GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else
113                 return GENMASK_ULL(31, 0);
114 }
115
116 static int
117 armpmu_map_cache_event(const unsigned (*cache_map)
118                                       [PERF_COUNT_HW_CACHE_MAX]
119                                       [PERF_COUNT_HW_CACHE_OP_MAX]
120                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
121                        u64 config)
122 {
123         unsigned int cache_type, cache_op, cache_result, ret;
124
125         cache_type = (config >>  0) & 0xff;
126         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127                 return -EINVAL;
128
129         cache_op = (config >>  8) & 0xff;
130         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131                 return -EINVAL;
132
133         cache_result = (config >> 16) & 0xff;
134         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135                 return -EINVAL;
136
137         if (!cache_map)
138                 return -ENOENT;
139
140         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141
142         if (ret == CACHE_OP_UNSUPPORTED)
143                 return -ENOENT;
144
145         return ret;
146 }
147
148 static int
149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150 {
151         int mapping;
152
153         if (config >= PERF_COUNT_HW_MAX)
154                 return -EINVAL;
155
156         if (!event_map)
157                 return -ENOENT;
158
159         mapping = (*event_map)[config];
160         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161 }
162
163 static int
164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165 {
166         return (int)(config & raw_event_mask);
167 }
168
169 int
170 armpmu_map_event(struct perf_event *event,
171                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172                  const unsigned (*cache_map)
173                                 [PERF_COUNT_HW_CACHE_MAX]
174                                 [PERF_COUNT_HW_CACHE_OP_MAX]
175                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
176                  u32 raw_event_mask)
177 {
178         u64 config = event->attr.config;
179         int type = event->attr.type;
180
181         if (type == event->pmu->type)
182                 return armpmu_map_raw_event(raw_event_mask, config);
183
184         switch (type) {
185         case PERF_TYPE_HARDWARE:
186                 return armpmu_map_hw_event(event_map, config);
187         case PERF_TYPE_HW_CACHE:
188                 return armpmu_map_cache_event(cache_map, config);
189         case PERF_TYPE_RAW:
190                 return armpmu_map_raw_event(raw_event_mask, config);
191         }
192
193         return -ENOENT;
194 }
195
196 int armpmu_event_set_period(struct perf_event *event)
197 {
198         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199         struct hw_perf_event *hwc = &event->hw;
200         s64 left = local64_read(&hwc->period_left);
201         s64 period = hwc->sample_period;
202         u64 max_period;
203         int ret = 0;
204
205         max_period = arm_pmu_event_max_period(event);
206         if (unlikely(left <= -period)) {
207                 left = period;
208                 local64_set(&hwc->period_left, left);
209                 hwc->last_period = period;
210                 ret = 1;
211         }
212
213         if (unlikely(left <= 0)) {
214                 left += period;
215                 local64_set(&hwc->period_left, left);
216                 hwc->last_period = period;
217                 ret = 1;
218         }
219
220         /*
221          * Limit the maximum period to prevent the counter value
222          * from overtaking the one we are about to program. In
223          * effect we are reducing max_period to account for
224          * interrupt latency (and we are being very conservative).
225          */
226         if (left > (max_period >> 1))
227                 left = (max_period >> 1);
228
229         local64_set(&hwc->prev_count, (u64)-left);
230
231         armpmu->write_counter(event, (u64)(-left) & max_period);
232
233         perf_event_update_userpage(event);
234
235         return ret;
236 }
237
238 u64 armpmu_event_update(struct perf_event *event)
239 {
240         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241         struct hw_perf_event *hwc = &event->hw;
242         u64 delta, prev_raw_count, new_raw_count;
243         u64 max_period = arm_pmu_event_max_period(event);
244
245 again:
246         prev_raw_count = local64_read(&hwc->prev_count);
247         new_raw_count = armpmu->read_counter(event);
248
249         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250                              new_raw_count) != prev_raw_count)
251                 goto again;
252
253         delta = (new_raw_count - prev_raw_count) & max_period;
254
255         local64_add(delta, &event->count);
256         local64_sub(delta, &hwc->period_left);
257
258         return new_raw_count;
259 }
260
261 static void
262 armpmu_read(struct perf_event *event)
263 {
264         armpmu_event_update(event);
265 }
266
267 static void
268 armpmu_stop(struct perf_event *event, int flags)
269 {
270         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271         struct hw_perf_event *hwc = &event->hw;
272
273         /*
274          * ARM pmu always has to update the counter, so ignore
275          * PERF_EF_UPDATE, see comments in armpmu_start().
276          */
277         if (!(hwc->state & PERF_HES_STOPPED)) {
278                 armpmu->disable(event);
279                 armpmu_event_update(event);
280                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281         }
282 }
283
284 static void armpmu_start(struct perf_event *event, int flags)
285 {
286         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287         struct hw_perf_event *hwc = &event->hw;
288
289         /*
290          * ARM pmu always has to reprogram the period, so ignore
291          * PERF_EF_RELOAD, see the comment below.
292          */
293         if (flags & PERF_EF_RELOAD)
294                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295
296         hwc->state = 0;
297         /*
298          * Set the period again. Some counters can't be stopped, so when we
299          * were stopped we simply disabled the IRQ source and the counter
300          * may have been left counting. If we don't do this step then we may
301          * get an interrupt too soon or *way* too late if the overflow has
302          * happened since disabling.
303          */
304         armpmu_event_set_period(event);
305         armpmu->enable(event);
306 }
307
308 static void
309 armpmu_del(struct perf_event *event, int flags)
310 {
311         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313         struct hw_perf_event *hwc = &event->hw;
314         int idx = hwc->idx;
315
316         armpmu_stop(event, PERF_EF_UPDATE);
317         hw_events->events[idx] = NULL;
318         armpmu->clear_event_idx(hw_events, event);
319         perf_event_update_userpage(event);
320         /* Clear the allocated counter */
321         hwc->idx = -1;
322 }
323
324 static int
325 armpmu_add(struct perf_event *event, int flags)
326 {
327         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329         struct hw_perf_event *hwc = &event->hw;
330         int idx;
331
332         /* An event following a process won't be stopped earlier */
333         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334                 return -ENOENT;
335
336         /* If we don't have a space for the counter then finish early. */
337         idx = armpmu->get_event_idx(hw_events, event);
338         if (idx < 0)
339                 return idx;
340
341         /*
342          * If there is an event in the counter we are going to use then make
343          * sure it is disabled.
344          */
345         event->hw.idx = idx;
346         armpmu->disable(event);
347         hw_events->events[idx] = event;
348
349         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350         if (flags & PERF_EF_START)
351                 armpmu_start(event, PERF_EF_RELOAD);
352
353         /* Propagate our changes to the userspace mapping. */
354         perf_event_update_userpage(event);
355
356         return 0;
357 }
358
359 static int
360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361                                struct perf_event *event)
362 {
363         struct arm_pmu *armpmu;
364
365         if (is_software_event(event))
366                 return 1;
367
368         /*
369          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370          * core perf code won't check that the pmu->ctx == leader->ctx
371          * until after pmu->event_init(event).
372          */
373         if (event->pmu != pmu)
374                 return 0;
375
376         if (event->state < PERF_EVENT_STATE_OFF)
377                 return 1;
378
379         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380                 return 1;
381
382         armpmu = to_arm_pmu(event->pmu);
383         return armpmu->get_event_idx(hw_events, event) >= 0;
384 }
385
386 static int
387 validate_group(struct perf_event *event)
388 {
389         struct perf_event *sibling, *leader = event->group_leader;
390         struct pmu_hw_events fake_pmu;
391
392         /*
393          * Initialise the fake PMU. We only need to populate the
394          * used_mask for the purposes of validation.
395          */
396         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397
398         if (!validate_event(event->pmu, &fake_pmu, leader))
399                 return -EINVAL;
400
401         if (event == leader)
402                 return 0;
403
404         for_each_sibling_event(sibling, leader) {
405                 if (!validate_event(event->pmu, &fake_pmu, sibling))
406                         return -EINVAL;
407         }
408
409         if (!validate_event(event->pmu, &fake_pmu, event))
410                 return -EINVAL;
411
412         return 0;
413 }
414
415 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
416 {
417         struct arm_pmu *armpmu;
418         int ret;
419         u64 start_clock, finish_clock;
420
421         /*
422          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
423          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
424          * do any necessary shifting, we just need to perform the first
425          * dereference.
426          */
427         armpmu = *(void **)dev;
428         if (WARN_ON_ONCE(!armpmu))
429                 return IRQ_NONE;
430
431         start_clock = sched_clock();
432         ret = armpmu->handle_irq(armpmu);
433         finish_clock = sched_clock();
434
435         perf_sample_event_took(finish_clock - start_clock);
436         return ret;
437 }
438
439 static int
440 __hw_perf_event_init(struct perf_event *event)
441 {
442         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
443         struct hw_perf_event *hwc = &event->hw;
444         int mapping;
445
446         hwc->flags = 0;
447         mapping = armpmu->map_event(event);
448
449         if (mapping < 0) {
450                 pr_debug("event %x:%llx not supported\n", event->attr.type,
451                          event->attr.config);
452                 return mapping;
453         }
454
455         /*
456          * We don't assign an index until we actually place the event onto
457          * hardware. Use -1 to signify that we haven't decided where to put it
458          * yet. For SMP systems, each core has it's own PMU so we can't do any
459          * clever allocation or constraints checking at this point.
460          */
461         hwc->idx                = -1;
462         hwc->config_base        = 0;
463         hwc->config             = 0;
464         hwc->event_base         = 0;
465
466         /*
467          * Check whether we need to exclude the counter from certain modes.
468          */
469         if (armpmu->set_event_filter &&
470             armpmu->set_event_filter(hwc, &event->attr)) {
471                 pr_debug("ARM performance counters do not support "
472                          "mode exclusion\n");
473                 return -EOPNOTSUPP;
474         }
475
476         /*
477          * Store the event encoding into the config_base field.
478          */
479         hwc->config_base            |= (unsigned long)mapping;
480
481         if (!is_sampling_event(event)) {
482                 /*
483                  * For non-sampling runs, limit the sample_period to half
484                  * of the counter width. That way, the new counter value
485                  * is far less likely to overtake the previous one unless
486                  * you have some serious IRQ latency issues.
487                  */
488                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
489                 hwc->last_period    = hwc->sample_period;
490                 local64_set(&hwc->period_left, hwc->sample_period);
491         }
492
493         return validate_group(event);
494 }
495
496 static int armpmu_event_init(struct perf_event *event)
497 {
498         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
499
500         /*
501          * Reject CPU-affine events for CPUs that are of a different class to
502          * that which this PMU handles. Process-following events (where
503          * event->cpu == -1) can be migrated between CPUs, and thus we have to
504          * reject them later (in armpmu_add) if they're scheduled on a
505          * different class of CPU.
506          */
507         if (event->cpu != -1 &&
508                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
509                 return -ENOENT;
510
511         /* does not support taken branch sampling */
512         if (has_branch_stack(event))
513                 return -EOPNOTSUPP;
514
515         if (armpmu->map_event(event) == -ENOENT)
516                 return -ENOENT;
517
518         return __hw_perf_event_init(event);
519 }
520
521 static void armpmu_enable(struct pmu *pmu)
522 {
523         struct arm_pmu *armpmu = to_arm_pmu(pmu);
524         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
526
527         /* For task-bound events we may be called on other CPUs */
528         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529                 return;
530
531         if (enabled)
532                 armpmu->start(armpmu);
533 }
534
535 static void armpmu_disable(struct pmu *pmu)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539         /* For task-bound events we may be called on other CPUs */
540         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541                 return;
542
543         armpmu->stop(armpmu);
544 }
545
546 /*
547  * In heterogeneous systems, events are specific to a particular
548  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549  * the same microarchitecture.
550  */
551 static int armpmu_filter_match(struct perf_event *event)
552 {
553         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
554         unsigned int cpu = smp_processor_id();
555         int ret;
556
557         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558         if (ret && armpmu->filter_match)
559                 return armpmu->filter_match(event);
560
561         return ret;
562 }
563
564 static ssize_t armpmu_cpumask_show(struct device *dev,
565                                    struct device_attribute *attr, char *buf)
566 {
567         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
568         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
569 }
570
571 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
572
573 static struct attribute *armpmu_common_attrs[] = {
574         &dev_attr_cpus.attr,
575         NULL,
576 };
577
578 static struct attribute_group armpmu_common_attr_group = {
579         .attrs = armpmu_common_attrs,
580 };
581
582 /* Set at runtime when we know what CPU type we are. */
583 static struct arm_pmu *__oprofile_cpu_pmu;
584
585 /*
586  * Despite the names, these two functions are CPU-specific and are used
587  * by the OProfile/perf code.
588  */
589 const char *perf_pmu_name(void)
590 {
591         if (!__oprofile_cpu_pmu)
592                 return NULL;
593
594         return __oprofile_cpu_pmu->name;
595 }
596 EXPORT_SYMBOL_GPL(perf_pmu_name);
597
598 int perf_num_counters(void)
599 {
600         int max_events = 0;
601
602         if (__oprofile_cpu_pmu != NULL)
603                 max_events = __oprofile_cpu_pmu->num_events;
604
605         return max_events;
606 }
607 EXPORT_SYMBOL_GPL(perf_num_counters);
608
609 static int armpmu_count_irq_users(const int irq)
610 {
611         int cpu, count = 0;
612
613         for_each_possible_cpu(cpu) {
614                 if (per_cpu(cpu_irq, cpu) == irq)
615                         count++;
616         }
617
618         return count;
619 }
620
621 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
622 {
623         const struct pmu_irq_ops *ops = NULL;
624         int cpu;
625
626         for_each_possible_cpu(cpu) {
627                 if (per_cpu(cpu_irq, cpu) != irq)
628                         continue;
629
630                 ops = per_cpu(cpu_irq_ops, cpu);
631                 if (ops)
632                         break;
633         }
634
635         return ops;
636 }
637
638 void armpmu_free_irq(int irq, int cpu)
639 {
640         if (per_cpu(cpu_irq, cpu) == 0)
641                 return;
642         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
643                 return;
644
645         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
646
647         per_cpu(cpu_irq, cpu) = 0;
648         per_cpu(cpu_irq_ops, cpu) = NULL;
649 }
650
651 int armpmu_request_irq(int irq, int cpu)
652 {
653         int err = 0;
654         const irq_handler_t handler = armpmu_dispatch_irq;
655         const struct pmu_irq_ops *irq_ops;
656
657         if (!irq)
658                 return 0;
659
660         if (!irq_is_percpu_devid(irq)) {
661                 unsigned long irq_flags;
662
663                 err = irq_force_affinity(irq, cpumask_of(cpu));
664
665                 if (err && num_possible_cpus() > 1) {
666                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667                                 irq, cpu);
668                         goto err_out;
669                 }
670
671                 irq_flags = IRQF_PERCPU |
672                             IRQF_NOBALANCING |
673                             IRQF_NO_THREAD;
674
675                 irq_set_status_flags(irq, IRQ_NOAUTOEN);
676
677                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
678                                   per_cpu_ptr(&cpu_armpmu, cpu));
679
680                 /* If cannot get an NMI, get a normal interrupt */
681                 if (err) {
682                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
683                                           per_cpu_ptr(&cpu_armpmu, cpu));
684                         irq_ops = &pmuirq_ops;
685                 } else {
686                         has_nmi = true;
687                         irq_ops = &pmunmi_ops;
688                 }
689         } else if (armpmu_count_irq_users(irq) == 0) {
690                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
691
692                 /* If cannot get an NMI, get a normal interrupt */
693                 if (err) {
694                         err = request_percpu_irq(irq, handler, "arm-pmu",
695                                                  &cpu_armpmu);
696                         irq_ops = &percpu_pmuirq_ops;
697                 } else {
698                         has_nmi= true;
699                         irq_ops = &percpu_pmunmi_ops;
700                 }
701         } else {
702                 /* Per cpudevid irq was already requested by another CPU */
703                 irq_ops = armpmu_find_irq_ops(irq);
704
705                 if (WARN_ON(!irq_ops))
706                         err = -EINVAL;
707         }
708
709         if (err)
710                 goto err_out;
711
712         per_cpu(cpu_irq, cpu) = irq;
713         per_cpu(cpu_irq_ops, cpu) = irq_ops;
714         return 0;
715
716 err_out:
717         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
718         return err;
719 }
720
721 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
722 {
723         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
724         return per_cpu(hw_events->irq, cpu);
725 }
726
727 /*
728  * PMU hardware loses all context when a CPU goes offline.
729  * When a CPU is hotplugged back in, since some hardware registers are
730  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
731  * junk values out of them.
732  */
733 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
734 {
735         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
736         int irq;
737
738         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
739                 return 0;
740         if (pmu->reset)
741                 pmu->reset(pmu);
742
743         per_cpu(cpu_armpmu, cpu) = pmu;
744
745         irq = armpmu_get_cpu_irq(pmu, cpu);
746         if (irq)
747                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
748
749         return 0;
750 }
751
752 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
753 {
754         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
755         int irq;
756
757         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
758                 return 0;
759
760         irq = armpmu_get_cpu_irq(pmu, cpu);
761         if (irq)
762                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
763
764         per_cpu(cpu_armpmu, cpu) = NULL;
765
766         return 0;
767 }
768
769 #ifdef CONFIG_CPU_PM
770 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
771 {
772         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773         struct perf_event *event;
774         int idx;
775
776         for (idx = 0; idx < armpmu->num_events; idx++) {
777                 event = hw_events->events[idx];
778                 if (!event)
779                         continue;
780
781                 switch (cmd) {
782                 case CPU_PM_ENTER:
783                         /*
784                          * Stop and update the counter
785                          */
786                         armpmu_stop(event, PERF_EF_UPDATE);
787                         break;
788                 case CPU_PM_EXIT:
789                 case CPU_PM_ENTER_FAILED:
790                          /*
791                           * Restore and enable the counter.
792                           * armpmu_start() indirectly calls
793                           *
794                           * perf_event_update_userpage()
795                           *
796                           * that requires RCU read locking to be functional,
797                           * wrap the call within RCU_NONIDLE to make the
798                           * RCU subsystem aware this cpu is not idle from
799                           * an RCU perspective for the armpmu_start() call
800                           * duration.
801                           */
802                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
803                         break;
804                 default:
805                         break;
806                 }
807         }
808 }
809
810 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
811                              void *v)
812 {
813         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
814         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
815         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
816
817         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
818                 return NOTIFY_DONE;
819
820         /*
821          * Always reset the PMU registers on power-up even if
822          * there are no events running.
823          */
824         if (cmd == CPU_PM_EXIT && armpmu->reset)
825                 armpmu->reset(armpmu);
826
827         if (!enabled)
828                 return NOTIFY_OK;
829
830         switch (cmd) {
831         case CPU_PM_ENTER:
832                 armpmu->stop(armpmu);
833                 cpu_pm_pmu_setup(armpmu, cmd);
834                 break;
835         case CPU_PM_EXIT:
836         case CPU_PM_ENTER_FAILED:
837                 cpu_pm_pmu_setup(armpmu, cmd);
838                 armpmu->start(armpmu);
839                 break;
840         default:
841                 return NOTIFY_DONE;
842         }
843
844         return NOTIFY_OK;
845 }
846
847 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
848 {
849         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
850         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
851 }
852
853 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
854 {
855         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
856 }
857 #else
858 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
859 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
860 #endif
861
862 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
863 {
864         int err;
865
866         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
867                                        &cpu_pmu->node);
868         if (err)
869                 goto out;
870
871         err = cpu_pm_pmu_register(cpu_pmu);
872         if (err)
873                 goto out_unregister;
874
875         return 0;
876
877 out_unregister:
878         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
879                                             &cpu_pmu->node);
880 out:
881         return err;
882 }
883
884 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885 {
886         cpu_pm_pmu_unregister(cpu_pmu);
887         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888                                             &cpu_pmu->node);
889 }
890
891 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
892 {
893         struct arm_pmu *pmu;
894         int cpu;
895
896         pmu = kzalloc(sizeof(*pmu), flags);
897         if (!pmu) {
898                 pr_info("failed to allocate PMU device!\n");
899                 goto out;
900         }
901
902         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
903         if (!pmu->hw_events) {
904                 pr_info("failed to allocate per-cpu PMU data.\n");
905                 goto out_free_pmu;
906         }
907
908         pmu->pmu = (struct pmu) {
909                 .pmu_enable     = armpmu_enable,
910                 .pmu_disable    = armpmu_disable,
911                 .event_init     = armpmu_event_init,
912                 .add            = armpmu_add,
913                 .del            = armpmu_del,
914                 .start          = armpmu_start,
915                 .stop           = armpmu_stop,
916                 .read           = armpmu_read,
917                 .filter_match   = armpmu_filter_match,
918                 .attr_groups    = pmu->attr_groups,
919                 /*
920                  * This is a CPU PMU potentially in a heterogeneous
921                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
922                  * and we have taken ctx sharing into account (e.g. with our
923                  * pmu::filter_match callback and pmu::event_init group
924                  * validation).
925                  */
926                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
927         };
928
929         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
930                 &armpmu_common_attr_group;
931
932         for_each_possible_cpu(cpu) {
933                 struct pmu_hw_events *events;
934
935                 events = per_cpu_ptr(pmu->hw_events, cpu);
936                 raw_spin_lock_init(&events->pmu_lock);
937                 events->percpu_pmu = pmu;
938         }
939
940         return pmu;
941
942 out_free_pmu:
943         kfree(pmu);
944 out:
945         return NULL;
946 }
947
948 struct arm_pmu *armpmu_alloc(void)
949 {
950         return __armpmu_alloc(GFP_KERNEL);
951 }
952
953 struct arm_pmu *armpmu_alloc_atomic(void)
954 {
955         return __armpmu_alloc(GFP_ATOMIC);
956 }
957
958
959 void armpmu_free(struct arm_pmu *pmu)
960 {
961         free_percpu(pmu->hw_events);
962         kfree(pmu);
963 }
964
965 int armpmu_register(struct arm_pmu *pmu)
966 {
967         int ret;
968
969         ret = cpu_pmu_init(pmu);
970         if (ret)
971                 return ret;
972
973         if (!pmu->set_event_filter)
974                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
975
976         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
977         if (ret)
978                 goto out_destroy;
979
980         if (!__oprofile_cpu_pmu)
981                 __oprofile_cpu_pmu = pmu;
982
983         pr_info("enabled with %s PMU driver, %d counters available%s\n",
984                 pmu->name, pmu->num_events,
985                 has_nmi ? ", using NMIs" : "");
986
987         return 0;
988
989 out_destroy:
990         cpu_pmu_destroy(pmu);
991         return ret;
992 }
993
994 static int arm_pmu_hp_init(void)
995 {
996         int ret;
997
998         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
999                                       "perf/arm/pmu:starting",
1000                                       arm_perf_starting_cpu,
1001                                       arm_perf_teardown_cpu);
1002         if (ret)
1003                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1004                        ret);
1005         return ret;
1006 }
1007 subsys_initcall(arm_pmu_hp_init);