GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21
22 #define VMD_CFGBAR      0
23 #define VMD_MEMBAR1     2
24 #define VMD_MEMBAR2     4
25
26 #define PCI_REG_VMCAP           0x40
27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28 #define PCI_REG_VMCONFIG        0x44
29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP      0x2
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
50
51         /*
52          * Device contains physical location shadow registers in
53          * vendor-specific capability space
54          */
55         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
56
57         /*
58          * Device may use MSI-X vector 0 for software triggering and will not
59          * be used for MSI remapping
60          */
61         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
62
63         /*
64          * Device can bypass remapping MSI-X transactions into its MSI-X table,
65          * avoiding the requirement of a VMD MSI domain for child device
66          * interrupt handling.
67          */
68         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
69 };
70
71 static DEFINE_IDA(vmd_instance_ida);
72
73 /*
74  * Lock for manipulating VMD IRQ lists.
75  */
76 static DEFINE_RAW_SPINLOCK(list_lock);
77
78 /**
79  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
80  * @node:       list item for parent traversal.
81  * @irq:        back pointer to parent.
82  * @enabled:    true if driver enabled IRQ
83  * @virq:       the virtual IRQ value provided to the requesting driver.
84  *
85  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
86  * a VMD IRQ using this structure.
87  */
88 struct vmd_irq {
89         struct list_head        node;
90         struct vmd_irq_list     *irq;
91         bool                    enabled;
92         unsigned int            virq;
93 };
94
95 /**
96  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
97  * @irq_list:   the list of irq's the VMD one demuxes to.
98  * @srcu:       SRCU struct for local synchronization.
99  * @count:      number of child IRQs assigned to this vector; used to track
100  *              sharing.
101  * @virq:       The underlying VMD Linux interrupt number
102  */
103 struct vmd_irq_list {
104         struct list_head        irq_list;
105         struct srcu_struct      srcu;
106         unsigned int            count;
107         unsigned int            virq;
108 };
109
110 struct vmd_dev {
111         struct pci_dev          *dev;
112
113         spinlock_t              cfg_lock;
114         void __iomem            *cfgbar;
115
116         int msix_count;
117         struct vmd_irq_list     *irqs;
118
119         struct pci_sysdata      sysdata;
120         struct resource         resources[3];
121         struct irq_domain       *irq_domain;
122         struct pci_bus          *bus;
123         u8                      busn_start;
124         u8                      first_vec;
125         char                    *name;
126         int                     instance;
127 };
128
129 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
130 {
131         return container_of(bus->sysdata, struct vmd_dev, sysdata);
132 }
133
134 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
135                                            struct vmd_irq_list *irqs)
136 {
137         return irqs - vmd->irqs;
138 }
139
140 /*
141  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
142  * but the MSI entry for the hardware it's driving will be programmed with a
143  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
144  * domain into one of its own, and the VMD driver de-muxes these for the
145  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
146  * and irq_chip to set this up.
147  */
148 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
149 {
150         struct vmd_irq *vmdirq = data->chip_data;
151         struct vmd_irq_list *irq = vmdirq->irq;
152         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
153
154         memset(msg, 0, sizeof(*msg));
155         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
156         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
157         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
158 }
159
160 /*
161  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
162  */
163 static void vmd_irq_enable(struct irq_data *data)
164 {
165         struct vmd_irq *vmdirq = data->chip_data;
166         unsigned long flags;
167
168         raw_spin_lock_irqsave(&list_lock, flags);
169         WARN_ON(vmdirq->enabled);
170         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
171         vmdirq->enabled = true;
172         raw_spin_unlock_irqrestore(&list_lock, flags);
173
174         data->chip->irq_unmask(data);
175 }
176
177 static void vmd_irq_disable(struct irq_data *data)
178 {
179         struct vmd_irq *vmdirq = data->chip_data;
180         unsigned long flags;
181
182         data->chip->irq_mask(data);
183
184         raw_spin_lock_irqsave(&list_lock, flags);
185         if (vmdirq->enabled) {
186                 list_del_rcu(&vmdirq->node);
187                 vmdirq->enabled = false;
188         }
189         raw_spin_unlock_irqrestore(&list_lock, flags);
190 }
191
192 /*
193  * XXX: Stubbed until we develop acceptable way to not create conflicts with
194  * other devices sharing the same vector.
195  */
196 static int vmd_irq_set_affinity(struct irq_data *data,
197                                 const struct cpumask *dest, bool force)
198 {
199         return -EINVAL;
200 }
201
202 static struct irq_chip vmd_msi_controller = {
203         .name                   = "VMD-MSI",
204         .irq_enable             = vmd_irq_enable,
205         .irq_disable            = vmd_irq_disable,
206         .irq_compose_msi_msg    = vmd_compose_msi_msg,
207         .irq_set_affinity       = vmd_irq_set_affinity,
208 };
209
210 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
211                                      msi_alloc_info_t *arg)
212 {
213         return 0;
214 }
215
216 /*
217  * XXX: We can be even smarter selecting the best IRQ once we solve the
218  * affinity problem.
219  */
220 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
221 {
222         unsigned long flags;
223         int i, best;
224
225         if (vmd->msix_count == 1 + vmd->first_vec)
226                 return &vmd->irqs[vmd->first_vec];
227
228         /*
229          * White list for fast-interrupt handlers. All others will share the
230          * "slow" interrupt vector.
231          */
232         switch (msi_desc_to_pci_dev(desc)->class) {
233         case PCI_CLASS_STORAGE_EXPRESS:
234                 break;
235         default:
236                 return &vmd->irqs[vmd->first_vec];
237         }
238
239         raw_spin_lock_irqsave(&list_lock, flags);
240         best = vmd->first_vec + 1;
241         for (i = best; i < vmd->msix_count; i++)
242                 if (vmd->irqs[i].count < vmd->irqs[best].count)
243                         best = i;
244         vmd->irqs[best].count++;
245         raw_spin_unlock_irqrestore(&list_lock, flags);
246
247         return &vmd->irqs[best];
248 }
249
250 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
251                         unsigned int virq, irq_hw_number_t hwirq,
252                         msi_alloc_info_t *arg)
253 {
254         struct msi_desc *desc = arg->desc;
255         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
256         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
257
258         if (!vmdirq)
259                 return -ENOMEM;
260
261         INIT_LIST_HEAD(&vmdirq->node);
262         vmdirq->irq = vmd_next_irq(vmd, desc);
263         vmdirq->virq = virq;
264
265         irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
266                             handle_untracked_irq, vmd, NULL);
267         return 0;
268 }
269
270 static void vmd_msi_free(struct irq_domain *domain,
271                         struct msi_domain_info *info, unsigned int virq)
272 {
273         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
274         unsigned long flags;
275
276         synchronize_srcu(&vmdirq->irq->srcu);
277
278         /* XXX: Potential optimization to rebalance */
279         raw_spin_lock_irqsave(&list_lock, flags);
280         vmdirq->irq->count--;
281         raw_spin_unlock_irqrestore(&list_lock, flags);
282
283         kfree(vmdirq);
284 }
285
286 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
287                            int nvec, msi_alloc_info_t *arg)
288 {
289         struct pci_dev *pdev = to_pci_dev(dev);
290         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
291
292         if (nvec > vmd->msix_count)
293                 return vmd->msix_count;
294
295         memset(arg, 0, sizeof(*arg));
296         return 0;
297 }
298
299 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
300 {
301         arg->desc = desc;
302 }
303
304 static struct msi_domain_ops vmd_msi_domain_ops = {
305         .get_hwirq      = vmd_get_hwirq,
306         .msi_init       = vmd_msi_init,
307         .msi_free       = vmd_msi_free,
308         .msi_prepare    = vmd_msi_prepare,
309         .set_desc       = vmd_set_desc,
310 };
311
312 static struct msi_domain_info vmd_msi_domain_info = {
313         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
314                           MSI_FLAG_PCI_MSIX,
315         .ops            = &vmd_msi_domain_ops,
316         .chip           = &vmd_msi_controller,
317 };
318
319 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
320 {
321         u16 reg;
322
323         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
324         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
325                        (reg | VMCONFIG_MSI_REMAP);
326         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
327 }
328
329 static int vmd_create_irq_domain(struct vmd_dev *vmd)
330 {
331         struct fwnode_handle *fn;
332
333         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
334         if (!fn)
335                 return -ENODEV;
336
337         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
338         if (!vmd->irq_domain) {
339                 irq_domain_free_fwnode(fn);
340                 return -ENODEV;
341         }
342
343         return 0;
344 }
345
346 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
347 {
348         /*
349          * Some production BIOS won't enable remapping between soft reboots.
350          * Ensure remapping is restored before unloading the driver.
351          */
352         if (!vmd->msix_count)
353                 vmd_set_msi_remapping(vmd, true);
354
355         if (vmd->irq_domain) {
356                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
357
358                 irq_domain_remove(vmd->irq_domain);
359                 irq_domain_free_fwnode(fn);
360         }
361 }
362
363 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
364                                   unsigned int devfn, int reg, int len)
365 {
366         unsigned int busnr_ecam = bus->number - vmd->busn_start;
367         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
368
369         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
370                 return NULL;
371
372         return vmd->cfgbar + offset;
373 }
374
375 /*
376  * CPU may deadlock if config space is not serialized on some versions of this
377  * hardware, so all config space access is done under a spinlock.
378  */
379 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
380                         int len, u32 *value)
381 {
382         struct vmd_dev *vmd = vmd_from_bus(bus);
383         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
384         unsigned long flags;
385         int ret = 0;
386
387         if (!addr)
388                 return -EFAULT;
389
390         spin_lock_irqsave(&vmd->cfg_lock, flags);
391         switch (len) {
392         case 1:
393                 *value = readb(addr);
394                 break;
395         case 2:
396                 *value = readw(addr);
397                 break;
398         case 4:
399                 *value = readl(addr);
400                 break;
401         default:
402                 ret = -EINVAL;
403                 break;
404         }
405         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
406         return ret;
407 }
408
409 /*
410  * VMD h/w converts non-posted config writes to posted memory writes. The
411  * read-back in this function forces the completion so it returns only after
412  * the config space was written, as expected.
413  */
414 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
415                          int len, u32 value)
416 {
417         struct vmd_dev *vmd = vmd_from_bus(bus);
418         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
419         unsigned long flags;
420         int ret = 0;
421
422         if (!addr)
423                 return -EFAULT;
424
425         spin_lock_irqsave(&vmd->cfg_lock, flags);
426         switch (len) {
427         case 1:
428                 writeb(value, addr);
429                 readb(addr);
430                 break;
431         case 2:
432                 writew(value, addr);
433                 readw(addr);
434                 break;
435         case 4:
436                 writel(value, addr);
437                 readl(addr);
438                 break;
439         default:
440                 ret = -EINVAL;
441                 break;
442         }
443         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
444         return ret;
445 }
446
447 static struct pci_ops vmd_ops = {
448         .read           = vmd_pci_read,
449         .write          = vmd_pci_write,
450 };
451
452 #ifdef CONFIG_ACPI
453 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
454 {
455         struct pci_host_bridge *bridge;
456         u32 busnr, addr;
457
458         if (pci_dev->bus->ops != &vmd_ops)
459                 return NULL;
460
461         bridge = pci_find_host_bridge(pci_dev->bus);
462         busnr = pci_dev->bus->number - bridge->bus->number;
463         /*
464          * The address computation below is only applicable to relative bus
465          * numbers below 32.
466          */
467         if (busnr > 31)
468                 return NULL;
469
470         addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
471
472         dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
473                 addr);
474
475         return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
476                                       false);
477 }
478
479 static bool hook_installed;
480
481 static void vmd_acpi_begin(void)
482 {
483         if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
484                 return;
485
486         hook_installed = true;
487 }
488
489 static void vmd_acpi_end(void)
490 {
491         if (!hook_installed)
492                 return;
493
494         pci_acpi_clear_companion_lookup_hook();
495         hook_installed = false;
496 }
497 #else
498 static inline void vmd_acpi_begin(void) { }
499 static inline void vmd_acpi_end(void) { }
500 #endif /* CONFIG_ACPI */
501
502 static void vmd_domain_reset(struct vmd_dev *vmd)
503 {
504         u16 bus, max_buses = resource_size(&vmd->resources[0]);
505         u8 dev, functions, fn, hdr_type;
506         char __iomem *base;
507
508         for (bus = 0; bus < max_buses; bus++) {
509                 for (dev = 0; dev < 32; dev++) {
510                         base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
511                                                 PCI_DEVFN(dev, 0), 0);
512
513                         hdr_type = readb(base + PCI_HEADER_TYPE) &
514                                          PCI_HEADER_TYPE_MASK;
515
516                         functions = (hdr_type & 0x80) ? 8 : 1;
517                         for (fn = 0; fn < functions; fn++) {
518                                 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
519                                                 PCI_DEVFN(dev, fn), 0);
520
521                                 hdr_type = readb(base + PCI_HEADER_TYPE) &
522                                                 PCI_HEADER_TYPE_MASK;
523
524                                 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
525                                     (readw(base + PCI_CLASS_DEVICE) !=
526                                      PCI_CLASS_BRIDGE_PCI))
527                                         continue;
528
529                                 memset_io(base + PCI_IO_BASE, 0,
530                                           PCI_ROM_ADDRESS1 - PCI_IO_BASE);
531                         }
532                 }
533         }
534 }
535
536 static void vmd_attach_resources(struct vmd_dev *vmd)
537 {
538         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
539         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
540 }
541
542 static void vmd_detach_resources(struct vmd_dev *vmd)
543 {
544         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
545         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
546 }
547
548 /*
549  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
550  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
551  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
552  * currently reserved.
553  */
554 static int vmd_find_free_domain(void)
555 {
556         int domain = 0xffff;
557         struct pci_bus *bus = NULL;
558
559         while ((bus = pci_find_next_bus(bus)) != NULL)
560                 domain = max_t(int, domain, pci_domain_nr(bus));
561         return domain + 1;
562 }
563
564 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
565                                 resource_size_t *offset1,
566                                 resource_size_t *offset2)
567 {
568         struct pci_dev *dev = vmd->dev;
569         u64 phys1, phys2;
570
571         if (native_hint) {
572                 u32 vmlock;
573                 int ret;
574
575                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
576                 if (ret || PCI_POSSIBLE_ERROR(vmlock))
577                         return -ENODEV;
578
579                 if (MB2_SHADOW_EN(vmlock)) {
580                         void __iomem *membar2;
581
582                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
583                         if (!membar2)
584                                 return -ENOMEM;
585                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
586                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
587                         pci_iounmap(dev, membar2);
588                 } else
589                         return 0;
590         } else {
591                 /* Hypervisor-Emulated Vendor-Specific Capability */
592                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
593                 u32 reg, regu;
594
595                 pci_read_config_dword(dev, pos + 4, &reg);
596
597                 /* "SHDW" */
598                 if (pos && reg == 0x53484457) {
599                         pci_read_config_dword(dev, pos + 8, &reg);
600                         pci_read_config_dword(dev, pos + 12, &regu);
601                         phys1 = (u64) regu << 32 | reg;
602
603                         pci_read_config_dword(dev, pos + 16, &reg);
604                         pci_read_config_dword(dev, pos + 20, &regu);
605                         phys2 = (u64) regu << 32 | reg;
606                 } else
607                         return 0;
608         }
609
610         *offset1 = dev->resource[VMD_MEMBAR1].start -
611                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
612         *offset2 = dev->resource[VMD_MEMBAR2].start -
613                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
614
615         return 0;
616 }
617
618 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
619 {
620         struct pci_dev *dev = vmd->dev;
621         u16 reg;
622
623         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
624         if (BUS_RESTRICT_CAP(reg)) {
625                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
626
627                 switch (BUS_RESTRICT_CFG(reg)) {
628                 case 0:
629                         vmd->busn_start = 0;
630                         break;
631                 case 1:
632                         vmd->busn_start = 128;
633                         break;
634                 case 2:
635                         vmd->busn_start = 224;
636                         break;
637                 default:
638                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
639                                 BUS_RESTRICT_CFG(reg));
640                         return -ENODEV;
641                 }
642         }
643
644         return 0;
645 }
646
647 static irqreturn_t vmd_irq(int irq, void *data)
648 {
649         struct vmd_irq_list *irqs = data;
650         struct vmd_irq *vmdirq;
651         int idx;
652
653         idx = srcu_read_lock(&irqs->srcu);
654         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
655                 generic_handle_irq(vmdirq->virq);
656         srcu_read_unlock(&irqs->srcu, idx);
657
658         return IRQ_HANDLED;
659 }
660
661 static int vmd_alloc_irqs(struct vmd_dev *vmd)
662 {
663         struct pci_dev *dev = vmd->dev;
664         int i, err;
665
666         vmd->msix_count = pci_msix_vec_count(dev);
667         if (vmd->msix_count < 0)
668                 return -ENODEV;
669
670         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
671                                                 vmd->msix_count, PCI_IRQ_MSIX);
672         if (vmd->msix_count < 0)
673                 return vmd->msix_count;
674
675         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
676                                  GFP_KERNEL);
677         if (!vmd->irqs)
678                 return -ENOMEM;
679
680         for (i = 0; i < vmd->msix_count; i++) {
681                 err = init_srcu_struct(&vmd->irqs[i].srcu);
682                 if (err)
683                         return err;
684
685                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
686                 vmd->irqs[i].virq = pci_irq_vector(dev, i);
687                 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
688                                        vmd_irq, IRQF_NO_THREAD,
689                                        vmd->name, &vmd->irqs[i]);
690                 if (err)
691                         return err;
692         }
693
694         return 0;
695 }
696
697 /*
698  * Since VMD is an aperture to regular PCIe root ports, only allow it to
699  * control features that the OS is allowed to control on the physical PCI bus.
700  */
701 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
702                                        struct pci_host_bridge *vmd_bridge)
703 {
704         vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
705         vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
706         vmd_bridge->native_aer = root_bridge->native_aer;
707         vmd_bridge->native_pme = root_bridge->native_pme;
708         vmd_bridge->native_ltr = root_bridge->native_ltr;
709         vmd_bridge->native_dpc = root_bridge->native_dpc;
710 }
711
712 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
713 {
714         struct pci_sysdata *sd = &vmd->sysdata;
715         struct resource *res;
716         u32 upper_bits;
717         unsigned long flags;
718         LIST_HEAD(resources);
719         resource_size_t offset[2] = {0};
720         resource_size_t membar2_offset = 0x2000;
721         struct pci_bus *child;
722         struct pci_dev *dev;
723         int ret;
724
725         /*
726          * Shadow registers may exist in certain VMD device ids which allow
727          * guests to correctly assign host physical addresses to the root ports
728          * and child devices. These registers will either return the host value
729          * or 0, depending on an enable bit in the VMD device.
730          */
731         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
732                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
733                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
734                 if (ret)
735                         return ret;
736         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
737                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
738                 if (ret)
739                         return ret;
740         }
741
742         /*
743          * Certain VMD devices may have a root port configuration option which
744          * limits the bus range to between 0-127, 128-255, or 224-255
745          */
746         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
747                 ret = vmd_get_bus_number_start(vmd);
748                 if (ret)
749                         return ret;
750         }
751
752         res = &vmd->dev->resource[VMD_CFGBAR];
753         vmd->resources[0] = (struct resource) {
754                 .name  = "VMD CFGBAR",
755                 .start = vmd->busn_start,
756                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
757                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
758         };
759
760         /*
761          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
762          * put 32-bit resources in the window.
763          *
764          * There's no hardware reason why a 64-bit window *couldn't*
765          * contain a 32-bit resource, but pbus_size_mem() computes the
766          * bridge window size assuming a 64-bit window will contain no
767          * 32-bit resources.  __pci_assign_resource() enforces that
768          * artificial restriction to make sure everything will fit.
769          *
770          * The only way we could use a 64-bit non-prefetchable MEMBAR is
771          * if its address is <4GB so that we can convert it to a 32-bit
772          * resource.  To be visible to the host OS, all VMD endpoints must
773          * be initially configured by platform BIOS, which includes setting
774          * up these resources.  We can assume the device is configured
775          * according to the platform needs.
776          */
777         res = &vmd->dev->resource[VMD_MEMBAR1];
778         upper_bits = upper_32_bits(res->end);
779         flags = res->flags & ~IORESOURCE_SIZEALIGN;
780         if (!upper_bits)
781                 flags &= ~IORESOURCE_MEM_64;
782         vmd->resources[1] = (struct resource) {
783                 .name  = "VMD MEMBAR1",
784                 .start = res->start,
785                 .end   = res->end,
786                 .flags = flags,
787                 .parent = res,
788         };
789
790         res = &vmd->dev->resource[VMD_MEMBAR2];
791         upper_bits = upper_32_bits(res->end);
792         flags = res->flags & ~IORESOURCE_SIZEALIGN;
793         if (!upper_bits)
794                 flags &= ~IORESOURCE_MEM_64;
795         vmd->resources[2] = (struct resource) {
796                 .name  = "VMD MEMBAR2",
797                 .start = res->start + membar2_offset,
798                 .end   = res->end,
799                 .flags = flags,
800                 .parent = res,
801         };
802
803         sd->vmd_dev = vmd->dev;
804         sd->domain = vmd_find_free_domain();
805         if (sd->domain < 0)
806                 return sd->domain;
807
808         sd->node = pcibus_to_node(vmd->dev->bus);
809
810         /*
811          * Currently MSI remapping must be enabled in guest passthrough mode
812          * due to some missing interrupt remapping plumbing. This is probably
813          * acceptable because the guest is usually CPU-limited and MSI
814          * remapping doesn't become a performance bottleneck.
815          */
816         if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
817             offset[0] || offset[1]) {
818                 ret = vmd_alloc_irqs(vmd);
819                 if (ret)
820                         return ret;
821
822                 vmd_set_msi_remapping(vmd, true);
823
824                 ret = vmd_create_irq_domain(vmd);
825                 if (ret)
826                         return ret;
827
828                 /*
829                  * Override the IRQ domain bus token so the domain can be
830                  * distinguished from a regular PCI/MSI domain.
831                  */
832                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
833         } else {
834                 vmd_set_msi_remapping(vmd, false);
835         }
836
837         pci_add_resource(&resources, &vmd->resources[0]);
838         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
839         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
840
841         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
842                                        &vmd_ops, sd, &resources);
843         if (!vmd->bus) {
844                 pci_free_resource_list(&resources);
845                 vmd_remove_irq_domain(vmd);
846                 return -ENODEV;
847         }
848
849         vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
850                                    to_pci_host_bridge(vmd->bus->bridge));
851
852         vmd_attach_resources(vmd);
853         if (vmd->irq_domain)
854                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
855         else
856                 dev_set_msi_domain(&vmd->bus->dev,
857                                    dev_get_msi_domain(&vmd->dev->dev));
858
859         vmd_acpi_begin();
860
861         pci_scan_child_bus(vmd->bus);
862         vmd_domain_reset(vmd);
863
864         /* When Intel VMD is enabled, the OS does not discover the Root Ports
865          * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
866          * a reset to the parent of the PCI device supplied as argument. This
867          * is why we pass a child device, so the reset can be triggered at
868          * the Intel bridge level and propagated to all the children in the
869          * hierarchy.
870          */
871         list_for_each_entry(child, &vmd->bus->children, node) {
872                 if (!list_empty(&child->devices)) {
873                         dev = list_first_entry(&child->devices,
874                                                struct pci_dev, bus_list);
875                         if (pci_reset_bus(dev))
876                                 pci_warn(dev, "can't reset device: %d\n", ret);
877
878                         break;
879                 }
880         }
881
882         pci_assign_unassigned_bus_resources(vmd->bus);
883
884         /*
885          * VMD root buses are virtual and don't return true on pci_is_pcie()
886          * and will fail pcie_bus_configure_settings() early. It can instead be
887          * run on each of the real root ports.
888          */
889         list_for_each_entry(child, &vmd->bus->children, node)
890                 pcie_bus_configure_settings(child);
891
892         pci_bus_add_devices(vmd->bus);
893
894         vmd_acpi_end();
895
896         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
897                                "domain"), "Can't create symlink to domain\n");
898         return 0;
899 }
900
901 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
902 {
903         unsigned long features = (unsigned long) id->driver_data;
904         struct vmd_dev *vmd;
905         int err;
906
907         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
908                 return -ENOMEM;
909
910         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
911         if (!vmd)
912                 return -ENOMEM;
913
914         vmd->dev = dev;
915         vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
916         if (vmd->instance < 0)
917                 return vmd->instance;
918
919         vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
920                                    vmd->instance);
921         if (!vmd->name) {
922                 err = -ENOMEM;
923                 goto out_release_instance;
924         }
925
926         err = pcim_enable_device(dev);
927         if (err < 0)
928                 goto out_release_instance;
929
930         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
931         if (!vmd->cfgbar) {
932                 err = -ENOMEM;
933                 goto out_release_instance;
934         }
935
936         pci_set_master(dev);
937         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
938             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
939                 err = -ENODEV;
940                 goto out_release_instance;
941         }
942
943         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
944                 vmd->first_vec = 1;
945
946         spin_lock_init(&vmd->cfg_lock);
947         pci_set_drvdata(dev, vmd);
948         err = vmd_enable_domain(vmd, features);
949         if (err)
950                 goto out_release_instance;
951
952         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
953                  vmd->sysdata.domain);
954         return 0;
955
956  out_release_instance:
957         ida_simple_remove(&vmd_instance_ida, vmd->instance);
958         return err;
959 }
960
961 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
962 {
963         int i;
964
965         for (i = 0; i < vmd->msix_count; i++)
966                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
967 }
968
969 static void vmd_remove(struct pci_dev *dev)
970 {
971         struct vmd_dev *vmd = pci_get_drvdata(dev);
972
973         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
974         pci_stop_root_bus(vmd->bus);
975         pci_remove_root_bus(vmd->bus);
976         vmd_cleanup_srcu(vmd);
977         vmd_detach_resources(vmd);
978         vmd_remove_irq_domain(vmd);
979         ida_simple_remove(&vmd_instance_ida, vmd->instance);
980 }
981
982 #ifdef CONFIG_PM_SLEEP
983 static int vmd_suspend(struct device *dev)
984 {
985         struct pci_dev *pdev = to_pci_dev(dev);
986         struct vmd_dev *vmd = pci_get_drvdata(pdev);
987         int i;
988
989         for (i = 0; i < vmd->msix_count; i++)
990                 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
991
992         return 0;
993 }
994
995 static int vmd_resume(struct device *dev)
996 {
997         struct pci_dev *pdev = to_pci_dev(dev);
998         struct vmd_dev *vmd = pci_get_drvdata(pdev);
999         int err, i;
1000
1001        if (vmd->irq_domain)
1002                vmd_set_msi_remapping(vmd, true);
1003        else
1004                vmd_set_msi_remapping(vmd, false);
1005
1006         for (i = 0; i < vmd->msix_count; i++) {
1007                 err = devm_request_irq(dev, vmd->irqs[i].virq,
1008                                        vmd_irq, IRQF_NO_THREAD,
1009                                        vmd->name, &vmd->irqs[i]);
1010                 if (err)
1011                         return err;
1012         }
1013
1014         return 0;
1015 }
1016 #endif
1017 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1018
1019 static const struct pci_device_id vmd_ids[] = {
1020         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1021                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1022         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1023                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1024                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1025                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1026         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
1027                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1028                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1029                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1030         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
1031                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1032                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1033                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1034         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f),
1035                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1036                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1037                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1038         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x7d0b),
1039                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1040                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1041                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1042         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xad0b),
1043                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1044                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1045                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1046         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1047                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
1048                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1049                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
1050         {0,}
1051 };
1052 MODULE_DEVICE_TABLE(pci, vmd_ids);
1053
1054 static struct pci_driver vmd_drv = {
1055         .name           = "vmd",
1056         .id_table       = vmd_ids,
1057         .probe          = vmd_probe,
1058         .remove         = vmd_remove,
1059         .driver         = {
1060                 .pm     = &vmd_dev_pm_ops,
1061         },
1062 };
1063 module_pci_driver(vmd_drv);
1064
1065 MODULE_AUTHOR("Intel Corporation");
1066 MODULE_LICENSE("GPL v2");
1067 MODULE_VERSION("0.6");