GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / pci / host / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/srcu.h>
23 #include <linux/rculist.h>
24 #include <linux/rcupdate.h>
25
26 #include <asm/irqdomain.h>
27 #include <asm/device.h>
28 #include <asm/msi.h>
29 #include <asm/msidef.h>
30
31 #define VMD_CFGBAR      0
32 #define VMD_MEMBAR1     2
33 #define VMD_MEMBAR2     4
34
35 /*
36  * Lock for manipulating VMD IRQ lists.
37  */
38 static DEFINE_RAW_SPINLOCK(list_lock);
39
40 /**
41  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
42  * @node:       list item for parent traversal.
43  * @irq:        back pointer to parent.
44  * @enabled:    true if driver enabled IRQ
45  * @virq:       the virtual IRQ value provided to the requesting driver.
46  *
47  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
48  * a VMD IRQ using this structure.
49  */
50 struct vmd_irq {
51         struct list_head        node;
52         struct vmd_irq_list     *irq;
53         bool                    enabled;
54         unsigned int            virq;
55 };
56
57 /**
58  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
59  * @irq_list:   the list of irq's the VMD one demuxes to.
60  * @srcu:       SRCU struct for local synchronization.
61  * @count:      number of child IRQs assigned to this vector; used to track
62  *              sharing.
63  */
64 struct vmd_irq_list {
65         struct list_head        irq_list;
66         struct srcu_struct      srcu;
67         unsigned int            count;
68 };
69
70 struct vmd_dev {
71         struct pci_dev          *dev;
72
73         spinlock_t              cfg_lock;
74         char __iomem            *cfgbar;
75
76         int msix_count;
77         struct vmd_irq_list     *irqs;
78
79         struct pci_sysdata      sysdata;
80         struct resource         resources[3];
81         struct irq_domain       *irq_domain;
82         struct pci_bus          *bus;
83
84 #ifdef CONFIG_X86_DEV_DMA_OPS
85         struct dma_map_ops      dma_ops;
86         struct dma_domain       dma_domain;
87 #endif
88 };
89
90 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
91 {
92         return container_of(bus->sysdata, struct vmd_dev, sysdata);
93 }
94
95 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
96                                            struct vmd_irq_list *irqs)
97 {
98         return irqs - vmd->irqs;
99 }
100
101 /*
102  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
103  * but the MSI entry for the hardware it's driving will be programmed with a
104  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
105  * domain into one of its own, and the VMD driver de-muxes these for the
106  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
107  * and irq_chip to set this up.
108  */
109 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
110 {
111         struct vmd_irq *vmdirq = data->chip_data;
112         struct vmd_irq_list *irq = vmdirq->irq;
113         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
114
115         msg->address_hi = MSI_ADDR_BASE_HI;
116         msg->address_lo = MSI_ADDR_BASE_LO |
117                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
118         msg->data = 0;
119 }
120
121 /*
122  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
123  */
124 static void vmd_irq_enable(struct irq_data *data)
125 {
126         struct vmd_irq *vmdirq = data->chip_data;
127         unsigned long flags;
128
129         raw_spin_lock_irqsave(&list_lock, flags);
130         WARN_ON(vmdirq->enabled);
131         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
132         vmdirq->enabled = true;
133         raw_spin_unlock_irqrestore(&list_lock, flags);
134
135         data->chip->irq_unmask(data);
136 }
137
138 static void vmd_irq_disable(struct irq_data *data)
139 {
140         struct vmd_irq *vmdirq = data->chip_data;
141         unsigned long flags;
142
143         data->chip->irq_mask(data);
144
145         raw_spin_lock_irqsave(&list_lock, flags);
146         if (vmdirq->enabled) {
147                 list_del_rcu(&vmdirq->node);
148                 vmdirq->enabled = false;
149         }
150         raw_spin_unlock_irqrestore(&list_lock, flags);
151 }
152
153 /*
154  * XXX: Stubbed until we develop acceptable way to not create conflicts with
155  * other devices sharing the same vector.
156  */
157 static int vmd_irq_set_affinity(struct irq_data *data,
158                                 const struct cpumask *dest, bool force)
159 {
160         return -EINVAL;
161 }
162
163 static struct irq_chip vmd_msi_controller = {
164         .name                   = "VMD-MSI",
165         .irq_enable             = vmd_irq_enable,
166         .irq_disable            = vmd_irq_disable,
167         .irq_compose_msi_msg    = vmd_compose_msi_msg,
168         .irq_set_affinity       = vmd_irq_set_affinity,
169 };
170
171 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
172                                      msi_alloc_info_t *arg)
173 {
174         return 0;
175 }
176
177 /*
178  * XXX: We can be even smarter selecting the best IRQ once we solve the
179  * affinity problem.
180  */
181 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
182 {
183         int i, best = 1;
184         unsigned long flags;
185
186         if (vmd->msix_count == 1)
187                 return &vmd->irqs[0];
188
189         /*
190          * White list for fast-interrupt handlers. All others will share the
191          * "slow" interrupt vector.
192          */
193         switch (msi_desc_to_pci_dev(desc)->class) {
194         case PCI_CLASS_STORAGE_EXPRESS:
195                 break;
196         default:
197                 return &vmd->irqs[0];
198         }
199
200         raw_spin_lock_irqsave(&list_lock, flags);
201         for (i = 1; i < vmd->msix_count; i++)
202                 if (vmd->irqs[i].count < vmd->irqs[best].count)
203                         best = i;
204         vmd->irqs[best].count++;
205         raw_spin_unlock_irqrestore(&list_lock, flags);
206
207         return &vmd->irqs[best];
208 }
209
210 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
211                         unsigned int virq, irq_hw_number_t hwirq,
212                         msi_alloc_info_t *arg)
213 {
214         struct msi_desc *desc = arg->desc;
215         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
216         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
217         unsigned int index, vector;
218
219         if (!vmdirq)
220                 return -ENOMEM;
221
222         INIT_LIST_HEAD(&vmdirq->node);
223         vmdirq->irq = vmd_next_irq(vmd, desc);
224         vmdirq->virq = virq;
225         index = index_from_irqs(vmd, vmdirq->irq);
226         vector = pci_irq_vector(vmd->dev, index);
227
228         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
229                             handle_untracked_irq, vmd, NULL);
230         return 0;
231 }
232
233 static void vmd_msi_free(struct irq_domain *domain,
234                         struct msi_domain_info *info, unsigned int virq)
235 {
236         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
237         unsigned long flags;
238
239         synchronize_srcu(&vmdirq->irq->srcu);
240
241         /* XXX: Potential optimization to rebalance */
242         raw_spin_lock_irqsave(&list_lock, flags);
243         vmdirq->irq->count--;
244         raw_spin_unlock_irqrestore(&list_lock, flags);
245
246         kfree(vmdirq);
247 }
248
249 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
250                            int nvec, msi_alloc_info_t *arg)
251 {
252         struct pci_dev *pdev = to_pci_dev(dev);
253         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
254
255         if (nvec > vmd->msix_count)
256                 return vmd->msix_count;
257
258         memset(arg, 0, sizeof(*arg));
259         return 0;
260 }
261
262 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
263 {
264         arg->desc = desc;
265 }
266
267 static struct msi_domain_ops vmd_msi_domain_ops = {
268         .get_hwirq      = vmd_get_hwirq,
269         .msi_init       = vmd_msi_init,
270         .msi_free       = vmd_msi_free,
271         .msi_prepare    = vmd_msi_prepare,
272         .set_desc       = vmd_set_desc,
273 };
274
275 static struct msi_domain_info vmd_msi_domain_info = {
276         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
277                           MSI_FLAG_PCI_MSIX,
278         .ops            = &vmd_msi_domain_ops,
279         .chip           = &vmd_msi_controller,
280 };
281
282 #ifdef CONFIG_X86_DEV_DMA_OPS
283 /*
284  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
285  * VMD domain need to be mapped for the VMD, not the device requiring
286  * the mapping.
287  */
288 static struct device *to_vmd_dev(struct device *dev)
289 {
290         struct pci_dev *pdev = to_pci_dev(dev);
291         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
292
293         return &vmd->dev->dev;
294 }
295
296 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
297 {
298         return get_dma_ops(to_vmd_dev(dev));
299 }
300
301 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
302                        gfp_t flag, unsigned long attrs)
303 {
304         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
305                                        attrs);
306 }
307
308 static void vmd_free(struct device *dev, size_t size, void *vaddr,
309                      dma_addr_t addr, unsigned long attrs)
310 {
311         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
312                                       attrs);
313 }
314
315 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
316                     void *cpu_addr, dma_addr_t addr, size_t size,
317                     unsigned long attrs)
318 {
319         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
320                                       size, attrs);
321 }
322
323 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
324                            void *cpu_addr, dma_addr_t addr, size_t size,
325                            unsigned long attrs)
326 {
327         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
328                                              addr, size, attrs);
329 }
330
331 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
332                                unsigned long offset, size_t size,
333                                enum dma_data_direction dir,
334                                unsigned long attrs)
335 {
336         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
337                                           dir, attrs);
338 }
339
340 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
341                            enum dma_data_direction dir, unsigned long attrs)
342 {
343         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
344 }
345
346 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
347                       enum dma_data_direction dir, unsigned long attrs)
348 {
349         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
350 }
351
352 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
353                          enum dma_data_direction dir, unsigned long attrs)
354 {
355         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
356 }
357
358 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
359                                     size_t size, enum dma_data_direction dir)
360 {
361         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
362 }
363
364 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
365                                        size_t size, enum dma_data_direction dir)
366 {
367         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
368                                                  dir);
369 }
370
371 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
372                                 int nents, enum dma_data_direction dir)
373 {
374         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
375 }
376
377 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
378                                    int nents, enum dma_data_direction dir)
379 {
380         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
381 }
382
383 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
384 {
385         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
386 }
387
388 static int vmd_dma_supported(struct device *dev, u64 mask)
389 {
390         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
391 }
392
393 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
394 static u64 vmd_get_required_mask(struct device *dev)
395 {
396         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
397 }
398 #endif
399
400 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401 {
402         struct dma_domain *domain = &vmd->dma_domain;
403
404         if (get_dma_ops(&vmd->dev->dev))
405                 del_dma_domain(domain);
406 }
407
408 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
409         do {                                    \
410                 if (source->fn)                 \
411                         dest->fn = vmd_##fn;    \
412         } while (0)
413
414 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415 {
416         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417         struct dma_map_ops *dest = &vmd->dma_ops;
418         struct dma_domain *domain = &vmd->dma_domain;
419
420         domain->domain_nr = vmd->sysdata.domain;
421         domain->dma_ops = dest;
422
423         if (!source)
424                 return;
425         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426         ASSIGN_VMD_DMA_OPS(source, dest, free);
427         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
438         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
439 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
440         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
441 #endif
442         add_dma_domain(domain);
443 }
444 #undef ASSIGN_VMD_DMA_OPS
445 #else
446 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
447 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
448 #endif
449
450 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
451                                   unsigned int devfn, int reg, int len)
452 {
453         char __iomem *addr = vmd->cfgbar +
454                              (bus->number << 20) + (devfn << 12) + reg;
455
456         if ((addr - vmd->cfgbar) + len >=
457             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
458                 return NULL;
459
460         return addr;
461 }
462
463 /*
464  * CPU may deadlock if config space is not serialized on some versions of this
465  * hardware, so all config space access is done under a spinlock.
466  */
467 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
468                         int len, u32 *value)
469 {
470         struct vmd_dev *vmd = vmd_from_bus(bus);
471         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
472         unsigned long flags;
473         int ret = 0;
474
475         if (!addr)
476                 return -EFAULT;
477
478         spin_lock_irqsave(&vmd->cfg_lock, flags);
479         switch (len) {
480         case 1:
481                 *value = readb(addr);
482                 break;
483         case 2:
484                 *value = readw(addr);
485                 break;
486         case 4:
487                 *value = readl(addr);
488                 break;
489         default:
490                 ret = -EINVAL;
491                 break;
492         }
493         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
494         return ret;
495 }
496
497 /*
498  * VMD h/w converts non-posted config writes to posted memory writes. The
499  * read-back in this function forces the completion so it returns only after
500  * the config space was written, as expected.
501  */
502 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
503                          int len, u32 value)
504 {
505         struct vmd_dev *vmd = vmd_from_bus(bus);
506         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
507         unsigned long flags;
508         int ret = 0;
509
510         if (!addr)
511                 return -EFAULT;
512
513         spin_lock_irqsave(&vmd->cfg_lock, flags);
514         switch (len) {
515         case 1:
516                 writeb(value, addr);
517                 readb(addr);
518                 break;
519         case 2:
520                 writew(value, addr);
521                 readw(addr);
522                 break;
523         case 4:
524                 writel(value, addr);
525                 readl(addr);
526                 break;
527         default:
528                 ret = -EINVAL;
529                 break;
530         }
531         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
532         return ret;
533 }
534
535 static struct pci_ops vmd_ops = {
536         .read           = vmd_pci_read,
537         .write          = vmd_pci_write,
538 };
539
540 static void vmd_attach_resources(struct vmd_dev *vmd)
541 {
542         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
543         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
544 }
545
546 static void vmd_detach_resources(struct vmd_dev *vmd)
547 {
548         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
549         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
550 }
551
552 /*
553  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
554  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
555  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
556  * currently reserved.
557  */
558 static int vmd_find_free_domain(void)
559 {
560         int domain = 0xffff;
561         struct pci_bus *bus = NULL;
562
563         while ((bus = pci_find_next_bus(bus)) != NULL)
564                 domain = max_t(int, domain, pci_domain_nr(bus));
565         return domain + 1;
566 }
567
568 static int vmd_enable_domain(struct vmd_dev *vmd)
569 {
570         struct pci_sysdata *sd = &vmd->sysdata;
571         struct fwnode_handle *fn;
572         struct resource *res;
573         u32 upper_bits;
574         unsigned long flags;
575         LIST_HEAD(resources);
576
577         res = &vmd->dev->resource[VMD_CFGBAR];
578         vmd->resources[0] = (struct resource) {
579                 .name  = "VMD CFGBAR",
580                 .start = 0,
581                 .end   = (resource_size(res) >> 20) - 1,
582                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
583         };
584
585         /*
586          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
587          * put 32-bit resources in the window.
588          *
589          * There's no hardware reason why a 64-bit window *couldn't*
590          * contain a 32-bit resource, but pbus_size_mem() computes the
591          * bridge window size assuming a 64-bit window will contain no
592          * 32-bit resources.  __pci_assign_resource() enforces that
593          * artificial restriction to make sure everything will fit.
594          *
595          * The only way we could use a 64-bit non-prefechable MEMBAR is
596          * if its address is <4GB so that we can convert it to a 32-bit
597          * resource.  To be visible to the host OS, all VMD endpoints must
598          * be initially configured by platform BIOS, which includes setting
599          * up these resources.  We can assume the device is configured
600          * according to the platform needs.
601          */
602         res = &vmd->dev->resource[VMD_MEMBAR1];
603         upper_bits = upper_32_bits(res->end);
604         flags = res->flags & ~IORESOURCE_SIZEALIGN;
605         if (!upper_bits)
606                 flags &= ~IORESOURCE_MEM_64;
607         vmd->resources[1] = (struct resource) {
608                 .name  = "VMD MEMBAR1",
609                 .start = res->start,
610                 .end   = res->end,
611                 .flags = flags,
612                 .parent = res,
613         };
614
615         res = &vmd->dev->resource[VMD_MEMBAR2];
616         upper_bits = upper_32_bits(res->end);
617         flags = res->flags & ~IORESOURCE_SIZEALIGN;
618         if (!upper_bits)
619                 flags &= ~IORESOURCE_MEM_64;
620         vmd->resources[2] = (struct resource) {
621                 .name  = "VMD MEMBAR2",
622                 .start = res->start + 0x2000,
623                 .end   = res->end,
624                 .flags = flags,
625                 .parent = res,
626         };
627
628         sd->vmd_domain = true;
629         sd->domain = vmd_find_free_domain();
630         if (sd->domain < 0)
631                 return sd->domain;
632
633         sd->node = pcibus_to_node(vmd->dev->bus);
634
635         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
636         if (!fn)
637                 return -ENODEV;
638
639         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
640                                                     x86_vector_domain);
641         if (!vmd->irq_domain) {
642                 irq_domain_free_fwnode(fn);
643                 return -ENODEV;
644         }
645
646         pci_add_resource(&resources, &vmd->resources[0]);
647         pci_add_resource(&resources, &vmd->resources[1]);
648         pci_add_resource(&resources, &vmd->resources[2]);
649         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
650                                        &resources);
651         if (!vmd->bus) {
652                 pci_free_resource_list(&resources);
653                 irq_domain_remove(vmd->irq_domain);
654                 irq_domain_free_fwnode(fn);
655                 return -ENODEV;
656         }
657
658         vmd_attach_resources(vmd);
659         vmd_setup_dma_ops(vmd);
660         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
661         pci_rescan_bus(vmd->bus);
662
663         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
664                                "domain"), "Can't create symlink to domain\n");
665         return 0;
666 }
667
668 static irqreturn_t vmd_irq(int irq, void *data)
669 {
670         struct vmd_irq_list *irqs = data;
671         struct vmd_irq *vmdirq;
672         int idx;
673
674         idx = srcu_read_lock(&irqs->srcu);
675         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
676                 generic_handle_irq(vmdirq->virq);
677         srcu_read_unlock(&irqs->srcu, idx);
678
679         return IRQ_HANDLED;
680 }
681
682 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
683 {
684         struct vmd_dev *vmd;
685         int i, err;
686
687         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
688                 return -ENOMEM;
689
690         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
691         if (!vmd)
692                 return -ENOMEM;
693
694         vmd->dev = dev;
695         err = pcim_enable_device(dev);
696         if (err < 0)
697                 return err;
698
699         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
700         if (!vmd->cfgbar)
701                 return -ENOMEM;
702
703         pci_set_master(dev);
704         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
705             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
706                 return -ENODEV;
707
708         vmd->msix_count = pci_msix_vec_count(dev);
709         if (vmd->msix_count < 0)
710                 return -ENODEV;
711
712         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
713                                         PCI_IRQ_MSIX);
714         if (vmd->msix_count < 0)
715                 return vmd->msix_count;
716
717         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
718                                  GFP_KERNEL);
719         if (!vmd->irqs)
720                 return -ENOMEM;
721
722         for (i = 0; i < vmd->msix_count; i++) {
723                 err = init_srcu_struct(&vmd->irqs[i].srcu);
724                 if (err)
725                         return err;
726
727                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
728                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
729                                        vmd_irq, IRQF_NO_THREAD,
730                                        "vmd", &vmd->irqs[i]);
731                 if (err)
732                         return err;
733         }
734
735         spin_lock_init(&vmd->cfg_lock);
736         pci_set_drvdata(dev, vmd);
737         err = vmd_enable_domain(vmd);
738         if (err)
739                 return err;
740
741         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
742                  vmd->sysdata.domain);
743         return 0;
744 }
745
746 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
747 {
748         int i;
749
750         for (i = 0; i < vmd->msix_count; i++)
751                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
752 }
753
754 static void vmd_remove(struct pci_dev *dev)
755 {
756         struct vmd_dev *vmd = pci_get_drvdata(dev);
757         struct fwnode_handle *fn = vmd->irq_domain->fwnode;
758
759         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
760         pci_stop_root_bus(vmd->bus);
761         pci_remove_root_bus(vmd->bus);
762         vmd_cleanup_srcu(vmd);
763         vmd_teardown_dma_ops(vmd);
764         vmd_detach_resources(vmd);
765         irq_domain_remove(vmd->irq_domain);
766         irq_domain_free_fwnode(fn);
767 }
768
769 #ifdef CONFIG_PM_SLEEP
770 static int vmd_suspend(struct device *dev)
771 {
772         struct pci_dev *pdev = to_pci_dev(dev);
773         struct vmd_dev *vmd = pci_get_drvdata(pdev);
774         int i;
775
776         for (i = 0; i < vmd->msix_count; i++)
777                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
778
779         pci_save_state(pdev);
780         return 0;
781 }
782
783 static int vmd_resume(struct device *dev)
784 {
785         struct pci_dev *pdev = to_pci_dev(dev);
786         struct vmd_dev *vmd = pci_get_drvdata(pdev);
787         int err, i;
788
789         for (i = 0; i < vmd->msix_count; i++) {
790                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
791                                        vmd_irq, IRQF_NO_THREAD,
792                                        "vmd", &vmd->irqs[i]);
793                 if (err)
794                         return err;
795         }
796
797         pci_restore_state(pdev);
798         return 0;
799 }
800 #endif
801 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
802
803 static const struct pci_device_id vmd_ids[] = {
804         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
805         {0,}
806 };
807 MODULE_DEVICE_TABLE(pci, vmd_ids);
808
809 static struct pci_driver vmd_drv = {
810         .name           = "vmd",
811         .id_table       = vmd_ids,
812         .probe          = vmd_probe,
813         .remove         = vmd_remove,
814         .driver         = {
815                 .pm     = &vmd_dev_pm_ops,
816         },
817 };
818 module_pci_driver(vmd_drv);
819
820 MODULE_AUTHOR("Intel Corporation");
821 MODULE_LICENSE("GPL v2");
822 MODULE_VERSION("0.6");