GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / pwm / pwm-imx-tpm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2018-2019 NXP.
4  *
5  * Limitations:
6  * - The TPM counter and period counter are shared between
7  *   multiple channels, so all channels should use same period
8  *   settings.
9  * - Changes to polarity cannot be latched at the time of the
10  *   next period start.
11  * - Changing period and duty cycle together isn't atomic,
12  *   with the wrong timing it might happen that a period is
13  *   produced with old duty cycle but new period settings.
14  */
15
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pwm.h>
25 #include <linux/slab.h>
26
27 #define PWM_IMX_TPM_PARAM       0x4
28 #define PWM_IMX_TPM_GLOBAL      0x8
29 #define PWM_IMX_TPM_SC          0x10
30 #define PWM_IMX_TPM_CNT         0x14
31 #define PWM_IMX_TPM_MOD         0x18
32 #define PWM_IMX_TPM_CnSC(n)     (0x20 + (n) * 0x8)
33 #define PWM_IMX_TPM_CnV(n)      (0x24 + (n) * 0x8)
34
35 #define PWM_IMX_TPM_PARAM_CHAN                  GENMASK(7, 0)
36
37 #define PWM_IMX_TPM_SC_PS                       GENMASK(2, 0)
38 #define PWM_IMX_TPM_SC_CMOD                     GENMASK(4, 3)
39 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK       FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
40 #define PWM_IMX_TPM_SC_CPWMS                    BIT(5)
41
42 #define PWM_IMX_TPM_CnSC_CHF    BIT(7)
43 #define PWM_IMX_TPM_CnSC_MSB    BIT(5)
44 #define PWM_IMX_TPM_CnSC_MSA    BIT(4)
45
46 /*
47  * The reference manual describes this field as two separate bits. The
48  * semantic of the two bits isn't orthogonal though, so they are treated
49  * together as a 2-bit field here.
50  */
51 #define PWM_IMX_TPM_CnSC_ELS    GENMASK(3, 2)
52 #define PWM_IMX_TPM_CnSC_ELS_INVERSED   FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
53 #define PWM_IMX_TPM_CnSC_ELS_NORMAL     FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
54
55
56 #define PWM_IMX_TPM_MOD_WIDTH   16
57 #define PWM_IMX_TPM_MOD_MOD     GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
58
59 struct imx_tpm_pwm_chip {
60         struct clk *clk;
61         void __iomem *base;
62         struct mutex lock;
63         u32 user_count;
64         u32 enable_count;
65         u32 real_period;
66 };
67
68 struct imx_tpm_pwm_param {
69         u8 prescale;
70         u32 mod;
71         u32 val;
72 };
73
74 static inline struct imx_tpm_pwm_chip *
75 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
76 {
77         return pwmchip_get_drvdata(chip);
78 }
79
80 /*
81  * This function determines for a given pwm_state *state that a consumer
82  * might request the pwm_state *real_state that eventually is implemented
83  * by the hardware and the necessary register values (in *p) to achieve
84  * this.
85  */
86 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
87                                    struct imx_tpm_pwm_param *p,
88                                    struct pwm_state *real_state,
89                                    const struct pwm_state *state)
90 {
91         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
92         u32 rate, prescale, period_count, clock_unit;
93         u64 tmp;
94
95         rate = clk_get_rate(tpm->clk);
96         tmp = (u64)state->period * rate;
97         clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
98         if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
99                 prescale = 0;
100         else
101                 prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
102
103         if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
104                 return -ERANGE;
105         p->prescale = prescale;
106
107         period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
108         p->mod = period_count;
109
110         /* calculate real period HW can support */
111         tmp = (u64)period_count << prescale;
112         tmp *= NSEC_PER_SEC;
113         real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
114
115         /*
116          * if eventually the PWM output is inactive, either
117          * duty cycle is 0 or status is disabled, need to
118          * make sure the output pin is inactive.
119          */
120         if (!state->enabled)
121                 real_state->duty_cycle = 0;
122         else
123                 real_state->duty_cycle = state->duty_cycle;
124
125         tmp = (u64)p->mod * real_state->duty_cycle;
126         p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
127
128         real_state->polarity = state->polarity;
129         real_state->enabled = state->enabled;
130
131         return 0;
132 }
133
134 static int pwm_imx_tpm_get_state(struct pwm_chip *chip,
135                                  struct pwm_device *pwm,
136                                  struct pwm_state *state)
137 {
138         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
139         u32 rate, val, prescale;
140         u64 tmp;
141
142         /* get period */
143         state->period = tpm->real_period;
144
145         /* get duty cycle */
146         rate = clk_get_rate(tpm->clk);
147         val = readl(tpm->base + PWM_IMX_TPM_SC);
148         prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
149         tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
150         tmp = (tmp << prescale) * NSEC_PER_SEC;
151         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
152
153         /* get polarity */
154         val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
155         if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
156                 state->polarity = PWM_POLARITY_INVERSED;
157         else
158                 /*
159                  * Assume reserved values (2b00 and 2b11) to yield
160                  * normal polarity.
161                  */
162                 state->polarity = PWM_POLARITY_NORMAL;
163
164         /* get channel status */
165         state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
166
167         return 0;
168 }
169
170 /* this function is supposed to be called with mutex hold */
171 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
172                                 struct imx_tpm_pwm_param *p,
173                                 struct pwm_state *state,
174                                 struct pwm_device *pwm)
175 {
176         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
177         bool period_update = false;
178         bool duty_update = false;
179         u32 val, cmod, cur_prescale;
180         unsigned long timeout;
181         struct pwm_state c;
182
183         if (state->period != tpm->real_period) {
184                 /*
185                  * TPM counter is shared by multiple channels, so
186                  * prescale and period can NOT be modified when
187                  * there are multiple channels in use with different
188                  * period settings.
189                  */
190                 if (tpm->user_count > 1)
191                         return -EBUSY;
192
193                 val = readl(tpm->base + PWM_IMX_TPM_SC);
194                 cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
195                 cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
196                 if (cmod && cur_prescale != p->prescale)
197                         return -EBUSY;
198
199                 /* set TPM counter prescale */
200                 val &= ~PWM_IMX_TPM_SC_PS;
201                 val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
202                 writel(val, tpm->base + PWM_IMX_TPM_SC);
203
204                 /*
205                  * set period count:
206                  * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
207                  * is updated when MOD register is written.
208                  *
209                  * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
210                  * is latched into hardware when the next period starts.
211                  */
212                 writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
213                 tpm->real_period = state->period;
214                 period_update = true;
215         }
216
217         pwm_imx_tpm_get_state(chip, pwm, &c);
218
219         /* polarity is NOT allowed to be changed if PWM is active */
220         if (c.enabled && c.polarity != state->polarity)
221                 return -EBUSY;
222
223         if (state->duty_cycle != c.duty_cycle) {
224                 /*
225                  * set channel value:
226                  * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
227                  * is updated when CnV register is written.
228                  *
229                  * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
230                  * is latched into hardware when the next period starts.
231                  */
232                 writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
233                 duty_update = true;
234         }
235
236         /* make sure MOD & CnV registers are updated */
237         if (period_update || duty_update) {
238                 timeout = jiffies + msecs_to_jiffies(tpm->real_period /
239                                                      NSEC_PER_MSEC + 1);
240                 while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
241                        || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
242                        != p->val) {
243                         if (time_after(jiffies, timeout))
244                                 return -ETIME;
245                         cpu_relax();
246                 }
247         }
248
249         /*
250          * polarity settings will enabled/disable output status
251          * immediately, so if the channel is disabled, need to
252          * make sure MSA/MSB/ELS are set to 0 which means channel
253          * disabled.
254          */
255         val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
256         val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
257                  PWM_IMX_TPM_CnSC_MSB);
258         if (state->enabled) {
259                 /*
260                  * set polarity (for edge-aligned PWM modes)
261                  *
262                  * ELS[1:0] = 2b10 yields normal polarity behaviour,
263                  * ELS[1:0] = 2b01 yields inversed polarity.
264                  * The other values are reserved.
265                  */
266                 val |= PWM_IMX_TPM_CnSC_MSB;
267                 val |= (state->polarity == PWM_POLARITY_NORMAL) ?
268                         PWM_IMX_TPM_CnSC_ELS_NORMAL :
269                         PWM_IMX_TPM_CnSC_ELS_INVERSED;
270         }
271         writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
272
273         /* control the counter status */
274         if (state->enabled != c.enabled) {
275                 val = readl(tpm->base + PWM_IMX_TPM_SC);
276                 if (state->enabled) {
277                         if (++tpm->enable_count == 1)
278                                 val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
279                 } else {
280                         if (--tpm->enable_count == 0)
281                                 val &= ~PWM_IMX_TPM_SC_CMOD;
282                 }
283                 writel(val, tpm->base + PWM_IMX_TPM_SC);
284         }
285
286         return 0;
287 }
288
289 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
290                              struct pwm_device *pwm,
291                              const struct pwm_state *state)
292 {
293         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
294         struct imx_tpm_pwm_param param;
295         struct pwm_state real_state;
296         int ret;
297
298         ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
299         if (ret)
300                 return ret;
301
302         mutex_lock(&tpm->lock);
303         ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
304         mutex_unlock(&tpm->lock);
305
306         return ret;
307 }
308
309 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
310 {
311         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
312
313         mutex_lock(&tpm->lock);
314         tpm->user_count++;
315         mutex_unlock(&tpm->lock);
316
317         return 0;
318 }
319
320 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
321 {
322         struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
323
324         mutex_lock(&tpm->lock);
325         tpm->user_count--;
326         mutex_unlock(&tpm->lock);
327 }
328
329 static const struct pwm_ops imx_tpm_pwm_ops = {
330         .request = pwm_imx_tpm_request,
331         .free = pwm_imx_tpm_free,
332         .get_state = pwm_imx_tpm_get_state,
333         .apply = pwm_imx_tpm_apply,
334 };
335
336 static int pwm_imx_tpm_probe(struct platform_device *pdev)
337 {
338         struct pwm_chip *chip;
339         struct imx_tpm_pwm_chip *tpm;
340         struct clk *clk;
341         void __iomem *base;
342         int ret;
343         unsigned int npwm;
344         u32 val;
345
346         base = devm_platform_ioremap_resource(pdev, 0);
347         if (IS_ERR(base))
348                 return PTR_ERR(base);
349
350         clk = devm_clk_get_enabled(&pdev->dev, NULL);
351         if (IS_ERR(clk))
352                 return dev_err_probe(&pdev->dev, PTR_ERR(clk),
353                                      "failed to get PWM clock\n");
354
355         /* get number of channels */
356         val = readl(base + PWM_IMX_TPM_PARAM);
357         npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
358
359         chip = devm_pwmchip_alloc(&pdev->dev, npwm, sizeof(*tpm));
360         if (IS_ERR(chip))
361                 return PTR_ERR(chip);
362         tpm = to_imx_tpm_pwm_chip(chip);
363
364         platform_set_drvdata(pdev, tpm);
365
366         tpm->base = base;
367         tpm->clk = clk;
368
369         chip->ops = &imx_tpm_pwm_ops;
370
371         mutex_init(&tpm->lock);
372
373         ret = devm_pwmchip_add(&pdev->dev, chip);
374         if (ret)
375                 return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
376
377         return 0;
378 }
379
380 static int pwm_imx_tpm_suspend(struct device *dev)
381 {
382         struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
383
384         if (tpm->enable_count > 0)
385                 return -EBUSY;
386
387         /*
388          * Force 'real_period' to be zero to force period update code
389          * can be executed after system resume back, since suspend causes
390          * the period related registers to become their reset values.
391          */
392         tpm->real_period = 0;
393
394         clk_disable_unprepare(tpm->clk);
395
396         return 0;
397 }
398
399 static int pwm_imx_tpm_resume(struct device *dev)
400 {
401         struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
402         int ret = 0;
403
404         ret = clk_prepare_enable(tpm->clk);
405         if (ret)
406                 dev_err(dev, "failed to prepare or enable clock: %d\n", ret);
407
408         return ret;
409 }
410
411 static DEFINE_SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
412                                 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
413
414 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
415         { .compatible = "fsl,imx7ulp-pwm", },
416         { /* sentinel */ }
417 };
418 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
419
420 static struct platform_driver imx_tpm_pwm_driver = {
421         .driver = {
422                 .name = "imx7ulp-tpm-pwm",
423                 .of_match_table = imx_tpm_pwm_dt_ids,
424                 .pm = pm_ptr(&imx_tpm_pwm_pm),
425         },
426         .probe  = pwm_imx_tpm_probe,
427 };
428 module_platform_driver(imx_tpm_pwm_driver);
429
430 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
431 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
432 MODULE_LICENSE("GPL v2");