GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / perf / arm_cspmu / arm_cspmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM CoreSight Architecture PMU driver.
4  *
5  * This driver adds support for uncore PMU based on ARM CoreSight Performance
6  * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7  * like other uncore PMUs, it does not support process specific events and
8  * cannot be used in sampling mode.
9  *
10  * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11  * generic implementation to operate the PMU according to CoreSight PMU
12  * architecture and ACPI ARM PMU table (APMT) documents below:
13  *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14  *   - APMT document number: ARM DEN0117.
15  *
16  * The user should refer to the vendor technical documentation to get details
17  * about the supported events.
18  *
19  * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20  *
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/perf_event.h>
31 #include <linux/platform_device.h>
32
33 #include "arm_cspmu.h"
34
35 #define PMUNAME "arm_cspmu"
36 #define DRVNAME "arm-cs-arch-pmu"
37
38 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config)                  \
39         ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,       \
40                                 (unsigned long)_config)
41
42 /*
43  * CoreSight PMU Arch register offsets.
44  */
45 #define PMEVCNTR_LO                                     0x0
46 #define PMEVCNTR_HI                                     0x4
47 #define PMEVTYPER                                       0x400
48 #define PMCCFILTR                                       0x47C
49 #define PMEVFILTR                                       0xA00
50 #define PMCNTENSET                                      0xC00
51 #define PMCNTENCLR                                      0xC20
52 #define PMINTENSET                                      0xC40
53 #define PMINTENCLR                                      0xC60
54 #define PMOVSCLR                                        0xC80
55 #define PMOVSSET                                        0xCC0
56 #define PMCFGR                                          0xE00
57 #define PMCR                                            0xE04
58 #define PMIIDR                                          0xE08
59
60 /* PMCFGR register field */
61 #define PMCFGR_NCG                                      GENMASK(31, 28)
62 #define PMCFGR_HDBG                                     BIT(24)
63 #define PMCFGR_TRO                                      BIT(23)
64 #define PMCFGR_SS                                       BIT(22)
65 #define PMCFGR_FZO                                      BIT(21)
66 #define PMCFGR_MSI                                      BIT(20)
67 #define PMCFGR_UEN                                      BIT(19)
68 #define PMCFGR_NA                                       BIT(17)
69 #define PMCFGR_EX                                       BIT(16)
70 #define PMCFGR_CCD                                      BIT(15)
71 #define PMCFGR_CC                                       BIT(14)
72 #define PMCFGR_SIZE                                     GENMASK(13, 8)
73 #define PMCFGR_N                                        GENMASK(7, 0)
74
75 /* PMCR register field */
76 #define PMCR_TRO                                        BIT(11)
77 #define PMCR_HDBG                                       BIT(10)
78 #define PMCR_FZO                                        BIT(9)
79 #define PMCR_NA                                         BIT(8)
80 #define PMCR_DP                                         BIT(5)
81 #define PMCR_X                                          BIT(4)
82 #define PMCR_D                                          BIT(3)
83 #define PMCR_C                                          BIT(2)
84 #define PMCR_P                                          BIT(1)
85 #define PMCR_E                                          BIT(0)
86
87 /* Each SET/CLR register supports up to 32 counters. */
88 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT         5
89 #define ARM_CSPMU_SET_CLR_COUNTER_NUM           \
90         (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
91
92 /* Convert counter idx into SET/CLR register number. */
93 #define COUNTER_TO_SET_CLR_ID(idx)                      \
94         (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
95
96 /* Convert counter idx into SET/CLR register bit. */
97 #define COUNTER_TO_SET_CLR_BIT(idx)                     \
98         (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
99
100 #define ARM_CSPMU_ACTIVE_CPU_MASK               0x0
101 #define ARM_CSPMU_ASSOCIATED_CPU_MASK           0x1
102
103 /* Check and use default if implementer doesn't provide attribute callback */
104 #define CHECK_DEFAULT_IMPL_OPS(ops, callback)                   \
105         do {                                                    \
106                 if (!ops->callback)                             \
107                         ops->callback = arm_cspmu_ ## callback; \
108         } while (0)
109
110 /*
111  * Maximum poll count for reading counter value using high-low-high sequence.
112  */
113 #define HILOHI_MAX_POLL 1000
114
115 static unsigned long arm_cspmu_cpuhp_state;
116
117 static DEFINE_MUTEX(arm_cspmu_lock);
118
119 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
120                                     struct hw_perf_event *hwc, u32 filter);
121
122 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
123 {
124         return *(struct acpi_apmt_node **)dev_get_platdata(dev);
125 }
126
127 /*
128  * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
129  * counter register. The counter register can be implemented as 32-bit or 64-bit
130  * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
131  * single-copy 64-bit atomic support is implementation defined. APMT node flag
132  * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
133  * single copy atomic is not supported, the driver treats the register as a pair
134  * of 32-bit register.
135  */
136
137 /*
138  * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
139  */
140 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
141 {
142         u32 val_lo, val_hi;
143         u64 val;
144
145         /* Use high-low-high sequence to avoid tearing */
146         do {
147                 if (max_poll_count-- == 0) {
148                         pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
149                         return 0;
150                 }
151
152                 val_hi = readl(addr + 4);
153                 val_lo = readl(addr);
154         } while (val_hi != readl(addr + 4));
155
156         val = (((u64)val_hi << 32) | val_lo);
157
158         return val;
159 }
160
161 /* Check if cycle counter is supported. */
162 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
163 {
164         return (cspmu->pmcfgr & PMCFGR_CC);
165 }
166
167 /* Get counter size, which is (PMCFGR_SIZE + 1). */
168 static inline u32 counter_size(const struct arm_cspmu *cspmu)
169 {
170         return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
171 }
172
173 /* Get counter mask. */
174 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
175 {
176         return GENMASK_ULL(counter_size(cspmu) - 1, 0);
177 }
178
179 /* Check if counter is implemented as 64-bit register. */
180 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
181 {
182         return (counter_size(cspmu) > 32);
183 }
184
185 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
186                                 struct device_attribute *attr, char *buf)
187 {
188         struct perf_pmu_events_attr *pmu_attr;
189
190         pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
191         return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
192 }
193 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
194
195 /* Default event list. */
196 static struct attribute *arm_cspmu_event_attrs[] = {
197         ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
198         NULL,
199 };
200
201 static struct attribute **
202 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
203 {
204         struct attribute **attrs;
205
206         attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
207                 sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
208
209         return attrs;
210 }
211
212 static umode_t
213 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
214                                 struct attribute *attr, int unused)
215 {
216         struct device *dev = kobj_to_dev(kobj);
217         struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
218         struct perf_pmu_events_attr *eattr;
219
220         eattr = container_of(attr, typeof(*eattr), attr.attr);
221
222         /* Hide cycle event if not supported */
223         if (!supports_cycle_counter(cspmu) &&
224             eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
225                 return 0;
226
227         return attr->mode;
228 }
229
230 ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
231                                 struct device_attribute *attr,
232                                 char *buf)
233 {
234         struct dev_ext_attribute *eattr =
235                 container_of(attr, struct dev_ext_attribute, attr);
236         return sysfs_emit(buf, "%s\n", (char *)eattr->var);
237 }
238 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
239
240 static struct attribute *arm_cspmu_format_attrs[] = {
241         ARM_CSPMU_FORMAT_EVENT_ATTR,
242         ARM_CSPMU_FORMAT_FILTER_ATTR,
243         NULL,
244 };
245
246 static struct attribute **
247 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
248 {
249         struct attribute **attrs;
250
251         attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
252                 sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
253
254         return attrs;
255 }
256
257 static u32 arm_cspmu_event_type(const struct perf_event *event)
258 {
259         return event->attr.config & ARM_CSPMU_EVENT_MASK;
260 }
261
262 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
263 {
264         return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
265 }
266
267 static u32 arm_cspmu_event_filter(const struct perf_event *event)
268 {
269         return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
270 }
271
272 static ssize_t arm_cspmu_identifier_show(struct device *dev,
273                                          struct device_attribute *attr,
274                                          char *page)
275 {
276         struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
277
278         return sysfs_emit(page, "%s\n", cspmu->identifier);
279 }
280
281 static struct device_attribute arm_cspmu_identifier_attr =
282         __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
283
284 static struct attribute *arm_cspmu_identifier_attrs[] = {
285         &arm_cspmu_identifier_attr.attr,
286         NULL,
287 };
288
289 static struct attribute_group arm_cspmu_identifier_attr_group = {
290         .attrs = arm_cspmu_identifier_attrs,
291 };
292
293 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
294 {
295         const char *identifier =
296                 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
297                                cspmu->impl.pmiidr);
298         return identifier;
299 }
300
301 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
302         "mc",
303         "smmu",
304         "pcie",
305         "acpi",
306         "cache",
307 };
308
309 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
310 {
311         struct device *dev;
312         struct acpi_apmt_node *apmt_node;
313         u8 pmu_type;
314         char *name;
315         char acpi_hid_string[ACPI_ID_LEN] = { 0 };
316         static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
317
318         dev = cspmu->dev;
319         apmt_node = arm_cspmu_apmt_node(dev);
320         pmu_type = apmt_node->type;
321
322         if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
323                 dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
324                 return NULL;
325         }
326
327         if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
328                 memcpy(acpi_hid_string,
329                         &apmt_node->inst_primary,
330                         sizeof(apmt_node->inst_primary));
331                 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
332                                       arm_cspmu_type_str[pmu_type],
333                                       acpi_hid_string,
334                                       apmt_node->inst_secondary);
335         } else {
336                 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
337                                       arm_cspmu_type_str[pmu_type],
338                                       atomic_fetch_inc(&pmu_idx[pmu_type]));
339         }
340
341         return name;
342 }
343
344 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
345                                       struct device_attribute *attr,
346                                       char *buf)
347 {
348         struct pmu *pmu = dev_get_drvdata(dev);
349         struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
350         struct dev_ext_attribute *eattr =
351                 container_of(attr, struct dev_ext_attribute, attr);
352         unsigned long mask_id = (unsigned long)eattr->var;
353         const cpumask_t *cpumask;
354
355         switch (mask_id) {
356         case ARM_CSPMU_ACTIVE_CPU_MASK:
357                 cpumask = &cspmu->active_cpu;
358                 break;
359         case ARM_CSPMU_ASSOCIATED_CPU_MASK:
360                 cpumask = &cspmu->associated_cpus;
361                 break;
362         default:
363                 return 0;
364         }
365         return cpumap_print_to_pagebuf(true, buf, cpumask);
366 }
367
368 static struct attribute *arm_cspmu_cpumask_attrs[] = {
369         ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
370         ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
371         NULL,
372 };
373
374 static struct attribute_group arm_cspmu_cpumask_attr_group = {
375         .attrs = arm_cspmu_cpumask_attrs,
376 };
377
378 static struct arm_cspmu_impl_match impl_match[] = {
379         {
380                 .module_name    = "nvidia_cspmu",
381                 .pmiidr_val     = ARM_CSPMU_IMPL_ID_NVIDIA,
382                 .pmiidr_mask    = ARM_CSPMU_PMIIDR_IMPLEMENTER,
383                 .module         = NULL,
384                 .impl_init_ops  = NULL,
385         },
386         {
387                 .module_name    = "ampere_cspmu",
388                 .pmiidr_val     = ARM_CSPMU_IMPL_ID_AMPERE,
389                 .pmiidr_mask    = ARM_CSPMU_PMIIDR_IMPLEMENTER,
390                 .module         = NULL,
391                 .impl_init_ops  = NULL,
392         },
393
394         {0}
395 };
396
397 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
398 {
399         struct arm_cspmu_impl_match *match = impl_match;
400
401         for (; match->pmiidr_val; match++) {
402                 u32 mask = match->pmiidr_mask;
403
404                 if ((match->pmiidr_val & mask) == (pmiidr & mask))
405                         return match;
406         }
407
408         return NULL;
409 }
410
411 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
412 {
413         int ret = 0;
414         struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
415         struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
416         struct arm_cspmu_impl_match *match;
417
418         /*
419          * Get PMU implementer and product id from APMT node.
420          * If APMT node doesn't have implementer/product id, try get it
421          * from PMIIDR.
422          */
423         cspmu->impl.pmiidr =
424                 (apmt_node->impl_id) ? apmt_node->impl_id :
425                                        readl(cspmu->base0 + PMIIDR);
426
427         /* Find implementer specific attribute ops. */
428         match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
429
430         /* Load implementer module and initialize the callbacks. */
431         if (match) {
432                 mutex_lock(&arm_cspmu_lock);
433
434                 if (match->impl_init_ops) {
435                         /* Prevent unload until PMU registration is done. */
436                         if (try_module_get(match->module)) {
437                                 cspmu->impl.module = match->module;
438                                 cspmu->impl.match = match;
439                                 ret = match->impl_init_ops(cspmu);
440                                 if (ret)
441                                         module_put(match->module);
442                         } else {
443                                 WARN(1, "arm_cspmu failed to get module: %s\n",
444                                         match->module_name);
445                                 ret = -EINVAL;
446                         }
447                 } else {
448                         request_module_nowait(match->module_name);
449                         ret = -EPROBE_DEFER;
450                 }
451
452                 mutex_unlock(&arm_cspmu_lock);
453
454                 if (ret)
455                         return ret;
456         } else
457                 cspmu->impl.module = THIS_MODULE;
458
459         /* Use default callbacks if implementer doesn't provide one. */
460         CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
461         CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
462         CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
463         CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
464         CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
465         CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
466         CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
467         CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
468         CHECK_DEFAULT_IMPL_OPS(impl_ops, set_ev_filter);
469
470         return 0;
471 }
472
473 static struct attribute_group *
474 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
475 {
476         struct attribute_group *event_group;
477         struct device *dev = cspmu->dev;
478         const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
479
480         event_group =
481                 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
482         if (!event_group)
483                 return NULL;
484
485         event_group->name = "events";
486         event_group->is_visible = impl_ops->event_attr_is_visible;
487         event_group->attrs = impl_ops->get_event_attrs(cspmu);
488
489         if (!event_group->attrs)
490                 return NULL;
491
492         return event_group;
493 }
494
495 static struct attribute_group *
496 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
497 {
498         struct attribute_group *format_group;
499         struct device *dev = cspmu->dev;
500
501         format_group =
502                 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
503         if (!format_group)
504                 return NULL;
505
506         format_group->name = "format";
507         format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
508
509         if (!format_group->attrs)
510                 return NULL;
511
512         return format_group;
513 }
514
515 static struct attribute_group **
516 arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
517 {
518         struct attribute_group **attr_groups = NULL;
519         struct device *dev = cspmu->dev;
520         const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
521
522         cspmu->identifier = impl_ops->get_identifier(cspmu);
523         cspmu->name = impl_ops->get_name(cspmu);
524
525         if (!cspmu->identifier || !cspmu->name)
526                 return NULL;
527
528         attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
529                                    GFP_KERNEL);
530         if (!attr_groups)
531                 return NULL;
532
533         attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
534         attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
535         attr_groups[2] = &arm_cspmu_identifier_attr_group;
536         attr_groups[3] = &arm_cspmu_cpumask_attr_group;
537
538         if (!attr_groups[0] || !attr_groups[1])
539                 return NULL;
540
541         return attr_groups;
542 }
543
544 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
545 {
546         u32 pmcr = 0;
547
548         pmcr |= PMCR_P;
549         pmcr |= PMCR_C;
550         writel(pmcr, cspmu->base0 + PMCR);
551 }
552
553 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
554 {
555         writel(PMCR_E, cspmu->base0 + PMCR);
556 }
557
558 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
559 {
560         writel(0, cspmu->base0 + PMCR);
561 }
562
563 static void arm_cspmu_enable(struct pmu *pmu)
564 {
565         bool disabled;
566         struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
567
568         disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
569                                 cspmu->num_logical_ctrs);
570
571         if (disabled)
572                 return;
573
574         arm_cspmu_start_counters(cspmu);
575 }
576
577 static void arm_cspmu_disable(struct pmu *pmu)
578 {
579         struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
580
581         arm_cspmu_stop_counters(cspmu);
582 }
583
584 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
585                                 struct perf_event *event)
586 {
587         int idx, ret;
588         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
589
590         if (supports_cycle_counter(cspmu)) {
591                 if (cspmu->impl.ops.is_cycle_counter_event(event)) {
592                         /* Search for available cycle counter. */
593                         if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
594                                              hw_events->used_ctrs))
595                                 return -EAGAIN;
596
597                         return cspmu->cycle_counter_logical_idx;
598                 }
599
600                 /*
601                  * Search a regular counter from the used counter bitmap.
602                  * The cycle counter divides the bitmap into two parts. Search
603                  * the first then second half to exclude the cycle counter bit.
604                  */
605                 idx = find_first_zero_bit(hw_events->used_ctrs,
606                                           cspmu->cycle_counter_logical_idx);
607                 if (idx >= cspmu->cycle_counter_logical_idx) {
608                         idx = find_next_zero_bit(
609                                 hw_events->used_ctrs,
610                                 cspmu->num_logical_ctrs,
611                                 cspmu->cycle_counter_logical_idx + 1);
612                 }
613         } else {
614                 idx = find_first_zero_bit(hw_events->used_ctrs,
615                                           cspmu->num_logical_ctrs);
616         }
617
618         if (idx >= cspmu->num_logical_ctrs)
619                 return -EAGAIN;
620
621         if (cspmu->impl.ops.validate_event) {
622                 ret = cspmu->impl.ops.validate_event(cspmu, event);
623                 if (ret)
624                         return ret;
625         }
626
627         set_bit(idx, hw_events->used_ctrs);
628
629         return idx;
630 }
631
632 static bool arm_cspmu_validate_event(struct pmu *pmu,
633                                  struct arm_cspmu_hw_events *hw_events,
634                                  struct perf_event *event)
635 {
636         if (is_software_event(event))
637                 return true;
638
639         /* Reject groups spanning multiple HW PMUs. */
640         if (event->pmu != pmu)
641                 return false;
642
643         return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
644 }
645
646 /*
647  * Make sure the group of events can be scheduled at once
648  * on the PMU.
649  */
650 static bool arm_cspmu_validate_group(struct perf_event *event)
651 {
652         struct perf_event *sibling, *leader = event->group_leader;
653         struct arm_cspmu_hw_events fake_hw_events;
654
655         if (event->group_leader == event)
656                 return true;
657
658         memset(&fake_hw_events, 0, sizeof(fake_hw_events));
659
660         if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
661                 return false;
662
663         for_each_sibling_event(sibling, leader) {
664                 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
665                                                   sibling))
666                         return false;
667         }
668
669         return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
670 }
671
672 static int arm_cspmu_event_init(struct perf_event *event)
673 {
674         struct arm_cspmu *cspmu;
675         struct hw_perf_event *hwc = &event->hw;
676
677         cspmu = to_arm_cspmu(event->pmu);
678
679         if (event->attr.type != event->pmu->type)
680                 return -ENOENT;
681
682         /*
683          * Following other "uncore" PMUs, we do not support sampling mode or
684          * attach to a task (per-process mode).
685          */
686         if (is_sampling_event(event)) {
687                 dev_dbg(cspmu->pmu.dev,
688                         "Can't support sampling events\n");
689                 return -EOPNOTSUPP;
690         }
691
692         if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
693                 dev_dbg(cspmu->pmu.dev,
694                         "Can't support per-task counters\n");
695                 return -EINVAL;
696         }
697
698         /*
699          * Make sure the CPU assignment is on one of the CPUs associated with
700          * this PMU.
701          */
702         if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
703                 dev_dbg(cspmu->pmu.dev,
704                         "Requested cpu is not associated with the PMU\n");
705                 return -EINVAL;
706         }
707
708         /* Enforce the current active CPU to handle the events in this PMU. */
709         event->cpu = cpumask_first(&cspmu->active_cpu);
710         if (event->cpu >= nr_cpu_ids)
711                 return -EINVAL;
712
713         if (!arm_cspmu_validate_group(event))
714                 return -EINVAL;
715
716         /*
717          * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
718          * The physical counter id is tracked with hw_perf_event.idx.
719          * We don't assign an index until we actually place the event onto
720          * hardware. Use -1 to signify that we haven't decided where to put it
721          * yet.
722          */
723         hwc->idx = -1;
724         hwc->extra_reg.idx = -1;
725         hwc->config = cspmu->impl.ops.event_type(event);
726
727         return 0;
728 }
729
730 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
731 {
732         return (PMEVCNTR_LO + (reg_sz * ctr_idx));
733 }
734
735 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
736 {
737         u32 offset;
738         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
739
740         if (use_64b_counter_reg(cspmu)) {
741                 offset = counter_offset(sizeof(u64), event->hw.idx);
742
743                 if (cspmu->has_atomic_dword)
744                         writeq(val, cspmu->base1 + offset);
745                 else
746                         lo_hi_writeq(val, cspmu->base1 + offset);
747         } else {
748                 offset = counter_offset(sizeof(u32), event->hw.idx);
749
750                 writel(lower_32_bits(val), cspmu->base1 + offset);
751         }
752 }
753
754 static u64 arm_cspmu_read_counter(struct perf_event *event)
755 {
756         u32 offset;
757         const void __iomem *counter_addr;
758         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
759
760         if (use_64b_counter_reg(cspmu)) {
761                 offset = counter_offset(sizeof(u64), event->hw.idx);
762                 counter_addr = cspmu->base1 + offset;
763
764                 return cspmu->has_atomic_dword ?
765                                readq(counter_addr) :
766                                read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
767         }
768
769         offset = counter_offset(sizeof(u32), event->hw.idx);
770         return readl(cspmu->base1 + offset);
771 }
772
773 /*
774  * arm_cspmu_set_event_period: Set the period for the counter.
775  *
776  * To handle cases of extreme interrupt latency, we program
777  * the counter with half of the max count for the counters.
778  */
779 static void arm_cspmu_set_event_period(struct perf_event *event)
780 {
781         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
782         u64 val = counter_mask(cspmu) >> 1ULL;
783
784         local64_set(&event->hw.prev_count, val);
785         arm_cspmu_write_counter(event, val);
786 }
787
788 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
789 {
790         u32 reg_id, reg_bit, inten_off, cnten_off;
791
792         reg_id = COUNTER_TO_SET_CLR_ID(idx);
793         reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
794
795         inten_off = PMINTENSET + (4 * reg_id);
796         cnten_off = PMCNTENSET + (4 * reg_id);
797
798         writel(BIT(reg_bit), cspmu->base0 + inten_off);
799         writel(BIT(reg_bit), cspmu->base0 + cnten_off);
800 }
801
802 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
803 {
804         u32 reg_id, reg_bit, inten_off, cnten_off;
805
806         reg_id = COUNTER_TO_SET_CLR_ID(idx);
807         reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
808
809         inten_off = PMINTENCLR + (4 * reg_id);
810         cnten_off = PMCNTENCLR + (4 * reg_id);
811
812         writel(BIT(reg_bit), cspmu->base0 + cnten_off);
813         writel(BIT(reg_bit), cspmu->base0 + inten_off);
814 }
815
816 static void arm_cspmu_event_update(struct perf_event *event)
817 {
818         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
819         struct hw_perf_event *hwc = &event->hw;
820         u64 delta, prev, now;
821
822         do {
823                 prev = local64_read(&hwc->prev_count);
824                 now = arm_cspmu_read_counter(event);
825         } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
826
827         delta = (now - prev) & counter_mask(cspmu);
828         local64_add(delta, &event->count);
829 }
830
831 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
832                                         struct hw_perf_event *hwc)
833 {
834         u32 offset = PMEVTYPER + (4 * hwc->idx);
835
836         writel(hwc->config, cspmu->base0 + offset);
837 }
838
839 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
840                                         struct hw_perf_event *hwc,
841                                         u32 filter)
842 {
843         u32 offset = PMEVFILTR + (4 * hwc->idx);
844
845         writel(filter, cspmu->base0 + offset);
846 }
847
848 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
849 {
850         u32 offset = PMCCFILTR;
851
852         writel(filter, cspmu->base0 + offset);
853 }
854
855 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
856 {
857         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
858         struct hw_perf_event *hwc = &event->hw;
859         u32 filter;
860
861         /* We always reprogram the counter */
862         if (pmu_flags & PERF_EF_RELOAD)
863                 WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
864
865         arm_cspmu_set_event_period(event);
866
867         filter = cspmu->impl.ops.event_filter(event);
868
869         if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
870                 arm_cspmu_set_cc_filter(cspmu, filter);
871         } else {
872                 arm_cspmu_set_event(cspmu, hwc);
873                 cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
874         }
875
876         hwc->state = 0;
877
878         arm_cspmu_enable_counter(cspmu, hwc->idx);
879 }
880
881 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
882 {
883         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
884         struct hw_perf_event *hwc = &event->hw;
885
886         if (hwc->state & PERF_HES_STOPPED)
887                 return;
888
889         arm_cspmu_disable_counter(cspmu, hwc->idx);
890         arm_cspmu_event_update(event);
891
892         hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
893 }
894
895 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
896 {
897         return (idx == cspmu->cycle_counter_logical_idx) ?
898                 ARM_CSPMU_CYCLE_CNTR_IDX : idx;
899 }
900
901 static int arm_cspmu_add(struct perf_event *event, int flags)
902 {
903         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
904         struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
905         struct hw_perf_event *hwc = &event->hw;
906         int idx;
907
908         if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
909                                            &cspmu->associated_cpus)))
910                 return -ENOENT;
911
912         idx = arm_cspmu_get_event_idx(hw_events, event);
913         if (idx < 0)
914                 return idx;
915
916         hw_events->events[idx] = event;
917         hwc->idx = to_phys_idx(cspmu, idx);
918         hwc->extra_reg.idx = idx;
919         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
920
921         if (flags & PERF_EF_START)
922                 arm_cspmu_start(event, PERF_EF_RELOAD);
923
924         /* Propagate changes to the userspace mapping. */
925         perf_event_update_userpage(event);
926
927         return 0;
928 }
929
930 static void arm_cspmu_del(struct perf_event *event, int flags)
931 {
932         struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
933         struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
934         struct hw_perf_event *hwc = &event->hw;
935         int idx = hwc->extra_reg.idx;
936
937         arm_cspmu_stop(event, PERF_EF_UPDATE);
938
939         hw_events->events[idx] = NULL;
940
941         clear_bit(idx, hw_events->used_ctrs);
942
943         perf_event_update_userpage(event);
944 }
945
946 static void arm_cspmu_read(struct perf_event *event)
947 {
948         arm_cspmu_event_update(event);
949 }
950
951 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
952 {
953         struct acpi_apmt_node *apmt_node;
954         struct arm_cspmu *cspmu;
955         struct device *dev = &pdev->dev;
956
957         cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
958         if (!cspmu)
959                 return NULL;
960
961         cspmu->dev = dev;
962         platform_set_drvdata(pdev, cspmu);
963
964         apmt_node = arm_cspmu_apmt_node(dev);
965         cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
966
967         return cspmu;
968 }
969
970 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
971 {
972         struct device *dev;
973         struct platform_device *pdev;
974
975         dev = cspmu->dev;
976         pdev = to_platform_device(dev);
977
978         /* Base address for page 0. */
979         cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
980         if (IS_ERR(cspmu->base0)) {
981                 dev_err(dev, "ioremap failed for page-0 resource\n");
982                 return PTR_ERR(cspmu->base0);
983         }
984
985         /* Base address for page 1 if supported. Otherwise point to page 0. */
986         cspmu->base1 = cspmu->base0;
987         if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
988                 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
989                 if (IS_ERR(cspmu->base1)) {
990                         dev_err(dev, "ioremap failed for page-1 resource\n");
991                         return PTR_ERR(cspmu->base1);
992                 }
993         }
994
995         cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
996
997         cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
998
999         cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
1000
1001         if (supports_cycle_counter(cspmu)) {
1002                 /*
1003                  * The last logical counter is mapped to cycle counter if
1004                  * there is a gap between regular and cycle counter. Otherwise,
1005                  * logical and physical have 1-to-1 mapping.
1006                  */
1007                 cspmu->cycle_counter_logical_idx =
1008                         (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
1009                                 cspmu->num_logical_ctrs - 1 :
1010                                 ARM_CSPMU_CYCLE_CNTR_IDX;
1011         }
1012
1013         cspmu->num_set_clr_reg =
1014                 DIV_ROUND_UP(cspmu->num_logical_ctrs,
1015                                 ARM_CSPMU_SET_CLR_COUNTER_NUM);
1016
1017         cspmu->hw_events.events =
1018                 devm_kcalloc(dev, cspmu->num_logical_ctrs,
1019                              sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1020
1021         if (!cspmu->hw_events.events)
1022                 return -ENOMEM;
1023
1024         return 0;
1025 }
1026
1027 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1028                                                u32 *pmovs)
1029 {
1030         int i;
1031         u32 pmovclr_offset = PMOVSCLR;
1032         u32 has_overflowed = 0;
1033
1034         for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1035                 pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1036                 has_overflowed |= pmovs[i];
1037                 writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1038                 pmovclr_offset += sizeof(u32);
1039         }
1040
1041         return has_overflowed != 0;
1042 }
1043
1044 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1045 {
1046         int idx, has_overflowed;
1047         struct perf_event *event;
1048         struct arm_cspmu *cspmu = dev;
1049         DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1050         bool handled = false;
1051
1052         arm_cspmu_stop_counters(cspmu);
1053
1054         has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1055         if (!has_overflowed)
1056                 goto done;
1057
1058         for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1059                         cspmu->num_logical_ctrs) {
1060                 event = cspmu->hw_events.events[idx];
1061
1062                 if (!event)
1063                         continue;
1064
1065                 if (!test_bit(event->hw.idx, pmovs))
1066                         continue;
1067
1068                 arm_cspmu_event_update(event);
1069                 arm_cspmu_set_event_period(event);
1070
1071                 handled = true;
1072         }
1073
1074 done:
1075         arm_cspmu_start_counters(cspmu);
1076         return IRQ_RETVAL(handled);
1077 }
1078
1079 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1080 {
1081         int irq, ret;
1082         struct device *dev;
1083         struct platform_device *pdev;
1084
1085         dev = cspmu->dev;
1086         pdev = to_platform_device(dev);
1087
1088         /* Skip IRQ request if the PMU does not support overflow interrupt. */
1089         irq = platform_get_irq_optional(pdev, 0);
1090         if (irq < 0)
1091                 return irq == -ENXIO ? 0 : irq;
1092
1093         ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1094                                IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1095                                cspmu);
1096         if (ret) {
1097                 dev_err(dev, "Could not request IRQ %d\n", irq);
1098                 return ret;
1099         }
1100
1101         cspmu->irq = irq;
1102
1103         return 0;
1104 }
1105
1106 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1107 #include <acpi/processor.h>
1108
1109 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1110 {
1111         struct device *cpu_dev;
1112         struct acpi_device *acpi_dev;
1113
1114         cpu_dev = get_cpu_device(cpu);
1115         if (!cpu_dev)
1116                 return -ENODEV;
1117
1118         acpi_dev = ACPI_COMPANION(cpu_dev);
1119         while (acpi_dev) {
1120                 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1121                         return 0;
1122
1123                 acpi_dev = acpi_dev_parent(acpi_dev);
1124         }
1125
1126         return -ENODEV;
1127 }
1128
1129 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1130 {
1131         struct acpi_apmt_node *apmt_node;
1132         int affinity_flag;
1133         int cpu;
1134
1135         apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1136         affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1137
1138         if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1139                 for_each_possible_cpu(cpu) {
1140                         if (apmt_node->proc_affinity ==
1141                             get_acpi_id_for_cpu(cpu)) {
1142                                 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1143                                 break;
1144                         }
1145                 }
1146         } else {
1147                 for_each_possible_cpu(cpu) {
1148                         if (arm_cspmu_find_cpu_container(
1149                                     cpu, apmt_node->proc_affinity))
1150                                 continue;
1151
1152                         cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1153                 }
1154         }
1155
1156         if (cpumask_empty(&cspmu->associated_cpus)) {
1157                 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1158                 return -ENODEV;
1159         }
1160
1161         return 0;
1162 }
1163 #else
1164 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1165 {
1166         return -ENODEV;
1167 }
1168 #endif
1169
1170 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1171 {
1172         return arm_cspmu_acpi_get_cpus(cspmu);
1173 }
1174
1175 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1176 {
1177         int ret, capabilities;
1178         struct attribute_group **attr_groups;
1179
1180         attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1181         if (!attr_groups)
1182                 return -ENOMEM;
1183
1184         ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1185                                        &cspmu->cpuhp_node);
1186         if (ret)
1187                 return ret;
1188
1189         capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1190         if (cspmu->irq == 0)
1191                 capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1192
1193         cspmu->pmu = (struct pmu){
1194                 .task_ctx_nr    = perf_invalid_context,
1195                 .module         = cspmu->impl.module,
1196                 .pmu_enable     = arm_cspmu_enable,
1197                 .pmu_disable    = arm_cspmu_disable,
1198                 .event_init     = arm_cspmu_event_init,
1199                 .add            = arm_cspmu_add,
1200                 .del            = arm_cspmu_del,
1201                 .start          = arm_cspmu_start,
1202                 .stop           = arm_cspmu_stop,
1203                 .read           = arm_cspmu_read,
1204                 .attr_groups    = (const struct attribute_group **)attr_groups,
1205                 .capabilities   = capabilities,
1206         };
1207
1208         /* Hardware counter init */
1209         arm_cspmu_stop_counters(cspmu);
1210         arm_cspmu_reset_counters(cspmu);
1211
1212         ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1213         if (ret) {
1214                 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1215                                             &cspmu->cpuhp_node);
1216         }
1217
1218         return ret;
1219 }
1220
1221 static int arm_cspmu_device_probe(struct platform_device *pdev)
1222 {
1223         int ret;
1224         struct arm_cspmu *cspmu;
1225
1226         cspmu = arm_cspmu_alloc(pdev);
1227         if (!cspmu)
1228                 return -ENOMEM;
1229
1230         ret = arm_cspmu_init_mmio(cspmu);
1231         if (ret)
1232                 return ret;
1233
1234         ret = arm_cspmu_request_irq(cspmu);
1235         if (ret)
1236                 return ret;
1237
1238         ret = arm_cspmu_get_cpus(cspmu);
1239         if (ret)
1240                 return ret;
1241
1242         ret = arm_cspmu_init_impl_ops(cspmu);
1243         if (ret)
1244                 return ret;
1245
1246         ret = arm_cspmu_register_pmu(cspmu);
1247
1248         /* Matches arm_cspmu_init_impl_ops() above. */
1249         if (cspmu->impl.module != THIS_MODULE)
1250                 module_put(cspmu->impl.module);
1251
1252         return ret;
1253 }
1254
1255 static int arm_cspmu_device_remove(struct platform_device *pdev)
1256 {
1257         struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1258
1259         perf_pmu_unregister(&cspmu->pmu);
1260         cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1261
1262         return 0;
1263 }
1264
1265 static const struct platform_device_id arm_cspmu_id[] = {
1266         {DRVNAME, 0},
1267         { },
1268 };
1269 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1270
1271 static struct platform_driver arm_cspmu_driver = {
1272         .driver = {
1273                         .name = DRVNAME,
1274                         .suppress_bind_attrs = true,
1275                 },
1276         .probe = arm_cspmu_device_probe,
1277         .remove = arm_cspmu_device_remove,
1278         .id_table = arm_cspmu_id,
1279 };
1280
1281 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1282 {
1283         cpumask_set_cpu(cpu, &cspmu->active_cpu);
1284         if (cspmu->irq)
1285                 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1286 }
1287
1288 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1289 {
1290         struct arm_cspmu *cspmu =
1291                 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1292
1293         if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1294                 return 0;
1295
1296         /* If the PMU is already managed, there is nothing to do */
1297         if (!cpumask_empty(&cspmu->active_cpu))
1298                 return 0;
1299
1300         /* Use this CPU for event counting */
1301         arm_cspmu_set_active_cpu(cpu, cspmu);
1302
1303         return 0;
1304 }
1305
1306 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1307 {
1308         int dst;
1309         struct cpumask online_supported;
1310
1311         struct arm_cspmu *cspmu =
1312                 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1313
1314         /* Nothing to do if this CPU doesn't own the PMU */
1315         if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1316                 return 0;
1317
1318         /* Choose a new CPU to migrate ownership of the PMU to */
1319         cpumask_and(&online_supported, &cspmu->associated_cpus,
1320                     cpu_online_mask);
1321         dst = cpumask_any_but(&online_supported, cpu);
1322         if (dst >= nr_cpu_ids)
1323                 return 0;
1324
1325         /* Use this CPU for event counting */
1326         perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1327         arm_cspmu_set_active_cpu(dst, cspmu);
1328
1329         return 0;
1330 }
1331
1332 static int __init arm_cspmu_init(void)
1333 {
1334         int ret;
1335
1336         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1337                                         "perf/arm/cspmu:online",
1338                                         arm_cspmu_cpu_online,
1339                                         arm_cspmu_cpu_teardown);
1340         if (ret < 0)
1341                 return ret;
1342         arm_cspmu_cpuhp_state = ret;
1343         return platform_driver_register(&arm_cspmu_driver);
1344 }
1345
1346 static void __exit arm_cspmu_exit(void)
1347 {
1348         platform_driver_unregister(&arm_cspmu_driver);
1349         cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1350 }
1351
1352 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1353 {
1354         struct arm_cspmu_impl_match *match;
1355         int ret = 0;
1356
1357         match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1358
1359         if (match) {
1360                 mutex_lock(&arm_cspmu_lock);
1361
1362                 if (!match->impl_init_ops) {
1363                         match->module = impl_match->module;
1364                         match->impl_init_ops = impl_match->impl_init_ops;
1365                 } else {
1366                         /* Broken match table may contain non-unique entries */
1367                         WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1368                                 match->module_name,
1369                                 match->pmiidr_val,
1370                                 match->pmiidr_mask);
1371
1372                         ret = -EINVAL;
1373                 }
1374
1375                 mutex_unlock(&arm_cspmu_lock);
1376
1377                 if (!ret)
1378                         ret = driver_attach(&arm_cspmu_driver.driver);
1379         } else {
1380                 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1381                         impl_match->pmiidr_val);
1382
1383                 ret = -EINVAL;
1384         }
1385
1386         return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1389
1390 static int arm_cspmu_match_device(struct device *dev, const void *match)
1391 {
1392         struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1393
1394         return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1395 }
1396
1397 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1398 {
1399         struct device *dev;
1400         struct arm_cspmu_impl_match *match;
1401
1402         match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1403
1404         if (WARN_ON(!match))
1405                 return;
1406
1407         /* Unbind the driver from all matching backend devices. */
1408         while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1409                         match, arm_cspmu_match_device)))
1410                 device_release_driver(dev);
1411
1412         mutex_lock(&arm_cspmu_lock);
1413
1414         match->module = NULL;
1415         match->impl_init_ops = NULL;
1416
1417         mutex_unlock(&arm_cspmu_lock);
1418 }
1419 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1420
1421 module_init(arm_cspmu_init);
1422 module_exit(arm_cspmu_exit);
1423
1424 MODULE_LICENSE("GPL v2");