GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31                                       [PERF_COUNT_HW_CACHE_MAX]
32                                       [PERF_COUNT_HW_CACHE_OP_MAX]
33                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
34                        u64 config)
35 {
36         unsigned int cache_type, cache_op, cache_result, ret;
37
38         cache_type = (config >>  0) & 0xff;
39         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40                 return -EINVAL;
41
42         cache_op = (config >>  8) & 0xff;
43         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44                 return -EINVAL;
45
46         cache_result = (config >> 16) & 0xff;
47         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48                 return -EINVAL;
49
50         if (!cache_map)
51                 return -ENOENT;
52
53         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
54
55         if (ret == CACHE_OP_UNSUPPORTED)
56                 return -ENOENT;
57
58         return ret;
59 }
60
61 static int
62 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
63 {
64         int mapping;
65
66         if (config >= PERF_COUNT_HW_MAX)
67                 return -EINVAL;
68
69         if (!event_map)
70                 return -ENOENT;
71
72         mapping = (*event_map)[config];
73         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
74 }
75
76 static int
77 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
78 {
79         return (int)(config & raw_event_mask);
80 }
81
82 int
83 armpmu_map_event(struct perf_event *event,
84                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
85                  const unsigned (*cache_map)
86                                 [PERF_COUNT_HW_CACHE_MAX]
87                                 [PERF_COUNT_HW_CACHE_OP_MAX]
88                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
89                  u32 raw_event_mask)
90 {
91         u64 config = event->attr.config;
92         int type = event->attr.type;
93
94         if (type == event->pmu->type)
95                 return armpmu_map_raw_event(raw_event_mask, config);
96
97         switch (type) {
98         case PERF_TYPE_HARDWARE:
99                 return armpmu_map_hw_event(event_map, config);
100         case PERF_TYPE_HW_CACHE:
101                 return armpmu_map_cache_event(cache_map, config);
102         case PERF_TYPE_RAW:
103                 return armpmu_map_raw_event(raw_event_mask, config);
104         }
105
106         return -ENOENT;
107 }
108
109 int armpmu_event_set_period(struct perf_event *event)
110 {
111         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
112         struct hw_perf_event *hwc = &event->hw;
113         s64 left = local64_read(&hwc->period_left);
114         s64 period = hwc->sample_period;
115         int ret = 0;
116
117         if (unlikely(left <= -period)) {
118                 left = period;
119                 local64_set(&hwc->period_left, left);
120                 hwc->last_period = period;
121                 ret = 1;
122         }
123
124         if (unlikely(left <= 0)) {
125                 left += period;
126                 local64_set(&hwc->period_left, left);
127                 hwc->last_period = period;
128                 ret = 1;
129         }
130
131         /*
132          * Limit the maximum period to prevent the counter value
133          * from overtaking the one we are about to program. In
134          * effect we are reducing max_period to account for
135          * interrupt latency (and we are being very conservative).
136          */
137         if (left > (armpmu->max_period >> 1))
138                 left = armpmu->max_period >> 1;
139
140         local64_set(&hwc->prev_count, (u64)-left);
141
142         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
143
144         perf_event_update_userpage(event);
145
146         return ret;
147 }
148
149 u64 armpmu_event_update(struct perf_event *event)
150 {
151         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
152         struct hw_perf_event *hwc = &event->hw;
153         u64 delta, prev_raw_count, new_raw_count;
154
155 again:
156         prev_raw_count = local64_read(&hwc->prev_count);
157         new_raw_count = armpmu->read_counter(event);
158
159         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160                              new_raw_count) != prev_raw_count)
161                 goto again;
162
163         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
164
165         local64_add(delta, &event->count);
166         local64_sub(delta, &hwc->period_left);
167
168         return new_raw_count;
169 }
170
171 static void
172 armpmu_read(struct perf_event *event)
173 {
174         armpmu_event_update(event);
175 }
176
177 static void
178 armpmu_stop(struct perf_event *event, int flags)
179 {
180         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181         struct hw_perf_event *hwc = &event->hw;
182
183         /*
184          * ARM pmu always has to update the counter, so ignore
185          * PERF_EF_UPDATE, see comments in armpmu_start().
186          */
187         if (!(hwc->state & PERF_HES_STOPPED)) {
188                 armpmu->disable(event);
189                 armpmu_event_update(event);
190                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
191         }
192 }
193
194 static void armpmu_start(struct perf_event *event, int flags)
195 {
196         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
197         struct hw_perf_event *hwc = &event->hw;
198
199         /*
200          * ARM pmu always has to reprogram the period, so ignore
201          * PERF_EF_RELOAD, see the comment below.
202          */
203         if (flags & PERF_EF_RELOAD)
204                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
205
206         hwc->state = 0;
207         /*
208          * Set the period again. Some counters can't be stopped, so when we
209          * were stopped we simply disabled the IRQ source and the counter
210          * may have been left counting. If we don't do this step then we may
211          * get an interrupt too soon or *way* too late if the overflow has
212          * happened since disabling.
213          */
214         armpmu_event_set_period(event);
215         armpmu->enable(event);
216 }
217
218 static void
219 armpmu_del(struct perf_event *event, int flags)
220 {
221         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
222         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
223         struct hw_perf_event *hwc = &event->hw;
224         int idx = hwc->idx;
225
226         armpmu_stop(event, PERF_EF_UPDATE);
227         hw_events->events[idx] = NULL;
228         clear_bit(idx, hw_events->used_mask);
229         if (armpmu->clear_event_idx)
230                 armpmu->clear_event_idx(hw_events, event);
231
232         perf_event_update_userpage(event);
233 }
234
235 static int
236 armpmu_add(struct perf_event *event, int flags)
237 {
238         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
239         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
240         struct hw_perf_event *hwc = &event->hw;
241         int idx;
242
243         /* An event following a process won't be stopped earlier */
244         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
245                 return -ENOENT;
246
247         /* If we don't have a space for the counter then finish early. */
248         idx = armpmu->get_event_idx(hw_events, event);
249         if (idx < 0)
250                 return idx;
251
252         /*
253          * If there is an event in the counter we are going to use then make
254          * sure it is disabled.
255          */
256         event->hw.idx = idx;
257         armpmu->disable(event);
258         hw_events->events[idx] = event;
259
260         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261         if (flags & PERF_EF_START)
262                 armpmu_start(event, PERF_EF_RELOAD);
263
264         /* Propagate our changes to the userspace mapping. */
265         perf_event_update_userpage(event);
266
267         return 0;
268 }
269
270 static int
271 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
272                                struct perf_event *event)
273 {
274         struct arm_pmu *armpmu;
275
276         if (is_software_event(event))
277                 return 1;
278
279         /*
280          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
281          * core perf code won't check that the pmu->ctx == leader->ctx
282          * until after pmu->event_init(event).
283          */
284         if (event->pmu != pmu)
285                 return 0;
286
287         if (event->state < PERF_EVENT_STATE_OFF)
288                 return 1;
289
290         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
291                 return 1;
292
293         armpmu = to_arm_pmu(event->pmu);
294         return armpmu->get_event_idx(hw_events, event) >= 0;
295 }
296
297 static int
298 validate_group(struct perf_event *event)
299 {
300         struct perf_event *sibling, *leader = event->group_leader;
301         struct pmu_hw_events fake_pmu;
302
303         /*
304          * Initialise the fake PMU. We only need to populate the
305          * used_mask for the purposes of validation.
306          */
307         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
308
309         if (!validate_event(event->pmu, &fake_pmu, leader))
310                 return -EINVAL;
311
312         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
313                 if (!validate_event(event->pmu, &fake_pmu, sibling))
314                         return -EINVAL;
315         }
316
317         if (!validate_event(event->pmu, &fake_pmu, event))
318                 return -EINVAL;
319
320         return 0;
321 }
322
323 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
324 {
325         struct platform_device *pdev = armpmu->plat_device;
326
327         return pdev ? dev_get_platdata(&pdev->dev) : NULL;
328 }
329
330 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
331 {
332         struct arm_pmu *armpmu;
333         struct arm_pmu_platdata *plat;
334         int ret;
335         u64 start_clock, finish_clock;
336
337         /*
338          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
339          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
340          * do any necessary shifting, we just need to perform the first
341          * dereference.
342          */
343         armpmu = *(void **)dev;
344
345         plat = armpmu_get_platdata(armpmu);
346
347         start_clock = sched_clock();
348         if (plat && plat->handle_irq)
349                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
350         else
351                 ret = armpmu->handle_irq(irq, armpmu);
352         finish_clock = sched_clock();
353
354         perf_sample_event_took(finish_clock - start_clock);
355         return ret;
356 }
357
358 static int
359 event_requires_mode_exclusion(struct perf_event_attr *attr)
360 {
361         return attr->exclude_idle || attr->exclude_user ||
362                attr->exclude_kernel || attr->exclude_hv;
363 }
364
365 static int
366 __hw_perf_event_init(struct perf_event *event)
367 {
368         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
369         struct hw_perf_event *hwc = &event->hw;
370         int mapping;
371
372         mapping = armpmu->map_event(event);
373
374         if (mapping < 0) {
375                 pr_debug("event %x:%llx not supported\n", event->attr.type,
376                          event->attr.config);
377                 return mapping;
378         }
379
380         /*
381          * We don't assign an index until we actually place the event onto
382          * hardware. Use -1 to signify that we haven't decided where to put it
383          * yet. For SMP systems, each core has it's own PMU so we can't do any
384          * clever allocation or constraints checking at this point.
385          */
386         hwc->idx                = -1;
387         hwc->config_base        = 0;
388         hwc->config             = 0;
389         hwc->event_base         = 0;
390
391         /*
392          * Check whether we need to exclude the counter from certain modes.
393          */
394         if ((!armpmu->set_event_filter ||
395              armpmu->set_event_filter(hwc, &event->attr)) &&
396              event_requires_mode_exclusion(&event->attr)) {
397                 pr_debug("ARM performance counters do not support "
398                          "mode exclusion\n");
399                 return -EOPNOTSUPP;
400         }
401
402         /*
403          * Store the event encoding into the config_base field.
404          */
405         hwc->config_base            |= (unsigned long)mapping;
406
407         if (!is_sampling_event(event)) {
408                 /*
409                  * For non-sampling runs, limit the sample_period to half
410                  * of the counter width. That way, the new counter value
411                  * is far less likely to overtake the previous one unless
412                  * you have some serious IRQ latency issues.
413                  */
414                 hwc->sample_period  = armpmu->max_period >> 1;
415                 hwc->last_period    = hwc->sample_period;
416                 local64_set(&hwc->period_left, hwc->sample_period);
417         }
418
419         if (event->group_leader != event) {
420                 if (validate_group(event) != 0)
421                         return -EINVAL;
422         }
423
424         return 0;
425 }
426
427 static int armpmu_event_init(struct perf_event *event)
428 {
429         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
430
431         /*
432          * Reject CPU-affine events for CPUs that are of a different class to
433          * that which this PMU handles. Process-following events (where
434          * event->cpu == -1) can be migrated between CPUs, and thus we have to
435          * reject them later (in armpmu_add) if they're scheduled on a
436          * different class of CPU.
437          */
438         if (event->cpu != -1 &&
439                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
440                 return -ENOENT;
441
442         /* does not support taken branch sampling */
443         if (has_branch_stack(event))
444                 return -EOPNOTSUPP;
445
446         if (armpmu->map_event(event) == -ENOENT)
447                 return -ENOENT;
448
449         return __hw_perf_event_init(event);
450 }
451
452 static void armpmu_enable(struct pmu *pmu)
453 {
454         struct arm_pmu *armpmu = to_arm_pmu(pmu);
455         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
456         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
457
458         /* For task-bound events we may be called on other CPUs */
459         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
460                 return;
461
462         if (enabled)
463                 armpmu->start(armpmu);
464 }
465
466 static void armpmu_disable(struct pmu *pmu)
467 {
468         struct arm_pmu *armpmu = to_arm_pmu(pmu);
469
470         /* For task-bound events we may be called on other CPUs */
471         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
472                 return;
473
474         armpmu->stop(armpmu);
475 }
476
477 /*
478  * In heterogeneous systems, events are specific to a particular
479  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
480  * the same microarchitecture.
481  */
482 static int armpmu_filter_match(struct perf_event *event)
483 {
484         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
485         unsigned int cpu = smp_processor_id();
486         int ret;
487
488         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
489         if (ret && armpmu->filter_match)
490                 return armpmu->filter_match(event);
491
492         return ret;
493 }
494
495 static ssize_t armpmu_cpumask_show(struct device *dev,
496                                    struct device_attribute *attr, char *buf)
497 {
498         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
499         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
500 }
501
502 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
503
504 static struct attribute *armpmu_common_attrs[] = {
505         &dev_attr_cpus.attr,
506         NULL,
507 };
508
509 static struct attribute_group armpmu_common_attr_group = {
510         .attrs = armpmu_common_attrs,
511 };
512
513 /* Set at runtime when we know what CPU type we are. */
514 static struct arm_pmu *__oprofile_cpu_pmu;
515
516 /*
517  * Despite the names, these two functions are CPU-specific and are used
518  * by the OProfile/perf code.
519  */
520 const char *perf_pmu_name(void)
521 {
522         if (!__oprofile_cpu_pmu)
523                 return NULL;
524
525         return __oprofile_cpu_pmu->name;
526 }
527 EXPORT_SYMBOL_GPL(perf_pmu_name);
528
529 int perf_num_counters(void)
530 {
531         int max_events = 0;
532
533         if (__oprofile_cpu_pmu != NULL)
534                 max_events = __oprofile_cpu_pmu->num_events;
535
536         return max_events;
537 }
538 EXPORT_SYMBOL_GPL(perf_num_counters);
539
540 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
541 {
542         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
543         int irq = per_cpu(hw_events->irq, cpu);
544
545         if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
546                 return;
547
548         if (irq_is_percpu(irq)) {
549                 free_percpu_irq(irq, &hw_events->percpu_pmu);
550                 cpumask_clear(&armpmu->active_irqs);
551                 return;
552         }
553
554         free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
555 }
556
557 void armpmu_free_irqs(struct arm_pmu *armpmu)
558 {
559         int cpu;
560
561         for_each_cpu(cpu, &armpmu->supported_cpus)
562                 armpmu_free_irq(armpmu, cpu);
563 }
564
565 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
566 {
567         int err = 0;
568         struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
569         const irq_handler_t handler = armpmu_dispatch_irq;
570         int irq = per_cpu(hw_events->irq, cpu);
571         if (!irq)
572                 return 0;
573
574         if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
575                 err = request_percpu_irq(irq, handler, "arm-pmu",
576                                          &hw_events->percpu_pmu);
577         } else if (irq_is_percpu(irq)) {
578                 int other_cpu = cpumask_first(&armpmu->active_irqs);
579                 int other_irq = per_cpu(hw_events->irq, other_cpu);
580
581                 if (irq != other_irq) {
582                         pr_warn("mismatched PPIs detected.\n");
583                         err = -EINVAL;
584                         goto err_out;
585                 }
586         } else {
587                 struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
588                 unsigned long irq_flags;
589
590                 err = irq_force_affinity(irq, cpumask_of(cpu));
591
592                 if (err && num_possible_cpus() > 1) {
593                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
594                                 irq, cpu);
595                         goto err_out;
596                 }
597
598                 if (platdata && platdata->irq_flags) {
599                         irq_flags = platdata->irq_flags;
600                 } else {
601                         irq_flags = IRQF_PERCPU |
602                                     IRQF_NOBALANCING |
603                                     IRQF_NO_THREAD;
604                 }
605
606                 err = request_irq(irq, handler, irq_flags, "arm-pmu",
607                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
608         }
609
610         if (err)
611                 goto err_out;
612
613         cpumask_set_cpu(cpu, &armpmu->active_irqs);
614         return 0;
615
616 err_out:
617         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
618         return err;
619 }
620
621 int armpmu_request_irqs(struct arm_pmu *armpmu)
622 {
623         int cpu, err;
624
625         for_each_cpu(cpu, &armpmu->supported_cpus) {
626                 err = armpmu_request_irq(armpmu, cpu);
627                 if (err)
628                         break;
629         }
630
631         return err;
632 }
633
634 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
635 {
636         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
637         return per_cpu(hw_events->irq, cpu);
638 }
639
640 /*
641  * PMU hardware loses all context when a CPU goes offline.
642  * When a CPU is hotplugged back in, since some hardware registers are
643  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
644  * junk values out of them.
645  */
646 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
647 {
648         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
649         int irq;
650
651         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
652                 return 0;
653         if (pmu->reset)
654                 pmu->reset(pmu);
655
656         irq = armpmu_get_cpu_irq(pmu, cpu);
657         if (irq) {
658                 if (irq_is_percpu(irq)) {
659                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
660                         return 0;
661                 }
662         }
663
664         return 0;
665 }
666
667 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
668 {
669         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
670         int irq;
671
672         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
673                 return 0;
674
675         irq = armpmu_get_cpu_irq(pmu, cpu);
676         if (irq && irq_is_percpu(irq))
677                 disable_percpu_irq(irq);
678
679         return 0;
680 }
681
682 #ifdef CONFIG_CPU_PM
683 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
684 {
685         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
686         struct perf_event *event;
687         int idx;
688
689         for (idx = 0; idx < armpmu->num_events; idx++) {
690                 /*
691                  * If the counter is not used skip it, there is no
692                  * need of stopping/restarting it.
693                  */
694                 if (!test_bit(idx, hw_events->used_mask))
695                         continue;
696
697                 event = hw_events->events[idx];
698
699                 switch (cmd) {
700                 case CPU_PM_ENTER:
701                         /*
702                          * Stop and update the counter
703                          */
704                         armpmu_stop(event, PERF_EF_UPDATE);
705                         break;
706                 case CPU_PM_EXIT:
707                 case CPU_PM_ENTER_FAILED:
708                          /*
709                           * Restore and enable the counter.
710                           * armpmu_start() indirectly calls
711                           *
712                           * perf_event_update_userpage()
713                           *
714                           * that requires RCU read locking to be functional,
715                           * wrap the call within RCU_NONIDLE to make the
716                           * RCU subsystem aware this cpu is not idle from
717                           * an RCU perspective for the armpmu_start() call
718                           * duration.
719                           */
720                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
721                         break;
722                 default:
723                         break;
724                 }
725         }
726 }
727
728 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
729                              void *v)
730 {
731         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
732         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
733         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
734
735         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
736                 return NOTIFY_DONE;
737
738         /*
739          * Always reset the PMU registers on power-up even if
740          * there are no events running.
741          */
742         if (cmd == CPU_PM_EXIT && armpmu->reset)
743                 armpmu->reset(armpmu);
744
745         if (!enabled)
746                 return NOTIFY_OK;
747
748         switch (cmd) {
749         case CPU_PM_ENTER:
750                 armpmu->stop(armpmu);
751                 cpu_pm_pmu_setup(armpmu, cmd);
752                 break;
753         case CPU_PM_EXIT:
754         case CPU_PM_ENTER_FAILED:
755                 cpu_pm_pmu_setup(armpmu, cmd);
756                 armpmu->start(armpmu);
757                 break;
758         default:
759                 return NOTIFY_DONE;
760         }
761
762         return NOTIFY_OK;
763 }
764
765 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
766 {
767         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
768         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
769 }
770
771 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
772 {
773         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
774 }
775 #else
776 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
777 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
778 #endif
779
780 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
781 {
782         int err;
783
784         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
785                                        &cpu_pmu->node);
786         if (err)
787                 goto out;
788
789         err = cpu_pm_pmu_register(cpu_pmu);
790         if (err)
791                 goto out_unregister;
792
793         return 0;
794
795 out_unregister:
796         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
797                                             &cpu_pmu->node);
798 out:
799         return err;
800 }
801
802 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
803 {
804         cpu_pm_pmu_unregister(cpu_pmu);
805         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
806                                             &cpu_pmu->node);
807 }
808
809 struct arm_pmu *armpmu_alloc(void)
810 {
811         struct arm_pmu *pmu;
812         int cpu;
813
814         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
815         if (!pmu) {
816                 pr_info("failed to allocate PMU device!\n");
817                 goto out;
818         }
819
820         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
821         if (!pmu->hw_events) {
822                 pr_info("failed to allocate per-cpu PMU data.\n");
823                 goto out_free_pmu;
824         }
825
826         pmu->pmu = (struct pmu) {
827                 .pmu_enable     = armpmu_enable,
828                 .pmu_disable    = armpmu_disable,
829                 .event_init     = armpmu_event_init,
830                 .add            = armpmu_add,
831                 .del            = armpmu_del,
832                 .start          = armpmu_start,
833                 .stop           = armpmu_stop,
834                 .read           = armpmu_read,
835                 .filter_match   = armpmu_filter_match,
836                 .attr_groups    = pmu->attr_groups,
837                 /*
838                  * This is a CPU PMU potentially in a heterogeneous
839                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
840                  * and we have taken ctx sharing into account (e.g. with our
841                  * pmu::filter_match callback and pmu::event_init group
842                  * validation).
843                  */
844                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
845         };
846
847         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
848                 &armpmu_common_attr_group;
849
850         for_each_possible_cpu(cpu) {
851                 struct pmu_hw_events *events;
852
853                 events = per_cpu_ptr(pmu->hw_events, cpu);
854                 raw_spin_lock_init(&events->pmu_lock);
855                 events->percpu_pmu = pmu;
856         }
857
858         return pmu;
859
860 out_free_pmu:
861         kfree(pmu);
862 out:
863         return NULL;
864 }
865
866 void armpmu_free(struct arm_pmu *pmu)
867 {
868         free_percpu(pmu->hw_events);
869         kfree(pmu);
870 }
871
872 int armpmu_register(struct arm_pmu *pmu)
873 {
874         int ret;
875
876         ret = cpu_pmu_init(pmu);
877         if (ret)
878                 return ret;
879
880         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
881         if (ret)
882                 goto out_destroy;
883
884         if (!__oprofile_cpu_pmu)
885                 __oprofile_cpu_pmu = pmu;
886
887         pr_info("enabled with %s PMU driver, %d counters available\n",
888                 pmu->name, pmu->num_events);
889
890         return 0;
891
892 out_destroy:
893         cpu_pmu_destroy(pmu);
894         return ret;
895 }
896
897 static int arm_pmu_hp_init(void)
898 {
899         int ret;
900
901         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
902                                       "perf/arm/pmu:starting",
903                                       arm_perf_starting_cpu,
904                                       arm_perf_teardown_cpu);
905         if (ret)
906                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
907                        ret);
908         return ret;
909 }
910 subsys_initcall(arm_pmu_hp_init);