GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19
20 #define CREATE_TRACE_POINTS
21 #include "cros_ec_sensorhub_trace.h"
22
23 /* Precision of fixed point for the m values from the filter */
24 #define M_PRECISION BIT(23)
25
26 /* Only activate the filter once we have at least this many elements. */
27 #define TS_HISTORY_THRESHOLD 8
28
29 /*
30  * If we don't have any history entries for this long, empty the filter to
31  * make sure there are no big discontinuities.
32  */
33 #define TS_HISTORY_BORED_US 500000
34
35 /* To measure by how much the filter is overshooting, if it happens. */
36 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
37
38 static inline int
39 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
40                            struct cros_ec_sensors_ring_sample *sample)
41 {
42         cros_ec_sensorhub_push_data_cb_t cb;
43         int id = sample->sensor_id;
44         struct iio_dev *indio_dev;
45
46         if (id >= sensorhub->sensor_num)
47                 return -EINVAL;
48
49         cb = sensorhub->push_data[id].push_data_cb;
50         if (!cb)
51                 return 0;
52
53         indio_dev = sensorhub->push_data[id].indio_dev;
54
55         if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
56                 return 0;
57
58         return cb(indio_dev, sample->vector, sample->timestamp);
59 }
60
61 /**
62  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
63  *
64  * @sensorhub : Sensor Hub object
65  * @sensor_num : The sensor the caller is interested in.
66  * @indio_dev : The iio device to use when a sample arrives.
67  * @cb : The callback to call when a sample arrives.
68  *
69  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
70  * from the EC.
71  *
72  * Return: 0 when callback is registered.
73  *         EINVAL is the sensor number is invalid or the slot already used.
74  */
75 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
76                                          u8 sensor_num,
77                                          struct iio_dev *indio_dev,
78                                          cros_ec_sensorhub_push_data_cb_t cb)
79 {
80         if (sensor_num >= sensorhub->sensor_num)
81                 return -EINVAL;
82         if (sensorhub->push_data[sensor_num].indio_dev)
83                 return -EINVAL;
84
85         sensorhub->push_data[sensor_num].indio_dev = indio_dev;
86         sensorhub->push_data[sensor_num].push_data_cb = cb;
87
88         return 0;
89 }
90 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
91
92 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
93                                             u8 sensor_num)
94 {
95         sensorhub->push_data[sensor_num].indio_dev = NULL;
96         sensorhub->push_data[sensor_num].push_data_cb = NULL;
97 }
98 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
99
100 /**
101  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
102  *                                        for FIFO events.
103  * @sensorhub: Sensor Hub object
104  * @on: true when events are requested.
105  *
106  * To be called before sleeping or when noone is listening.
107  * Return: 0 on success, or an error when we can not communicate with the EC.
108  *
109  */
110 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
111                                        bool on)
112 {
113         int ret, i;
114
115         mutex_lock(&sensorhub->cmd_lock);
116         if (sensorhub->tight_timestamps)
117                 for (i = 0; i < sensorhub->sensor_num; i++)
118                         sensorhub->batch_state[i].last_len = 0;
119
120         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
121         sensorhub->params->fifo_int_enable.enable = on;
122
123         sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
124         sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
125
126         ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
127         mutex_unlock(&sensorhub->cmd_lock);
128
129         /* We expect to receive a payload of 4 bytes, ignore. */
130         if (ret > 0)
131                 ret = 0;
132
133         return ret;
134 }
135
136 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
137 {
138         s64 v1 = *(s64 *)pv1;
139         s64 v2 = *(s64 *)pv2;
140
141         if (v1 > v2)
142                 return 1;
143         else if (v1 < v2)
144                 return -1;
145         else
146                 return 0;
147 }
148
149 /*
150  * cros_ec_sensor_ring_median: Gets median of an array of numbers
151  *
152  * For now it's implemented using an inefficient > O(n) sort then return
153  * the middle element. A more optimal method would be something like
154  * quickselect, but given that n = 64 we can probably live with it in the
155  * name of clarity.
156  *
157  * Warning: the input array gets modified (sorted)!
158  */
159 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
160 {
161         sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
162         return array[length / 2];
163 }
164
165 /*
166  * IRQ Timestamp Filtering
167  *
168  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
169  * we have to calculate it's timestamp in the AP timebase. There are 3 time
170  * points:
171  *   a - EC timebase, sensor event
172  *   b - EC timebase, IRQ
173  *   c - AP timebase, IRQ
174  *   a' - what we want: sensor even in AP timebase
175  *
176  * While a and b are recorded at accurate times (due to the EC real time
177  * nature); c is pretty untrustworthy, even though it's recorded the
178  * first thing in ec_irq_handler(). There is a very good change we'll get
179  * added lantency due to:
180  *   other irqs
181  *   ddrfreq
182  *   cpuidle
183  *
184  * Normally a' = c - b + a, but if we do that naive math any jitter in c
185  * will get coupled in a', which we don't want. We want a function
186  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
187  *
188  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
189  * The slope of the line won't be exactly 1, there will be some clock drift
190  * between the 2 chips for various reasons (mechanical stress, temperature,
191  * voltage). We need to extrapolate values for a future x, without trusting
192  * recent y values too much.
193  *
194  * We use a median filter for the slope, then another median filter for the
195  * y-intercept to calculate this function:
196  *   dx[n] = x[n-1] - x[n]
197  *   dy[n] = x[n-1] - x[n]
198  *   m[n] = dy[n] / dx[n]
199  *   median_m = median(m[n-k:n])
200  *   error[i] = y[n-i] - median_m * x[n-i]
201  *   median_error = median(error[:k])
202  *   predicted_y = median_m * x + median_error
203  *
204  * Implementation differences from above:
205  * - Redefined y to be actually c - b, this gives us a lot more precision
206  * to do the math. (c-b)/b variations are more obvious than c/b variations.
207  * - Since we don't have floating point, any operations involving slope are
208  * done using fixed point math (*M_PRECISION)
209  * - Since x and y grow with time, we keep zeroing the graph (relative to
210  * the last sample), this way math involving *x[n-i] will not overflow
211  * - EC timestamps are kept in us, it improves the slope calculation precision
212  */
213
214 /**
215  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
216  *
217  * @state: Filter information.
218  * @b: IRQ timestamp, EC timebase (us)
219  * @c: IRQ timestamp, AP timebase (ns)
220  *
221  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
222  * history.
223  */
224 static void
225 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
226                                      *state,
227                                      s64 b, s64 c)
228 {
229         s64 x, y;
230         s64 dx, dy;
231         s64 m; /* stored as *M_PRECISION */
232         s64 *m_history_copy = state->temp_buf;
233         s64 *error = state->temp_buf;
234         int i;
235
236         /* we trust b the most, that'll be our independent variable */
237         x = b;
238         /* y is the offset between AP and EC times, in ns */
239         y = c - b * 1000;
240
241         dx = (state->x_history[0] + state->x_offset) - x;
242         if (dx == 0)
243                 return; /* we already have this irq in the history */
244         dy = (state->y_history[0] + state->y_offset) - y;
245         m = div64_s64(dy * M_PRECISION, dx);
246
247         /* Empty filter if we haven't seen any action in a while. */
248         if (-dx > TS_HISTORY_BORED_US)
249                 state->history_len = 0;
250
251         /* Move everything over, also update offset to all absolute coords .*/
252         for (i = state->history_len - 1; i >= 1; i--) {
253                 state->x_history[i] = state->x_history[i - 1] + dx;
254                 state->y_history[i] = state->y_history[i - 1] + dy;
255
256                 state->m_history[i] = state->m_history[i - 1];
257                 /*
258                  * Also use the same loop to copy m_history for future
259                  * median extraction.
260                  */
261                 m_history_copy[i] = state->m_history[i - 1];
262         }
263
264         /* Store the x and y, but remember offset is actually last sample. */
265         state->x_offset = x;
266         state->y_offset = y;
267         state->x_history[0] = 0;
268         state->y_history[0] = 0;
269
270         state->m_history[0] = m;
271         m_history_copy[0] = m;
272
273         if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
274                 state->history_len++;
275
276         /* Precalculate things for the filter. */
277         if (state->history_len > TS_HISTORY_THRESHOLD) {
278                 state->median_m =
279                     cros_ec_sensor_ring_median(m_history_copy,
280                                                state->history_len - 1);
281
282                 /*
283                  * Calculate y-intercepts as if m_median is the slope and
284                  * points in the history are on the line. median_error will
285                  * still be in the offset coordinate system.
286                  */
287                 for (i = 0; i < state->history_len; i++)
288                         error[i] = state->y_history[i] -
289                                 div_s64(state->median_m * state->x_history[i],
290                                         M_PRECISION);
291                 state->median_error =
292                         cros_ec_sensor_ring_median(error, state->history_len);
293         } else {
294                 state->median_m = 0;
295                 state->median_error = 0;
296         }
297         trace_cros_ec_sensorhub_filter(state, dx, dy);
298 }
299
300 /**
301  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
302  *                                   timebase
303  *
304  * @state: filter information.
305  * @x: any ec timestamp (us):
306  *
307  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
308  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
309  *                           should have happened on the AP, with low jitter
310  *
311  * Note: The filter will only activate once state->history_len goes
312  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
313  * transform.
314  *
315  * How to derive the formula, starting from:
316  *   f(x) = median_m * x + median_error
317  * That's the calculated AP - EC offset (at the x point in time)
318  * Undo the coordinate system transform:
319  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
320  * Remember to undo the "y = c - b * 1000" modification:
321  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
322  *
323  * Return: timestamp in AP timebase (ns)
324  */
325 static s64
326 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
327                               s64 x)
328 {
329         return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
330                + state->median_error + state->y_offset + x * 1000;
331 }
332
333 /*
334  * Since a and b were originally 32 bit values from the EC,
335  * they overflow relatively often, casting is not enough, so we need to
336  * add an offset.
337  */
338 static void
339 cros_ec_sensor_ring_fix_overflow(s64 *ts,
340                                  const s64 overflow_period,
341                                  struct cros_ec_sensors_ec_overflow_state
342                                  *state)
343 {
344         s64 adjust;
345
346         *ts += state->offset;
347         if (abs(state->last - *ts) > (overflow_period / 2)) {
348                 adjust = state->last > *ts ? overflow_period : -overflow_period;
349                 state->offset += adjust;
350                 *ts += adjust;
351         }
352         state->last = *ts;
353 }
354
355 static void
356 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
357                                              *sensorhub,
358                                              struct cros_ec_sensors_ring_sample
359                                              *sample)
360 {
361         const u8 sensor_id = sample->sensor_id;
362
363         /* If this event is earlier than one we saw before... */
364         if (sensorhub->batch_state[sensor_id].newest_sensor_event >
365             sample->timestamp)
366                 /* mark it for spreading. */
367                 sample->timestamp =
368                         sensorhub->batch_state[sensor_id].last_ts;
369         else
370                 sensorhub->batch_state[sensor_id].newest_sensor_event =
371                         sample->timestamp;
372 }
373
374 /**
375  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
376  *
377  * @sensorhub: Sensor Hub object.
378  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
379  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
380  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
381  * @in: incoming FIFO event from EC (includes a point, EC timebase).
382  * @out: outgoing event to user space (includes a').
383  *
384  * Process one EC event, add it in the ring if necessary.
385  *
386  * Return: true if out event has been populated.
387  */
388 static bool
389 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
390                                 const struct ec_response_motion_sense_fifo_info
391                                 *fifo_info,
392                                 const ktime_t fifo_timestamp,
393                                 ktime_t *current_timestamp,
394                                 struct ec_response_motion_sensor_data *in,
395                                 struct cros_ec_sensors_ring_sample *out)
396 {
397         const s64 now = cros_ec_get_time_ns();
398         int axis, async_flags;
399
400         /* Do not populate the filter based on asynchronous events. */
401         async_flags = in->flags &
402                 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
403
404         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
405                 s64 a = in->timestamp;
406                 s64 b = fifo_info->timestamp;
407                 s64 c = fifo_timestamp;
408
409                 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
410                                           &sensorhub->overflow_a);
411                 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
412                                           &sensorhub->overflow_b);
413
414                 if (sensorhub->tight_timestamps) {
415                         cros_ec_sensor_ring_ts_filter_update(
416                                         &sensorhub->filter, b, c);
417                         *current_timestamp = cros_ec_sensor_ring_ts_filter(
418                                         &sensorhub->filter, a);
419                 } else {
420                         s64 new_timestamp;
421
422                         /*
423                          * Disable filtering since we might add more jitter
424                          * if b is in a random point in time.
425                          */
426                         new_timestamp = c - b * 1000 + a * 1000;
427                         /*
428                          * The timestamp can be stale if we had to use the fifo
429                          * info timestamp.
430                          */
431                         if (new_timestamp - *current_timestamp > 0)
432                                 *current_timestamp = new_timestamp;
433                 }
434                 trace_cros_ec_sensorhub_timestamp(in->timestamp,
435                                                   fifo_info->timestamp,
436                                                   fifo_timestamp,
437                                                   *current_timestamp,
438                                                   now);
439         }
440
441         if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
442                 if (sensorhub->tight_timestamps) {
443                         sensorhub->batch_state[in->sensor_num].last_len = 0;
444                         sensorhub->batch_state[in->sensor_num].penul_len = 0;
445                 }
446                 /*
447                  * ODR change is only useful for the sensor_ring, it does not
448                  * convey information to clients.
449                  */
450                 return false;
451         }
452
453         if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
454                 out->sensor_id = in->sensor_num;
455                 out->timestamp = *current_timestamp;
456                 out->flag = in->flags;
457                 if (sensorhub->tight_timestamps)
458                         sensorhub->batch_state[out->sensor_id].last_len = 0;
459                 /*
460                  * No other payload information provided with
461                  * flush ack.
462                  */
463                 return true;
464         }
465
466         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
467                 /* If we just have a timestamp, skip this entry. */
468                 return false;
469
470         /* Regular sample */
471         out->sensor_id = in->sensor_num;
472         trace_cros_ec_sensorhub_data(in->sensor_num,
473                                      fifo_info->timestamp,
474                                      fifo_timestamp,
475                                      *current_timestamp,
476                                      now);
477
478         if (*current_timestamp - now > 0) {
479                 /*
480                  * This fix is needed to overcome the timestamp filter putting
481                  * events in the future.
482                  */
483                 sensorhub->future_timestamp_total_ns +=
484                         *current_timestamp - now;
485                 if (++sensorhub->future_timestamp_count ==
486                                 FUTURE_TS_ANALYTICS_COUNT_MAX) {
487                         s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
488                                         sensorhub->future_timestamp_count);
489                         dev_warn_ratelimited(sensorhub->dev,
490                                              "100 timestamps in the future, %lldns shaved on average\n",
491                                              avg);
492                         sensorhub->future_timestamp_count = 0;
493                         sensorhub->future_timestamp_total_ns = 0;
494                 }
495                 out->timestamp = now;
496         } else {
497                 out->timestamp = *current_timestamp;
498         }
499
500         out->flag = in->flags;
501         for (axis = 0; axis < 3; axis++)
502                 out->vector[axis] = in->data[axis];
503
504         if (sensorhub->tight_timestamps)
505                 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
506         return true;
507 }
508
509 /*
510  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
511  *                                 ringbuffer.
512  *
513  * This is the new spreading code, assumes every sample's timestamp
514  * preceeds the sample. Run if tight_timestamps == true.
515  *
516  * Sometimes the EC receives only one interrupt (hence timestamp) for
517  * a batch of samples. Only the first sample will have the correct
518  * timestamp. So we must interpolate the other samples.
519  * We use the previous batch timestamp and our current batch timestamp
520  * as a way to calculate period, then spread the samples evenly.
521  *
522  * s0 int, 0ms
523  * s1 int, 10ms
524  * s2 int, 20ms
525  * 30ms point goes by, no interrupt, previous one is still asserted
526  * downloading s2 and s3
527  * s3 sample, 20ms (incorrect timestamp)
528  * s4 int, 40ms
529  *
530  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
531  * has 2 samples in them, we adjust the timestamp of s3.
532  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
533  * been part of a bigger batch things would have gotten a little
534  * more complicated.
535  *
536  * Note: we also assume another sensor sample doesn't break up a batch
537  * in 2 or more partitions. Example, there can't ever be a sync sensor
538  * in between S2 and S3. This simplifies the following code.
539  */
540 static void
541 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
542                                unsigned long sensor_mask,
543                                struct cros_ec_sensors_ring_sample *last_out)
544 {
545         struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
546         int id;
547
548         for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
549                 for (batch_start = sensorhub->ring; batch_start < last_out;
550                      batch_start = next_batch_start) {
551                         /*
552                          * For each batch (where all samples have the same
553                          * timestamp).
554                          */
555                         int batch_len, sample_idx;
556                         struct cros_ec_sensors_ring_sample *batch_end =
557                                 batch_start;
558                         struct cros_ec_sensors_ring_sample *s;
559                         s64 batch_timestamp = batch_start->timestamp;
560                         s64 sample_period;
561
562                         /*
563                          * Skip over batches that start with the sensor types
564                          * we're not looking at right now.
565                          */
566                         if (batch_start->sensor_id != id) {
567                                 next_batch_start = batch_start + 1;
568                                 continue;
569                         }
570
571                         /*
572                          * Do not start a batch
573                          * from a flush, as it happens asynchronously to the
574                          * regular flow of events.
575                          */
576                         if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
577                                 cros_sensorhub_send_sample(sensorhub,
578                                                            batch_start);
579                                 next_batch_start = batch_start + 1;
580                                 continue;
581                         }
582
583                         if (batch_start->timestamp <=
584                             sensorhub->batch_state[id].last_ts) {
585                                 batch_timestamp =
586                                         sensorhub->batch_state[id].last_ts;
587                                 batch_len = sensorhub->batch_state[id].last_len;
588
589                                 sample_idx = batch_len;
590
591                                 sensorhub->batch_state[id].last_ts =
592                                   sensorhub->batch_state[id].penul_ts;
593                                 sensorhub->batch_state[id].last_len =
594                                   sensorhub->batch_state[id].penul_len;
595                         } else {
596                                 /*
597                                  * Push first sample in the batch to the,
598                                  * kifo, it's guaranteed to be correct, the
599                                  * rest will follow later on.
600                                  */
601                                 sample_idx = 1;
602                                 batch_len = 1;
603                                 cros_sensorhub_send_sample(sensorhub,
604                                                            batch_start);
605                                 batch_start++;
606                         }
607
608                         /* Find all samples have the same timestamp. */
609                         for (s = batch_start; s < last_out; s++) {
610                                 if (s->sensor_id != id)
611                                         /*
612                                          * Skip over other sensor types that
613                                          * are interleaved, don't count them.
614                                          */
615                                         continue;
616                                 if (s->timestamp != batch_timestamp)
617                                         /* we discovered the next batch */
618                                         break;
619                                 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
620                                         /* break on flush packets */
621                                         break;
622                                 batch_end = s;
623                                 batch_len++;
624                         }
625
626                         if (batch_len == 1)
627                                 goto done_with_this_batch;
628
629                         /* Can we calculate period? */
630                         if (sensorhub->batch_state[id].last_len == 0) {
631                                 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
632                                          id, batch_len - 1);
633                                 goto done_with_this_batch;
634                                 /*
635                                  * Note: we're dropping the rest of the samples
636                                  * in this batch since we have no idea where
637                                  * they're supposed to go without a period
638                                  * calculation.
639                                  */
640                         }
641
642                         sample_period = div_s64(batch_timestamp -
643                                 sensorhub->batch_state[id].last_ts,
644                                 sensorhub->batch_state[id].last_len);
645                         dev_dbg(sensorhub->dev,
646                                 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
647                                 batch_len, id,
648                                 sensorhub->batch_state[id].last_ts,
649                                 sensorhub->batch_state[id].last_len,
650                                 batch_timestamp,
651                                 sample_period);
652
653                         /*
654                          * Adjust timestamps of the samples then push them to
655                          * kfifo.
656                          */
657                         for (s = batch_start; s <= batch_end; s++) {
658                                 if (s->sensor_id != id)
659                                         /*
660                                          * Skip over other sensor types that
661                                          * are interleaved, don't change them.
662                                          */
663                                         continue;
664
665                                 s->timestamp = batch_timestamp +
666                                         sample_period * sample_idx;
667                                 sample_idx++;
668
669                                 cros_sensorhub_send_sample(sensorhub, s);
670                         }
671
672 done_with_this_batch:
673                         sensorhub->batch_state[id].penul_ts =
674                                 sensorhub->batch_state[id].last_ts;
675                         sensorhub->batch_state[id].penul_len =
676                                 sensorhub->batch_state[id].last_len;
677
678                         sensorhub->batch_state[id].last_ts =
679                                 batch_timestamp;
680                         sensorhub->batch_state[id].last_len = batch_len;
681
682                         next_batch_start = batch_end + 1;
683                 }
684         }
685 }
686
687 /*
688  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
689  * add to ringbuffer (legacy).
690  *
691  * Note: This assumes we're running old firmware, where timestamp
692  * is inserted after its sample(s)e. There can be several samples between
693  * timestamps, so several samples can have the same timestamp.
694  *
695  *                        timestamp | count
696  *                        -----------------
697  *          1st sample --> TS1      | 1
698  *                         TS2      | 2
699  *                         TS2      | 3
700  *                         TS3      | 4
701  *           last_out -->
702  *
703  *
704  * We spread time for the samples using perod p = (current - TS1)/4.
705  * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
706  *
707  */
708 static void
709 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
710                                       unsigned long sensor_mask,
711                                       s64 current_timestamp,
712                                       struct cros_ec_sensors_ring_sample
713                                       *last_out)
714 {
715         struct cros_ec_sensors_ring_sample *out;
716         int i;
717
718         for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
719                 s64 timestamp;
720                 int count = 0;
721                 s64 time_period;
722
723                 for (out = sensorhub->ring; out < last_out; out++) {
724                         if (out->sensor_id != i)
725                                 continue;
726
727                         /* Timestamp to start with */
728                         timestamp = out->timestamp;
729                         out++;
730                         count = 1;
731                         break;
732                 }
733                 for (; out < last_out; out++) {
734                         /* Find last sample. */
735                         if (out->sensor_id != i)
736                                 continue;
737                         count++;
738                 }
739                 if (count == 0)
740                         continue;
741
742                 /* Spread uniformly between the first and last samples. */
743                 time_period = div_s64(current_timestamp - timestamp, count);
744
745                 for (out = sensorhub->ring; out < last_out; out++) {
746                         if (out->sensor_id != i)
747                                 continue;
748                         timestamp += time_period;
749                         out->timestamp = timestamp;
750                 }
751         }
752
753         /* Push the event into the kfifo */
754         for (out = sensorhub->ring; out < last_out; out++)
755                 cros_sensorhub_send_sample(sensorhub, out);
756 }
757
758 /**
759  * cros_ec_sensorhub_ring_handler() - The trigger handler function
760  *
761  * @sensorhub: Sensor Hub object.
762  *
763  * Called by the notifier, process the EC sensor FIFO queue.
764  */
765 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
766 {
767         struct ec_response_motion_sense_fifo_info *fifo_info =
768                 sensorhub->fifo_info;
769         struct cros_ec_dev *ec = sensorhub->ec;
770         ktime_t fifo_timestamp, current_timestamp;
771         int i, j, number_data, ret;
772         unsigned long sensor_mask = 0;
773         struct ec_response_motion_sensor_data *in;
774         struct cros_ec_sensors_ring_sample *out, *last_out;
775
776         mutex_lock(&sensorhub->cmd_lock);
777
778         /* Get FIFO information if there are lost vectors. */
779         if (fifo_info->total_lost) {
780                 int fifo_info_length =
781                         sizeof(struct ec_response_motion_sense_fifo_info) +
782                         sizeof(u16) * sensorhub->sensor_num;
783
784                 /* Need to retrieve the number of lost vectors per sensor */
785                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
786                 sensorhub->msg->outsize = 1;
787                 sensorhub->msg->insize = fifo_info_length;
788
789                 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
790                         goto error;
791
792                 memcpy(fifo_info, &sensorhub->resp->fifo_info,
793                        fifo_info_length);
794
795                 /*
796                  * Update collection time, will not be as precise as the
797                  * non-error case.
798                  */
799                 fifo_timestamp = cros_ec_get_time_ns();
800         } else {
801                 fifo_timestamp = sensorhub->fifo_timestamp[
802                         CROS_EC_SENSOR_NEW_TS];
803         }
804
805         if (fifo_info->count > sensorhub->fifo_size ||
806             fifo_info->size != sensorhub->fifo_size) {
807                 dev_warn(sensorhub->dev,
808                          "Mismatch EC data: count %d, size %d - expected %d\n",
809                          fifo_info->count, fifo_info->size,
810                          sensorhub->fifo_size);
811                 goto error;
812         }
813
814         /* Copy elements in the main fifo */
815         current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
816         out = sensorhub->ring;
817         for (i = 0; i < fifo_info->count; i += number_data) {
818                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
819                 sensorhub->params->fifo_read.max_data_vector =
820                         fifo_info->count - i;
821                 sensorhub->msg->outsize =
822                         sizeof(struct ec_params_motion_sense);
823                 sensorhub->msg->insize =
824                         sizeof(sensorhub->resp->fifo_read) +
825                         sensorhub->params->fifo_read.max_data_vector *
826                           sizeof(struct ec_response_motion_sensor_data);
827                 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
828                 if (ret < 0) {
829                         dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
830                         break;
831                 }
832                 number_data = sensorhub->resp->fifo_read.number_data;
833                 if (number_data == 0) {
834                         dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
835                         break;
836                 }
837                 if (number_data > fifo_info->count - i) {
838                         dev_warn(sensorhub->dev,
839                                  "Invalid EC data: too many entry received: %d, expected %d\n",
840                                  number_data, fifo_info->count - i);
841                         break;
842                 }
843                 if (out + number_data >
844                     sensorhub->ring + fifo_info->count) {
845                         dev_warn(sensorhub->dev,
846                                  "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
847                                  i, out - sensorhub->ring, i + number_data,
848                                  fifo_info->count);
849                         break;
850                 }
851
852                 for (in = sensorhub->resp->fifo_read.data, j = 0;
853                      j < number_data; j++, in++) {
854                         if (cros_ec_sensor_ring_process_event(
855                                                 sensorhub, fifo_info,
856                                                 fifo_timestamp,
857                                                 &current_timestamp,
858                                                 in, out)) {
859                                 sensor_mask |= BIT(in->sensor_num);
860                                 out++;
861                         }
862                 }
863         }
864         mutex_unlock(&sensorhub->cmd_lock);
865         last_out = out;
866
867         if (out == sensorhub->ring)
868                 /* Unexpected empty FIFO. */
869                 goto ring_handler_end;
870
871         /*
872          * Check if current_timestamp is ahead of the last sample. Normally,
873          * the EC appends a timestamp after the last sample, but if the AP
874          * is slow to respond to the IRQ, the EC may have added new samples.
875          * Use the FIFO info timestamp as last timestamp then.
876          */
877         if (!sensorhub->tight_timestamps &&
878             (last_out - 1)->timestamp == current_timestamp)
879                 current_timestamp = fifo_timestamp;
880
881         /* Warn on lost samples. */
882         if (fifo_info->total_lost)
883                 for (i = 0; i < sensorhub->sensor_num; i++) {
884                         if (fifo_info->lost[i]) {
885                                 dev_warn_ratelimited(sensorhub->dev,
886                                                      "Sensor %d: lost: %d out of %d\n",
887                                                      i, fifo_info->lost[i],
888                                                      fifo_info->total_lost);
889                                 if (sensorhub->tight_timestamps)
890                                         sensorhub->batch_state[i].last_len = 0;
891                         }
892                 }
893
894         /*
895          * Spread samples in case of batching, then add them to the
896          * ringbuffer.
897          */
898         if (sensorhub->tight_timestamps)
899                 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
900                                                last_out);
901         else
902                 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
903                                                       current_timestamp,
904                                                       last_out);
905
906 ring_handler_end:
907         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
908         return;
909
910 error:
911         mutex_unlock(&sensorhub->cmd_lock);
912 }
913
914 static int cros_ec_sensorhub_event(struct notifier_block *nb,
915                                    unsigned long queued_during_suspend,
916                                    void *_notify)
917 {
918         struct cros_ec_sensorhub *sensorhub;
919         struct cros_ec_device *ec_dev;
920
921         sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
922         ec_dev = sensorhub->ec->ec_dev;
923
924         if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
925                 return NOTIFY_DONE;
926
927         if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
928                 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
929                 return NOTIFY_DONE;
930         }
931
932         if (queued_during_suspend)
933                 return NOTIFY_OK;
934
935         memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
936                sizeof(*sensorhub->fifo_info));
937         sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
938                 ec_dev->last_event_time;
939         cros_ec_sensorhub_ring_handler(sensorhub);
940
941         return NOTIFY_OK;
942 }
943
944 /**
945  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
946  *                                     supports it.
947  *
948  * @sensorhub : Sensor Hub object.
949  *
950  * Return: 0 on success.
951  */
952 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
953 {
954         int fifo_info_length =
955                 sizeof(struct ec_response_motion_sense_fifo_info) +
956                 sizeof(u16) * sensorhub->sensor_num;
957
958         /* Allocate the array for lost events. */
959         sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
960                                             GFP_KERNEL);
961         if (!sensorhub->fifo_info)
962                 return -ENOMEM;
963
964         /*
965          * Allocate the callback area based on the number of sensors.
966          * Add one for the sensor ring.
967          */
968         sensorhub->push_data = devm_kcalloc(sensorhub->dev,
969                         sensorhub->sensor_num,
970                         sizeof(*sensorhub->push_data),
971                         GFP_KERNEL);
972         if (!sensorhub->push_data)
973                 return -ENOMEM;
974
975         sensorhub->tight_timestamps = cros_ec_check_features(
976                         sensorhub->ec,
977                         EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
978
979         if (sensorhub->tight_timestamps) {
980                 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
981                                 sensorhub->sensor_num,
982                                 sizeof(*sensorhub->batch_state),
983                                 GFP_KERNEL);
984                 if (!sensorhub->batch_state)
985                         return -ENOMEM;
986         }
987
988         return 0;
989 }
990
991 /**
992  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
993  *                                supports it.
994  *
995  * @sensorhub : Sensor Hub object.
996  *
997  * Return: 0 on success.
998  */
999 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1000 {
1001         struct cros_ec_dev *ec = sensorhub->ec;
1002         int ret;
1003         int fifo_info_length =
1004                 sizeof(struct ec_response_motion_sense_fifo_info) +
1005                 sizeof(u16) * sensorhub->sensor_num;
1006
1007         /* Retrieve FIFO information */
1008         sensorhub->msg->version = 2;
1009         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1010         sensorhub->msg->outsize = 1;
1011         sensorhub->msg->insize = fifo_info_length;
1012
1013         ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1014         if (ret < 0)
1015                 return ret;
1016
1017         /*
1018          * Allocate the full fifo. We need to copy the whole FIFO to set
1019          * timestamps properly.
1020          */
1021         sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1022         sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1023                                        sizeof(*sensorhub->ring), GFP_KERNEL);
1024         if (!sensorhub->ring)
1025                 return -ENOMEM;
1026
1027         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1028                 cros_ec_get_time_ns();
1029
1030         /* Register the notifier that will act as a top half interrupt. */
1031         sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1032         ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1033                                                &sensorhub->notifier);
1034         if (ret < 0)
1035                 return ret;
1036
1037         /* Start collection samples. */
1038         return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1039 }
1040
1041 void cros_ec_sensorhub_ring_remove(void *arg)
1042 {
1043         struct cros_ec_sensorhub *sensorhub = arg;
1044         struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1045
1046         /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1047         cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1048         blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1049                                            &sensorhub->notifier);
1050 }