GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19
20 #include "ptp_private.h"
21
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27 /* private globals */
28
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31
32 static DEFINE_IDA(ptp_clocks_map);
33
34 /* time stamp event queue operations */
35
36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42                                        struct ptp_clock_event *src)
43 {
44         struct ptp_extts_event *dst;
45         unsigned long flags;
46         s64 seconds;
47         u32 remainder;
48
49         seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51         spin_lock_irqsave(&queue->lock, flags);
52
53         dst = &queue->buf[queue->tail];
54         dst->index = src->index;
55         dst->t.sec = seconds;
56         dst->t.nsec = remainder;
57
58         /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
59         if (!queue_free(queue))
60                 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
61
62         WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
63
64         spin_unlock_irqrestore(&queue->lock, flags);
65 }
66
67 long scaled_ppm_to_ppb(long ppm)
68 {
69         /*
70          * The 'freq' field in the 'struct timex' is in parts per
71          * million, but with a 16 bit binary fractional field.
72          *
73          * We want to calculate
74          *
75          *    ppb = scaled_ppm * 1000 / 2^16
76          *
77          * which simplifies to
78          *
79          *    ppb = scaled_ppm * 125 / 2^13
80          */
81         s64 ppb = 1 + ppm;
82         ppb *= 125;
83         ppb >>= 13;
84         return (long) ppb;
85 }
86 EXPORT_SYMBOL(scaled_ppm_to_ppb);
87
88 /* posix clock implementation */
89
90 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
91 {
92         tp->tv_sec = 0;
93         tp->tv_nsec = 1;
94         return 0;
95 }
96
97 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
98 {
99         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
100
101         return  ptp->info->settime64(ptp->info, tp);
102 }
103
104 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
105 {
106         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
107         int err;
108
109         if (ptp->info->gettimex64)
110                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
111         else
112                 err = ptp->info->gettime64(ptp->info, tp);
113         return err;
114 }
115
116 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
117 {
118         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
119         struct ptp_clock_info *ops;
120         int err = -EOPNOTSUPP;
121
122         ops = ptp->info;
123
124         if (tx->modes & ADJ_SETOFFSET) {
125                 struct timespec64 ts;
126                 ktime_t kt;
127                 s64 delta;
128
129                 ts.tv_sec  = tx->time.tv_sec;
130                 ts.tv_nsec = tx->time.tv_usec;
131
132                 if (!(tx->modes & ADJ_NANO))
133                         ts.tv_nsec *= 1000;
134
135                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
136                         return -EINVAL;
137
138                 kt = timespec64_to_ktime(ts);
139                 delta = ktime_to_ns(kt);
140                 err = ops->adjtime(ops, delta);
141         } else if (tx->modes & ADJ_FREQUENCY) {
142                 long ppb = scaled_ppm_to_ppb(tx->freq);
143                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
144                         return -ERANGE;
145                 if (ops->adjfine)
146                         err = ops->adjfine(ops, tx->freq);
147                 else
148                         err = ops->adjfreq(ops, ppb);
149                 ptp->dialed_frequency = tx->freq;
150         } else if (tx->modes & ADJ_OFFSET) {
151                 if (ops->adjphase) {
152                         s32 offset = tx->offset;
153
154                         if (!(tx->modes & ADJ_NANO))
155                                 offset *= NSEC_PER_USEC;
156
157                         err = ops->adjphase(ops, offset);
158                 }
159         } else if (tx->modes == 0) {
160                 tx->freq = ptp->dialed_frequency;
161                 err = 0;
162         }
163
164         return err;
165 }
166
167 static struct posix_clock_operations ptp_clock_ops = {
168         .owner          = THIS_MODULE,
169         .clock_adjtime  = ptp_clock_adjtime,
170         .clock_gettime  = ptp_clock_gettime,
171         .clock_getres   = ptp_clock_getres,
172         .clock_settime  = ptp_clock_settime,
173         .ioctl          = ptp_ioctl,
174         .open           = ptp_open,
175         .poll           = ptp_poll,
176         .read           = ptp_read,
177 };
178
179 static void ptp_clock_release(struct device *dev)
180 {
181         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
182
183         ptp_cleanup_pin_groups(ptp);
184         mutex_destroy(&ptp->tsevq_mux);
185         mutex_destroy(&ptp->pincfg_mux);
186         ida_simple_remove(&ptp_clocks_map, ptp->index);
187         kfree(ptp);
188 }
189
190 static void ptp_aux_kworker(struct kthread_work *work)
191 {
192         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
193                                              aux_work.work);
194         struct ptp_clock_info *info = ptp->info;
195         long delay;
196
197         delay = info->do_aux_work(info);
198
199         if (delay >= 0)
200                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
201 }
202
203 /* public interface */
204
205 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
206                                      struct device *parent)
207 {
208         struct ptp_clock *ptp;
209         int err = 0, index, major = MAJOR(ptp_devt);
210
211         if (info->n_alarm > PTP_MAX_ALARMS)
212                 return ERR_PTR(-EINVAL);
213
214         /* Initialize a clock structure. */
215         err = -ENOMEM;
216         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
217         if (ptp == NULL)
218                 goto no_memory;
219
220         index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
221         if (index < 0) {
222                 err = index;
223                 goto no_slot;
224         }
225
226         ptp->clock.ops = ptp_clock_ops;
227         ptp->info = info;
228         ptp->devid = MKDEV(major, index);
229         ptp->index = index;
230         spin_lock_init(&ptp->tsevq.lock);
231         mutex_init(&ptp->tsevq_mux);
232         mutex_init(&ptp->pincfg_mux);
233         init_waitqueue_head(&ptp->tsev_wq);
234
235         if (ptp->info->do_aux_work) {
236                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
237                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
238                 if (IS_ERR(ptp->kworker)) {
239                         err = PTR_ERR(ptp->kworker);
240                         pr_err("failed to create ptp aux_worker %d\n", err);
241                         goto kworker_err;
242                 }
243         }
244
245         err = ptp_populate_pin_groups(ptp);
246         if (err)
247                 goto no_pin_groups;
248
249         /* Register a new PPS source. */
250         if (info->pps) {
251                 struct pps_source_info pps;
252                 memset(&pps, 0, sizeof(pps));
253                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
254                 pps.mode = PTP_PPS_MODE;
255                 pps.owner = info->owner;
256                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
257                 if (IS_ERR(ptp->pps_source)) {
258                         err = PTR_ERR(ptp->pps_source);
259                         pr_err("failed to register pps source\n");
260                         goto no_pps;
261                 }
262         }
263
264         /* Initialize a new device of our class in our clock structure. */
265         device_initialize(&ptp->dev);
266         ptp->dev.devt = ptp->devid;
267         ptp->dev.class = ptp_class;
268         ptp->dev.parent = parent;
269         ptp->dev.groups = ptp->pin_attr_groups;
270         ptp->dev.release = ptp_clock_release;
271         dev_set_drvdata(&ptp->dev, ptp);
272         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
273
274         /* Create a posix clock and link it to the device. */
275         err = posix_clock_register(&ptp->clock, &ptp->dev);
276         if (err) {
277                 pr_err("failed to create posix clock\n");
278                 goto no_clock;
279         }
280
281         return ptp;
282
283 no_clock:
284         if (ptp->pps_source)
285                 pps_unregister_source(ptp->pps_source);
286 no_pps:
287         ptp_cleanup_pin_groups(ptp);
288 no_pin_groups:
289         if (ptp->kworker)
290                 kthread_destroy_worker(ptp->kworker);
291 kworker_err:
292         mutex_destroy(&ptp->tsevq_mux);
293         mutex_destroy(&ptp->pincfg_mux);
294         ida_simple_remove(&ptp_clocks_map, index);
295 no_slot:
296         kfree(ptp);
297 no_memory:
298         return ERR_PTR(err);
299 }
300 EXPORT_SYMBOL(ptp_clock_register);
301
302 int ptp_clock_unregister(struct ptp_clock *ptp)
303 {
304         ptp->defunct = 1;
305         wake_up_interruptible(&ptp->tsev_wq);
306
307         if (ptp->kworker) {
308                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
309                 kthread_destroy_worker(ptp->kworker);
310         }
311
312         /* Release the clock's resources. */
313         if (ptp->pps_source)
314                 pps_unregister_source(ptp->pps_source);
315
316         posix_clock_unregister(&ptp->clock);
317
318         return 0;
319 }
320 EXPORT_SYMBOL(ptp_clock_unregister);
321
322 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
323 {
324         struct pps_event_time evt;
325
326         switch (event->type) {
327
328         case PTP_CLOCK_ALARM:
329                 break;
330
331         case PTP_CLOCK_EXTTS:
332                 enqueue_external_timestamp(&ptp->tsevq, event);
333                 wake_up_interruptible(&ptp->tsev_wq);
334                 break;
335
336         case PTP_CLOCK_PPS:
337                 pps_get_ts(&evt);
338                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
339                 break;
340
341         case PTP_CLOCK_PPSUSR:
342                 pps_event(ptp->pps_source, &event->pps_times,
343                           PTP_PPS_EVENT, NULL);
344                 break;
345         }
346 }
347 EXPORT_SYMBOL(ptp_clock_event);
348
349 int ptp_clock_index(struct ptp_clock *ptp)
350 {
351         return ptp->index;
352 }
353 EXPORT_SYMBOL(ptp_clock_index);
354
355 int ptp_find_pin(struct ptp_clock *ptp,
356                  enum ptp_pin_function func, unsigned int chan)
357 {
358         struct ptp_pin_desc *pin = NULL;
359         int i;
360
361         for (i = 0; i < ptp->info->n_pins; i++) {
362                 if (ptp->info->pin_config[i].func == func &&
363                     ptp->info->pin_config[i].chan == chan) {
364                         pin = &ptp->info->pin_config[i];
365                         break;
366                 }
367         }
368
369         return pin ? i : -1;
370 }
371 EXPORT_SYMBOL(ptp_find_pin);
372
373 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
374                           enum ptp_pin_function func, unsigned int chan)
375 {
376         int result;
377
378         mutex_lock(&ptp->pincfg_mux);
379
380         result = ptp_find_pin(ptp, func, chan);
381
382         mutex_unlock(&ptp->pincfg_mux);
383
384         return result;
385 }
386 EXPORT_SYMBOL(ptp_find_pin_unlocked);
387
388 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
389 {
390         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
391 }
392 EXPORT_SYMBOL(ptp_schedule_worker);
393
394 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
395 {
396         kthread_cancel_delayed_work_sync(&ptp->aux_work);
397 }
398 EXPORT_SYMBOL(ptp_cancel_worker_sync);
399
400 /* module operations */
401
402 static void __exit ptp_exit(void)
403 {
404         class_destroy(ptp_class);
405         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
406         ida_destroy(&ptp_clocks_map);
407 }
408
409 static int __init ptp_init(void)
410 {
411         int err;
412
413         ptp_class = class_create(THIS_MODULE, "ptp");
414         if (IS_ERR(ptp_class)) {
415                 pr_err("ptp: failed to allocate class\n");
416                 return PTR_ERR(ptp_class);
417         }
418
419         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
420         if (err < 0) {
421                 pr_err("ptp: failed to allocate device region\n");
422                 goto no_region;
423         }
424
425         ptp_class->dev_groups = ptp_groups;
426         pr_info("PTP clock support registered\n");
427         return 0;
428
429 no_region:
430         class_destroy(ptp_class);
431         return err;
432 }
433
434 subsys_initcall(ptp_init);
435 module_exit(ptp_exit);
436
437 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
438 MODULE_DESCRIPTION("PTP clocks support");
439 MODULE_LICENSE("GPL");