GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / pwm / pwm-sifive.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG               0x0
24 #define PWM_SIFIVE_PWMCOUNT             0x8
25 #define PWM_SIFIVE_PWMS                 0x10
26 #define PWM_SIFIVE_PWMCMP(i)            (0x20 + 4 * (i))
27
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE         GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY        BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP      BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH      BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS     BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE       BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER        BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG          BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP            BIT(28)
38
39 #define PWM_SIFIVE_CMPWIDTH             16
40 #define PWM_SIFIVE_DEFAULT_PERIOD       10000000
41
42 struct pwm_sifive_ddata {
43         struct pwm_chip chip;
44         struct mutex lock; /* lock to protect user_count and approx_period */
45         struct notifier_block notifier;
46         struct clk *clk;
47         void __iomem *regs;
48         unsigned int real_period;
49         unsigned int approx_period;
50         int user_count;
51 };
52
53 static inline
54 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55 {
56         return container_of(c, struct pwm_sifive_ddata, chip);
57 }
58
59 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60 {
61         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62
63         mutex_lock(&ddata->lock);
64         ddata->user_count++;
65         mutex_unlock(&ddata->lock);
66
67         return 0;
68 }
69
70 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71 {
72         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73
74         mutex_lock(&ddata->lock);
75         ddata->user_count--;
76         mutex_unlock(&ddata->lock);
77 }
78
79 /* Called holding ddata->lock */
80 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
81                                     unsigned long rate)
82 {
83         unsigned long long num;
84         unsigned long scale_pow;
85         int scale;
86         u32 val;
87         /*
88          * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
89          * period length is using pwmscale which provides the number of bits the
90          * counter is shifted before being feed to the comparators. A period
91          * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
92          * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
93          */
94         scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
95         scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
96
97         val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
98               FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
99         writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
100
101         /* As scale <= 15 the shift operation cannot overflow. */
102         num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
103         ddata->real_period = div64_ul(num, rate);
104         dev_dbg(ddata->chip.dev,
105                 "New real_period = %u ns\n", ddata->real_period);
106 }
107
108 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
109                                  struct pwm_state *state)
110 {
111         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
112         u32 duty, val;
113
114         duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
115
116         state->enabled = duty > 0;
117
118         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
119         if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
120                 state->enabled = false;
121
122         state->period = ddata->real_period;
123         state->duty_cycle =
124                 (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
125         state->polarity = PWM_POLARITY_INVERSED;
126 }
127
128 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
129 {
130         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
131         int ret;
132
133         if (enable) {
134                 ret = clk_enable(ddata->clk);
135                 if (ret) {
136                         dev_err(ddata->chip.dev, "Enable clk failed\n");
137                         return ret;
138                 }
139         }
140
141         if (!enable)
142                 clk_disable(ddata->clk);
143
144         return 0;
145 }
146
147 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
148                             const struct pwm_state *state)
149 {
150         struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
151         struct pwm_state cur_state;
152         unsigned int duty_cycle;
153         unsigned long long num;
154         bool enabled;
155         int ret = 0;
156         u32 frac;
157
158         if (state->polarity != PWM_POLARITY_INVERSED)
159                 return -EINVAL;
160
161         ret = clk_enable(ddata->clk);
162         if (ret) {
163                 dev_err(ddata->chip.dev, "Enable clk failed\n");
164                 return ret;
165         }
166
167         cur_state = pwm->state;
168         enabled = cur_state.enabled;
169
170         duty_cycle = state->duty_cycle;
171         if (!state->enabled)
172                 duty_cycle = 0;
173
174         /*
175          * The problem of output producing mixed setting as mentioned at top,
176          * occurs here. To minimize the window for this problem, we are
177          * calculating the register values first and then writing them
178          * consecutively
179          */
180         num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
181         frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
182         /* The hardware cannot generate a 100% duty cycle */
183         frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
184
185         mutex_lock(&ddata->lock);
186         if (state->period != ddata->approx_period) {
187                 /*
188                  * Don't let a 2nd user change the period underneath the 1st user.
189                  * However if ddate->approx_period == 0 this is the first time we set
190                  * any period, so let whoever gets here first set the period so other
191                  * users who agree on the period won't fail.
192                  */
193                 if (ddata->user_count != 1 && ddata->approx_period) {
194                         mutex_unlock(&ddata->lock);
195                         ret = -EBUSY;
196                         goto exit;
197                 }
198                 ddata->approx_period = state->period;
199                 pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
200         }
201         mutex_unlock(&ddata->lock);
202
203         writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
204
205         if (state->enabled != enabled)
206                 pwm_sifive_enable(chip, state->enabled);
207
208 exit:
209         clk_disable(ddata->clk);
210         return ret;
211 }
212
213 static const struct pwm_ops pwm_sifive_ops = {
214         .request = pwm_sifive_request,
215         .free = pwm_sifive_free,
216         .get_state = pwm_sifive_get_state,
217         .apply = pwm_sifive_apply,
218         .owner = THIS_MODULE,
219 };
220
221 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
222                                      unsigned long event, void *data)
223 {
224         struct clk_notifier_data *ndata = data;
225         struct pwm_sifive_ddata *ddata =
226                 container_of(nb, struct pwm_sifive_ddata, notifier);
227
228         if (event == POST_RATE_CHANGE) {
229                 mutex_lock(&ddata->lock);
230                 pwm_sifive_update_clock(ddata, ndata->new_rate);
231                 mutex_unlock(&ddata->lock);
232         }
233
234         return NOTIFY_OK;
235 }
236
237 static int pwm_sifive_probe(struct platform_device *pdev)
238 {
239         struct device *dev = &pdev->dev;
240         struct pwm_sifive_ddata *ddata;
241         struct pwm_chip *chip;
242         struct resource *res;
243         int ret;
244         u32 val;
245         unsigned int enabled_pwms = 0, enabled_clks = 1;
246
247         ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
248         if (!ddata)
249                 return -ENOMEM;
250
251         mutex_init(&ddata->lock);
252         chip = &ddata->chip;
253         chip->dev = dev;
254         chip->ops = &pwm_sifive_ops;
255         chip->of_xlate = of_pwm_xlate_with_flags;
256         chip->of_pwm_n_cells = 3;
257         chip->base = -1;
258         chip->npwm = 4;
259
260         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
261         ddata->regs = devm_ioremap_resource(dev, res);
262         if (IS_ERR(ddata->regs))
263                 return PTR_ERR(ddata->regs);
264
265         ddata->clk = devm_clk_get(dev, NULL);
266         if (IS_ERR(ddata->clk))
267                 return dev_err_probe(dev, PTR_ERR(ddata->clk),
268                                      "Unable to find controller clock\n");
269
270         ret = clk_prepare_enable(ddata->clk);
271         if (ret) {
272                 dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
273                 return ret;
274         }
275
276         val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
277         if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
278                 unsigned int i;
279
280                 for (i = 0; i < chip->npwm; ++i) {
281                         val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
282                         if (val > 0)
283                                 ++enabled_pwms;
284                 }
285         }
286
287         /* The clk should be on once for each running PWM. */
288         if (enabled_pwms) {
289                 while (enabled_clks < enabled_pwms) {
290                         /* This is not expected to fail as the clk is already on */
291                         ret = clk_enable(ddata->clk);
292                         if (unlikely(ret)) {
293                                 dev_err_probe(dev, ret, "Failed to enable clk\n");
294                                 goto disable_clk;
295                         }
296                         ++enabled_clks;
297                 }
298         } else {
299                 clk_disable(ddata->clk);
300                 enabled_clks = 0;
301         }
302
303         /* Watch for changes to underlying clock frequency */
304         ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
305         ret = clk_notifier_register(ddata->clk, &ddata->notifier);
306         if (ret) {
307                 dev_err(dev, "failed to register clock notifier: %d\n", ret);
308                 goto disable_clk;
309         }
310
311         ret = pwmchip_add(chip);
312         if (ret < 0) {
313                 dev_err(dev, "cannot register PWM: %d\n", ret);
314                 goto unregister_clk;
315         }
316
317         platform_set_drvdata(pdev, ddata);
318         dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
319
320         return 0;
321
322 unregister_clk:
323         clk_notifier_unregister(ddata->clk, &ddata->notifier);
324 disable_clk:
325         while (enabled_clks) {
326                 clk_disable(ddata->clk);
327                 --enabled_clks;
328         }
329         clk_unprepare(ddata->clk);
330
331         return ret;
332 }
333
334 static int pwm_sifive_remove(struct platform_device *dev)
335 {
336         struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
337         struct pwm_device *pwm;
338         int ch;
339
340         pwmchip_remove(&ddata->chip);
341         clk_notifier_unregister(ddata->clk, &ddata->notifier);
342
343         for (ch = 0; ch < ddata->chip.npwm; ch++) {
344                 pwm = &ddata->chip.pwms[ch];
345                 if (pwm->state.enabled)
346                         clk_disable(ddata->clk);
347         }
348
349         clk_unprepare(ddata->clk);
350
351         return 0;
352 }
353
354 static const struct of_device_id pwm_sifive_of_match[] = {
355         { .compatible = "sifive,pwm0" },
356         {},
357 };
358 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
359
360 static struct platform_driver pwm_sifive_driver = {
361         .probe = pwm_sifive_probe,
362         .remove = pwm_sifive_remove,
363         .driver = {
364                 .name = "pwm-sifive",
365                 .of_match_table = pwm_sifive_of_match,
366         },
367 };
368 module_platform_driver(pwm_sifive_driver);
369
370 MODULE_DESCRIPTION("SiFive PWM driver");
371 MODULE_LICENSE("GPL v2");