GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / pmdomain / qcom / cpr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2019, Linaro Limited
5  */
6
7 #include <linux/module.h>
8 #include <linux/err.h>
9 #include <linux/debugfs.h>
10 #include <linux/string.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_domain.h>
20 #include <linux/pm_opp.h>
21 #include <linux/interrupt.h>
22 #include <linux/regmap.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/clk.h>
26 #include <linux/nvmem-consumer.h>
27
28 /* Register Offsets for RB-CPR and Bit Definitions */
29
30 /* RBCPR Version Register */
31 #define REG_RBCPR_VERSION               0
32 #define RBCPR_VER_2                     0x02
33 #define FLAGS_IGNORE_1ST_IRQ_STATUS     BIT(0)
34
35 /* RBCPR Gate Count and Target Registers */
36 #define REG_RBCPR_GCNT_TARGET(n)        (0x60 + 4 * (n))
37
38 #define RBCPR_GCNT_TARGET_TARGET_SHIFT  0
39 #define RBCPR_GCNT_TARGET_TARGET_MASK   GENMASK(11, 0)
40 #define RBCPR_GCNT_TARGET_GCNT_SHIFT    12
41 #define RBCPR_GCNT_TARGET_GCNT_MASK     GENMASK(9, 0)
42
43 /* RBCPR Timer Control */
44 #define REG_RBCPR_TIMER_INTERVAL        0x44
45 #define REG_RBIF_TIMER_ADJUST           0x4c
46
47 #define RBIF_TIMER_ADJ_CONS_UP_MASK     GENMASK(3, 0)
48 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT    0
49 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK   GENMASK(3, 0)
50 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT  4
51 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK   GENMASK(7, 0)
52 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT  8
53
54 /* RBCPR Config Register */
55 #define REG_RBIF_LIMIT                  0x48
56 #define RBIF_LIMIT_CEILING_MASK         GENMASK(5, 0)
57 #define RBIF_LIMIT_CEILING_SHIFT        6
58 #define RBIF_LIMIT_FLOOR_BITS           6
59 #define RBIF_LIMIT_FLOOR_MASK           GENMASK(5, 0)
60
61 #define RBIF_LIMIT_CEILING_DEFAULT      RBIF_LIMIT_CEILING_MASK
62 #define RBIF_LIMIT_FLOOR_DEFAULT        0
63
64 #define REG_RBIF_SW_VLEVEL              0x94
65 #define RBIF_SW_VLEVEL_DEFAULT          0x20
66
67 #define REG_RBCPR_STEP_QUOT             0x80
68 #define RBCPR_STEP_QUOT_STEPQUOT_MASK   GENMASK(7, 0)
69 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK   GENMASK(3, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT  8
71
72 /* RBCPR Control Register */
73 #define REG_RBCPR_CTL                   0x90
74
75 #define RBCPR_CTL_LOOP_EN                       BIT(0)
76 #define RBCPR_CTL_TIMER_EN                      BIT(3)
77 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN           BIT(5)
78 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN       BIT(6)
79 #define RBCPR_CTL_COUNT_MODE                    BIT(10)
80 #define RBCPR_CTL_UP_THRESHOLD_MASK     GENMASK(3, 0)
81 #define RBCPR_CTL_UP_THRESHOLD_SHIFT    24
82 #define RBCPR_CTL_DN_THRESHOLD_MASK     GENMASK(3, 0)
83 #define RBCPR_CTL_DN_THRESHOLD_SHIFT    28
84
85 /* RBCPR Ack/Nack Response */
86 #define REG_RBIF_CONT_ACK_CMD           0x98
87 #define REG_RBIF_CONT_NACK_CMD          0x9c
88
89 /* RBCPR Result status Register */
90 #define REG_RBCPR_RESULT_0              0xa0
91
92 #define RBCPR_RESULT0_BUSY_SHIFT        19
93 #define RBCPR_RESULT0_BUSY_MASK         BIT(RBCPR_RESULT0_BUSY_SHIFT)
94 #define RBCPR_RESULT0_ERROR_LT0_SHIFT   18
95 #define RBCPR_RESULT0_ERROR_SHIFT       6
96 #define RBCPR_RESULT0_ERROR_MASK        GENMASK(11, 0)
97 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
98 #define RBCPR_RESULT0_ERROR_STEPS_MASK  GENMASK(3, 0)
99 #define RBCPR_RESULT0_STEP_UP_SHIFT     1
100
101 /* RBCPR Interrupt Control Register */
102 #define REG_RBIF_IRQ_EN(n)              (0x100 + 4 * (n))
103 #define REG_RBIF_IRQ_CLEAR              0x110
104 #define REG_RBIF_IRQ_STATUS             0x114
105
106 #define CPR_INT_DONE            BIT(0)
107 #define CPR_INT_MIN             BIT(1)
108 #define CPR_INT_DOWN            BIT(2)
109 #define CPR_INT_MID             BIT(3)
110 #define CPR_INT_UP              BIT(4)
111 #define CPR_INT_MAX             BIT(5)
112 #define CPR_INT_CLAMP           BIT(6)
113 #define CPR_INT_ALL     (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
114                         CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
115 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
116
117 #define CPR_NUM_RING_OSC        8
118
119 /* CPR eFuse parameters */
120 #define CPR_FUSE_TARGET_QUOT_BITS_MASK  GENMASK(11, 0)
121
122 #define CPR_FUSE_MIN_QUOT_DIFF          50
123
124 #define FUSE_REVISION_UNKNOWN           (-1)
125
126 enum voltage_change_dir {
127         NO_CHANGE,
128         DOWN,
129         UP,
130 };
131
132 struct cpr_fuse {
133         char *ring_osc;
134         char *init_voltage;
135         char *quotient;
136         char *quotient_offset;
137 };
138
139 struct fuse_corner_data {
140         int ref_uV;
141         int max_uV;
142         int min_uV;
143         int max_volt_scale;
144         int max_quot_scale;
145         /* fuse quot */
146         int quot_offset;
147         int quot_scale;
148         int quot_adjust;
149         /* fuse quot_offset */
150         int quot_offset_scale;
151         int quot_offset_adjust;
152 };
153
154 struct cpr_fuses {
155         int init_voltage_step;
156         int init_voltage_width;
157         struct fuse_corner_data *fuse_corner_data;
158 };
159
160 struct corner_data {
161         unsigned int fuse_corner;
162         unsigned long freq;
163 };
164
165 struct cpr_desc {
166         unsigned int num_fuse_corners;
167         int min_diff_quot;
168         int *step_quot;
169
170         unsigned int            timer_delay_us;
171         unsigned int            timer_cons_up;
172         unsigned int            timer_cons_down;
173         unsigned int            up_threshold;
174         unsigned int            down_threshold;
175         unsigned int            idle_clocks;
176         unsigned int            gcnt_us;
177         unsigned int            vdd_apc_step_up_limit;
178         unsigned int            vdd_apc_step_down_limit;
179         unsigned int            clamp_timer_interval;
180
181         struct cpr_fuses cpr_fuses;
182         bool reduce_to_fuse_uV;
183         bool reduce_to_corner_uV;
184 };
185
186 struct acc_desc {
187         unsigned int    enable_reg;
188         u32             enable_mask;
189
190         struct reg_sequence     *config;
191         struct reg_sequence     *settings;
192         int                     num_regs_per_fuse;
193 };
194
195 struct cpr_acc_desc {
196         const struct cpr_desc *cpr_desc;
197         const struct acc_desc *acc_desc;
198 };
199
200 struct fuse_corner {
201         int min_uV;
202         int max_uV;
203         int uV;
204         int quot;
205         int step_quot;
206         const struct reg_sequence *accs;
207         int num_accs;
208         unsigned long max_freq;
209         u8 ring_osc_idx;
210 };
211
212 struct corner {
213         int min_uV;
214         int max_uV;
215         int uV;
216         int last_uV;
217         int quot_adjust;
218         u32 save_ctl;
219         u32 save_irq;
220         unsigned long freq;
221         struct fuse_corner *fuse_corner;
222 };
223
224 struct cpr_drv {
225         unsigned int            num_corners;
226         unsigned int            ref_clk_khz;
227
228         struct generic_pm_domain pd;
229         struct device           *dev;
230         struct device           *attached_cpu_dev;
231         struct mutex            lock;
232         void __iomem            *base;
233         struct corner           *corner;
234         struct regulator        *vdd_apc;
235         struct clk              *cpu_clk;
236         struct regmap           *tcsr;
237         bool                    loop_disabled;
238         u32                     gcnt;
239         unsigned long           flags;
240
241         struct fuse_corner      *fuse_corners;
242         struct corner           *corners;
243
244         const struct cpr_desc *desc;
245         const struct acc_desc *acc_desc;
246         const struct cpr_fuse *cpr_fuses;
247
248         struct dentry *debugfs;
249 };
250
251 static bool cpr_is_allowed(struct cpr_drv *drv)
252 {
253         return !drv->loop_disabled;
254 }
255
256 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
257 {
258         writel_relaxed(value, drv->base + offset);
259 }
260
261 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
262 {
263         return readl_relaxed(drv->base + offset);
264 }
265
266 static void
267 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
268 {
269         u32 val;
270
271         val = readl_relaxed(drv->base + offset);
272         val &= ~mask;
273         val |= value & mask;
274         writel_relaxed(val, drv->base + offset);
275 }
276
277 static void cpr_irq_clr(struct cpr_drv *drv)
278 {
279         cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
280 }
281
282 static void cpr_irq_clr_nack(struct cpr_drv *drv)
283 {
284         cpr_irq_clr(drv);
285         cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
286 }
287
288 static void cpr_irq_clr_ack(struct cpr_drv *drv)
289 {
290         cpr_irq_clr(drv);
291         cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
292 }
293
294 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
295 {
296         cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
297 }
298
299 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
300 {
301         cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
302 }
303
304 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
305 {
306         u32 val, mask;
307         const struct cpr_desc *desc = drv->desc;
308
309         /* Program Consecutive Up & Down */
310         val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
311         val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
312         mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
313         cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
314         cpr_masked_write(drv, REG_RBCPR_CTL,
315                          RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
316                          RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
317                          corner->save_ctl);
318         cpr_irq_set(drv, corner->save_irq);
319
320         if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
321                 val = RBCPR_CTL_LOOP_EN;
322         else
323                 val = 0;
324         cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
325 }
326
327 static void cpr_ctl_disable(struct cpr_drv *drv)
328 {
329         cpr_irq_set(drv, 0);
330         cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
331                        RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
332         cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
333                          RBIF_TIMER_ADJ_CONS_UP_MASK |
334                          RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
335         cpr_irq_clr(drv);
336         cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
337         cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
338         cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
339 }
340
341 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
342 {
343         u32 reg_val;
344
345         reg_val = cpr_read(drv, REG_RBCPR_CTL);
346         return reg_val & RBCPR_CTL_LOOP_EN;
347 }
348
349 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
350 {
351         u32 reg_val;
352
353         reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
354         return reg_val & RBCPR_RESULT0_BUSY_MASK;
355 }
356
357 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
358 {
359         corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
360         corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
361 }
362
363 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
364 {
365         u32 gcnt, ctl, irq, ro_sel, step_quot;
366         struct fuse_corner *fuse = corner->fuse_corner;
367         const struct cpr_desc *desc = drv->desc;
368         int i;
369
370         ro_sel = fuse->ring_osc_idx;
371         gcnt = drv->gcnt;
372         gcnt |= fuse->quot - corner->quot_adjust;
373
374         /* Program the step quotient and idle clocks */
375         step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
376         step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
377         cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
378
379         /* Clear the target quotient value and gate count of all ROs */
380         for (i = 0; i < CPR_NUM_RING_OSC; i++)
381                 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
382
383         cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
384         ctl = corner->save_ctl;
385         cpr_write(drv, REG_RBCPR_CTL, ctl);
386         irq = corner->save_irq;
387         cpr_irq_set(drv, irq);
388         dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
389                 ctl, irq);
390 }
391
392 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
393                         struct fuse_corner *end)
394 {
395         if (f == end)
396                 return;
397
398         if (f < end) {
399                 for (f += 1; f <= end; f++)
400                         regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
401         } else {
402                 for (f -= 1; f >= end; f--)
403                         regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
404         }
405 }
406
407 static int cpr_pre_voltage(struct cpr_drv *drv,
408                            struct fuse_corner *fuse_corner,
409                            enum voltage_change_dir dir)
410 {
411         struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
412
413         if (drv->tcsr && dir == DOWN)
414                 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
415
416         return 0;
417 }
418
419 static int cpr_post_voltage(struct cpr_drv *drv,
420                             struct fuse_corner *fuse_corner,
421                             enum voltage_change_dir dir)
422 {
423         struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
424
425         if (drv->tcsr && dir == UP)
426                 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
427
428         return 0;
429 }
430
431 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
432                              int new_uV, enum voltage_change_dir dir)
433 {
434         int ret;
435         struct fuse_corner *fuse_corner = corner->fuse_corner;
436
437         ret = cpr_pre_voltage(drv, fuse_corner, dir);
438         if (ret)
439                 return ret;
440
441         ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
442         if (ret) {
443                 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
444                                     new_uV);
445                 return ret;
446         }
447
448         ret = cpr_post_voltage(drv, fuse_corner, dir);
449         if (ret)
450                 return ret;
451
452         return 0;
453 }
454
455 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
456 {
457         return drv->corner ? drv->corner - drv->corners + 1 : 0;
458 }
459
460 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
461 {
462         u32 val, error_steps, reg_mask;
463         int last_uV, new_uV, step_uV, ret;
464         struct corner *corner;
465         const struct cpr_desc *desc = drv->desc;
466
467         if (dir != UP && dir != DOWN)
468                 return 0;
469
470         step_uV = regulator_get_linear_step(drv->vdd_apc);
471         if (!step_uV)
472                 return -EINVAL;
473
474         corner = drv->corner;
475
476         val = cpr_read(drv, REG_RBCPR_RESULT_0);
477
478         error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
479         error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
480         last_uV = corner->last_uV;
481
482         if (dir == UP) {
483                 if (desc->clamp_timer_interval &&
484                     error_steps < desc->up_threshold) {
485                         /*
486                          * Handle the case where another measurement started
487                          * after the interrupt was triggered due to a core
488                          * exiting from power collapse.
489                          */
490                         error_steps = max(desc->up_threshold,
491                                           desc->vdd_apc_step_up_limit);
492                 }
493
494                 if (last_uV >= corner->max_uV) {
495                         cpr_irq_clr_nack(drv);
496
497                         /* Maximize the UP threshold */
498                         reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
499                         reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
500                         val = reg_mask;
501                         cpr_ctl_modify(drv, reg_mask, val);
502
503                         /* Disable UP interrupt */
504                         cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
505
506                         return 0;
507                 }
508
509                 if (error_steps > desc->vdd_apc_step_up_limit)
510                         error_steps = desc->vdd_apc_step_up_limit;
511
512                 /* Calculate new voltage */
513                 new_uV = last_uV + error_steps * step_uV;
514                 new_uV = min(new_uV, corner->max_uV);
515
516                 dev_dbg(drv->dev,
517                         "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
518                         new_uV, last_uV, cpr_get_cur_perf_state(drv));
519         } else {
520                 if (desc->clamp_timer_interval &&
521                     error_steps < desc->down_threshold) {
522                         /*
523                          * Handle the case where another measurement started
524                          * after the interrupt was triggered due to a core
525                          * exiting from power collapse.
526                          */
527                         error_steps = max(desc->down_threshold,
528                                           desc->vdd_apc_step_down_limit);
529                 }
530
531                 if (last_uV <= corner->min_uV) {
532                         cpr_irq_clr_nack(drv);
533
534                         /* Enable auto nack down */
535                         reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
536                         val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537
538                         cpr_ctl_modify(drv, reg_mask, val);
539
540                         /* Disable DOWN interrupt */
541                         cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
542
543                         return 0;
544                 }
545
546                 if (error_steps > desc->vdd_apc_step_down_limit)
547                         error_steps = desc->vdd_apc_step_down_limit;
548
549                 /* Calculate new voltage */
550                 new_uV = last_uV - error_steps * step_uV;
551                 new_uV = max(new_uV, corner->min_uV);
552
553                 dev_dbg(drv->dev,
554                         "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
555                         new_uV, last_uV, cpr_get_cur_perf_state(drv));
556         }
557
558         ret = cpr_scale_voltage(drv, corner, new_uV, dir);
559         if (ret) {
560                 cpr_irq_clr_nack(drv);
561                 return ret;
562         }
563         drv->corner->last_uV = new_uV;
564
565         if (dir == UP) {
566                 /* Disable auto nack down */
567                 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
568                 val = 0;
569         } else {
570                 /* Restore default threshold for UP */
571                 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
572                 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
573                 val = desc->up_threshold;
574                 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
575         }
576
577         cpr_ctl_modify(drv, reg_mask, val);
578
579         /* Re-enable default interrupts */
580         cpr_irq_set(drv, CPR_INT_DEFAULT);
581
582         /* Ack */
583         cpr_irq_clr_ack(drv);
584
585         return 0;
586 }
587
588 static irqreturn_t cpr_irq_handler(int irq, void *dev)
589 {
590         struct cpr_drv *drv = dev;
591         const struct cpr_desc *desc = drv->desc;
592         irqreturn_t ret = IRQ_HANDLED;
593         u32 val;
594
595         mutex_lock(&drv->lock);
596
597         val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
598         if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
599                 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
600
601         dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
602
603         if (!cpr_ctl_is_enabled(drv)) {
604                 dev_dbg(drv->dev, "CPR is disabled\n");
605                 ret = IRQ_NONE;
606         } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
607                 dev_dbg(drv->dev, "CPR measurement is not ready\n");
608         } else if (!cpr_is_allowed(drv)) {
609                 val = cpr_read(drv, REG_RBCPR_CTL);
610                 dev_err_ratelimited(drv->dev,
611                                     "Interrupt broken? RBCPR_CTL = %#02x\n",
612                                     val);
613                 ret = IRQ_NONE;
614         } else {
615                 /*
616                  * Following sequence of handling is as per each IRQ's
617                  * priority
618                  */
619                 if (val & CPR_INT_UP) {
620                         cpr_scale(drv, UP);
621                 } else if (val & CPR_INT_DOWN) {
622                         cpr_scale(drv, DOWN);
623                 } else if (val & CPR_INT_MIN) {
624                         cpr_irq_clr_nack(drv);
625                 } else if (val & CPR_INT_MAX) {
626                         cpr_irq_clr_nack(drv);
627                 } else if (val & CPR_INT_MID) {
628                         /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
629                         dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
630                 } else {
631                         dev_dbg(drv->dev,
632                                 "IRQ occurred for unknown flag (%#08x)\n", val);
633                 }
634
635                 /* Save register values for the corner */
636                 cpr_corner_save(drv, drv->corner);
637         }
638
639         mutex_unlock(&drv->lock);
640
641         return ret;
642 }
643
644 static int cpr_enable(struct cpr_drv *drv)
645 {
646         int ret;
647
648         ret = regulator_enable(drv->vdd_apc);
649         if (ret)
650                 return ret;
651
652         mutex_lock(&drv->lock);
653
654         if (cpr_is_allowed(drv) && drv->corner) {
655                 cpr_irq_clr(drv);
656                 cpr_corner_restore(drv, drv->corner);
657                 cpr_ctl_enable(drv, drv->corner);
658         }
659
660         mutex_unlock(&drv->lock);
661
662         return 0;
663 }
664
665 static int cpr_disable(struct cpr_drv *drv)
666 {
667         mutex_lock(&drv->lock);
668
669         if (cpr_is_allowed(drv)) {
670                 cpr_ctl_disable(drv);
671                 cpr_irq_clr(drv);
672         }
673
674         mutex_unlock(&drv->lock);
675
676         return regulator_disable(drv->vdd_apc);
677 }
678
679 static int cpr_config(struct cpr_drv *drv)
680 {
681         int i;
682         u32 val, gcnt;
683         struct corner *corner;
684         const struct cpr_desc *desc = drv->desc;
685
686         /* Disable interrupt and CPR */
687         cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
688         cpr_write(drv, REG_RBCPR_CTL, 0);
689
690         /* Program the default HW ceiling, floor and vlevel */
691         val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
692                 << RBIF_LIMIT_CEILING_SHIFT;
693         val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
694         cpr_write(drv, REG_RBIF_LIMIT, val);
695         cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
696
697         /*
698          * Clear the target quotient value and gate count of all
699          * ring oscillators
700          */
701         for (i = 0; i < CPR_NUM_RING_OSC; i++)
702                 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
703
704         /* Init and save gcnt */
705         gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
706         gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
707         gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
708         drv->gcnt = gcnt;
709
710         /* Program the delay count for the timer */
711         val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
712         cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
713         dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
714                 desc->timer_delay_us);
715
716         /* Program Consecutive Up & Down */
717         val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
718         val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
719         val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
720         cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
721
722         /* Program the control register */
723         val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
724         val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
725         val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
726         val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
727         cpr_write(drv, REG_RBCPR_CTL, val);
728
729         for (i = 0; i < drv->num_corners; i++) {
730                 corner = &drv->corners[i];
731                 corner->save_ctl = val;
732                 corner->save_irq = CPR_INT_DEFAULT;
733         }
734
735         cpr_irq_set(drv, CPR_INT_DEFAULT);
736
737         val = cpr_read(drv, REG_RBCPR_VERSION);
738         if (val <= RBCPR_VER_2)
739                 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
740
741         return 0;
742 }
743
744 static int cpr_set_performance_state(struct generic_pm_domain *domain,
745                                      unsigned int state)
746 {
747         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
748         struct corner *corner, *end;
749         enum voltage_change_dir dir;
750         int ret = 0, new_uV;
751
752         mutex_lock(&drv->lock);
753
754         dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
755                 __func__, state, cpr_get_cur_perf_state(drv));
756
757         /*
758          * Determine new corner we're going to.
759          * Remove one since lowest performance state is 1.
760          */
761         corner = drv->corners + state - 1;
762         end = &drv->corners[drv->num_corners - 1];
763         if (corner > end || corner < drv->corners) {
764                 ret = -EINVAL;
765                 goto unlock;
766         }
767
768         /* Determine direction */
769         if (drv->corner > corner)
770                 dir = DOWN;
771         else if (drv->corner < corner)
772                 dir = UP;
773         else
774                 dir = NO_CHANGE;
775
776         if (cpr_is_allowed(drv))
777                 new_uV = corner->last_uV;
778         else
779                 new_uV = corner->uV;
780
781         if (cpr_is_allowed(drv))
782                 cpr_ctl_disable(drv);
783
784         ret = cpr_scale_voltage(drv, corner, new_uV, dir);
785         if (ret)
786                 goto unlock;
787
788         if (cpr_is_allowed(drv)) {
789                 cpr_irq_clr(drv);
790                 if (drv->corner != corner)
791                         cpr_corner_restore(drv, corner);
792                 cpr_ctl_enable(drv, corner);
793         }
794
795         drv->corner = corner;
796
797 unlock:
798         mutex_unlock(&drv->lock);
799
800         return ret;
801 }
802
803 static int
804 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
805 {
806         struct fuse_corner *fuse = drv->fuse_corners;
807         struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
808         const struct cpr_fuse *fuses = drv->cpr_fuses;
809         u32 data;
810         int ret;
811
812         for (; fuse < end; fuse++, fuses++) {
813                 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
814                 if (ret)
815                         return ret;
816                 fuse->ring_osc_idx = data;
817         }
818
819         return 0;
820 }
821
822 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
823                             const struct fuse_corner_data *fdata,
824                             const char *init_v_efuse,
825                             int step_volt,
826                             struct cpr_drv *drv)
827 {
828         int step_size_uV, steps, uV;
829         u32 bits = 0;
830         int ret;
831
832         ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
833         if (ret)
834                 return ret;
835
836         steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
837         /* Not two's complement.. instead highest bit is sign bit */
838         if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
839                 steps = -steps;
840
841         step_size_uV = desc->cpr_fuses.init_voltage_step;
842
843         uV = fdata->ref_uV + steps * step_size_uV;
844         return DIV_ROUND_UP(uV, step_volt) * step_volt;
845 }
846
847 static int cpr_fuse_corner_init(struct cpr_drv *drv)
848 {
849         const struct cpr_desc *desc = drv->desc;
850         const struct cpr_fuse *fuses = drv->cpr_fuses;
851         const struct acc_desc *acc_desc = drv->acc_desc;
852         int i;
853         unsigned int step_volt;
854         struct fuse_corner_data *fdata;
855         struct fuse_corner *fuse, *end;
856         int uV;
857         const struct reg_sequence *accs;
858         int ret;
859
860         accs = acc_desc->settings;
861
862         step_volt = regulator_get_linear_step(drv->vdd_apc);
863         if (!step_volt)
864                 return -EINVAL;
865
866         /* Populate fuse_corner members */
867         fuse = drv->fuse_corners;
868         end = &fuse[desc->num_fuse_corners - 1];
869         fdata = desc->cpr_fuses.fuse_corner_data;
870
871         for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
872                 /*
873                  * Update SoC voltages: platforms might choose a different
874                  * regulators than the one used to characterize the algorithms
875                  * (ie, init_voltage_step).
876                  */
877                 fdata->min_uV = roundup(fdata->min_uV, step_volt);
878                 fdata->max_uV = roundup(fdata->max_uV, step_volt);
879
880                 /* Populate uV */
881                 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
882                                       step_volt, drv);
883                 if (uV < 0)
884                         return uV;
885
886                 fuse->min_uV = fdata->min_uV;
887                 fuse->max_uV = fdata->max_uV;
888                 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
889
890                 if (fuse == end) {
891                         /*
892                          * Allow the highest fuse corner's PVS voltage to
893                          * define the ceiling voltage for that corner in order
894                          * to support SoC's in which variable ceiling values
895                          * are required.
896                          */
897                         end->max_uV = max(end->max_uV, end->uV);
898                 }
899
900                 /* Populate target quotient by scaling */
901                 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
902                 if (ret)
903                         return ret;
904
905                 fuse->quot *= fdata->quot_scale;
906                 fuse->quot += fdata->quot_offset;
907                 fuse->quot += fdata->quot_adjust;
908                 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
909
910                 /* Populate acc settings */
911                 fuse->accs = accs;
912                 fuse->num_accs = acc_desc->num_regs_per_fuse;
913                 accs += acc_desc->num_regs_per_fuse;
914         }
915
916         /*
917          * Restrict all fuse corner PVS voltages based upon per corner
918          * ceiling and floor voltages.
919          */
920         for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
921                 if (fuse->uV > fuse->max_uV)
922                         fuse->uV = fuse->max_uV;
923                 else if (fuse->uV < fuse->min_uV)
924                         fuse->uV = fuse->min_uV;
925
926                 ret = regulator_is_supported_voltage(drv->vdd_apc,
927                                                      fuse->min_uV,
928                                                      fuse->min_uV);
929                 if (!ret) {
930                         dev_err(drv->dev,
931                                 "min uV: %d (fuse corner: %d) not supported by regulator\n",
932                                 fuse->min_uV, i);
933                         return -EINVAL;
934                 }
935
936                 ret = regulator_is_supported_voltage(drv->vdd_apc,
937                                                      fuse->max_uV,
938                                                      fuse->max_uV);
939                 if (!ret) {
940                         dev_err(drv->dev,
941                                 "max uV: %d (fuse corner: %d) not supported by regulator\n",
942                                 fuse->max_uV, i);
943                         return -EINVAL;
944                 }
945
946                 dev_dbg(drv->dev,
947                         "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
948                         i, fuse->min_uV, fuse->uV, fuse->max_uV,
949                         fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
950         }
951
952         return 0;
953 }
954
955 static int cpr_calculate_scaling(const char *quot_offset,
956                                  struct cpr_drv *drv,
957                                  const struct fuse_corner_data *fdata,
958                                  const struct corner *corner)
959 {
960         u32 quot_diff = 0;
961         unsigned long freq_diff;
962         int scaling;
963         const struct fuse_corner *fuse, *prev_fuse;
964         int ret;
965
966         fuse = corner->fuse_corner;
967         prev_fuse = fuse - 1;
968
969         if (quot_offset) {
970                 ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff);
971                 if (ret)
972                         return ret;
973
974                 quot_diff *= fdata->quot_offset_scale;
975                 quot_diff += fdata->quot_offset_adjust;
976         } else {
977                 quot_diff = fuse->quot - prev_fuse->quot;
978         }
979
980         freq_diff = fuse->max_freq - prev_fuse->max_freq;
981         freq_diff /= 1000000; /* Convert to MHz */
982         scaling = 1000 * quot_diff / freq_diff;
983         return min(scaling, fdata->max_quot_scale);
984 }
985
986 static int cpr_interpolate(const struct corner *corner, int step_volt,
987                            const struct fuse_corner_data *fdata)
988 {
989         unsigned long f_high, f_low, f_diff;
990         int uV_high, uV_low, uV;
991         u64 temp, temp_limit;
992         const struct fuse_corner *fuse, *prev_fuse;
993
994         fuse = corner->fuse_corner;
995         prev_fuse = fuse - 1;
996
997         f_high = fuse->max_freq;
998         f_low = prev_fuse->max_freq;
999         uV_high = fuse->uV;
1000         uV_low = prev_fuse->uV;
1001         f_diff = fuse->max_freq - corner->freq;
1002
1003         /*
1004          * Don't interpolate in the wrong direction. This could happen
1005          * if the adjusted fuse voltage overlaps with the previous fuse's
1006          * adjusted voltage.
1007          */
1008         if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1009                 return corner->uV;
1010
1011         temp = f_diff * (uV_high - uV_low);
1012         temp = div64_ul(temp, f_high - f_low);
1013
1014         /*
1015          * max_volt_scale has units of uV/MHz while freq values
1016          * have units of Hz.  Divide by 1000000 to convert to.
1017          */
1018         temp_limit = f_diff * fdata->max_volt_scale;
1019         do_div(temp_limit, 1000000);
1020
1021         uV = uV_high - min(temp, temp_limit);
1022         return roundup(uV, step_volt);
1023 }
1024
1025 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1026 {
1027         struct device_node *np;
1028         unsigned int fuse_corner = 0;
1029
1030         np = dev_pm_opp_get_of_node(opp);
1031         if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1032                 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1033                        __func__);
1034
1035         of_node_put(np);
1036
1037         return fuse_corner;
1038 }
1039
1040 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1041                                             struct device *cpu_dev)
1042 {
1043         u64 rate = 0;
1044         struct device_node *ref_np;
1045         struct device_node *desc_np;
1046         struct device_node *child_np = NULL;
1047         struct device_node *child_req_np = NULL;
1048
1049         desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1050         if (!desc_np)
1051                 return 0;
1052
1053         ref_np = dev_pm_opp_get_of_node(ref);
1054         if (!ref_np)
1055                 goto out_ref;
1056
1057         do {
1058                 of_node_put(child_req_np);
1059                 child_np = of_get_next_available_child(desc_np, child_np);
1060                 child_req_np = of_parse_phandle(child_np, "required-opps", 0);
1061         } while (child_np && child_req_np != ref_np);
1062
1063         if (child_np && child_req_np == ref_np)
1064                 of_property_read_u64(child_np, "opp-hz", &rate);
1065
1066         of_node_put(child_req_np);
1067         of_node_put(child_np);
1068         of_node_put(ref_np);
1069 out_ref:
1070         of_node_put(desc_np);
1071
1072         return (unsigned long) rate;
1073 }
1074
1075 static int cpr_corner_init(struct cpr_drv *drv)
1076 {
1077         const struct cpr_desc *desc = drv->desc;
1078         const struct cpr_fuse *fuses = drv->cpr_fuses;
1079         int i, level, scaling = 0;
1080         unsigned int fnum, fc;
1081         const char *quot_offset;
1082         struct fuse_corner *fuse, *prev_fuse;
1083         struct corner *corner, *end;
1084         struct corner_data *cdata;
1085         const struct fuse_corner_data *fdata;
1086         bool apply_scaling;
1087         unsigned long freq_diff, freq_diff_mhz;
1088         unsigned long freq;
1089         int step_volt = regulator_get_linear_step(drv->vdd_apc);
1090         struct dev_pm_opp *opp;
1091
1092         if (!step_volt)
1093                 return -EINVAL;
1094
1095         corner = drv->corners;
1096         end = &corner[drv->num_corners - 1];
1097
1098         cdata = devm_kcalloc(drv->dev, drv->num_corners,
1099                              sizeof(struct corner_data),
1100                              GFP_KERNEL);
1101         if (!cdata)
1102                 return -ENOMEM;
1103
1104         /*
1105          * Store maximum frequency for each fuse corner based on the frequency
1106          * plan
1107          */
1108         for (level = 1; level <= drv->num_corners; level++) {
1109                 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1110                 if (IS_ERR(opp))
1111                         return -EINVAL;
1112                 fc = cpr_get_fuse_corner(opp);
1113                 if (!fc) {
1114                         dev_pm_opp_put(opp);
1115                         return -EINVAL;
1116                 }
1117                 fnum = fc - 1;
1118                 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1119                 if (!freq) {
1120                         dev_pm_opp_put(opp);
1121                         return -EINVAL;
1122                 }
1123                 cdata[level - 1].fuse_corner = fnum;
1124                 cdata[level - 1].freq = freq;
1125
1126                 fuse = &drv->fuse_corners[fnum];
1127                 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1128                         freq, dev_pm_opp_get_level(opp) - 1, fnum);
1129                 if (freq > fuse->max_freq)
1130                         fuse->max_freq = freq;
1131                 dev_pm_opp_put(opp);
1132         }
1133
1134         /*
1135          * Get the quotient adjustment scaling factor, according to:
1136          *
1137          * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1138          *              / (freq(corner_N) - freq(corner_N-1)), max_factor)
1139          *
1140          * QUOT(corner_N):      quotient read from fuse for fuse corner N
1141          * QUOT(corner_N-1):    quotient read from fuse for fuse corner (N - 1)
1142          * freq(corner_N):      max frequency in MHz supported by fuse corner N
1143          * freq(corner_N-1):    max frequency in MHz supported by fuse corner
1144          *                       (N - 1)
1145          *
1146          * Then walk through the corners mapped to each fuse corner
1147          * and calculate the quotient adjustment for each one using the
1148          * following formula:
1149          *
1150          * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1151          *
1152          * freq_max: max frequency in MHz supported by the fuse corner
1153          * freq_corner: frequency in MHz corresponding to the corner
1154          * scaling: calculated from above equation
1155          *
1156          *
1157          *     +                           +
1158          *     |                         v |
1159          *   q |           f c           o |           f c
1160          *   u |         c               l |         c
1161          *   o |       f                 t |       f
1162          *   t |     c                   a |     c
1163          *     | c f                     g | c f
1164          *     |                         e |
1165          *     +---------------            +----------------
1166          *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
1167          *          corner                      corner
1168          *
1169          *    c = corner
1170          *    f = fuse corner
1171          *
1172          */
1173         for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1174                 fnum = cdata[i].fuse_corner;
1175                 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1176                 quot_offset = fuses[fnum].quotient_offset;
1177                 fuse = &drv->fuse_corners[fnum];
1178                 if (fnum)
1179                         prev_fuse = &drv->fuse_corners[fnum - 1];
1180                 else
1181                         prev_fuse = NULL;
1182
1183                 corner->fuse_corner = fuse;
1184                 corner->freq = cdata[i].freq;
1185                 corner->uV = fuse->uV;
1186
1187                 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1188                         scaling = cpr_calculate_scaling(quot_offset, drv,
1189                                                         fdata, corner);
1190                         if (scaling < 0)
1191                                 return scaling;
1192
1193                         apply_scaling = true;
1194                 } else if (corner->freq == fuse->max_freq) {
1195                         /* This is a fuse corner; don't scale anything */
1196                         apply_scaling = false;
1197                 }
1198
1199                 if (apply_scaling) {
1200                         freq_diff = fuse->max_freq - corner->freq;
1201                         freq_diff_mhz = freq_diff / 1000000;
1202                         corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1203
1204                         corner->uV = cpr_interpolate(corner, step_volt, fdata);
1205                 }
1206
1207                 corner->max_uV = fuse->max_uV;
1208                 corner->min_uV = fuse->min_uV;
1209                 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1210                 corner->last_uV = corner->uV;
1211
1212                 /* Reduce the ceiling voltage if needed */
1213                 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1214                         corner->max_uV = corner->uV;
1215                 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1216                         corner->max_uV = max(corner->min_uV, fuse->uV);
1217
1218                 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1219                         corner->min_uV, corner->uV, corner->max_uV,
1220                         fuse->quot - corner->quot_adjust);
1221         }
1222
1223         return 0;
1224 }
1225
1226 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1227 {
1228         const struct cpr_desc *desc = drv->desc;
1229         struct cpr_fuse *fuses;
1230         int i;
1231
1232         fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1233                              sizeof(struct cpr_fuse),
1234                              GFP_KERNEL);
1235         if (!fuses)
1236                 return ERR_PTR(-ENOMEM);
1237
1238         for (i = 0; i < desc->num_fuse_corners; i++) {
1239                 char tbuf[32];
1240
1241                 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1242                 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1243                 if (!fuses[i].ring_osc)
1244                         return ERR_PTR(-ENOMEM);
1245
1246                 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1247                 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1248                                                      GFP_KERNEL);
1249                 if (!fuses[i].init_voltage)
1250                         return ERR_PTR(-ENOMEM);
1251
1252                 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1253                 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1254                 if (!fuses[i].quotient)
1255                         return ERR_PTR(-ENOMEM);
1256
1257                 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1258                 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1259                                                         GFP_KERNEL);
1260                 if (!fuses[i].quotient_offset)
1261                         return ERR_PTR(-ENOMEM);
1262         }
1263
1264         return fuses;
1265 }
1266
1267 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1268 {
1269         drv->loop_disabled = false;
1270 }
1271
1272 static int cpr_init_parameters(struct cpr_drv *drv)
1273 {
1274         const struct cpr_desc *desc = drv->desc;
1275         struct clk *clk;
1276
1277         clk = clk_get(drv->dev, "ref");
1278         if (IS_ERR(clk))
1279                 return PTR_ERR(clk);
1280
1281         drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1282         clk_put(clk);
1283
1284         if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1285             desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1286             desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1287             desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1288             desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1289             desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1290                 return -EINVAL;
1291
1292         dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1293                 desc->up_threshold, desc->down_threshold);
1294
1295         return 0;
1296 }
1297
1298 static int cpr_find_initial_corner(struct cpr_drv *drv)
1299 {
1300         unsigned long rate;
1301         const struct corner *end;
1302         struct corner *iter;
1303         unsigned int i = 0;
1304
1305         if (!drv->cpu_clk) {
1306                 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1307                 return -EINVAL;
1308         }
1309
1310         end = &drv->corners[drv->num_corners - 1];
1311         rate = clk_get_rate(drv->cpu_clk);
1312
1313         /*
1314          * Some bootloaders set a CPU clock frequency that is not defined
1315          * in the OPP table. When running at an unlisted frequency,
1316          * cpufreq_online() will change to the OPP which has the lowest
1317          * frequency, at or above the unlisted frequency.
1318          * Since cpufreq_online() always "rounds up" in the case of an
1319          * unlisted frequency, this function always "rounds down" in case
1320          * of an unlisted frequency. That way, when cpufreq_online()
1321          * triggers the first ever call to cpr_set_performance_state(),
1322          * it will correctly determine the direction as UP.
1323          */
1324         for (iter = drv->corners; iter <= end; iter++) {
1325                 if (iter->freq > rate)
1326                         break;
1327                 i++;
1328                 if (iter->freq == rate) {
1329                         drv->corner = iter;
1330                         break;
1331                 }
1332                 if (iter->freq < rate)
1333                         drv->corner = iter;
1334         }
1335
1336         if (!drv->corner) {
1337                 dev_err(drv->dev, "boot up corner not found\n");
1338                 return -EINVAL;
1339         }
1340
1341         dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1342
1343         return 0;
1344 }
1345
1346 static const struct cpr_desc qcs404_cpr_desc = {
1347         .num_fuse_corners = 3,
1348         .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1349         .step_quot = (int []){ 25, 25, 25, },
1350         .timer_delay_us = 5000,
1351         .timer_cons_up = 0,
1352         .timer_cons_down = 2,
1353         .up_threshold = 1,
1354         .down_threshold = 3,
1355         .idle_clocks = 15,
1356         .gcnt_us = 1,
1357         .vdd_apc_step_up_limit = 1,
1358         .vdd_apc_step_down_limit = 1,
1359         .cpr_fuses = {
1360                 .init_voltage_step = 8000,
1361                 .init_voltage_width = 6,
1362                 .fuse_corner_data = (struct fuse_corner_data[]){
1363                         /* fuse corner 0 */
1364                         {
1365                                 .ref_uV = 1224000,
1366                                 .max_uV = 1224000,
1367                                 .min_uV = 1048000,
1368                                 .max_volt_scale = 0,
1369                                 .max_quot_scale = 0,
1370                                 .quot_offset = 0,
1371                                 .quot_scale = 1,
1372                                 .quot_adjust = 0,
1373                                 .quot_offset_scale = 5,
1374                                 .quot_offset_adjust = 0,
1375                         },
1376                         /* fuse corner 1 */
1377                         {
1378                                 .ref_uV = 1288000,
1379                                 .max_uV = 1288000,
1380                                 .min_uV = 1048000,
1381                                 .max_volt_scale = 2000,
1382                                 .max_quot_scale = 1400,
1383                                 .quot_offset = 0,
1384                                 .quot_scale = 1,
1385                                 .quot_adjust = -20,
1386                                 .quot_offset_scale = 5,
1387                                 .quot_offset_adjust = 0,
1388                         },
1389                         /* fuse corner 2 */
1390                         {
1391                                 .ref_uV = 1352000,
1392                                 .max_uV = 1384000,
1393                                 .min_uV = 1088000,
1394                                 .max_volt_scale = 2000,
1395                                 .max_quot_scale = 1400,
1396                                 .quot_offset = 0,
1397                                 .quot_scale = 1,
1398                                 .quot_adjust = 0,
1399                                 .quot_offset_scale = 5,
1400                                 .quot_offset_adjust = 0,
1401                         },
1402                 },
1403         },
1404 };
1405
1406 static const struct acc_desc qcs404_acc_desc = {
1407         .settings = (struct reg_sequence[]){
1408                 { 0xb120, 0x1041040 },
1409                 { 0xb124, 0x41 },
1410                 { 0xb120, 0x0 },
1411                 { 0xb124, 0x0 },
1412                 { 0xb120, 0x0 },
1413                 { 0xb124, 0x0 },
1414         },
1415         .config = (struct reg_sequence[]){
1416                 { 0xb138, 0xff },
1417                 { 0xb130, 0x5555 },
1418         },
1419         .num_regs_per_fuse = 2,
1420 };
1421
1422 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1423         .cpr_desc = &qcs404_cpr_desc,
1424         .acc_desc = &qcs404_acc_desc,
1425 };
1426
1427 static int cpr_power_off(struct generic_pm_domain *domain)
1428 {
1429         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1430
1431         return cpr_disable(drv);
1432 }
1433
1434 static int cpr_power_on(struct generic_pm_domain *domain)
1435 {
1436         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1437
1438         return cpr_enable(drv);
1439 }
1440
1441 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1442                              struct device *dev)
1443 {
1444         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1445         const struct acc_desc *acc_desc = drv->acc_desc;
1446         int ret = 0;
1447
1448         mutex_lock(&drv->lock);
1449
1450         dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1451
1452         /*
1453          * This driver only supports scaling voltage for a CPU cluster
1454          * where all CPUs in the cluster share a single regulator.
1455          * Therefore, save the struct device pointer only for the first
1456          * CPU device that gets attached. There is no need to do any
1457          * additional initialization when further CPUs get attached.
1458          */
1459         if (drv->attached_cpu_dev)
1460                 goto unlock;
1461
1462         /*
1463          * cpr_scale_voltage() requires the direction (if we are changing
1464          * to a higher or lower OPP). The first time
1465          * cpr_set_performance_state() is called, there is no previous
1466          * performance state defined. Therefore, we call
1467          * cpr_find_initial_corner() that gets the CPU clock frequency
1468          * set by the bootloader, so that we can determine the direction
1469          * the first time cpr_set_performance_state() is called.
1470          */
1471         drv->cpu_clk = devm_clk_get(dev, NULL);
1472         if (IS_ERR(drv->cpu_clk)) {
1473                 ret = PTR_ERR(drv->cpu_clk);
1474                 if (ret != -EPROBE_DEFER)
1475                         dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
1476                 goto unlock;
1477         }
1478         drv->attached_cpu_dev = dev;
1479
1480         dev_dbg(drv->dev, "using cpu clk from: %s\n",
1481                 dev_name(drv->attached_cpu_dev));
1482
1483         /*
1484          * Everything related to (virtual) corners has to be initialized
1485          * here, when attaching to the power domain, since we need to know
1486          * the maximum frequency for each fuse corner, and this is only
1487          * available after the cpufreq driver has attached to us.
1488          * The reason for this is that we need to know the highest
1489          * frequency associated with each fuse corner.
1490          */
1491         ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1492         if (ret < 0) {
1493                 dev_err(drv->dev, "could not get OPP count\n");
1494                 goto unlock;
1495         }
1496         drv->num_corners = ret;
1497
1498         if (drv->num_corners < 2) {
1499                 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1500                 ret = -EINVAL;
1501                 goto unlock;
1502         }
1503
1504         drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1505                                     sizeof(*drv->corners),
1506                                     GFP_KERNEL);
1507         if (!drv->corners) {
1508                 ret = -ENOMEM;
1509                 goto unlock;
1510         }
1511
1512         ret = cpr_corner_init(drv);
1513         if (ret)
1514                 goto unlock;
1515
1516         cpr_set_loop_allowed(drv);
1517
1518         ret = cpr_init_parameters(drv);
1519         if (ret)
1520                 goto unlock;
1521
1522         /* Configure CPR HW but keep it disabled */
1523         ret = cpr_config(drv);
1524         if (ret)
1525                 goto unlock;
1526
1527         ret = cpr_find_initial_corner(drv);
1528         if (ret)
1529                 goto unlock;
1530
1531         if (acc_desc->config)
1532                 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1533                                        acc_desc->num_regs_per_fuse);
1534
1535         /* Enable ACC if required */
1536         if (acc_desc->enable_mask)
1537                 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1538                                    acc_desc->enable_mask,
1539                                    acc_desc->enable_mask);
1540
1541         dev_info(drv->dev, "driver initialized with %u OPPs\n",
1542                  drv->num_corners);
1543
1544 unlock:
1545         mutex_unlock(&drv->lock);
1546
1547         return ret;
1548 }
1549
1550 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1551 {
1552         u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1553         u32 step_dn, step_up, error, error_lt0, busy;
1554         struct cpr_drv *drv = s->private;
1555         struct fuse_corner *fuse_corner;
1556         struct corner *corner;
1557
1558         corner = drv->corner;
1559         fuse_corner = corner->fuse_corner;
1560
1561         seq_printf(s, "corner, current_volt = %d uV\n",
1562                        corner->last_uV);
1563
1564         ro_sel = fuse_corner->ring_osc_idx;
1565         gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1566         seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1567
1568         ctl = cpr_read(drv, REG_RBCPR_CTL);
1569         seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1570
1571         irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1572         seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1573
1574         reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1575         seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1576
1577         step_dn = reg & 0x01;
1578         step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1579         seq_printf(s, "  [step_dn = %u", step_dn);
1580
1581         seq_printf(s, ", step_up = %u", step_up);
1582
1583         error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1584                                 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1585         seq_printf(s, ", error_steps = %u", error_steps);
1586
1587         error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1588         seq_printf(s, ", error = %u", error);
1589
1590         error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1591         seq_printf(s, ", error_lt_0 = %u", error_lt0);
1592
1593         busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1594         seq_printf(s, ", busy = %u]\n", busy);
1595
1596         return 0;
1597 }
1598 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1599
1600 static void cpr_debugfs_init(struct cpr_drv *drv)
1601 {
1602         drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1603
1604         debugfs_create_file("debug_info", 0444, drv->debugfs,
1605                             drv, &cpr_debug_info_fops);
1606 }
1607
1608 static int cpr_probe(struct platform_device *pdev)
1609 {
1610         struct device *dev = &pdev->dev;
1611         struct cpr_drv *drv;
1612         int irq, ret;
1613         const struct cpr_acc_desc *data;
1614         struct device_node *np;
1615         u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1616
1617         data = of_device_get_match_data(dev);
1618         if (!data || !data->cpr_desc || !data->acc_desc)
1619                 return -EINVAL;
1620
1621         drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1622         if (!drv)
1623                 return -ENOMEM;
1624         drv->dev = dev;
1625         drv->desc = data->cpr_desc;
1626         drv->acc_desc = data->acc_desc;
1627
1628         drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1629                                          sizeof(*drv->fuse_corners),
1630                                          GFP_KERNEL);
1631         if (!drv->fuse_corners)
1632                 return -ENOMEM;
1633
1634         np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1635         if (!np)
1636                 return -ENODEV;
1637
1638         drv->tcsr = syscon_node_to_regmap(np);
1639         of_node_put(np);
1640         if (IS_ERR(drv->tcsr))
1641                 return PTR_ERR(drv->tcsr);
1642
1643         drv->base = devm_platform_ioremap_resource(pdev, 0);
1644         if (IS_ERR(drv->base))
1645                 return PTR_ERR(drv->base);
1646
1647         irq = platform_get_irq(pdev, 0);
1648         if (irq < 0)
1649                 return -EINVAL;
1650
1651         drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1652         if (IS_ERR(drv->vdd_apc))
1653                 return PTR_ERR(drv->vdd_apc);
1654
1655         /*
1656          * Initialize fuse corners, since it simply depends
1657          * on data in efuses.
1658          * Everything related to (virtual) corners has to be
1659          * initialized after attaching to the power domain,
1660          * since it depends on the CPU's OPP table.
1661          */
1662         ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
1663         if (ret)
1664                 return ret;
1665
1666         drv->cpr_fuses = cpr_get_fuses(drv);
1667         if (IS_ERR(drv->cpr_fuses))
1668                 return PTR_ERR(drv->cpr_fuses);
1669
1670         ret = cpr_populate_ring_osc_idx(drv);
1671         if (ret)
1672                 return ret;
1673
1674         ret = cpr_fuse_corner_init(drv);
1675         if (ret)
1676                 return ret;
1677
1678         mutex_init(&drv->lock);
1679
1680         ret = devm_request_threaded_irq(dev, irq, NULL,
1681                                         cpr_irq_handler,
1682                                         IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1683                                         "cpr", drv);
1684         if (ret)
1685                 return ret;
1686
1687         drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1688                                           GFP_KERNEL);
1689         if (!drv->pd.name)
1690                 return -EINVAL;
1691
1692         drv->pd.power_off = cpr_power_off;
1693         drv->pd.power_on = cpr_power_on;
1694         drv->pd.set_performance_state = cpr_set_performance_state;
1695         drv->pd.attach_dev = cpr_pd_attach_dev;
1696
1697         ret = pm_genpd_init(&drv->pd, NULL, true);
1698         if (ret)
1699                 return ret;
1700
1701         ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1702         if (ret)
1703                 goto err_remove_genpd;
1704
1705         platform_set_drvdata(pdev, drv);
1706         cpr_debugfs_init(drv);
1707
1708         return 0;
1709
1710 err_remove_genpd:
1711         pm_genpd_remove(&drv->pd);
1712         return ret;
1713 }
1714
1715 static void cpr_remove(struct platform_device *pdev)
1716 {
1717         struct cpr_drv *drv = platform_get_drvdata(pdev);
1718
1719         if (cpr_is_allowed(drv)) {
1720                 cpr_ctl_disable(drv);
1721                 cpr_irq_set(drv, 0);
1722         }
1723
1724         of_genpd_del_provider(pdev->dev.of_node);
1725         pm_genpd_remove(&drv->pd);
1726
1727         debugfs_remove_recursive(drv->debugfs);
1728 }
1729
1730 static const struct of_device_id cpr_match_table[] = {
1731         { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1732         { }
1733 };
1734 MODULE_DEVICE_TABLE(of, cpr_match_table);
1735
1736 static struct platform_driver cpr_driver = {
1737         .probe          = cpr_probe,
1738         .remove_new     = cpr_remove,
1739         .driver         = {
1740                 .name   = "qcom-cpr",
1741                 .of_match_table = cpr_match_table,
1742         },
1743 };
1744 module_platform_driver(cpr_driver);
1745
1746 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1747 MODULE_LICENSE("GPL v2");