2717  * Some things on a regulator consumer (like the contribution towards total
2718  * load on the regulator) only have an effect when the consumer wants the
2719  * regulator enabled.  Explained in example with two consumers of the same
2720  * regulator:
2721  *   consumer A: set_load(100);       => total load = 0
2722  *   consumer A: regulator_enable();  => total load = 100
2723  *   consumer B: set_load(1000);      => total load = 100
2724  *   consumer B: regulator_enable();  => total load = 1100
2725  *   consumer A: regulator_disable(); => total_load = 1000
2726  *
2727  * This function (together with _regulator_handle_consumer_disable) is
2728  * responsible for keeping track of the refcount for a given regulator consumer
2729  * and applying / unapplying these things.
2730  *
2731  * Returns 0 upon no error; -error upon error.
2732  */
2733 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2734 {
2735         struct regulator_dev *rdev = regulator->rdev;
2736
2737         lockdep_assert_held_once(&rdev->mutex.base);
2738
2739         regulator->enable_count++;
2740         if (regulator->uA_load && regulator->enable_count == 1)
2741                 return drms_uA_update(rdev);
2742
2743         return 0;
2744 }
2745
2746 /**
2747  * _regulator_handle_consumer_disable - handle that a consumer disabled
2748  * @regulator: regulator source
2749  *
2750  * The opposite of _regulator_handle_consumer_enable().
2751  *
2752  * Returns 0 upon no error; -error upon error.
2753  */
2754 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2755 {
2756         struct regulator_dev *rdev = regulator->rdev;
2757
2758         lockdep_assert_held_once(&rdev->mutex.base);
2759
2760         if (!regulator->enable_count) {
2761                 rdev_err(rdev, "Underflow of regulator enable count\n");
2762                 return -EINVAL;
2763         }
2764
2765         regulator->enable_count--;
2766         if (regulator->uA_load && regulator->enable_count == 0)
2767                 return drms_uA_update(rdev);
2768
2769         return 0;
2770 }
2771
2772 /* locks held by regulator_enable() */
2773 static int _regulator_enable(struct regulator *regulator)
2774 {
2775         struct regulator_dev *rdev = regulator->rdev;
2776         int ret;
2777
2778         lockdep_assert_held_once(&rdev->mutex.base);
2779
2780         if (rdev->use_count == 0 && rdev->supply) {
2781                 ret = _regulator_enable(rdev->supply);
2782                 if (ret < 0)
2783                         return ret;
2784         }
2785
2786         /* balance only if there are regulators coupled */
2787         if (rdev->coupling_desc.n_coupled > 1) {
2788                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789                 if (ret < 0)
2790                         goto err_disable_supply;
2791         }
2792
2793         ret = _regulator_handle_consumer_enable(regulator);
2794         if (ret < 0)
2795                 goto err_disable_supply;
2796
2797         if (rdev->use_count == 0) {
2798                 /*
2799                  * The regulator may already be enabled if it's not switchable
2800                  * or was left on
2801                  */
2802                 ret = _regulator_is_enabled(rdev);
2803                 if (ret == -EINVAL || ret == 0) {
2804                         if (!regulator_ops_is_valid(rdev,
2805                                         REGULATOR_CHANGE_STATUS)) {
2806                                 ret = -EPERM;
2807                                 goto err_consumer_disable;
2808                         }
2809
2810                         ret = _regulator_do_enable(rdev);
2811                         if (ret < 0)
2812                                 goto err_consumer_disable;
2813
2814                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2815                                              NULL);
2816                 } else if (ret < 0) {
2817                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2818                         goto err_consumer_disable;
2819                 }
2820                 /* Fallthrough on positive return values - already enabled */
2821         }
2822
2823         rdev->use_count++;
2824
2825         return 0;
2826
2827 err_consumer_disable:
2828         _regulator_handle_consumer_disable(regulator);
2829
2830 err_disable_supply:
2831         if (rdev->use_count == 0 && rdev->supply)
2832                 _regulator_disable(rdev->supply);
2833
2834         return ret;
2835 }
2836
2837 /**
2838  * regulator_enable - enable regulator output
2839  * @regulator: regulator source
2840  *
2841  * Request that the regulator be enabled with the regulator output at
2842  * the predefined voltage or current value.  Calls to regulator_enable()
2843  * must be balanced with calls to regulator_disable().
2844  *
2845  * NOTE: the output value can be set by other drivers, boot loader or may be
2846  * hardwired in the regulator.
2847  */
2848 int regulator_enable(struct regulator *regulator)
2849 {
2850         struct regulator_dev *rdev = regulator->rdev;
2851         struct ww_acquire_ctx ww_ctx;
2852         int ret;
2853
2854         regulator_lock_dependent(rdev, &ww_ctx);
2855         ret = _regulator_enable(regulator);
2856         regulator_unlock_dependent(rdev, &ww_ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regulator_enable);
2861
2862 static int _regulator_do_disable(struct regulator_dev *rdev)
2863 {
2864         int ret;
2865
2866         trace_regulator_disable(rdev_get_name(rdev));
2867
2868         if (rdev->ena_pin) {
2869                 if (rdev->ena_gpio_state) {
2870                         ret = regulator_ena_gpio_ctrl(rdev, false);
2871                         if (ret < 0)
2872                                 return ret;
2873                         rdev->ena_gpio_state = 0;
2874                 }
2875
2876         } else if (rdev->desc->ops->disable) {
2877                 ret = rdev->desc->ops->disable(rdev);
2878                 if (ret != 0)
2879                         return ret;
2880         }
2881
2882         if (rdev->desc->off_on_delay)
2883                 rdev->last_off = ktime_get();
2884
2885         trace_regulator_disable_complete(rdev_get_name(rdev));
2886
2887         return 0;
2888 }
2889
2890 /* locks held by regulator_disable() */
2891 static int _regulator_disable(struct regulator *regulator)
2892 {
2893         struct regulator_dev *rdev = regulator->rdev;
2894         int ret = 0;
2895
2896         lockdep_assert_held_once(&rdev->mutex.base);
2897
2898         if (WARN(rdev->use_count <= 0,
2899                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2900                 return -EIO;
2901
2902         /* are we the last user and permitted to disable ? */
2903         if (rdev->use_count == 1 &&
2904             (rdev->constraints && !rdev->constraints->always_on)) {
2905
2906                 /* we are last user */
2907                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2908                         ret = _notifier_call_chain(rdev,
2909                                                    REGULATOR_EVENT_PRE_DISABLE,
2910                                                    NULL);
2911                         if (ret & NOTIFY_STOP_MASK)
2912                                 return -EINVAL;
2913
2914                         ret = _regulator_do_disable(rdev);
2915                         if (ret < 0) {
2916                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2917                                 _notifier_call_chain(rdev,
2918                                                 REGULATOR_EVENT_ABORT_DISABLE,
2919                                                 NULL);
2920                                 return ret;
2921                         }
2922                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2923                                         NULL);
2924                 }
2925
2926                 rdev->use_count = 0;
2927         } else if (rdev->use_count > 1) {
2928                 rdev->use_count--;
2929         }
2930
2931         if (ret == 0)
2932                 ret = _regulator_handle_consumer_disable(regulator);
2933
2934         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2935                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2936
2937         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2938                 ret = _regulator_disable(rdev->supply);
2939
2940         return ret;
2941 }
2942
2943 /**
2944  * regulator_disable - disable regulator output
2945  * @regulator: regulator source
2946  *
2947  * Disable the regulator output voltage or current.  Calls to
2948  * regulator_enable() must be balanced with calls to
2949  * regulator_disable().
2950  *
2951  * NOTE: this will only disable the regulator output if no other consumer
2952  * devices have it enabled, the regulator device supports disabling and
2953  * machine constraints permit this operation.
2954  */
2955 int regulator_disable(struct regulator *regulator)
2956 {
2957         struct regulator_dev *rdev = regulator->rdev;
2958         struct ww_acquire_ctx ww_ctx;
2959         int ret;
2960
2961         regulator_lock_dependent(rdev, &ww_ctx);
2962         ret = _regulator_disable(regulator);
2963         regulator_unlock_dependent(rdev, &ww_ctx);
2964
2965         return ret;
2966 }
2967 EXPORT_SYMBOL_GPL(regulator_disable);
2968
2969 /* locks held by regulator_force_disable() */
2970 static int _regulator_force_disable(struct regulator_dev *rdev)
2971 {
2972         int ret = 0;
2973
2974         lockdep_assert_held_once(&rdev->mutex.base);
2975
2976         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2977                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2978         if (ret & NOTIFY_STOP_MASK)
2979                 return -EINVAL;
2980
2981         ret = _regulator_do_disable(rdev);
2982         if (ret < 0) {
2983                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2984                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2985                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2986                 return ret;
2987         }
2988
2989         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2990                         REGULATOR_EVENT_DISABLE, NULL);
2991
2992         return 0;
2993 }
2994
2995 /**
2996  * regulator_force_disable - force disable regulator output
2997  * @regulator: regulator source
2998  *
2999  * Forcibly disable the regulator output voltage or current.
3000  * NOTE: this *will* disable the regulator output even if other consumer
3001  * devices have it enabled. This should be used for situations when device
3002  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3003  */
3004 int regulator_force_disable(struct regulator *regulator)
3005 {
3006         struct regulator_dev *rdev = regulator->rdev;
3007         struct ww_acquire_ctx ww_ctx;
3008         int ret;
3009
3010         regulator_lock_dependent(rdev, &ww_ctx);
3011
3012         ret = _regulator_force_disable(regulator->rdev);
3013
3014         if (rdev->coupling_desc.n_coupled > 1)
3015                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3016
3017         if (regulator->uA_load) {
3018                 regulator->uA_load = 0;
3019                 ret = drms_uA_update(rdev);
3020         }
3021
3022         if (rdev->use_count != 0 && rdev->supply)
3023                 _regulator_disable(rdev->supply);
3024
3025         regulator_unlock_dependent(rdev, &ww_ctx);
3026
3027         return ret;
3028 }
3029 EXPORT_SYMBOL_GPL(regulator_force_disable);
3030
3031 static void regulator_disable_work(struct work_struct *work)
3032 {
3033         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3034                                                   disable_work.work);
3035         struct ww_acquire_ctx ww_ctx;
3036         int count, i, ret;
3037         struct regulator *regulator;
3038         int total_count = 0;
3039
3040         regulator_lock_dependent(rdev, &ww_ctx);
3041
3042         /*
3043          * Workqueue functions queue the new work instance while the previous
3044          * work instance is being processed. Cancel the queued work instance
3045          * as the work instance under processing does the job of the queued
3046          * work instance.
3047          */
3048         cancel_delayed_work(&rdev->disable_work);
3049
3050         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3051                 count = regulator->deferred_disables;
3052
3053                 if (!count)
3054                         continue;
3055
3056                 total_count += count;
3057                 regulator->deferred_disables = 0;
3058
3059                 for (i = 0; i < count; i++) {
3060                         ret = _regulator_disable(regulator);
3061                         if (ret != 0)
3062                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3063                                          ERR_PTR(ret));
3064                 }
3065         }
3066         WARN_ON(!total_count);
3067
3068         if (rdev->coupling_desc.n_coupled > 1)
3069                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3070
3071         regulator_unlock_dependent(rdev, &ww_ctx);
3072 }
3073
3074 /**
3075  * regulator_disable_deferred - disable regulator output with delay
3076  * @regulator: regulator source
3077  * @ms: milliseconds until the regulator is disabled
3078  *
3079  * Execute regulator_disable() on the regulator after a delay.  This
3080  * is intended for use with devices that require some time to quiesce.
3081  *
3082  * NOTE: this will only disable the regulator output if no other consumer
3083  * devices have it enabled, the regulator device supports disabling and
3084  * machine constraints permit this operation.
3085  */
3086 int regulator_disable_deferred(struct regulator *regulator, int ms)
3087 {
3088         struct regulator_dev *rdev = regulator->rdev;
3089
3090         if (!ms)
3091                 return regulator_disable(regulator);
3092
3093         regulator_lock(rdev);
3094         regulator->deferred_disables++;
3095         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3096                          msecs_to_jiffies(ms));
3097         regulator_unlock(rdev);
3098
3099         return 0;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3102
3103 static int _regulator_is_enabled(struct regulator_dev *rdev)
3104 {
3105         /* A GPIO control always takes precedence */
3106         if (rdev->ena_pin)
3107                 return rdev->ena_gpio_state;
3108
3109         /* If we don't know then assume that the regulator is always on */
3110         if (!rdev->desc->ops->is_enabled)
3111                 return 1;
3112
3113         return rdev->desc->ops->is_enabled(rdev);
3114 }
3115
3116 static int _regulator_list_voltage(struct regulator_dev *rdev,
3117                                    unsigned selector, int lock)
3118 {
3119         const struct regulator_ops *ops = rdev->desc->ops;
3120         int ret;
3121
3122         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3123                 return rdev->desc->fixed_uV;
3124
3125         if (ops->list_voltage) {
3126                 if (selector >= rdev->desc->n_voltages)
3127                         return -EINVAL;
3128                 if (selector < rdev->desc->linear_min_sel)
3129                         return 0;
3130                 if (lock)
3131                         regulator_lock(rdev);
3132                 ret = ops->list_voltage(rdev, selector);
3133                 if (lock)
3134                         regulator_unlock(rdev);
3135         } else if (rdev->is_switch && rdev->supply) {
3136                 ret = _regulator_list_voltage(rdev->supply->rdev,
3137                                               selector, lock);
3138         } else {
3139                 return -EINVAL;
3140         }
3141
3142         if (ret > 0) {
3143                 if (ret < rdev->constraints->min_uV)
3144                         ret = 0;
3145                 else if (ret > rdev->constraints->max_uV)
3146                         ret = 0;
3147         }
3148
3149         return ret;
3150 }
3151
3152 /**
3153  * regulator_is_enabled - is the regulator output enabled
3154  * @regulator: regulator source
3155  *
3156  * Returns positive if the regulator driver backing the source/client
3157  * has requested that the device be enabled, zero if it hasn't, else a
3158  * negative errno code.
3159  *
3160  * Note that the device backing this regulator handle can have multiple
3161  * users, so it might be enabled even if regulator_enable() was never
3162  * called for this particular source.
3163  */
3164 int regulator_is_enabled(struct regulator *regulator)
3165 {
3166         int ret;
3167
3168         if (regulator->always_on)
3169                 return 1;
3170
3171         regulator_lock(regulator->rdev);
3172         ret = _regulator_is_enabled(regulator->rdev);
3173         regulator_unlock(regulator->rdev);
3174
3175         return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3178
3179 /**
3180  * regulator_count_voltages - count regulator_list_voltage() selectors
3181  * @regulator: regulator source
3182  *
3183  * Returns number of selectors, or negative errno.  Selectors are
3184  * numbered starting at zero, and typically correspond to bitfields
3185  * in hardware registers.
3186  */
3187 int regulator_count_voltages(struct regulator *regulator)
3188 {
3189         struct regulator_dev    *rdev = regulator->rdev;
3190
3191         if (rdev->desc->n_voltages)
3192                 return rdev->desc->n_voltages;
3193
3194         if (!rdev->is_switch || !rdev->supply)
3195                 return -EINVAL;
3196
3197         return regulator_count_voltages(rdev->supply);
3198 }
3199 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3200
3201 /**
3202  * regulator_list_voltage - enumerate supported voltages
3203  * @regulator: regulator source
3204  * @selector: identify voltage to list
3205  * Context: can sleep
3206  *
3207  * Returns a voltage that can be passed to @regulator_set_voltage(),
3208  * zero if this selector code can't be used on this system, or a
3209  * negative errno.
3210  */
3211 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3212 {
3213         return _regulator_list_voltage(regulator->rdev, selector, 1);
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3216
3217 /**
3218  * regulator_get_regmap - get the regulator's register map
3219  * @regulator: regulator source
3220  *
3221  * Returns the register map for the given regulator, or an ERR_PTR value
3222  * if the regulator doesn't use regmap.
3223  */
3224 struct regmap *regulator_get_regmap(struct regulator *regulator)
3225 {
3226         struct regmap *map = regulator->rdev->regmap;
3227
3228         return map ? map : ERR_PTR(-EOPNOTSUPP);
3229 }
3230
3231 /**
3232  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3233  * @regulator: regulator source
3234  * @vsel_reg: voltage selector register, output parameter
3235  * @vsel_mask: mask for voltage selector bitfield, output parameter
3236  *
3237  * Returns the hardware register offset and bitmask used for setting the
3238  * regulator voltage. This might be useful when configuring voltage-scaling
3239  * hardware or firmware that can make I2C requests behind the kernel's back,
3240  * for example.
3241  *
3242  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3243  * and 0 is returned, otherwise a negative errno is returned.
3244  */
3245 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3246                                          unsigned *vsel_reg,
3247                                          unsigned *vsel_mask)
3248 {
3249         struct regulator_dev *rdev = regulator->rdev;
3250         const struct regulator_ops *ops = rdev->desc->ops;
3251
3252         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3253                 return -EOPNOTSUPP;
3254
3255         *vsel_reg = rdev->desc->vsel_reg;
3256         *vsel_mask = rdev->desc->vsel_mask;
3257
3258         return 0;
3259 }
3260 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3261
3262 /**
3263  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3264  * @regulator: regulator source
3265  * @selector: identify voltage to list
3266  *
3267  * Converts the selector to a hardware-specific voltage selector that can be
3268  * directly written to the regulator registers. The address of the voltage
3269  * register can be determined by calling @regulator_get_hardware_vsel_register.
3270  *
3271  * On error a negative errno is returned.
3272  */
3273 int regulator_list_hardware_vsel(struct regulator *regulator,
3274                                  unsigned selector)
3275 {
3276         struct regulator_dev *rdev = regulator->rdev;
3277         const struct regulator_ops *ops = rdev->desc->ops;
3278
3279         if (selector >= rdev->desc->n_voltages)
3280                 return -EINVAL;
3281         if (selector < rdev->desc->linear_min_sel)
3282                 return 0;
3283         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3284                 return -EOPNOTSUPP;
3285
3286         return selector;
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3289
3290 /**
3291  * regulator_get_linear_step - return the voltage step size between VSEL values
3292  * @regulator: regulator source
3293  *
3294  * Returns the voltage step size between VSEL values for linear
3295  * regulators, or return 0 if the regulator isn't a linear regulator.
3296  */
3297 unsigned int regulator_get_linear_step(struct regulator *regulator)
3298 {
3299         struct regulator_dev *rdev = regulator->rdev;
3300
3301         return rdev->desc->uV_step;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3304
3305 /**
3306  * regulator_is_supported_voltage - check if a voltage range can be supported
3307  *
3308  * @regulator: Regulator to check.
3309  * @min_uV: Minimum required voltage in uV.
3310  * @max_uV: Maximum required voltage in uV.
3311  *
3312  * Returns a boolean.
3313  */
3314 int regulator_is_supported_voltage(struct regulator *regulator,
3315                                    int min_uV, int max_uV)
3316 {
3317         struct regulator_dev *rdev = regulator->rdev;
3318         int i, voltages, ret;
3319
3320         /* If we can't change voltage check the current voltage */
3321         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3322                 ret = regulator_get_voltage(regulator);
3323                 if (ret >= 0)
3324                         return min_uV <= ret && ret <= max_uV;
3325                 else
3326                         return ret;
3327         }
3328
3329         /* Any voltage within constrains range is fine? */
3330         if (rdev->desc->continuous_voltage_range)
3331                 return min_uV >= rdev->constraints->min_uV &&
3332                                 max_uV <= rdev->constraints->max_uV;
3333
3334         ret = regulator_count_voltages(regulator);
3335         if (ret < 0)
3336                 return 0;
3337         voltages = ret;
3338
3339         for (i = 0; i < voltages; i++) {
3340                 ret = regulator_list_voltage(regulator, i);
3341
3342                 if (ret >= min_uV && ret <= max_uV)
3343                         return 1;
3344         }
3345
3346         return 0;
3347 }
3348 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3349
3350 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3351                                  int max_uV)
3352 {
3353         const struct regulator_desc *desc = rdev->desc;
3354
3355         if (desc->ops->map_voltage)
3356                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3357
3358         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3359                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3360
3361         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3362                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3363
3364         if (desc->ops->list_voltage ==
3365                 regulator_list_voltage_pickable_linear_range)
3366                 return regulator_map_voltage_pickable_linear_range(rdev,
3367                                                         min_uV, max_uV);
3368
3369         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3370 }
3371
3372 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3373                                        int min_uV, int max_uV,
3374                                        unsigned *selector)
3375 {
3376         struct pre_voltage_change_data data;
3377         int ret;
3378
3379         data.old_uV = regulator_get_voltage_rdev(rdev);
3380         data.min_uV = min_uV;
3381         data.max_uV = max_uV;
3382         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3383                                    &data);
3384         if (ret & NOTIFY_STOP_MASK)
3385                 return -EINVAL;
3386
3387         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3388         if (ret >= 0)
3389                 return ret;
3390
3391         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3392                              (void *)data.old_uV);
3393
3394         return ret;
3395 }
3396
3397 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3398                                            int uV, unsigned selector)
3399 {
3400         struct pre_voltage_change_data data;
3401         int ret;
3402
3403         data.old_uV = regulator_get_voltage_rdev(rdev);
3404         data.min_uV = uV;
3405         data.max_uV = uV;
3406         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3407                                    &data);
3408         if (ret & NOTIFY_STOP_MASK)
3409                 return -EINVAL;
3410
3411         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3412         if (ret >= 0)
3413                 return ret;
3414
3415         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3416                              (void *)data.old_uV);
3417
3418         return ret;
3419 }
3420
3421 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3422                                            int uV, int new_selector)
3423 {
3424         const struct regulator_ops *ops = rdev->desc->ops;
3425         int diff, old_sel, curr_sel, ret;
3426
3427         /* Stepping is only needed if the regulator is enabled. */
3428         if (!_regulator_is_enabled(rdev))
3429                 goto final_set;
3430
3431         if (!ops->get_voltage_sel)
3432                 return -EINVAL;
3433
3434         old_sel = ops->get_voltage_sel(rdev);
3435         if (old_sel < 0)
3436                 return old_sel;
3437
3438         diff = new_selector - old_sel;
3439         if (diff == 0)
3440                 return 0; /* No change needed. */
3441
3442         if (diff > 0) {
3443                 /* Stepping up. */
3444                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3445                      curr_sel < new_selector;
3446                      curr_sel += rdev->desc->vsel_step) {
3447                         /*
3448                          * Call the callback directly instead of using
3449                          * _regulator_call_set_voltage_sel() as we don't
3450                          * want to notify anyone yet. Same in the branch
3451                          * below.
3452                          */
3453                         ret = ops->set_voltage_sel(rdev, curr_sel);
3454                         if (ret)
3455                                 goto try_revert;
3456                 }
3457         } else {
3458                 /* Stepping down. */
3459                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3460                      curr_sel > new_selector;
3461                      curr_sel -= rdev->desc->vsel_step) {
3462                         ret = ops->set_voltage_sel(rdev, curr_sel);
3463                         if (ret)
3464                                 goto try_revert;
3465                 }
3466         }
3467
3468 final_set:
3469         /* The final selector will trigger the notifiers. */
3470         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3471
3472 try_revert:
3473         /*
3474          * At least try to return to the previous voltage if setting a new
3475          * one failed.
3476          */
3477         (void)ops->set_voltage_sel(rdev, old_sel);
3478         return ret;
3479 }
3480
3481 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3482                                        int old_uV, int new_uV)
3483 {
3484         unsigned int ramp_delay = 0;
3485
3486         if (rdev->constraints->ramp_delay)
3487                 ramp_delay = rdev->constraints->ramp_delay;
3488         else if (rdev->desc->ramp_delay)
3489                 ramp_delay = rdev->desc->ramp_delay;
3490         else if (rdev->constraints->settling_time)
3491                 return rdev->constraints->settling_time;
3492         else if (rdev->constraints->settling_time_up &&
3493                  (new_uV > old_uV))
3494                 return rdev->constraints->settling_time_up;
3495         else if (rdev->constraints->settling_time_down &&
3496                  (new_uV < old_uV))
3497                 return rdev->constraints->settling_time_down;
3498
3499         if (ramp_delay == 0) {
3500                 rdev_dbg(rdev, "ramp_delay not set\n");
3501                 return 0;
3502         }
3503
3504         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3505 }
3506
3507 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3508                                      int min_uV, int max_uV)
3509 {
3510         int ret;
3511         int delay = 0;
3512         int best_val = 0;
3513         unsigned int selector;
3514         int old_selector = -1;
3515         const struct regulator_ops *ops = rdev->desc->ops;
3516         int old_uV = regulator_get_voltage_rdev(rdev);
3517
3518         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3519
3520         min_uV += rdev->constraints->uV_offset;
3521         max_uV += rdev->constraints->uV_offset;
3522
3523         /*
3524          * If we can't obtain the old selector there is not enough
3525          * info to call set_voltage_time_sel().
3526          */
3527         if (_regulator_is_enabled(rdev) &&
3528             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3529                 old_selector = ops->get_voltage_sel(rdev);
3530                 if (old_selector < 0)
3531                         return old_selector;
3532         }
3533
3534         if (ops->set_voltage) {
3535                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3536                                                   &selector);
3537
3538                 if (ret >= 0) {
3539                         if (ops->list_voltage)
3540                                 best_val = ops->list_voltage(rdev,
3541                                                              selector);
3542                         else
3543                                 best_val = regulator_get_voltage_rdev(rdev);
3544                 }
3545
3546         } else if (ops->set_voltage_sel) {
3547                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3548                 if (ret >= 0) {
3549                         best_val = ops->list_voltage(rdev, ret);
3550                         if (min_uV <= best_val && max_uV >= best_val) {
3551                                 selector = ret;
3552                                 if (old_selector == selector)
3553                                         ret = 0;
3554                                 else if (rdev->desc->vsel_step)
3555                                         ret = _regulator_set_voltage_sel_step(
3556                                                 rdev, best_val, selector);
3557                                 else
3558                                         ret = _regulator_call_set_voltage_sel(
3559                                                 rdev, best_val, selector);
3560                         } else {
3561                                 ret = -EINVAL;
3562                         }
3563                 }
3564         } else {
3565                 ret = -EINVAL;
3566         }
3567
3568         if (ret)
3569                 goto out;
3570
3571         if (ops->set_voltage_time_sel) {
3572                 /*
3573                  * Call set_voltage_time_sel if successfully obtained
3574                  * old_selector
3575                  */
3576                 if (old_selector >= 0 && old_selector != selector)
3577                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3578                                                           selector);
3579         } else {
3580                 if (old_uV != best_val) {
3581                         if (ops->set_voltage_time)
3582                                 delay = ops->set_voltage_time(rdev, old_uV,
3583                                                               best_val);
3584                         else
3585                                 delay = _regulator_set_voltage_time(rdev,
3586                                                                     old_uV,
3587                                                                     best_val);
3588                 }
3589         }
3590
3591         if (delay < 0) {
3592                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3593                 delay = 0;
3594         }
3595
3596         /* Insert any necessary delays */
3597         _regulator_delay_helper(delay);
3598
3599         if (best_val >= 0) {
3600                 unsigned long data = best_val;
3601
3602                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3603                                      (void *)data);
3604         }
3605
3606 out:
3607         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3608
3609         return ret;
3610 }
3611
3612 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3613                                   int min_uV, int max_uV, suspend_state_t state)
3614 {
3615         struct regulator_state *rstate;
3616         int uV, sel;
3617
3618         rstate = regulator_get_suspend_state(rdev, state);
3619         if (rstate == NULL)
3620                 return -EINVAL;
3621
3622         if (min_uV < rstate->min_uV)
3623                 min_uV = rstate->min_uV;
3624         if (max_uV > rstate->max_uV)
3625                 max_uV = rstate->max_uV;
3626
3627         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3628         if (sel < 0)
3629                 return sel;
3630
3631         uV = rdev->desc->ops->list_voltage(rdev, sel);
3632         if (uV >= min_uV && uV <= max_uV)
3633                 rstate->uV = uV;
3634
3635         return 0;
3636 }
3637
3638 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3639                                           int min_uV, int max_uV,
3640                                           suspend_state_t state)
3641 {
3642         struct regulator_dev *rdev = regulator->rdev;
3643         struct regulator_voltage *voltage = &regulator->voltage[state];
3644         int ret = 0;
3645         int old_min_uV, old_max_uV;
3646         int current_uV;
3647
3648         /* If we're setting the same range as last time the change
3649          * should be a noop (some cpufreq implementations use the same
3650          * voltage for multiple frequencies, for example).
3651          */
3652         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3653                 goto out;
3654
3655         /* If we're trying to set a range that overlaps the current voltage,
3656          * return successfully even though the regulator does not support
3657          * changing the voltage.
3658          */
3659         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3660                 current_uV = regulator_get_voltage_rdev(rdev);
3661                 if (min_uV <= current_uV && current_uV <= max_uV) {
3662                         voltage->min_uV = min_uV;
3663                         voltage->max_uV = max_uV;
3664                         goto out;
3665                 }
3666         }
3667
3668         /* sanity check */
3669         if (!rdev->desc->ops->set_voltage &&
3670             !rdev->desc->ops->set_voltage_sel) {
3671                 ret = -EINVAL;
3672                 goto out;
3673         }
3674
3675         /* constraints check */
3676         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3677         if (ret < 0)
3678                 goto out;
3679
3680         /* restore original values in case of error */
3681         old_min_uV = voltage->min_uV;
3682         old_max_uV = voltage->max_uV;
3683         voltage->min_uV = min_uV;
3684         voltage->max_uV = max_uV;
3685
3686         /* for not coupled regulators this will just set the voltage */
3687         ret = regulator_balance_voltage(rdev, state);
3688         if (ret < 0) {
3689                 voltage->min_uV = old_min_uV;
3690                 voltage->max_uV = old_max_uV;
3691         }
3692
3693 out:
3694         return ret;
3695 }
3696
3697 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3698                                int max_uV, suspend_state_t state)
3699 {
3700         int best_supply_uV = 0;
3701         int supply_change_uV = 0;
3702         int ret;
3703
3704         if (rdev->supply &&
3705             regulator_ops_is_valid(rdev->supply->rdev,
3706                                    REGULATOR_CHANGE_VOLTAGE) &&
3707             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3708                                            rdev->desc->ops->get_voltage_sel))) {
3709                 int current_supply_uV;
3710                 int selector;
3711
3712                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3713                 if (selector < 0) {
3714                         ret = selector;
3715                         goto out;
3716                 }
3717
3718                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3719                 if (best_supply_uV < 0) {
3720                         ret = best_supply_uV;
3721                         goto out;
3722                 }
3723
3724                 best_supply_uV += rdev->desc->min_dropout_uV;
3725
3726                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3727                 if (current_supply_uV < 0) {
3728                         ret = current_supply_uV;
3729                         goto out;
3730                 }
3731
3732                 supply_change_uV = best_supply_uV - current_supply_uV;
3733         }
3734
3735         if (supply_change_uV > 0) {
3736                 ret = regulator_set_voltage_unlocked(rdev->supply,
3737                                 best_supply_uV, INT_MAX, state);
3738                 if (ret) {
3739                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3740                                 ERR_PTR(ret));
3741                         goto out;
3742                 }
3743         }
3744
3745         if (state == PM_SUSPEND_ON)
3746                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3747         else
3748                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3749                                                         max_uV, state);
3750         if (ret < 0)
3751                 goto out;
3752
3753         if (supply_change_uV < 0) {
3754                 ret = regulator_set_voltage_unlocked(rdev->supply,
3755                                 best_supply_uV, INT_MAX, state);
3756                 if (ret)
3757                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3758                                  ERR_PTR(ret));
3759                 /* No need to fail here */
3760                 ret = 0;
3761         }
3762
3763 out:
3764         return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3767
3768 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3769                                         int *current_uV, int *min_uV)
3770 {
3771         struct regulation_constraints *constraints = rdev->constraints;
3772
3773         /* Limit voltage change only if necessary */
3774         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3775                 return 1;
3776
3777         if (*current_uV < 0) {
3778                 *current_uV = regulator_get_voltage_rdev(rdev);
3779
3780                 if (*current_uV < 0)
3781                         return *current_uV;
3782         }
3783
3784         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3785                 return 1;
3786
3787         /* Clamp target voltage within the given step */
3788         if (*current_uV < *min_uV)
3789                 *min_uV = min(*current_uV + constraints->max_uV_step,
3790                               *min_uV);
3791         else
3792                 *min_uV = max(*current_uV - constraints->max_uV_step,
3793                               *min_uV);
3794
3795         return 0;
3796 }
3797
3798 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3799                                          int *current_uV,
3800                                          int *min_uV, int *max_uV,
3801                                          suspend_state_t state,
3802                                          int n_coupled)
3803 {
3804         struct coupling_desc *c_desc = &rdev->coupling_desc;
3805         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3806         struct regulation_constraints *constraints = rdev->constraints;
3807         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3808         int max_current_uV = 0, min_current_uV = INT_MAX;
3809         int highest_min_uV = 0, target_uV, possible_uV;
3810         int i, ret, max_spread;
3811         bool done;
3812
3813         *current_uV = -1;
3814
3815         /*
3816          * If there are no coupled regulators, simply set the voltage
3817          * demanded by consumers.
3818          */
3819         if (n_coupled == 1) {
3820                 /*
3821                  * If consumers don't provide any demands, set voltage
3822                  * to min_uV
3823                  */
3824                 desired_min_uV = constraints->min_uV;
3825                 desired_max_uV = constraints->max_uV;
3826
3827                 ret = regulator_check_consumers(rdev,
3828                                                 &desired_min_uV,
3829                                                 &desired_max_uV, state);
3830                 if (ret < 0)
3831                         return ret;
3832
3833                 possible_uV = desired_min_uV;
3834                 done = true;
3835
3836                 goto finish;
3837         }
3838
3839         /* Find highest min desired voltage */
3840         for (i = 0; i < n_coupled; i++) {
3841                 int tmp_min = 0;
3842                 int tmp_max = INT_MAX;
3843
3844                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3845
3846                 ret = regulator_check_consumers(c_rdevs[i],
3847                                                 &tmp_min,
3848                                                 &tmp_max, state);
3849                 if (ret < 0)
3850                         return ret;
3851
3852                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3853                 if (ret < 0)
3854                         return ret;
3855
3856                 highest_min_uV = max(highest_min_uV, tmp_min);
3857
3858                 if (i == 0) {
3859                         desired_min_uV = tmp_min;
3860                         desired_max_uV = tmp_max;
3861                 }
3862         }
3863
3864         max_spread = constraints->max_spread[0];
3865
3866         /*
3867          * Let target_uV be equal to the desired one if possible.
3868          * If not, set it to minimum voltage, allowed by other coupled
3869          * regulators.
3870          */
3871         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3872
3873         /*
3874          * Find min and max voltages, which currently aren't violating
3875          * max_spread.
3876          */
3877         for (i = 1; i < n_coupled; i++) {
3878                 int tmp_act;
3879
3880                 if (!_regulator_is_enabled(c_rdevs[i]))
3881                         continue;
3882
3883                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3884                 if (tmp_act < 0)
3885                         return tmp_act;
3886
3887                 min_current_uV = min(tmp_act, min_current_uV);
3888                 max_current_uV = max(tmp_act, max_current_uV);
3889         }
3890
3891         /* There aren't any other regulators enabled */
3892         if (max_current_uV == 0) {
3893                 possible_uV = target_uV;
3894         } else {
3895                 /*
3896                  * Correct target voltage, so as it currently isn't
3897                  * violating max_spread
3898                  */
3899                 possible_uV = max(target_uV, max_current_uV - max_spread);
3900                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3901         }
3902
3903         if (possible_uV > desired_max_uV)
3904                 return -EINVAL;
3905
3906         done = (possible_uV == target_uV);
3907         desired_min_uV = possible_uV;
3908
3909 finish:
3910         /* Apply max_uV_step constraint if necessary */
3911         if (state == PM_SUSPEND_ON) {
3912                 ret = regulator_limit_voltage_step(rdev, current_uV,
3913                                                    &desired_min_uV);
3914                 if (ret < 0)
3915                         return ret;
3916
3917                 if (ret == 0)
3918                         done = false;
3919         }
3920
3921         /* Set current_uV if wasn't done earlier in the code and if necessary */
3922         if (n_coupled > 1 && *current_uV == -1) {
3923
3924                 if (_regulator_is_enabled(rdev)) {
3925                         ret = regulator_get_voltage_rdev(rdev);
3926                         if (ret < 0)
3927                                 return ret;
3928
3929                         *current_uV = ret;
3930                 } else {
3931                         *current_uV = desired_min_uV;
3932                 }
3933         }
3934
3935         *min_uV = desired_min_uV;
3936         *max_uV = desired_max_uV;
3937
3938         return done;
3939 }
3940
3941 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3942                                  suspend_state_t state, bool skip_coupled)
3943 {
3944         struct regulator_dev **c_rdevs;
3945         struct regulator_dev *best_rdev;
3946         struct coupling_desc *c_desc = &rdev->coupling_desc;
3947         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3948         unsigned int delta, best_delta;
3949         unsigned long c_rdev_done = 0;
3950         bool best_c_rdev_done;
3951
3952         c_rdevs = c_desc->coupled_rdevs;
3953         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3954
3955         /*
3956          * Find the best possible voltage change on each loop. Leave the loop
3957          * if there isn't any possible change.
3958          */
3959         do {
3960                 best_c_rdev_done = false;
3961                 best_delta = 0;
3962                 best_min_uV = 0;
3963                 best_max_uV = 0;
3964                 best_c_rdev = 0;
3965                 best_rdev = NULL;
3966
3967                 /*
3968                  * Find highest difference between optimal voltage
3969                  * and current voltage.
3970                  */
3971                 for (i = 0; i < n_coupled; i++) {
3972                         /*
3973                          * optimal_uV is the best voltage that can be set for
3974                          * i-th regulator at the moment without violating
3975                          * max_spread constraint in order to balance
3976                          * the coupled voltages.
3977                          */
3978                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3979
3980                         if (test_bit(i, &c_rdev_done))
3981                                 continue;
3982
3983                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3984                                                             &current_uV,
3985                                                             &optimal_uV,
3986                                                             &optimal_max_uV,
3987                                                             state, n_coupled);
3988                         if (ret < 0)
3989                                 goto out;
3990
3991                         delta = abs(optimal_uV - current_uV);
3992
3993                         if (delta && best_delta <= delta) {
3994                                 best_c_rdev_done = ret;
3995                                 best_delta = delta;
3996                                 best_rdev = c_rdevs[i];
3997                                 best_min_uV = optimal_uV;
3998                                 best_max_uV = optimal_max_uV;
3999                                 best_c_rdev = i;
4000                         }
4001                 }
4002
4003                 /* Nothing to change, return successfully */
4004                 if (!best_rdev) {
4005                         ret = 0;
4006                         goto out;
4007                 }
4008
4009                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4010                                                  best_max_uV, state);
4011
4012                 if (ret < 0)
4013                         goto out;
4014
4015                 if (best_c_rdev_done)
4016                         set_bit(best_c_rdev, &c_rdev_done);
4017
4018         } while (n_coupled > 1);
4019
4020 out:
4021         return ret;
4022 }
4023
4024 static int regulator_balance_voltage(struct regulator_dev *rdev,
4025                                      suspend_state_t state)
4026 {
4027         struct coupling_desc *c_desc = &rdev->coupling_desc;
4028         struct regulator_coupler *coupler = c_desc->coupler;
4029         bool skip_coupled = false;
4030
4031         /*
4032          * If system is in a state other than PM_SUSPEND_ON, don't check
4033          * other coupled regulators.
4034          */
4035         if (state != PM_SUSPEND_ON)
4036                 skip_coupled = true;
4037
4038         if (c_desc->n_resolved < c_desc->n_coupled) {
4039                 rdev_err(rdev, "Not all coupled regulators registered\n");
4040                 return -EPERM;
4041         }
4042
4043         /* Invoke custom balancer for customized couplers */
4044         if (coupler && coupler->balance_voltage)
4045                 return coupler->balance_voltage(coupler, rdev, state);
4046
4047         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4048 }
4049
4050 /**
4051  * regulator_set_voltage - set regulator output voltage
4052  * @regulator: regulator source
4053  * @min_uV: Minimum required voltage in uV
4054  * @max_uV: Maximum acceptable voltage in uV
4055  *
4056  * Sets a voltage regulator to the desired output voltage. This can be set
4057  * during any regulator state. IOW, regulator can be disabled or enabled.
4058  *
4059  * If the regulator is enabled then the voltage will change to the new value
4060  * immediately otherwise if the regulator is disabled the regulator will
4061  * output at the new voltage when enabled.
4062  *
4063  * NOTE: If the regulator is shared between several devices then the lowest
4064  * request voltage that meets the system constraints will be used.
4065  * Regulator system constraints must be set for this regulator before
4066  * calling this function otherwise this call will fail.
4067  */
4068 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4069 {
4070         struct ww_acquire_ctx ww_ctx;
4071         int ret;
4072
4073         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4074
4075         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4076                                              PM_SUSPEND_ON);
4077
4078         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4079
4080         return ret;
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4083
4084 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4085                                            suspend_state_t state, bool en)
4086 {
4087         struct regulator_state *rstate;
4088
4089         rstate = regulator_get_suspend_state(rdev, state);
4090         if (rstate == NULL)
4091                 return -EINVAL;
4092
4093         if (!rstate->changeable)
4094                 return -EPERM;
4095
4096         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4097
4098         return 0;
4099 }
4100
4101 int regulator_suspend_enable(struct regulator_dev *rdev,
4102                                     suspend_state_t state)
4103 {
4104         return regulator_suspend_toggle(rdev, state, true);
4105 }
4106 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4107
4108 int regulator_suspend_disable(struct regulator_dev *rdev,
4109                                      suspend_state_t state)
4110 {
4111         struct regulator *regulator;
4112         struct regulator_voltage *voltage;
4113
4114         /*
4115          * if any consumer wants this regulator device keeping on in
4116          * suspend states, don't set it as disabled.
4117          */
4118         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4119                 voltage = &regulator->voltage[state];
4120                 if (voltage->min_uV || voltage->max_uV)
4121                         return 0;
4122         }
4123
4124         return regulator_suspend_toggle(rdev, state, false);
4125 }
4126 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4127
4128 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4129                                           int min_uV, int max_uV,
4130                                           suspend_state_t state)
4131 {
4132         struct regulator_dev *rdev = regulator->rdev;
4133         struct regulator_state *rstate;
4134
4135         rstate = regulator_get_suspend_state(rdev, state);
4136         if (rstate == NULL)
4137                 return -EINVAL;
4138
4139         if (rstate->min_uV == rstate->max_uV) {
4140                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4141                 return -EPERM;
4142         }
4143
4144         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4145 }
4146
4147 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4148                                   int max_uV, suspend_state_t state)
4149 {
4150         struct ww_acquire_ctx ww_ctx;
4151         int ret;
4152
4153         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4154         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4155                 return -EINVAL;
4156
4157         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4158
4159         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4160                                              max_uV, state);
4161
4162         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4163
4164         return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4167
4168 /**
4169  * regulator_set_voltage_time - get raise/fall time
4170  * @regulator: regulator source
4171  * @old_uV: starting voltage in microvolts
4172  * @new_uV: target voltage in microvolts
4173  *
4174  * Provided with the starting and ending voltage, this function attempts to
4175  * calculate the time in microseconds required to rise or fall to this new
4176  * voltage.
4177  */
4178 int regulator_set_voltage_time(struct regulator *regulator,
4179                                int old_uV, int new_uV)
4180 {
4181         struct regulator_dev *rdev = regulator->rdev;
4182         const struct regulator_ops *ops = rdev->desc->ops;
4183         int old_sel = -1;
4184         int new_sel = -1;
4185         int voltage;
4186         int i;
4187
4188         if (ops->set_voltage_time)
4189                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4190         else if (!ops->set_voltage_time_sel)
4191                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4192
4193         /* Currently requires operations to do this */
4194         if (!ops->list_voltage || !rdev->desc->n_voltages)
4195                 return -EINVAL;
4196
4197         for (i = 0; i < rdev->desc->n_voltages; i++) {
4198                 /* We only look for exact voltage matches here */
4199                 if (i < rdev->desc->linear_min_sel)
4200                         continue;
4201
4202                 if (old_sel >= 0 && new_sel >= 0)
4203                         break;
4204
4205                 voltage = regulator_list_voltage(regulator, i);
4206                 if (voltage < 0)
4207                         return -EINVAL;
4208                 if (voltage == 0)
4209                         continue;
4210                 if (voltage == old_uV)
4211                         old_sel = i;
4212                 if (voltage == new_uV)
4213                         new_sel = i;
4214         }
4215
4216         if (old_sel < 0 || new_sel < 0)
4217                 return -EINVAL;
4218
4219         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4220 }
4221 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4222
4223 /**
4224  * regulator_set_voltage_time_sel - get raise/fall time
4225  * @rdev: regulator source device
4226  * @old_selector: selector for starting voltage
4227  * @new_selector: selector for target voltage
4228  *
4229  * Provided with the starting and target voltage selectors, this function
4230  * returns time in microseconds required to rise or fall to this new voltage
4231  *
4232  * Drivers providing ramp_delay in regulation_constraints can use this as their
4233  * set_voltage_time_sel() operation.
4234  */
4235 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4236                                    unsigned int old_selector,
4237                                    unsigned int new_selector)
4238 {
4239         int old_volt, new_volt;
4240
4241         /* sanity check */
4242         if (!rdev->desc->ops->list_voltage)
4243                 return -EINVAL;
4244
4245         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4246         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4247
4248         if (rdev->desc->ops->set_voltage_time)
4249                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4250                                                          new_volt);
4251         else
4252                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4253 }
4254 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4255
4256 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4257 {
4258         int ret;
4259
4260         regulator_lock(rdev);
4261
4262         if (!rdev->desc->ops->set_voltage &&
4263             !rdev->desc->ops->set_voltage_sel) {
4264                 ret = -EINVAL;
4265                 goto out;
4266         }
4267
4268         /* balance only, if regulator is coupled */
4269         if (rdev->coupling_desc.n_coupled > 1)
4270                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4271         else
4272                 ret = -EOPNOTSUPP;
4273
4274 out:
4275         regulator_unlock(rdev);
4276         return ret;
4277 }
4278
4279 /**
4280  * regulator_sync_voltage - re-apply last regulator output voltage
4281  * @regulator: regulator source
4282  *
4283  * Re-apply the last configured voltage.  This is intended to be used
4284  * where some external control source the consumer is cooperating with
4285  * has caused the configured voltage to change.
4286  */
4287 int regulator_sync_voltage(struct regulator *regulator)
4288 {
4289         struct regulator_dev *rdev = regulator->rdev;
4290         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4291         int ret, min_uV, max_uV;
4292
4293         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4294                 return 0;
4295
4296         regulator_lock(rdev);
4297
4298         if (!rdev->desc->ops->set_voltage &&
4299             !rdev->desc->ops->set_voltage_sel) {
4300                 ret = -EINVAL;
4301                 goto out;
4302         }
4303
4304         /* This is only going to work if we've had a voltage configured. */
4305         if (!voltage->min_uV && !voltage->max_uV) {
4306                 ret = -EINVAL;
4307                 goto out;
4308         }
4309
4310         min_uV = voltage->min_uV;
4311         max_uV = voltage->max_uV;
4312
4313         /* This should be a paranoia check... */
4314         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4315         if (ret < 0)
4316                 goto out;
4317
4318         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4319         if (ret < 0)
4320                 goto out;
4321
4322         /* balance only, if regulator is coupled */
4323         if (rdev->coupling_desc.n_coupled > 1)
4324                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4325         else
4326                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4327
4328 out:
4329         regulator_unlock(rdev);
4330         return ret;
4331 }
4332 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4333
4334 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4335 {
4336         int sel, ret;
4337         bool bypassed;
4338
4339         if (rdev->desc->ops->get_bypass) {
4340                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4341                 if (ret < 0)
4342                         return ret;
4343                 if (bypassed) {
4344                         /* if bypassed the regulator must have a supply */
4345                         if (!rdev->supply) {
4346                                 rdev_err(rdev,
4347                                          "bypassed regulator has no supply!\n");
4348                                 return -EPROBE_DEFER;
4349                         }
4350
4351                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4352                 }
4353         }
4354
4355         if (rdev->desc->ops->get_voltage_sel) {
4356                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4357                 if (sel < 0)
4358                         return sel;
4359                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4360         } else if (rdev->desc->ops->get_voltage) {
4361                 ret = rdev->desc->ops->get_voltage(rdev);
4362         } else if (rdev->desc->ops->list_voltage) {
4363                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4364         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4365                 ret = rdev->desc->fixed_uV;
4366         } else if (rdev->supply) {
4367                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4368         } else if (rdev->supply_name) {
4369                 return -EPROBE_DEFER;
4370         } else {
4371                 return -EINVAL;
4372         }
4373
4374         if (ret < 0)
4375                 return ret;
4376         return ret - rdev->constraints->uV_offset;
4377 }
4378 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4379
4380 /**
4381  * regulator_get_voltage - get regulator output voltage
4382  * @regulator: regulator source
4383  *
4384  * This returns the current regulator voltage in uV.
4385  *
4386  * NOTE: If the regulator is disabled it will return the voltage value. This
4387  * function should not be used to determine regulator state.
4388  */
4389 int regulator_get_voltage(struct regulator *regulator)
4390 {
4391         struct ww_acquire_ctx ww_ctx;
4392         int ret;
4393
4394         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4395         ret = regulator_get_voltage_rdev(regulator->rdev);
4396         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4397
4398         return ret;
4399 }
4400 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4401
4402 /**
4403  * regulator_set_current_limit - set regulator output current limit
4404  * @regulator: regulator source
4405  * @min_uA: Minimum supported current in uA
4406  * @max_uA: Maximum supported current in uA
4407  *
4408  * Sets current sink to the desired output current. This can be set during
4409  * any regulator state. IOW, regulator can be disabled or enabled.
4410  *
4411  * If the regulator is enabled then the current will change to the new value
4412  * immediately otherwise if the regulator is disabled the regulator will
4413  * output at the new current when enabled.
4414  *
4415  * NOTE: Regulator system constraints must be set for this regulator before
4416  * calling this function otherwise this call will fail.
4417  */
4418 int regulator_set_current_limit(struct regulator *regulator,
4419                                int min_uA, int max_uA)
4420 {
4421         struct regulator_dev *rdev = regulator->rdev;
4422         int ret;
4423
4424         regulator_lock(rdev);
4425
4426         /* sanity check */
4427         if (!rdev->desc->ops->set_current_limit) {
4428                 ret = -EINVAL;
4429                 goto out;
4430         }
4431
4432         /* constraints check */
4433         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4434         if (ret < 0)
4435                 goto out;
4436
4437         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4438 out:
4439         regulator_unlock(rdev);
4440         return ret;
4441 }
4442 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4443
4444 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4445 {
4446         /* sanity check */
4447         if (!rdev->desc->ops->get_current_limit)
4448                 return -EINVAL;
4449
4450         return rdev->desc->ops->get_current_limit(rdev);
4451 }
4452
4453 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4454 {
4455         int ret;
4456
4457         regulator_lock(rdev);
4458         ret = _regulator_get_current_limit_unlocked(rdev);
4459         regulator_unlock(rdev);
4460
4461         return ret;
4462 }
4463
4464 /**
4465  * regulator_get_current_limit - get regulator output current
4466  * @regulator: regulator source
4467  *
4468  * This returns the current supplied by the specified current sink in uA.
4469  *
4470  * NOTE: If the regulator is disabled it will return the current value. This
4471  * function should not be used to determine regulator state.
4472  */
4473 int regulator_get_current_limit(struct regulator *regulator)
4474 {
4475         return _regulator_get_current_limit(regulator->rdev);
4476 }
4477 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4478
4479 /**
4480  * regulator_set_mode - set regulator operating mode
4481  * @regulator: regulator source
4482  * @mode: operating mode - one of the REGULATOR_MODE constants
4483  *
4484  * Set regulator operating mode to increase regulator efficiency or improve
4485  * regulation performance.
4486  *
4487  * NOTE: Regulator system constraints must be set for this regulator before
4488  * calling this function otherwise this call will fail.
4489  */
4490 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4491 {
4492         struct regulator_dev *rdev = regulator->rdev;
4493         int ret;
4494         int regulator_curr_mode;
4495
4496         regulator_lock(rdev);
4497
4498         /* sanity check */
4499         if (!rdev->desc->ops->set_mode) {
4500                 ret = -EINVAL;
4501                 goto out;
4502         }
4503
4504         /* return if the same mode is requested */
4505         if (rdev->desc->ops->get_mode) {
4506                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4507                 if (regulator_curr_mode == mode) {
4508                         ret = 0;
4509                         goto out;
4510                 }
4511         }
4512
4513         /* constraints check */
4514         ret = regulator_mode_constrain(rdev, &mode);
4515         if (ret < 0)
4516                 goto out;
4517
4518         ret = rdev->desc->ops->set_mode(rdev, mode);
4519 out:
4520         regulator_unlock(rdev);
4521         return ret;
4522 }
4523 EXPORT_SYMBOL_GPL(regulator_set_mode);
4524
4525 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4526 {
4527         /* sanity check */
4528         if (!rdev->desc->ops->get_mode)
4529                 return -EINVAL;
4530
4531         return rdev->desc->ops->get_mode(rdev);
4532 }
4533
4534 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4535 {
4536         int ret;
4537
4538         regulator_lock(rdev);
4539         ret = _regulator_get_mode_unlocked(rdev);
4540         regulator_unlock(rdev);
4541
4542         return ret;
4543 }
4544
4545 /**
4546  * regulator_get_mode - get regulator operating mode
4547  * @regulator: regulator source
4548  *
4549  * Get the current regulator operating mode.
4550  */
4551 unsigned int regulator_get_mode(struct regulator *regulator)
4552 {
4553         return _regulator_get_mode(regulator->rdev);
4554 }
4555 EXPORT_SYMBOL_GPL(regulator_get_mode);
4556
4557 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4558 {
4559         int ret = 0;
4560
4561         if (rdev->use_cached_err) {
4562                 spin_lock(&rdev->err_lock);
4563                 ret = rdev->cached_err;
4564                 spin_unlock(&rdev->err_lock);
4565         }
4566         return ret;
4567 }
4568
4569 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4570                                         unsigned int *flags)
4571 {
4572         int cached_flags, ret = 0;
4573
4574         regulator_lock(rdev);
4575
4576         cached_flags = rdev_get_cached_err_flags(rdev);
4577
4578         if (rdev->desc->ops->get_error_flags)
4579                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4580         else if (!rdev->use_cached_err)
4581                 ret = -EINVAL;
4582
4583         *flags |= cached_flags;
4584
4585         regulator_unlock(rdev);
4586
4587         return ret;
4588 }
4589
4590 /**
4591  * regulator_get_error_flags - get regulator error information
4592  * @regulator: regulator source
4593  * @flags: pointer to store error flags
4594  *
4595  * Get the current regulator error information.
4596  */
4597 int regulator_get_error_flags(struct regulator *regulator,
4598                                 unsigned int *flags)
4599 {
4600         return _regulator_get_error_flags(regulator->rdev, flags);
4601 }
4602 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4603
4604 /**
4605  * regulator_set_load - set regulator load
4606  * @regulator: regulator source
4607  * @uA_load: load current
4608  *
4609  * Notifies the regulator core of a new device load. This is then used by
4610  * DRMS (if enabled by constraints) to set the most efficient regulator
4611  * operating mode for the new regulator loading.
4612  *
4613  * Consumer devices notify their supply regulator of the maximum power
4614  * they will require (can be taken from device datasheet in the power
4615  * consumption tables) when they change operational status and hence power
4616  * state. Examples of operational state changes that can affect power
4617  * consumption are :-
4618  *
4619  *    o Device is opened / closed.
4620  *    o Device I/O is about to begin or has just finished.
4621  *    o Device is idling in between work.
4622  *
4623  * This information is also exported via sysfs to userspace.
4624  *
4625  * DRMS will sum the total requested load on the regulator and change
4626  * to the most efficient operating mode if platform constraints allow.
4627  *
4628  * NOTE: when a regulator consumer requests to have a regulator
4629  * disabled then any load that consumer requested no longer counts
4630  * toward the total requested load.  If the regulator is re-enabled
4631  * then the previously requested load will start counting again.
4632  *
4633  * If a regulator is an always-on regulator then an individual consumer's
4634  * load will still be removed if that consumer is fully disabled.
4635  *
4636  * On error a negative errno is returned.
4637  */
4638 int regulator_set_load(struct regulator *regulator, int uA_load)
4639 {
4640         struct regulator_dev *rdev = regulator->rdev;
4641         int old_uA_load;
4642         int ret = 0;
4643
4644         regulator_lock(rdev);
4645         old_uA_load = regulator->uA_load;
4646         regulator->uA_load = uA_load;
4647         if (regulator->enable_count && old_uA_load != uA_load) {
4648                 ret = drms_uA_update(rdev);
4649                 if (ret < 0)
4650                         regulator->uA_load = old_uA_load;
4651         }
4652         regulator_unlock(rdev);
4653
4654         return ret;
4655 }
4656 EXPORT_SYMBOL_GPL(regulator_set_load);
4657
4658 /**
4659  * regulator_allow_bypass - allow the regulator to go into bypass mode
4660  *
4661  * @regulator: Regulator to configure
4662  * @enable: enable or disable bypass mode
4663  *
4664  * Allow the regulator to go into bypass mode if all other consumers
4665  * for the regulator also enable bypass mode and the machine
4666  * constraints allow this.  Bypass mode means that the regulator is
4667  * simply passing the input directly to the output with no regulation.
4668  */
4669 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4670 {
4671         struct regulator_dev *rdev = regulator->rdev;
4672         const char *name = rdev_get_name(rdev);
4673         int ret = 0;
4674
4675         if (!rdev->desc->ops->set_bypass)
4676                 return 0;
4677
4678         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4679                 return 0;
4680
4681         regulator_lock(rdev);
4682
4683         if (enable && !regulator->bypass) {
4684                 rdev->bypass_count++;
4685
4686                 if (rdev->bypass_count == rdev->open_count) {
4687                         trace_regulator_bypass_enable(name);
4688
4689                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4690                         if (ret != 0)
4691                                 rdev->bypass_count--;
4692                         else
4693                                 trace_regulator_bypass_enable_complete(name);
4694                 }
4695
4696         } else if (!enable && regulator->bypass) {
4697                 rdev->bypass_count--;
4698
4699                 if (rdev->bypass_count != rdev->open_count) {
4700                         trace_regulator_bypass_disable(name);
4701
4702                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4703                         if (ret != 0)
4704                                 rdev->bypass_count++;
4705                         else
4706                                 trace_regulator_bypass_disable_complete(name);
4707                 }
4708         }
4709
4710         if (ret == 0)
4711                 regulator->bypass = enable;
4712
4713         regulator_unlock(rdev);
4714
4715         return ret;
4716 }
4717 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4718
4719 /**
4720  * regulator_register_notifier - register regulator event notifier
4721  * @regulator: regulator source
4722  * @nb: notifier block
4723  *
4724  * Register notifier block to receive regulator events.
4725  */
4726 int regulator_register_notifier(struct regulator *regulator,
4727                               struct notifier_block *nb)
4728 {
4729         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4730                                                 nb);
4731 }
4732 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4733
4734 /**
4735  * regulator_unregister_notifier - unregister regulator event notifier
4736  * @regulator: regulator source
4737  * @nb: notifier block
4738  *
4739  * Unregister regulator event notifier block.
4740  */
4741 int regulator_unregister_notifier(struct regulator *regulator,
4742                                 struct notifier_block *nb)
4743 {
4744         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4745                                                   nb);
4746 }
4747 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4748
4749 /* notify regulator consumers and downstream regulator consumers.
4750  * Note mutex must be held by caller.
4751  */
4752 static int _notifier_call_chain(struct regulator_dev *rdev,
4753                                   unsigned long event, void *data)
4754 {
4755         /* call rdev chain first */
4756         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4757 }
4758
4759 /**
4760  * regulator_bulk_get - get multiple regulator consumers
4761  *
4762  * @dev:           Device to supply
4763  * @num_consumers: Number of consumers to register
4764  * @consumers:     Configuration of consumers; clients are stored here.
4765  *
4766  * @return 0 on success, an errno on failure.
4767  *
4768  * This helper function allows drivers to get several regulator
4769  * consumers in one operation.  If any of the regulators cannot be
4770  * acquired then any regulators that were allocated will be freed
4771  * before returning to the caller.
4772  */
4773 int regulator_bulk_get(struct device *dev, int num_consumers,
4774                        struct regulator_bulk_data *consumers)
4775 {
4776         int i;
4777         int ret;
4778
4779         for (i = 0; i < num_consumers; i++)
4780                 consumers[i].consumer = NULL;
4781
4782         for (i = 0; i < num_consumers; i++) {
4783                 consumers[i].consumer = regulator_get(dev,
4784                                                       consumers[i].supply);
4785                 if (IS_ERR(consumers[i].consumer)) {
4786                         ret = PTR_ERR(consumers[i].consumer);
4787                         consumers[i].consumer = NULL;
4788                         goto err;
4789                 }
4790         }
4791
4792         return 0;
4793
4794 err:
4795         if (ret != -EPROBE_DEFER)
4796                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4797                         consumers[i].supply, ERR_PTR(ret));
4798         else
4799                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4800                         consumers[i].supply);
4801
4802         while (--i >= 0)
4803                 regulator_put(consumers[i].consumer);
4804
4805         return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4808
4809 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4810 {
4811         struct regulator_bulk_data *bulk = data;
4812
4813         bulk->ret = regulator_enable(bulk->consumer);
4814 }
4815
4816 /**
4817  * regulator_bulk_enable - enable multiple regulator consumers
4818  *
4819  * @num_consumers: Number of consumers
4820  * @consumers:     Consumer data; clients are stored here.
4821  * @return         0 on success, an errno on failure
4822  *
4823  * This convenience API allows consumers to enable multiple regulator
4824  * clients in a single API call.  If any consumers cannot be enabled
4825  * then any others that were enabled will be disabled again prior to
4826  * return.
4827  */
4828 int regulator_bulk_enable(int num_consumers,
4829                           struct regulator_bulk_data *consumers)
4830 {
4831         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4832         int i;
4833         int ret = 0;
4834
4835         for (i = 0; i < num_consumers; i++) {
4836                 async_schedule_domain(regulator_bulk_enable_async,
4837                                       &consumers[i], &async_domain);
4838         }
4839
4840         async_synchronize_full_domain(&async_domain);
4841
4842         /* If any consumer failed we need to unwind any that succeeded */
4843         for (i = 0; i < num_consumers; i++) {
4844                 if (consumers[i].ret != 0) {
4845                         ret = consumers[i].ret;
4846                         goto err;
4847                 }
4848         }
4849
4850         return 0;
4851
4852 err:
4853         for (i = 0; i < num_consumers; i++) {
4854                 if (consumers[i].ret < 0)
4855                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4856                                ERR_PTR(consumers[i].ret));
4857                 else
4858                         regulator_disable(consumers[i].consumer);
4859         }
4860
4861         return ret;
4862 }
4863 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4864
4865 /**
4866  * regulator_bulk_disable - disable multiple regulator consumers
4867  *
4868  * @num_consumers: Number of consumers
4869  * @consumers:     Consumer data; clients are stored here.
4870  * @return         0 on success, an errno on failure
4871  *
4872  * This convenience API allows consumers to disable multiple regulator
4873  * clients in a single API call.  If any consumers cannot be disabled
4874  * then any others that were disabled will be enabled again prior to
4875  * return.
4876  */
4877 int regulator_bulk_disable(int num_consumers,
4878                            struct regulator_bulk_data *consumers)
4879 {
4880         int i;
4881         int ret, r;
4882
4883         for (i = num_consumers - 1; i >= 0; --i) {
4884                 ret = regulator_disable(consumers[i].consumer);
4885                 if (ret != 0)
4886                         goto err;
4887         }
4888
4889         return 0;
4890
4891 err:
4892         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4893         for (++i; i < num_consumers; ++i) {
4894                 r = regulator_enable(consumers[i].consumer);
4895                 if (r != 0)
4896                         pr_err("Failed to re-enable %s: %pe\n",
4897                                consumers[i].supply, ERR_PTR(r));
4898         }
4899
4900         return ret;
4901 }
4902 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4903
4904 /**
4905  * regulator_bulk_force_disable - force disable multiple regulator consumers
4906  *
4907  * @num_consumers: Number of consumers
4908  * @consumers:     Consumer data; clients are stored here.
4909  * @return         0 on success, an errno on failure
4910  *
4911  * This convenience API allows consumers to forcibly disable multiple regulator
4912  * clients in a single API call.
4913  * NOTE: This should be used for situations when device damage will
4914  * likely occur if the regulators are not disabled (e.g. over temp).
4915  * Although regulator_force_disable function call for some consumers can
4916  * return error numbers, the function is called for all consumers.
4917  */
4918 int regulator_bulk_force_disable(int num_consumers,
4919                            struct regulator_bulk_data *consumers)
4920 {
4921         int i;
4922         int ret = 0;
4923
4924         for (i = 0; i < num_consumers; i++) {
4925                 consumers[i].ret =
4926                             regulator_force_disable(consumers[i].consumer);
4927
4928                 /* Store first error for reporting */
4929                 if (consumers[i].ret && !ret)
4930                         ret = consumers[i].ret;
4931         }
4932
4933         return ret;
4934 }
4935 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4936
4937 /**
4938  * regulator_bulk_free - free multiple regulator consumers
4939  *
4940  * @num_consumers: Number of consumers
4941  * @consumers:     Consumer data; clients are stored here.
4942  *
4943  * This convenience API allows consumers to free multiple regulator
4944  * clients in a single API call.
4945  */
4946 void regulator_bulk_free(int num_consumers,
4947                          struct regulator_bulk_data *consumers)
4948 {
4949         int i;
4950
4951         for (i = 0; i < num_consumers; i++) {
4952                 regulator_put(consumers[i].consumer);
4953                 consumers[i].consumer = NULL;
4954         }
4955 }
4956 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4957
4958 /**
4959  * regulator_notifier_call_chain - call regulator event notifier
4960  * @rdev: regulator source
4961  * @event: notifier block
4962  * @data: callback-specific data.
4963  *
4964  * Called by regulator drivers to notify clients a regulator event has
4965  * occurred.
4966  */
4967 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4968                                   unsigned long event, void *data)
4969 {
4970         _notifier_call_chain(rdev, event, data);
4971         return NOTIFY_DONE;
4972
4973 }
4974 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4975
4976 /**
4977  * regulator_mode_to_status - convert a regulator mode into a status
4978  *
4979  * @mode: Mode to convert
4980  *
4981  * Convert a regulator mode into a status.
4982  */
4983 int regulator_mode_to_status(unsigned int mode)
4984 {
4985         switch (mode) {
4986         case REGULATOR_MODE_FAST:
4987                 return REGULATOR_STATUS_FAST;
4988         case REGULATOR_MODE_NORMAL:
4989                 return REGULATOR_STATUS_NORMAL;
4990         case REGULATOR_MODE_IDLE:
4991                 return REGULATOR_STATUS_IDLE;
4992         case REGULATOR_MODE_STANDBY:
4993                 return REGULATOR_STATUS_STANDBY;
4994         default:
4995                 return REGULATOR_STATUS_UNDEFINED;
4996         }
4997 }
4998 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4999
5000 static struct attribute *regulator_dev_attrs[] = {
5001         &dev_attr_name.attr,
5002         &dev_attr_num_users.attr,
5003         &dev_attr_type.attr,
5004         &dev_attr_microvolts.attr,
5005         &dev_attr_microamps.attr,
5006         &dev_attr_opmode.attr,
5007         &dev_attr_state.attr,
5008         &dev_attr_status.attr,
5009         &dev_attr_bypass.attr,
5010         &dev_attr_requested_microamps.attr,
5011         &dev_attr_min_microvolts.attr,
5012         &dev_attr_max_microvolts.attr,
5013         &dev_attr_min_microamps.attr,
5014         &dev_attr_max_microamps.attr,
5015         &dev_attr_under_voltage.attr,
5016         &dev_attr_over_current.attr,
5017         &dev_attr_regulation_out.attr,
5018         &dev_attr_fail.attr,
5019         &dev_attr_over_temp.attr,
5020         &dev_attr_under_voltage_warn.attr,
5021         &dev_attr_over_current_warn.attr,
5022         &dev_attr_over_voltage_warn.attr,
5023         &dev_attr_over_temp_warn.attr,
5024         &dev_attr_suspend_standby_state.attr,
5025         &dev_attr_suspend_mem_state.attr,
5026         &dev_attr_suspend_disk_state.attr,
5027         &dev_attr_suspend_standby_microvolts.attr,
5028         &dev_attr_suspend_mem_microvolts.attr,
5029         &dev_attr_suspend_disk_microvolts.attr,
5030         &dev_attr_suspend_standby_mode.attr,
5031         &dev_attr_suspend_mem_mode.attr,
5032         &dev_attr_suspend_disk_mode.attr,
5033         NULL
5034 };
5035
5036 /*
5037  * To avoid cluttering sysfs (and memory) with useless state, only
5038  * create attributes that can be meaningfully displayed.
5039  */
5040 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5041                                          struct attribute *attr, int idx)
5042 {
5043         struct device *dev = kobj_to_dev(kobj);
5044         struct regulator_dev *rdev = dev_to_rdev(dev);
5045         const struct regulator_ops *ops = rdev->desc->ops;
5046         umode_t mode = attr->mode;
5047
5048         /* these three are always present */
5049         if (attr == &dev_attr_name.attr ||
5050             attr == &dev_attr_num_users.attr ||
5051             attr == &dev_attr_type.attr)
5052                 return mode;
5053
5054         /* some attributes need specific methods to be displayed */
5055         if (attr == &dev_attr_microvolts.attr) {
5056                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5057                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5058                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5059                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5060                         return mode;
5061                 return 0;
5062         }
5063
5064         if (attr == &dev_attr_microamps.attr)
5065                 return ops->get_current_limit ? mode : 0;
5066
5067         if (attr == &dev_attr_opmode.attr)
5068                 return ops->get_mode ? mode : 0;
5069
5070         if (attr == &dev_attr_state.attr)
5071                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5072
5073         if (attr == &dev_attr_status.attr)
5074                 return ops->get_status ? mode : 0;
5075
5076         if (attr == &dev_attr_bypass.attr)
5077                 return ops->get_bypass ? mode : 0;
5078
5079         if (attr == &dev_attr_under_voltage.attr ||
5080             attr == &dev_attr_over_current.attr ||
5081             attr == &dev_attr_regulation_out.attr ||
5082             attr == &dev_attr_fail.attr ||
5083             attr == &dev_attr_over_temp.attr ||
5084             attr == &dev_attr_under_voltage_warn.attr ||
5085             attr == &dev_attr_over_current_warn.attr ||
5086             attr == &dev_attr_over_voltage_warn.attr ||
5087             attr == &dev_attr_over_temp_warn.attr)
5088                 return ops->get_error_flags ? mode : 0;
5089
5090         /* constraints need specific supporting methods */
5091         if (attr == &dev_attr_min_microvolts.attr ||
5092             attr == &dev_attr_max_microvolts.attr)
5093                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5094
5095         if (attr == &dev_attr_min_microamps.attr ||
5096             attr == &dev_attr_max_microamps.attr)
5097                 return ops->set_current_limit ? mode : 0;
5098
5099         if (attr == &dev_attr_suspend_standby_state.attr ||
5100             attr == &dev_attr_suspend_mem_state.attr ||
5101             attr == &dev_attr_suspend_disk_state.attr)
5102                 return mode;
5103
5104         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5105             attr == &dev_attr_suspend_mem_microvolts.attr ||
5106             attr == &dev_attr_suspend_disk_microvolts.attr)
5107                 return ops->set_suspend_voltage ? mode : 0;
5108
5109         if (attr == &dev_attr_suspend_standby_mode.attr ||
5110             attr == &dev_attr_suspend_mem_mode.attr ||
5111             attr == &dev_attr_suspend_disk_mode.attr)
5112                 return ops->set_suspend_mode ? mode : 0;
5113
5114         return mode;
5115 }
5116
5117 static const struct attribute_group regulator_dev_group = {
5118         .attrs = regulator_dev_attrs,
5119         .is_visible = regulator_attr_is_visible,
5120 };
5121
5122 static const struct attribute_group *regulator_dev_groups[] = {
5123         &regulator_dev_group,
5124         NULL
5125 };
5126
5127 static void regulator_dev_release(struct device *dev)
5128 {
5129         struct regulator_dev *rdev = dev_get_drvdata(dev);
5130
5131         kfree(rdev->constraints);
5132         of_node_put(rdev->dev.of_node);
5133         kfree(rdev);
5134 }
5135
5136 static void rdev_init_debugfs(struct regulator_dev *rdev)
5137 {
5138         struct device *parent = rdev->dev.parent;
5139         const char *rname = rdev_get_name(rdev);
5140         char name[NAME_MAX];
5141
5142         /* Avoid duplicate debugfs directory names */
5143         if (parent && rname == rdev->desc->name) {
5144                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5145                          rname);
5146                 rname = name;
5147         }
5148
5149         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5150         if (!rdev->debugfs) {
5151                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5152                 return;
5153         }
5154
5155         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5156                            &rdev->use_count);
5157         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5158                            &rdev->open_count);
5159         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5160                            &rdev->bypass_count);
5161 }
5162
5163 static int regulator_register_resolve_supply(struct device *dev, void *data)
5164 {
5165         struct regulator_dev *rdev = dev_to_rdev(dev);
5166
5167         if (regulator_resolve_supply(rdev))
5168                 rdev_dbg(rdev, "unable to resolve supply\n");
5169
5170         return 0;
5171 }
5172
5173 int regulator_coupler_register(struct regulator_coupler *coupler)
5174 {
5175         mutex_lock(&regulator_list_mutex);
5176         list_add_tail(&coupler->list, &regulator_coupler_list);
5177         mutex_unlock(&regulator_list_mutex);
5178
5179         return 0;
5180 }
5181
5182 static struct regulator_coupler *
5183 regulator_find_coupler(struct regulator_dev *rdev)
5184 {
5185         struct regulator_coupler *coupler;
5186         int err;
5187
5188         /*
5189          * Note that regulators are appended to the list and the generic
5190          * coupler is registered first, hence it will be attached at last
5191          * if nobody cared.
5192          */
5193         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5194                 err = coupler->attach_regulator(coupler, rdev);
5195                 if (!err) {
5196                         if (!coupler->balance_voltage &&
5197                             rdev->coupling_desc.n_coupled > 2)
5198                                 goto err_unsupported;
5199
5200                         return coupler;
5201                 }
5202
5203                 if (err < 0)
5204                         return ERR_PTR(err);
5205
5206                 if (err == 1)
5207                         continue;
5208
5209                 break;
5210         }
5211
5212         return ERR_PTR(-EINVAL);
5213
5214 err_unsupported:
5215         if (coupler->detach_regulator)
5216                 coupler->detach_regulator(coupler, rdev);
5217
5218         rdev_err(rdev,
5219                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5220
5221         return ERR_PTR(-EPERM);
5222 }
5223
5224 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5225 {
5226         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5227         struct coupling_desc *c_desc = &rdev->coupling_desc;
5228         int n_coupled = c_desc->n_coupled;
5229         struct regulator_dev *c_rdev;
5230         int i;
5231
5232         for (i = 1; i < n_coupled; i++) {
5233                 /* already resolved */
5234                 if (c_desc->coupled_rdevs[i])
5235                         continue;
5236
5237                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5238
5239                 if (!c_rdev)
5240                         continue;
5241
5242                 if (c_rdev->coupling_desc.coupler != coupler) {
5243                         rdev_err(rdev, "coupler mismatch with %s\n",
5244                                  rdev_get_name(c_rdev));
5245                         return;
5246                 }
5247
5248                 c_desc->coupled_rdevs[i] = c_rdev;
5249                 c_desc->n_resolved++;
5250
5251                 regulator_resolve_coupling(c_rdev);
5252         }
5253 }
5254
5255 static void regulator_remove_coupling(struct regulator_dev *rdev)
5256 {
5257         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5258         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5259         struct regulator_dev *__c_rdev, *c_rdev;
5260         unsigned int __n_coupled, n_coupled;
5261         int i, k;
5262         int err;
5263
5264         n_coupled = c_desc->n_coupled;
5265
5266         for (i = 1; i < n_coupled; i++) {
5267                 c_rdev = c_desc->coupled_rdevs[i];
5268
5269                 if (!c_rdev)
5270                         continue;
5271
5272                 regulator_lock(c_rdev);
5273
5274                 __c_desc = &c_rdev->coupling_desc;
5275                 __n_coupled = __c_desc->n_coupled;
5276
5277                 for (k = 1; k < __n_coupled; k++) {
5278                         __c_rdev = __c_desc->coupled_rdevs[k];
5279
5280                         if (__c_rdev == rdev) {
5281                                 __c_desc->coupled_rdevs[k] = NULL;
5282                                 __c_desc->n_resolved--;
5283                                 break;
5284                         }
5285                 }
5286
5287                 regulator_unlock(c_rdev);
5288
5289                 c_desc->coupled_rdevs[i] = NULL;
5290                 c_desc->n_resolved--;
5291         }
5292
5293         if (coupler && coupler->detach_regulator) {
5294                 err = coupler->detach_regulator(coupler, rdev);
5295                 if (err)
5296                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5297                                  ERR_PTR(err));
5298         }
5299
5300         kfree(rdev->coupling_desc.coupled_rdevs);
5301         rdev->coupling_desc.coupled_rdevs = NULL;
5302 }
5303
5304 static int regulator_init_coupling(struct regulator_dev *rdev)
5305 {
5306         struct regulator_dev **coupled;
5307         int err, n_phandles;
5308
5309         if (!IS_ENABLED(CONFIG_OF))
5310                 n_phandles = 0;
5311         else
5312                 n_phandles = of_get_n_coupled(rdev);
5313
5314         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5315         if (!coupled)
5316                 return -ENOMEM;
5317
5318         rdev->coupling_desc.coupled_rdevs = coupled;
5319
5320         /*
5321          * Every regulator should always have coupling descriptor filled with
5322          * at least pointer to itself.
5323          */
5324         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5325         rdev->coupling_desc.n_coupled = n_phandles + 1;
5326         rdev->coupling_desc.n_resolved++;
5327
5328         /* regulator isn't coupled */
5329         if (n_phandles == 0)
5330                 return 0;
5331
5332         if (!of_check_coupling_data(rdev))
5333                 return -EPERM;
5334
5335         mutex_lock(&regulator_list_mutex);
5336         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5337         mutex_unlock(&regulator_list_mutex);
5338
5339         if (IS_ERR(rdev->coupling_desc.coupler)) {
5340                 err = PTR_ERR(rdev->coupling_desc.coupler);
5341                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5342                 return err;
5343         }
5344
5345         return 0;
5346 }
5347
5348 static int generic_coupler_attach(struct regulator_coupler *coupler,
5349                                   struct regulator_dev *rdev)
5350 {
5351         if (rdev->coupling_desc.n_coupled > 2) {
5352                 rdev_err(rdev,
5353                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5354                 return -EPERM;
5355         }
5356
5357         if (!rdev->constraints->always_on) {
5358                 rdev_err(rdev,
5359                          "Coupling of a non always-on regulator is unimplemented\n");
5360                 return -ENOTSUPP;
5361         }
5362
5363         return 0;
5364 }
5365
5366 static struct regulator_coupler generic_regulator_coupler = {
5367         .attach_regulator = generic_coupler_attach,
5368 };
5369
5370 /**
5371  * regulator_register - register regulator
5372  * @regulator_desc: regulator to register
5373  * @cfg: runtime configuration for regulator
5374  *
5375  * Called by regulator drivers to register a regulator.
5376  * Returns a valid pointer to struct regulator_dev on success
5377  * or an ERR_PTR() on error.
5378  */
5379 struct regulator_dev *
5380 regulator_register(const struct regulator_desc *regulator_desc,
5381                    const struct regulator_config *cfg)
5382 {
5383         const struct regulator_init_data *init_data;
5384         struct regulator_config *config = NULL;
5385         static atomic_t regulator_no = ATOMIC_INIT(-1);
5386         struct regulator_dev *rdev;
5387         bool dangling_cfg_gpiod = false;
5388         bool dangling_of_gpiod = false;
5389         struct device *dev;
5390         int ret, i;
5391
5392         if (cfg == NULL)
5393                 return ERR_PTR(-EINVAL);
5394         if (cfg->ena_gpiod)
5395                 dangling_cfg_gpiod = true;
5396         if (regulator_desc == NULL) {
5397                 ret = -EINVAL;
5398                 goto rinse;
5399         }
5400
5401         dev = cfg->dev;
5402         WARN_ON(!dev);
5403
5404         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5405                 ret = -EINVAL;
5406                 goto rinse;
5407         }
5408
5409         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5410             regulator_desc->type != REGULATOR_CURRENT) {
5411                 ret = -EINVAL;
5412                 goto rinse;
5413         }
5414
5415         /* Only one of each should be implemented */
5416         WARN_ON(regulator_desc->ops->get_voltage &&
5417                 regulator_desc->ops->get_voltage_sel);
5418         WARN_ON(regulator_desc->ops->set_voltage &&
5419                 regulator_desc->ops->set_voltage_sel);
5420
5421         /* If we're using selectors we must implement list_voltage. */
5422         if (regulator_desc->ops->get_voltage_sel &&
5423             !regulator_desc->ops->list_voltage) {
5424                 ret = -EINVAL;
5425                 goto rinse;
5426         }
5427         if (regulator_desc->ops->set_voltage_sel &&
5428             !regulator_desc->ops->list_voltage) {
5429                 ret = -EINVAL;
5430                 goto rinse;
5431         }
5432
5433         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5434         if (rdev == NULL) {
5435                 ret = -ENOMEM;
5436                 goto rinse;
5437         }
5438         device_initialize(&rdev->dev);
5439         spin_lock_init(&rdev->err_lock);
5440
5441         /*
5442          * Duplicate the config so the driver could override it after
5443          * parsing init data.
5444          */
5445         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5446         if (config == NULL) {
5447                 ret = -ENOMEM;
5448                 goto clean;
5449         }
5450
5451         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5452                                                &rdev->dev.of_node);
5453
5454         /*
5455          * Sometimes not all resources are probed already so we need to take
5456          * that into account. This happens most the time if the ena_gpiod comes
5457          * from a gpio extender or something else.
5458          */
5459         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5460                 ret = -EPROBE_DEFER;
5461                 goto clean;
5462         }
5463
5464         /*
5465          * We need to keep track of any GPIO descriptor coming from the
5466          * device tree until we have handled it over to the core. If the
5467          * config that was passed in to this function DOES NOT contain
5468          * a descriptor, and the config after this call DOES contain
5469          * a descriptor, we definitely got one from parsing the device
5470          * tree.
5471          */
5472         if (!cfg->ena_gpiod && config->ena_gpiod)
5473                 dangling_of_gpiod = true;
5474         if (!init_data) {
5475                 init_data = config->init_data;
5476                 rdev->dev.of_node = of_node_get(config->of_node);
5477         }
5478
5479         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5480         rdev->reg_data = config->driver_data;
5481         rdev->owner = regulator_desc->owner;
5482         rdev->desc = regulator_desc;
5483         if (config->regmap)
5484                 rdev->regmap = config->regmap;
5485         else if (dev_get_regmap(dev, NULL))
5486                 rdev->regmap = dev_get_regmap(dev, NULL);
5487         else if (dev->parent)
5488                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5489         INIT_LIST_HEAD(&rdev->consumer_list);
5490         INIT_LIST_HEAD(&rdev->list);
5491         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5492         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5493
5494         /* preform any regulator specific init */
5495         if (init_data && init_data->regulator_init) {
5496                 ret = init_data->regulator_init(rdev->reg_data);
5497                 if (ret < 0)
5498                         goto clean;
5499         }
5500
5501         if (config->ena_gpiod) {
5502                 ret = regulator_ena_gpio_request(rdev, config);
5503                 if (ret != 0) {
5504                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5505                                  ERR_PTR(ret));
5506                         goto clean;
5507                 }
5508                 /* The regulator core took over the GPIO descriptor */
5509                 dangling_cfg_gpiod = false;
5510                 dangling_of_gpiod = false;
5511         }
5512
5513         /* register with sysfs */
5514         rdev->dev.class = &regulator_class;
5515         rdev->dev.parent = dev;
5516         dev_set_name(&rdev->dev, "regulator.%lu",
5517                     (unsigned long) atomic_inc_return(&regulator_no));
5518         dev_set_drvdata(&rdev->dev, rdev);
5519
5520         /* set regulator constraints */
5521         if (init_data)
5522                 rdev->constraints = kmemdup(&init_data->constraints,
5523                                             sizeof(*rdev->constraints),
5524                                             GFP_KERNEL);
5525         else
5526                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5527                                             GFP_KERNEL);
5528         if (!rdev->constraints) {
5529                 ret = -ENOMEM;
5530                 goto wash;
5531         }
5532
5533         if (init_data && init_data->supply_regulator)
5534                 rdev->supply_name = init_data->supply_regulator;
5535         else if (regulator_desc->supply_name)
5536                 rdev->supply_name = regulator_desc->supply_name;
5537
5538         ret = set_machine_constraints(rdev);
5539         if (ret == -EPROBE_DEFER) {
5540                 /* Regulator might be in bypass mode and so needs its supply
5541                  * to set the constraints
5542                  */
5543                 /* FIXME: this currently triggers a chicken-and-egg problem
5544                  * when creating -SUPPLY symlink in sysfs to a regulator
5545                  * that is just being created
5546                  */
5547                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5548                          rdev->supply_name);
5549                 ret = regulator_resolve_supply(rdev);
5550                 if (!ret)
5551                         ret = set_machine_constraints(rdev);
5552                 else
5553                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5554                                  ERR_PTR(ret));
5555         }
5556         if (ret < 0)
5557                 goto wash;
5558
5559         ret = regulator_init_coupling(rdev);
5560         if (ret < 0)
5561                 goto wash;
5562
5563         /* add consumers devices */
5564         if (init_data) {
5565                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5566                         ret = set_consumer_device_supply(rdev,
5567                                 init_data->consumer_supplies[i].dev_name,
5568                                 init_data->consumer_supplies[i].supply);
5569                         if (ret < 0) {
5570                                 dev_err(dev, "Failed to set supply %s\n",
5571                                         init_data->consumer_supplies[i].supply);
5572                                 goto unset_supplies;
5573                         }
5574                 }
5575         }
5576
5577         if (!rdev->desc->ops->get_voltage &&
5578             !rdev->desc->ops->list_voltage &&
5579             !rdev->desc->fixed_uV)
5580                 rdev->is_switch = true;
5581
5582         ret = device_add(&rdev->dev);
5583         if (ret != 0)
5584                 goto unset_supplies;
5585
5586         rdev_init_debugfs(rdev);
5587
5588         /* try to resolve regulators coupling since a new one was registered */
5589         mutex_lock(&regulator_list_mutex);
5590         regulator_resolve_coupling(rdev);
5591         mutex_unlock(&regulator_list_mutex);
5592
5593         /* try to resolve regulators supply since a new one was registered */
5594         class_for_each_device(&regulator_class, NULL, NULL,
5595                               regulator_register_resolve_supply);
5596         kfree(config);
5597         return rdev;
5598
5599 unset_supplies:
5600         mutex_lock(&regulator_list_mutex);
5601         unset_regulator_supplies(rdev);
5602         regulator_remove_coupling(rdev);
5603         mutex_unlock(&regulator_list_mutex);
5604 wash:
5605         kfree(rdev->coupling_desc.coupled_rdevs);
5606         mutex_lock(&regulator_list_mutex);
5607         regulator_ena_gpio_free(rdev);
5608         mutex_unlock(&regulator_list_mutex);
5609 clean:
5610         if (dangling_of_gpiod)
5611                 gpiod_put(config->ena_gpiod);
5612         kfree(config);
5613         put_device(&rdev->dev);
5614 rinse:
5615         if (dangling_cfg_gpiod)
5616                 gpiod_put(cfg->ena_gpiod);
5617         return ERR_PTR(ret);
5618 }
5619 EXPORT_SYMBOL_GPL(regulator_register);
5620
5621 /**
5622  * regulator_unregister - unregister regulator
5623  * @rdev: regulator to unregister
5624  *
5625  * Called by regulator drivers to unregister a regulator.
5626  */
5627 void regulator_unregister(struct regulator_dev *rdev)
5628 {
5629         if (rdev == NULL)
5630                 return;
5631
5632         if (rdev->supply) {
5633                 while (rdev->use_count--)
5634                         regulator_disable(rdev->supply);
5635                 regulator_put(rdev->supply);
5636         }
5637
5638         flush_work(&rdev->disable_work.work);
5639
5640         mutex_lock(&regulator_list_mutex);
5641
5642         debugfs_remove_recursive(rdev->debugfs);
5643         WARN_ON(rdev->open_count);
5644         regulator_remove_coupling(rdev);
5645         unset_regulator_supplies(rdev);
5646         list_del(&rdev->list);
5647         regulator_ena_gpio_free(rdev);
5648         device_unregister(&rdev->dev);
5649
5650         mutex_unlock(&regulator_list_mutex);
5651 }
5652 EXPORT_SYMBOL_GPL(regulator_unregister);
5653
5654 #ifdef CONFIG_SUSPEND
5655 /**
5656  * regulator_suspend - prepare regulators for system wide suspend
5657  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5658  *
5659  * Configure each regulator with it's suspend operating parameters for state.
5660  */
5661 static int regulator_suspend(struct device *dev)
5662 {
5663         struct regulator_dev *rdev = dev_to_rdev(dev);
5664         suspend_state_t state = pm_suspend_target_state;
5665         int ret;
5666         const struct regulator_state *rstate;
5667
5668         rstate = regulator_get_suspend_state_check(rdev, state);
5669         if (!rstate)
5670                 return 0;
5671
5672         regulator_lock(rdev);
5673         ret = __suspend_set_state(rdev, rstate);
5674         regulator_unlock(rdev);
5675
5676         return ret;
5677 }
5678
5679 static int regulator_resume(struct device *dev)
5680 {
5681         suspend_state_t state = pm_suspend_target_state;
5682         struct regulator_dev *rdev = dev_to_rdev(dev);
5683         struct regulator_state *rstate;
5684         int ret = 0;
5685
5686         rstate = regulator_get_suspend_state(rdev, state);
5687         if (rstate == NULL)
5688                 return 0;
5689
5690         /* Avoid grabbing the lock if we don't need to */
5691         if (!rdev->desc->ops->resume)
5692                 return 0;
5693
5694         regulator_lock(rdev);
5695
5696         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5697             rstate->enabled == DISABLE_IN_SUSPEND)
5698                 ret = rdev->desc->ops->resume(rdev);
5699
5700         regulator_unlock(rdev);
5701
5702         return ret;
5703 }
5704 #else /* !CONFIG_SUSPEND */
5705
5706 #define regulator_suspend       NULL
5707 #define regulator_resume        NULL
5708
5709 #endif /* !CONFIG_SUSPEND */
5710
5711 #ifdef CONFIG_PM
5712 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5713         .suspend        = regulator_suspend,
5714         .resume         = regulator_resume,
5715 };
5716 #endif
5717
5718 struct class regulator_class = {
5719         .name = "regulator",
5720         .dev_release = regulator_dev_release,
5721         .dev_groups = regulator_dev_groups,
5722 #ifdef CONFIG_PM
5723         .pm = &regulator_pm_ops,
5724 #endif
5725 };
5726 /**
5727  * regulator_has_full_constraints - the system has fully specified constraints
5728  *
5729  * Calling this function will cause the regulator API to disable all
5730  * regulators which have a zero use count and don't have an always_on
5731  * constraint in a late_initcall.
5732  *
5733  * The intention is that this will become the default behaviour in a
5734  * future kernel release so users are encouraged to use this facility
5735  * now.
5736  */
5737 void regulator_has_full_constraints(void)
5738 {
5739         has_full_constraints = 1;
5740 }
5741 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5742
5743 /**
5744  * rdev_get_drvdata - get rdev regulator driver data
5745  * @rdev: regulator
5746  *
5747  * Get rdev regulator driver private data. This call can be used in the
5748  * regulator driver context.
5749  */
5750 void *rdev_get_drvdata(struct regulator_dev *rdev)
5751 {
5752         return rdev->reg_data;
5753 }
5754 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5755
5756 /**
5757  * regulator_get_drvdata - get regulator driver data
5758  * @regulator: regulator
5759  *
5760  * Get regulator driver private data. This call can be used in the consumer
5761  * driver context when non API regulator specific functions need to be called.
5762  */
5763 void *regulator_get_drvdata(struct regulator *regulator)
5764 {
5765         return regulator->rdev->reg_data;
5766 }
5767 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5768
5769 /**
5770  * regulator_set_drvdata - set regulator driver data
5771  * @regulator: regulator
5772  * @data: data
5773  */
5774 void regulator_set_drvdata(struct regulator *regulator, void *data)
5775 {
5776         regulator->rdev->reg_data = data;
5777 }
5778 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5779
5780 /**
5781  * rdev_get_id - get regulator ID
5782  * @rdev: regulator
5783  */
5784 int rdev_get_id(struct regulator_dev *rdev)
5785 {
5786         return rdev->desc->id;
5787 }
5788 EXPORT_SYMBOL_GPL(rdev_get_id);
5789
5790 struct device *rdev_get_dev(struct regulator_dev *rdev)
5791 {
5792         return &rdev->dev;
5793 }
5794 EXPORT_SYMBOL_GPL(rdev_get_dev);
5795
5796 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5797 {
5798         return rdev->regmap;
5799 }
5800 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5801
5802 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5803 {
5804         return reg_init_data->driver_data;
5805 }
5806 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5807
5808 #ifdef CONFIG_DEBUG_FS
5809 static int supply_map_show(struct seq_file *sf, void *data)
5810 {
5811         struct regulator_map *map;
5812
5813         list_for_each_entry(map, &regulator_map_list, list) {
5814                 seq_printf(sf, "%s -> %s.%s\n",
5815                                 rdev_get_name(map->regulator), map->dev_name,
5816                                 map->supply);
5817         }
5818
5819         return 0;
5820 }
5821 DEFINE_SHOW_ATTRIBUTE(supply_map);
5822
5823 struct summary_data {
5824         struct seq_file *s;
5825         struct regulator_dev *parent;
5826         int level;
5827 };
5828
5829 static void regulator_summary_show_subtree(struct seq_file *s,
5830                                            struct regulator_dev *rdev,
5831                                            int level);
5832
5833 static int regulator_summary_show_children(struct device *dev, void *data)
5834 {
5835         struct regulator_dev *rdev = dev_to_rdev(dev);
5836         struct summary_data *summary_data = data;
5837
5838         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5839                 regulator_summary_show_subtree(summary_data->s, rdev,
5840                                                summary_data->level + 1);
5841
5842         return 0;
5843 }
5844
5845 static void regulator_summary_show_subtree(struct seq_file *s,
5846                                            struct regulator_dev *rdev,
5847                                            int level)
5848 {
5849         struct regulation_constraints *c;
5850         struct regulator *consumer;
5851         struct summary_data summary_data;
5852         unsigned int opmode;
5853
5854         if (!rdev)
5855                 return;
5856
5857         opmode = _regulator_get_mode_unlocked(rdev);
5858         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5859                    level * 3 + 1, "",
5860                    30 - level * 3, rdev_get_name(rdev),
5861                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5862                    regulator_opmode_to_str(opmode));
5863
5864         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5865         seq_printf(s, "%5dmA ",
5866                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5867
5868         c = rdev->constraints;
5869         if (c) {
5870                 switch (rdev->desc->type) {
5871                 case REGULATOR_VOLTAGE:
5872                         seq_printf(s, "%5dmV %5dmV ",
5873                                    c->min_uV / 1000, c->max_uV / 1000);
5874                         break;
5875                 case REGULATOR_CURRENT:
5876                         seq_printf(s, "%5dmA %5dmA ",
5877                                    c->min_uA / 1000, c->max_uA / 1000);
5878                         break;
5879                 }
5880         }
5881
5882         seq_puts(s, "\n");
5883
5884         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5885                 if (consumer->dev && consumer->dev->class == &regulator_class)
5886                         continue;
5887
5888                 seq_printf(s, "%*s%-*s ",
5889                            (level + 1) * 3 + 1, "",
5890                            30 - (level + 1) * 3,
5891                            consumer->supply_name ? consumer->supply_name :
5892                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5893
5894                 switch (rdev->desc->type) {
5895                 case REGULATOR_VOLTAGE:
5896                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5897                                    consumer->enable_count,
5898                                    consumer->uA_load / 1000,
5899                                    consumer->uA_load && !consumer->enable_count ?
5900                                    '*' : ' ',
5901                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5902                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5903                         break;
5904                 case REGULATOR_CURRENT:
5905                         break;
5906                 }
5907
5908                 seq_puts(s, "\n");
5909         }
5910
5911         summary_data.s = s;
5912         summary_data.level = level;
5913         summary_data.parent = rdev;
5914
5915         class_for_each_device(&regulator_class, NULL, &summary_data,
5916                               regulator_summary_show_children);
5917 }
5918
5919 struct summary_lock_data {
5920         struct ww_acquire_ctx *ww_ctx;
5921         struct regulator_dev **new_contended_rdev;
5922         struct regulator_dev **old_contended_rdev;
5923 };
5924
5925 static int regulator_summary_lock_one(struct device *dev, void *data)
5926 {
5927         struct regulator_dev *rdev = dev_to_rdev(dev);
5928         struct summary_lock_data *lock_data = data;
5929         int ret = 0;
5930
5931         if (rdev != *lock_data->old_contended_rdev) {
5932                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5933
5934                 if (ret == -EDEADLK)
5935                         *lock_data->new_contended_rdev = rdev;
5936                 else
5937                         WARN_ON_ONCE(ret);
5938         } else {
5939                 *lock_data->old_contended_rdev = NULL;
5940         }
5941
5942         return ret;
5943 }
5944
5945 static int regulator_summary_unlock_one(struct device *dev, void *data)
5946 {
5947         struct regulator_dev *rdev = dev_to_rdev(dev);
5948         struct summary_lock_data *lock_data = data;
5949
5950         if (lock_data) {
5951                 if (rdev == *lock_data->new_contended_rdev)
5952                         return -EDEADLK;
5953         }
5954
5955         regulator_unlock(rdev);
5956
5957         return 0;
5958 }
5959
5960 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5961                                       struct regulator_dev **new_contended_rdev,
5962                                       struct regulator_dev **old_contended_rdev)
5963 {
5964         struct summary_lock_data lock_data;
5965         int ret;
5966
5967         lock_data.ww_ctx = ww_ctx;
5968         lock_data.new_contended_rdev = new_contended_rdev;
5969         lock_data.old_contended_rdev = old_contended_rdev;
5970
5971         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5972                                     regulator_summary_lock_one);
5973         if (ret)
5974                 class_for_each_device(&regulator_class, NULL, &lock_data,
5975                                       regulator_summary_unlock_one);
5976
5977         return ret;
5978 }
5979
5980 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5981 {
5982         struct regulator_dev *new_contended_rdev = NULL;
5983         struct regulator_dev *old_contended_rdev = NULL;
5984         int err;
5985
5986         mutex_lock(&regulator_list_mutex);
5987
5988         ww_acquire_init(ww_ctx, &regulator_ww_class);
5989
5990         do {
5991                 if (new_contended_rdev) {
5992                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5993                         old_contended_rdev = new_contended_rdev;
5994                         old_contended_rdev->ref_cnt++;
5995                 }
5996
5997                 err = regulator_summary_lock_all(ww_ctx,
5998                                                  &new_contended_rdev,
5999                                                  &old_contended_rdev);
6000
6001                 if (old_contended_rdev)
6002                         regulator_unlock(old_contended_rdev);
6003
6004         } while (err == -EDEADLK);
6005
6006         ww_acquire_done(ww_ctx);
6007 }
6008
6009 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6010 {
6011         class_for_each_device(&regulator_class, NULL, NULL,
6012                               regulator_summary_unlock_one);
6013         ww_acquire_fini(ww_ctx);
6014
6015         mutex_unlock(&regulator_list_mutex);
6016 }
6017
6018 static int regulator_summary_show_roots(struct device *dev, void *data)
6019 {
6020         struct regulator_dev *rdev = dev_to_rdev(dev);
6021         struct seq_file *s = data;
6022
6023         if (!rdev->supply)
6024                 regulator_summary_show_subtree(s, rdev, 0);
6025
6026         return 0;
6027 }
6028
6029 static int regulator_summary_show(struct seq_file *s, void *data)
6030 {
6031         struct ww_acquire_ctx ww_ctx;
6032
6033         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6034         seq_puts(s, "---------------------------------------------------------------------------------------\n");
6035
6036         regulator_summary_lock(&ww_ctx);
6037
6038         class_for_each_device(&regulator_class, NULL, s,
6039                               regulator_summary_show_roots);
6040
6041         regulator_summary_unlock(&ww_ctx);
6042
6043         return 0;
6044 }
6045 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6046 #endif /* CONFIG_DEBUG_FS */
6047
6048 static int __init regulator_init(void)
6049 {
6050         int ret;
6051
6052         ret = class_register(&regulator_class);
6053
6054         debugfs_root = debugfs_create_dir("regulator", NULL);
6055         if (!debugfs_root)
6056                 pr_warn("regulator: Failed to create debugfs directory\n");
6057
6058 #ifdef CONFIG_DEBUG_FS
6059         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6060                             &supply_map_fops);
6061
6062         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6063                             NULL, &regulator_summary_fops);
6064 #endif
6065         regulator_dummy_init();
6066
6067         regulator_coupler_register(&generic_regulator_coupler);
6068
6069         return ret;
6070 }
6071
6072 /* init early to allow our consumers to complete system booting */
6073 core_initcall(regulator_init);
6074
6075 static int regulator_late_cleanup(struct device *dev, void *data)
6076 {
6077         struct regulator_dev *rdev = dev_to_rdev(dev);
6078         struct regulation_constraints *c = rdev->constraints;
6079         int ret;
6080
6081         if (c && c->always_on)
6082                 return 0;
6083
6084         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6085                 return 0;
6086
6087         regulator_lock(rdev);
6088
6089         if (rdev->use_count)
6090                 goto unlock;
6091
6092         /* If reading the status failed, assume that it's off. */
6093         if (_regulator_is_enabled(rdev) <= 0)
6094                 goto unlock;
6095
6096         if (have_full_constraints()) {
6097                 /* We log since this may kill the system if it goes
6098                  * wrong.
6099                  */
6100                 rdev_info(rdev, "disabling\n");
6101                 ret = _regulator_do_disable(rdev);
6102                 if (ret != 0)
6103                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6104         } else {
6105                 /* The intention is that in future we will
6106                  * assume that full constraints are provided
6107                  * so warn even if we aren't going to do
6108                  * anything here.
6109                  */
6110                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6111         }
6112
6113 unlock:
6114         regulator_unlock(rdev);
6115
6116         return 0;
6117 }
6118
6119 static void regulator_init_complete_work_function(struct work_struct *work)
6120 {
6121         /*
6122          * Regulators may had failed to resolve their input supplies
6123          * when were registered, either because the input supply was
6124          * not registered yet or because its parent device was not
6125          * bound yet. So attempt to resolve the input supplies for
6126          * pending regulators before trying to disable unused ones.
6127          */
6128         class_for_each_device(&regulator_class, NULL, NULL,
6129                               regulator_register_resolve_supply);
6130
6131         /* If we have a full configuration then disable any regulators
6132          * we have permission to change the status for and which are
6133          * not in use or always_on.  This is effectively the default
6134          * for DT and ACPI as they have full constraints.
6135          */
6136         class_for_each_device(&regulator_class, NULL, NULL,
6137                               regulator_late_cleanup);
6138 }
6139
6140 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6141                             regulator_init_complete_work_function);
6142
6143 static int __init regulator_init_complete(void)
6144 {
6145         /*
6146          * Since DT doesn't provide an idiomatic mechanism for
6147          * enabling full constraints and since it's much more natural
6148          * with DT to provide them just assume that a DT enabled
6149          * system has full constraints.
6150          */
6151         if (of_have_populated_dt())
6152                 has_full_constraints = true;
6153
6154         /*
6155          * We punt completion for an arbitrary amount of time since
6156          * systems like distros will load many drivers from userspace
6157          * so consumers might not always be ready yet, this is
6158          * particularly an issue with laptops where this might bounce
6159          * the display off then on.  Ideally we'd get a notification
6160          * from userspace when this happens but we don't so just wait
6161          * a bit and hope we waited long enough.  It'd be better if
6162          * we'd only do this on systems that need it, and a kernel
6163          * command line option might be useful.
6164          */
6165         schedule_delayed_work(&regulator_init_complete_work,
6166                               msecs_to_jiffies(30000));
6167
6168         return 0;
6169 }
6170 late_initcall_sync(regulator_init_complete);