GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / opp / of.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *      Nishanth Menon
7  *      Romit Dasgupta
8  *      Kevin Hilman
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32                                                      int index)
33 {
34         /* "operating-points-v2" can be an array for power domain providers */
35         return of_parse_phandle(np, "operating-points-v2", index);
36 }
37
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41         return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47         struct opp_table *opp_table, *managed_table = NULL;
48         struct device_node *np;
49
50         np = _opp_of_get_opp_desc_node(dev->of_node, index);
51         if (!np)
52                 return NULL;
53
54         list_for_each_entry(opp_table, &opp_tables, node) {
55                 if (opp_table->np == np) {
56                         /*
57                          * Multiple devices can point to the same OPP table and
58                          * so will have same node-pointer, np.
59                          *
60                          * But the OPPs will be considered as shared only if the
61                          * OPP table contains a "opp-shared" property.
62                          */
63                         if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64                                 _get_opp_table_kref(opp_table);
65                                 managed_table = opp_table;
66                         }
67
68                         break;
69                 }
70         }
71
72         of_node_put(np);
73
74         return managed_table;
75 }
76
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79                                           struct device_node *opp_np)
80 {
81         struct dev_pm_opp *opp;
82
83         mutex_lock(&opp_table->lock);
84
85         list_for_each_entry(opp, &opp_table->opp_list, node) {
86                 if (opp->np == opp_np) {
87                         dev_pm_opp_get(opp);
88                         mutex_unlock(&opp_table->lock);
89                         return opp;
90                 }
91         }
92
93         mutex_unlock(&opp_table->lock);
94
95         return NULL;
96 }
97
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99                                                  int index)
100 {
101         return of_parse_phandle(np, "required-opps", index);
102 }
103
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107         struct opp_table *opp_table;
108         struct device_node *opp_table_np;
109
110         opp_table_np = of_get_parent(opp_np);
111         if (!opp_table_np)
112                 goto err;
113
114         /* It is safe to put the node now as all we need now is its address */
115         of_node_put(opp_table_np);
116
117         mutex_lock(&opp_table_lock);
118         list_for_each_entry(opp_table, &opp_tables, node) {
119                 if (opp_table_np == opp_table->np) {
120                         _get_opp_table_kref(opp_table);
121                         mutex_unlock(&opp_table_lock);
122                         return opp_table;
123                 }
124         }
125         mutex_unlock(&opp_table_lock);
126
127 err:
128         return ERR_PTR(-ENODEV);
129 }
130
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134         struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135         int i;
136
137         if (!required_opp_tables)
138                 return;
139
140         for (i = 0; i < opp_table->required_opp_count; i++) {
141                 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142                         continue;
143
144                 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145         }
146
147         kfree(required_opp_tables);
148
149         opp_table->required_opp_count = 0;
150         opp_table->required_opp_tables = NULL;
151
152         mutex_lock(&opp_table_lock);
153         list_del(&opp_table->lazy);
154         mutex_unlock(&opp_table_lock);
155 }
156
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162                                              struct device *dev,
163                                              struct device_node *opp_np)
164 {
165         struct opp_table **required_opp_tables;
166         struct device_node *required_np, *np;
167         bool lazy = false;
168         int count, i, size;
169
170         /* Traversing the first OPP node is all we need */
171         np = of_get_next_available_child(opp_np, NULL);
172         if (!np) {
173                 dev_warn(dev, "Empty OPP table\n");
174
175                 return;
176         }
177
178         count = of_count_phandle_with_args(np, "required-opps", NULL);
179         if (count <= 0)
180                 goto put_np;
181
182         size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183         required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184         if (!required_opp_tables)
185                 goto put_np;
186
187         opp_table->required_opp_tables = required_opp_tables;
188         opp_table->required_devs = (void *)(required_opp_tables + count);
189         opp_table->required_opp_count = count;
190
191         for (i = 0; i < count; i++) {
192                 required_np = of_parse_required_opp(np, i);
193                 if (!required_np)
194                         goto free_required_tables;
195
196                 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197                 of_node_put(required_np);
198
199                 if (IS_ERR(required_opp_tables[i]))
200                         lazy = true;
201         }
202
203         /* Let's do the linking later on */
204         if (lazy) {
205                 /*
206                  * The OPP table is not held while allocating the table, take it
207                  * now to avoid corruption to the lazy_opp_tables list.
208                  */
209                 mutex_lock(&opp_table_lock);
210                 list_add(&opp_table->lazy, &lazy_opp_tables);
211                 mutex_unlock(&opp_table_lock);
212         }
213
214         goto put_np;
215
216 free_required_tables:
217         _opp_table_free_required_tables(opp_table);
218 put_np:
219         of_node_put(np);
220 }
221
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223                         int index)
224 {
225         struct device_node *np, *opp_np;
226         u32 val;
227
228         /*
229          * Only required for backward compatibility with v1 bindings, but isn't
230          * harmful for other cases. And so we do it unconditionally.
231          */
232         np = of_node_get(dev->of_node);
233         if (!np)
234                 return;
235
236         if (!of_property_read_u32(np, "clock-latency", &val))
237                 opp_table->clock_latency_ns_max = val;
238         of_property_read_u32(np, "voltage-tolerance",
239                              &opp_table->voltage_tolerance_v1);
240
241         if (of_property_present(np, "#power-domain-cells"))
242                 opp_table->is_genpd = true;
243
244         /* Get OPP table node */
245         opp_np = _opp_of_get_opp_desc_node(np, index);
246         of_node_put(np);
247
248         if (!opp_np)
249                 return;
250
251         if (of_property_read_bool(opp_np, "opp-shared"))
252                 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253         else
254                 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255
256         opp_table->np = opp_np;
257
258         _opp_table_alloc_required_tables(opp_table, dev, opp_np);
259 }
260
261 void _of_clear_opp_table(struct opp_table *opp_table)
262 {
263         _opp_table_free_required_tables(opp_table);
264         of_node_put(opp_table->np);
265 }
266
267 /*
268  * Release all resources previously acquired with a call to
269  * _of_opp_alloc_required_opps().
270  */
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272                                        struct dev_pm_opp *opp)
273 {
274         struct dev_pm_opp **required_opps = opp->required_opps;
275         int i;
276
277         if (!required_opps)
278                 return;
279
280         for (i = 0; i < opp_table->required_opp_count; i++) {
281                 if (!required_opps[i])
282                         continue;
283
284                 /* Put the reference back */
285                 dev_pm_opp_put(required_opps[i]);
286         }
287
288         opp->required_opps = NULL;
289         kfree(required_opps);
290 }
291
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293 {
294         _of_opp_free_required_opps(opp_table, opp);
295         of_node_put(opp->np);
296 }
297
298 static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
299                                struct opp_table *required_table, int index)
300 {
301         struct device_node *np;
302
303         np = of_parse_required_opp(opp->np, index);
304         if (unlikely(!np))
305                 return -ENODEV;
306
307         opp->required_opps[index] = _find_opp_of_np(required_table, np);
308         of_node_put(np);
309
310         if (!opp->required_opps[index]) {
311                 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312                        __func__, opp->np, index);
313                 return -ENODEV;
314         }
315
316         /*
317          * There are two genpd (as required-opp) cases that we need to handle,
318          * devices with a single genpd and ones with multiple genpds.
319          *
320          * The single genpd case requires special handling as we need to use the
321          * same `dev` structure (instead of a virtual one provided by genpd
322          * core) for setting the performance state.
323          *
324          * It doesn't make sense for a device's DT entry to have both
325          * "opp-level" and single "required-opps" entry pointing to a genpd's
326          * OPP, as that would make the OPP core call
327          * dev_pm_domain_set_performance_state() for two different values for
328          * the same device structure. Lets treat single genpd configuration as a
329          * case where the OPP's level is directly available without required-opp
330          * link in the DT.
331          *
332          * Just update the `level` with the right value, which
333          * dev_pm_opp_set_opp() will take care of in the normal path itself.
334          *
335          * There is another case though, where a genpd's OPP table has
336          * required-opps set to a parent genpd. The OPP core expects the user to
337          * set the respective required `struct device` pointer via
338          * dev_pm_opp_set_config().
339          */
340         if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
341             !opp_table->required_devs[0]) {
342                 /* Genpd core takes care of propagation to parent genpd */
343                 if (!opp_table->is_genpd) {
344                         if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
345                                 opp->level = opp->required_opps[0]->level;
346                 }
347         }
348
349         return 0;
350 }
351
352 /* Populate all required OPPs which are part of "required-opps" list */
353 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
354                                        struct dev_pm_opp *opp)
355 {
356         struct opp_table *required_table;
357         int i, ret, count = opp_table->required_opp_count;
358
359         if (!count)
360                 return 0;
361
362         opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
363         if (!opp->required_opps)
364                 return -ENOMEM;
365
366         for (i = 0; i < count; i++) {
367                 required_table = opp_table->required_opp_tables[i];
368
369                 /* Required table not added yet, we will link later */
370                 if (IS_ERR_OR_NULL(required_table))
371                         continue;
372
373                 ret = _link_required_opps(opp, opp_table, required_table, i);
374                 if (ret)
375                         goto free_required_opps;
376         }
377
378         return 0;
379
380 free_required_opps:
381         _of_opp_free_required_opps(opp_table, opp);
382
383         return ret;
384 }
385
386 /* Link required OPPs for an individual OPP */
387 static int lazy_link_required_opps(struct opp_table *opp_table,
388                                    struct opp_table *new_table, int index)
389 {
390         struct dev_pm_opp *opp;
391         int ret;
392
393         list_for_each_entry(opp, &opp_table->opp_list, node) {
394                 ret = _link_required_opps(opp, opp_table, new_table, index);
395                 if (ret)
396                         return ret;
397         }
398
399         return 0;
400 }
401
402 /* Link required OPPs for all OPPs of the newly added OPP table */
403 static void lazy_link_required_opp_table(struct opp_table *new_table)
404 {
405         struct opp_table *opp_table, *temp, **required_opp_tables;
406         struct device_node *required_np, *opp_np, *required_table_np;
407         struct dev_pm_opp *opp;
408         int i, ret;
409
410         mutex_lock(&opp_table_lock);
411
412         list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
413                 bool lazy = false;
414
415                 /* opp_np can't be invalid here */
416                 opp_np = of_get_next_available_child(opp_table->np, NULL);
417
418                 for (i = 0; i < opp_table->required_opp_count; i++) {
419                         required_opp_tables = opp_table->required_opp_tables;
420
421                         /* Required opp-table is already parsed */
422                         if (!IS_ERR(required_opp_tables[i]))
423                                 continue;
424
425                         /* required_np can't be invalid here */
426                         required_np = of_parse_required_opp(opp_np, i);
427                         required_table_np = of_get_parent(required_np);
428
429                         of_node_put(required_table_np);
430                         of_node_put(required_np);
431
432                         /*
433                          * Newly added table isn't the required opp-table for
434                          * opp_table.
435                          */
436                         if (required_table_np != new_table->np) {
437                                 lazy = true;
438                                 continue;
439                         }
440
441                         required_opp_tables[i] = new_table;
442                         _get_opp_table_kref(new_table);
443
444                         /* Link OPPs now */
445                         ret = lazy_link_required_opps(opp_table, new_table, i);
446                         if (ret) {
447                                 /* The OPPs will be marked unusable */
448                                 lazy = false;
449                                 break;
450                         }
451                 }
452
453                 of_node_put(opp_np);
454
455                 /* All required opp-tables found, remove from lazy list */
456                 if (!lazy) {
457                         list_del_init(&opp_table->lazy);
458
459                         list_for_each_entry(opp, &opp_table->opp_list, node)
460                                 _required_opps_available(opp, opp_table->required_opp_count);
461                 }
462         }
463
464         mutex_unlock(&opp_table_lock);
465 }
466
467 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
468 {
469         struct device_node *np, *opp_np;
470         struct property *prop;
471
472         if (!opp_table) {
473                 np = of_node_get(dev->of_node);
474                 if (!np)
475                         return -ENODEV;
476
477                 opp_np = _opp_of_get_opp_desc_node(np, 0);
478                 of_node_put(np);
479         } else {
480                 opp_np = of_node_get(opp_table->np);
481         }
482
483         /* Lets not fail in case we are parsing opp-v1 bindings */
484         if (!opp_np)
485                 return 0;
486
487         /* Checking only first OPP is sufficient */
488         np = of_get_next_available_child(opp_np, NULL);
489         of_node_put(opp_np);
490         if (!np) {
491                 dev_err(dev, "OPP table empty\n");
492                 return -EINVAL;
493         }
494
495         prop = of_find_property(np, "opp-peak-kBps", NULL);
496         of_node_put(np);
497
498         if (!prop || !prop->length)
499                 return 0;
500
501         return 1;
502 }
503
504 int dev_pm_opp_of_find_icc_paths(struct device *dev,
505                                  struct opp_table *opp_table)
506 {
507         struct device_node *np;
508         int ret, i, count, num_paths;
509         struct icc_path **paths;
510
511         ret = _bandwidth_supported(dev, opp_table);
512         if (ret == -EINVAL)
513                 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
514         else if (ret <= 0)
515                 return ret;
516
517         ret = 0;
518
519         np = of_node_get(dev->of_node);
520         if (!np)
521                 return 0;
522
523         count = of_count_phandle_with_args(np, "interconnects",
524                                            "#interconnect-cells");
525         of_node_put(np);
526         if (count < 0)
527                 return 0;
528
529         /* two phandles when #interconnect-cells = <1> */
530         if (count % 2) {
531                 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
532                 return -EINVAL;
533         }
534
535         num_paths = count / 2;
536         paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
537         if (!paths)
538                 return -ENOMEM;
539
540         for (i = 0; i < num_paths; i++) {
541                 paths[i] = of_icc_get_by_index(dev, i);
542                 if (IS_ERR(paths[i])) {
543                         ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
544                         goto err;
545                 }
546         }
547
548         if (opp_table) {
549                 opp_table->paths = paths;
550                 opp_table->path_count = num_paths;
551                 return 0;
552         }
553
554 err:
555         while (i--)
556                 icc_put(paths[i]);
557
558         kfree(paths);
559
560         return ret;
561 }
562 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
563
564 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
565                               struct device_node *np)
566 {
567         unsigned int levels = opp_table->supported_hw_count;
568         int count, versions, ret, i, j;
569         u32 val;
570
571         if (!opp_table->supported_hw) {
572                 /*
573                  * In the case that no supported_hw has been set by the
574                  * platform but there is an opp-supported-hw value set for
575                  * an OPP then the OPP should not be enabled as there is
576                  * no way to see if the hardware supports it.
577                  */
578                 if (of_property_present(np, "opp-supported-hw"))
579                         return false;
580                 else
581                         return true;
582         }
583
584         count = of_property_count_u32_elems(np, "opp-supported-hw");
585         if (count <= 0 || count % levels) {
586                 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
587                         __func__, count);
588                 return false;
589         }
590
591         versions = count / levels;
592
593         /* All levels in at least one of the versions should match */
594         for (i = 0; i < versions; i++) {
595                 bool supported = true;
596
597                 for (j = 0; j < levels; j++) {
598                         ret = of_property_read_u32_index(np, "opp-supported-hw",
599                                                          i * levels + j, &val);
600                         if (ret) {
601                                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
602                                          __func__, i * levels + j, ret);
603                                 return false;
604                         }
605
606                         /* Check if the level is supported */
607                         if (!(val & opp_table->supported_hw[j])) {
608                                 supported = false;
609                                 break;
610                         }
611                 }
612
613                 if (supported)
614                         return true;
615         }
616
617         return false;
618 }
619
620 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
621                               struct opp_table *opp_table,
622                               const char *prop_type, bool *triplet)
623 {
624         struct property *prop = NULL;
625         char name[NAME_MAX];
626         int count, ret;
627         u32 *out;
628
629         /* Search for "opp-<prop_type>-<name>" */
630         if (opp_table->prop_name) {
631                 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
632                          opp_table->prop_name);
633                 prop = of_find_property(opp->np, name, NULL);
634         }
635
636         if (!prop) {
637                 /* Search for "opp-<prop_type>" */
638                 snprintf(name, sizeof(name), "opp-%s", prop_type);
639                 prop = of_find_property(opp->np, name, NULL);
640                 if (!prop)
641                         return NULL;
642         }
643
644         count = of_property_count_u32_elems(opp->np, name);
645         if (count < 0) {
646                 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
647                         count);
648                 return ERR_PTR(count);
649         }
650
651         /*
652          * Initialize regulator_count, if regulator information isn't provided
653          * by the platform. Now that one of the properties is available, fix the
654          * regulator_count to 1.
655          */
656         if (unlikely(opp_table->regulator_count == -1))
657                 opp_table->regulator_count = 1;
658
659         if (count != opp_table->regulator_count &&
660             (!triplet || count != opp_table->regulator_count * 3)) {
661                 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
662                         __func__, prop_type, count, opp_table->regulator_count);
663                 return ERR_PTR(-EINVAL);
664         }
665
666         out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
667         if (!out)
668                 return ERR_PTR(-EINVAL);
669
670         ret = of_property_read_u32_array(opp->np, name, out, count);
671         if (ret) {
672                 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
673                 kfree(out);
674                 return ERR_PTR(-EINVAL);
675         }
676
677         if (triplet)
678                 *triplet = count != opp_table->regulator_count;
679
680         return out;
681 }
682
683 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
684                                 struct opp_table *opp_table, bool *triplet)
685 {
686         u32 *microvolt;
687
688         microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
689         if (IS_ERR(microvolt))
690                 return microvolt;
691
692         if (!microvolt) {
693                 /*
694                  * Missing property isn't a problem, but an invalid
695                  * entry is. This property isn't optional if regulator
696                  * information is provided. Check only for the first OPP, as
697                  * regulator_count may get initialized after that to a valid
698                  * value.
699                  */
700                 if (list_empty(&opp_table->opp_list) &&
701                     opp_table->regulator_count > 0) {
702                         dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
703                                 __func__);
704                         return ERR_PTR(-EINVAL);
705                 }
706         }
707
708         return microvolt;
709 }
710
711 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
712                               struct opp_table *opp_table)
713 {
714         u32 *microvolt, *microamp, *microwatt;
715         int ret = 0, i, j;
716         bool triplet;
717
718         microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
719         if (IS_ERR(microvolt))
720                 return PTR_ERR(microvolt);
721
722         microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
723         if (IS_ERR(microamp)) {
724                 ret = PTR_ERR(microamp);
725                 goto free_microvolt;
726         }
727
728         microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
729         if (IS_ERR(microwatt)) {
730                 ret = PTR_ERR(microwatt);
731                 goto free_microamp;
732         }
733
734         /*
735          * Initialize regulator_count if it is uninitialized and no properties
736          * are found.
737          */
738         if (unlikely(opp_table->regulator_count == -1)) {
739                 opp_table->regulator_count = 0;
740                 return 0;
741         }
742
743         for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
744                 if (microvolt) {
745                         opp->supplies[i].u_volt = microvolt[j++];
746
747                         if (triplet) {
748                                 opp->supplies[i].u_volt_min = microvolt[j++];
749                                 opp->supplies[i].u_volt_max = microvolt[j++];
750                         } else {
751                                 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
752                                 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
753                         }
754                 }
755
756                 if (microamp)
757                         opp->supplies[i].u_amp = microamp[i];
758
759                 if (microwatt)
760                         opp->supplies[i].u_watt = microwatt[i];
761         }
762
763         kfree(microwatt);
764 free_microamp:
765         kfree(microamp);
766 free_microvolt:
767         kfree(microvolt);
768
769         return ret;
770 }
771
772 /**
773  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
774  *                                entries
775  * @dev:        device pointer used to lookup OPP table.
776  *
777  * Free OPPs created using static entries present in DT.
778  */
779 void dev_pm_opp_of_remove_table(struct device *dev)
780 {
781         dev_pm_opp_remove_table(dev);
782 }
783 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
784
785 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
786                       struct device_node *np)
787 {
788         struct property *prop;
789         int i, count, ret;
790         u64 *rates;
791
792         prop = of_find_property(np, "opp-hz", NULL);
793         if (!prop)
794                 return -ENODEV;
795
796         count = prop->length / sizeof(u64);
797         if (opp_table->clk_count != count) {
798                 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
799                        __func__, count, opp_table->clk_count);
800                 return -EINVAL;
801         }
802
803         rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
804         if (!rates)
805                 return -ENOMEM;
806
807         ret = of_property_read_u64_array(np, "opp-hz", rates, count);
808         if (ret) {
809                 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
810         } else {
811                 /*
812                  * Rate is defined as an unsigned long in clk API, and so
813                  * casting explicitly to its type. Must be fixed once rate is 64
814                  * bit guaranteed in clk API.
815                  */
816                 for (i = 0; i < count; i++) {
817                         new_opp->rates[i] = (unsigned long)rates[i];
818
819                         /* This will happen for frequencies > 4.29 GHz */
820                         WARN_ON(new_opp->rates[i] != rates[i]);
821                 }
822         }
823
824         kfree(rates);
825
826         return ret;
827 }
828
829 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
830                     struct device_node *np, bool peak)
831 {
832         const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
833         struct property *prop;
834         int i, count, ret;
835         u32 *bw;
836
837         prop = of_find_property(np, name, NULL);
838         if (!prop)
839                 return -ENODEV;
840
841         count = prop->length / sizeof(u32);
842         if (opp_table->path_count != count) {
843                 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
844                                 __func__, name, count, opp_table->path_count);
845                 return -EINVAL;
846         }
847
848         bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
849         if (!bw)
850                 return -ENOMEM;
851
852         ret = of_property_read_u32_array(np, name, bw, count);
853         if (ret) {
854                 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
855                 goto out;
856         }
857
858         for (i = 0; i < count; i++) {
859                 if (peak)
860                         new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
861                 else
862                         new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
863         }
864
865 out:
866         kfree(bw);
867         return ret;
868 }
869
870 static int _read_opp_key(struct dev_pm_opp *new_opp,
871                          struct opp_table *opp_table, struct device_node *np)
872 {
873         bool found = false;
874         int ret;
875
876         ret = _read_rate(new_opp, opp_table, np);
877         if (!ret)
878                 found = true;
879         else if (ret != -ENODEV)
880                 return ret;
881
882         /*
883          * Bandwidth consists of peak and average (optional) values:
884          * opp-peak-kBps = <path1_value path2_value>;
885          * opp-avg-kBps = <path1_value path2_value>;
886          */
887         ret = _read_bw(new_opp, opp_table, np, true);
888         if (!ret) {
889                 found = true;
890                 ret = _read_bw(new_opp, opp_table, np, false);
891         }
892
893         /* The properties were found but we failed to parse them */
894         if (ret && ret != -ENODEV)
895                 return ret;
896
897         if (!of_property_read_u32(np, "opp-level", &new_opp->level))
898                 found = true;
899
900         if (found)
901                 return 0;
902
903         return ret;
904 }
905
906 /**
907  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
908  * @opp_table:  OPP table
909  * @dev:        device for which we do this operation
910  * @np:         device node
911  *
912  * This function adds an opp definition to the opp table and returns status. The
913  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
914  * removed by dev_pm_opp_remove.
915  *
916  * Return:
917  * Valid OPP pointer:
918  *              On success
919  * NULL:
920  *              Duplicate OPPs (both freq and volt are same) and opp->available
921  *              OR if the OPP is not supported by hardware.
922  * ERR_PTR(-EEXIST):
923  *              Freq are same and volt are different OR
924  *              Duplicate OPPs (both freq and volt are same) and !opp->available
925  * ERR_PTR(-ENOMEM):
926  *              Memory allocation failure
927  * ERR_PTR(-EINVAL):
928  *              Failed parsing the OPP node
929  */
930 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
931                 struct device *dev, struct device_node *np)
932 {
933         struct dev_pm_opp *new_opp;
934         u32 val;
935         int ret;
936
937         new_opp = _opp_allocate(opp_table);
938         if (!new_opp)
939                 return ERR_PTR(-ENOMEM);
940
941         ret = _read_opp_key(new_opp, opp_table, np);
942         if (ret < 0) {
943                 dev_err(dev, "%s: opp key field not found\n", __func__);
944                 goto free_opp;
945         }
946
947         /* Check if the OPP supports hardware's hierarchy of versions or not */
948         if (!_opp_is_supported(dev, opp_table, np)) {
949                 dev_dbg(dev, "OPP not supported by hardware: %s\n",
950                         of_node_full_name(np));
951                 goto free_opp;
952         }
953
954         new_opp->turbo = of_property_read_bool(np, "turbo-mode");
955
956         new_opp->np = of_node_get(np);
957         new_opp->dynamic = false;
958         new_opp->available = true;
959
960         ret = _of_opp_alloc_required_opps(opp_table, new_opp);
961         if (ret)
962                 goto free_opp;
963
964         if (!of_property_read_u32(np, "clock-latency-ns", &val))
965                 new_opp->clock_latency_ns = val;
966
967         ret = opp_parse_supplies(new_opp, dev, opp_table);
968         if (ret)
969                 goto free_required_opps;
970
971         ret = _opp_add(dev, new_opp, opp_table);
972         if (ret) {
973                 /* Don't return error for duplicate OPPs */
974                 if (ret == -EBUSY)
975                         ret = 0;
976                 goto free_required_opps;
977         }
978
979         /* OPP to select on device suspend */
980         if (of_property_read_bool(np, "opp-suspend")) {
981                 if (opp_table->suspend_opp) {
982                         /* Pick the OPP with higher rate/bw/level as suspend OPP */
983                         if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
984                                 opp_table->suspend_opp->suspend = false;
985                                 new_opp->suspend = true;
986                                 opp_table->suspend_opp = new_opp;
987                         }
988                 } else {
989                         new_opp->suspend = true;
990                         opp_table->suspend_opp = new_opp;
991                 }
992         }
993
994         if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
995                 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
996
997         pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
998                  __func__, new_opp->turbo, new_opp->rates[0],
999                  new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000                  new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001                  new_opp->level);
1002
1003         /*
1004          * Notify the changes in the availability of the operable
1005          * frequency/voltage list.
1006          */
1007         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008         return new_opp;
1009
1010 free_required_opps:
1011         _of_opp_free_required_opps(opp_table, new_opp);
1012 free_opp:
1013         _opp_free(new_opp);
1014
1015         return ret ? ERR_PTR(ret) : NULL;
1016 }
1017
1018 /* Initializes OPP tables based on new bindings */
1019 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020 {
1021         struct device_node *np;
1022         int ret, count = 0;
1023         struct dev_pm_opp *opp;
1024
1025         /* OPP table is already initialized for the device */
1026         mutex_lock(&opp_table->lock);
1027         if (opp_table->parsed_static_opps) {
1028                 opp_table->parsed_static_opps++;
1029                 mutex_unlock(&opp_table->lock);
1030                 return 0;
1031         }
1032
1033         opp_table->parsed_static_opps = 1;
1034         mutex_unlock(&opp_table->lock);
1035
1036         /* We have opp-table node now, iterate over it and add OPPs */
1037         for_each_available_child_of_node(opp_table->np, np) {
1038                 opp = _opp_add_static_v2(opp_table, dev, np);
1039                 if (IS_ERR(opp)) {
1040                         ret = PTR_ERR(opp);
1041                         dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042                                 ret);
1043                         of_node_put(np);
1044                         goto remove_static_opp;
1045                 } else if (opp) {
1046                         count++;
1047                 }
1048         }
1049
1050         /* There should be one or more OPPs defined */
1051         if (!count) {
1052                 dev_err(dev, "%s: no supported OPPs", __func__);
1053                 ret = -ENOENT;
1054                 goto remove_static_opp;
1055         }
1056
1057         lazy_link_required_opp_table(opp_table);
1058
1059         return 0;
1060
1061 remove_static_opp:
1062         _opp_remove_all_static(opp_table);
1063
1064         return ret;
1065 }
1066
1067 /* Initializes OPP tables based on old-deprecated bindings */
1068 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069 {
1070         const struct property *prop;
1071         const __be32 *val;
1072         int nr, ret = 0;
1073
1074         mutex_lock(&opp_table->lock);
1075         if (opp_table->parsed_static_opps) {
1076                 opp_table->parsed_static_opps++;
1077                 mutex_unlock(&opp_table->lock);
1078                 return 0;
1079         }
1080
1081         opp_table->parsed_static_opps = 1;
1082         mutex_unlock(&opp_table->lock);
1083
1084         prop = of_find_property(dev->of_node, "operating-points", NULL);
1085         if (!prop) {
1086                 ret = -ENODEV;
1087                 goto remove_static_opp;
1088         }
1089         if (!prop->value) {
1090                 ret = -ENODATA;
1091                 goto remove_static_opp;
1092         }
1093
1094         /*
1095          * Each OPP is a set of tuples consisting of frequency and
1096          * voltage like <freq-kHz vol-uV>.
1097          */
1098         nr = prop->length / sizeof(u32);
1099         if (nr % 2) {
1100                 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101                 ret = -EINVAL;
1102                 goto remove_static_opp;
1103         }
1104
1105         val = prop->value;
1106         while (nr) {
1107                 unsigned long freq = be32_to_cpup(val++) * 1000;
1108                 unsigned long volt = be32_to_cpup(val++);
1109                 struct dev_pm_opp_data data = {
1110                         .freq = freq,
1111                         .u_volt = volt,
1112                 };
1113
1114                 ret = _opp_add_v1(opp_table, dev, &data, false);
1115                 if (ret) {
1116                         dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117                                 __func__, data.freq, ret);
1118                         goto remove_static_opp;
1119                 }
1120                 nr -= 2;
1121         }
1122
1123         return 0;
1124
1125 remove_static_opp:
1126         _opp_remove_all_static(opp_table);
1127
1128         return ret;
1129 }
1130
1131 static int _of_add_table_indexed(struct device *dev, int index)
1132 {
1133         struct opp_table *opp_table;
1134         int ret, count;
1135
1136         if (index) {
1137                 /*
1138                  * If only one phandle is present, then the same OPP table
1139                  * applies for all index requests.
1140                  */
1141                 count = of_count_phandle_with_args(dev->of_node,
1142                                                    "operating-points-v2", NULL);
1143                 if (count == 1)
1144                         index = 0;
1145         }
1146
1147         opp_table = _add_opp_table_indexed(dev, index, true);
1148         if (IS_ERR(opp_table))
1149                 return PTR_ERR(opp_table);
1150
1151         /*
1152          * OPPs have two version of bindings now. Also try the old (v1)
1153          * bindings for backward compatibility with older dtbs.
1154          */
1155         if (opp_table->np)
1156                 ret = _of_add_opp_table_v2(dev, opp_table);
1157         else
1158                 ret = _of_add_opp_table_v1(dev, opp_table);
1159
1160         if (ret)
1161                 dev_pm_opp_put_opp_table(opp_table);
1162
1163         return ret;
1164 }
1165
1166 static void devm_pm_opp_of_table_release(void *data)
1167 {
1168         dev_pm_opp_of_remove_table(data);
1169 }
1170
1171 static int _devm_of_add_table_indexed(struct device *dev, int index)
1172 {
1173         int ret;
1174
1175         ret = _of_add_table_indexed(dev, index);
1176         if (ret)
1177                 return ret;
1178
1179         return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180 }
1181
1182 /**
1183  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184  * @dev:        device pointer used to lookup OPP table.
1185  *
1186  * Register the initial OPP table with the OPP library for given device.
1187  *
1188  * The opp_table structure will be freed after the device is destroyed.
1189  *
1190  * Return:
1191  * 0            On success OR
1192  *              Duplicate OPPs (both freq and volt are same) and opp->available
1193  * -EEXIST      Freq are same and volt are different OR
1194  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1195  * -ENOMEM      Memory allocation failure
1196  * -ENODEV      when 'operating-points' property is not found or is invalid data
1197  *              in device node.
1198  * -ENODATA     when empty 'operating-points' property is found
1199  * -EINVAL      when invalid entries are found in opp-v2 table
1200  */
1201 int devm_pm_opp_of_add_table(struct device *dev)
1202 {
1203         return _devm_of_add_table_indexed(dev, 0);
1204 }
1205 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206
1207 /**
1208  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209  * @dev:        device pointer used to lookup OPP table.
1210  *
1211  * Register the initial OPP table with the OPP library for given device.
1212  *
1213  * Return:
1214  * 0            On success OR
1215  *              Duplicate OPPs (both freq and volt are same) and opp->available
1216  * -EEXIST      Freq are same and volt are different OR
1217  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1218  * -ENOMEM      Memory allocation failure
1219  * -ENODEV      when 'operating-points' property is not found or is invalid data
1220  *              in device node.
1221  * -ENODATA     when empty 'operating-points' property is found
1222  * -EINVAL      when invalid entries are found in opp-v2 table
1223  */
1224 int dev_pm_opp_of_add_table(struct device *dev)
1225 {
1226         return _of_add_table_indexed(dev, 0);
1227 }
1228 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229
1230 /**
1231  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232  * @dev:        device pointer used to lookup OPP table.
1233  * @index:      Index number.
1234  *
1235  * Register the initial OPP table with the OPP library for given device only
1236  * using the "operating-points-v2" property.
1237  *
1238  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239  */
1240 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241 {
1242         return _of_add_table_indexed(dev, index);
1243 }
1244 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245
1246 /**
1247  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248  * @dev:        device pointer used to lookup OPP table.
1249  * @index:      Index number.
1250  *
1251  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252  */
1253 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254 {
1255         return _devm_of_add_table_indexed(dev, index);
1256 }
1257 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258
1259 /* CPU device specific helpers */
1260
1261 /**
1262  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263  * @cpumask:    cpumask for which OPP table needs to be removed
1264  *
1265  * This removes the OPP tables for CPUs present in the @cpumask.
1266  * This should be used only to remove static entries created from DT.
1267  */
1268 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269 {
1270         _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271 }
1272 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273
1274 /**
1275  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276  * @cpumask:    cpumask for which OPP table needs to be added.
1277  *
1278  * This adds the OPP tables for CPUs present in the @cpumask.
1279  */
1280 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281 {
1282         struct device *cpu_dev;
1283         int cpu, ret;
1284
1285         if (WARN_ON(cpumask_empty(cpumask)))
1286                 return -ENODEV;
1287
1288         for_each_cpu(cpu, cpumask) {
1289                 cpu_dev = get_cpu_device(cpu);
1290                 if (!cpu_dev) {
1291                         pr_err("%s: failed to get cpu%d device\n", __func__,
1292                                cpu);
1293                         ret = -ENODEV;
1294                         goto remove_table;
1295                 }
1296
1297                 ret = dev_pm_opp_of_add_table(cpu_dev);
1298                 if (ret) {
1299                         /*
1300                          * OPP may get registered dynamically, don't print error
1301                          * message here.
1302                          */
1303                         pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304                                  __func__, cpu, ret);
1305
1306                         goto remove_table;
1307                 }
1308         }
1309
1310         return 0;
1311
1312 remove_table:
1313         /* Free all other OPPs */
1314         _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315
1316         return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319
1320 /*
1321  * Works only for OPP v2 bindings.
1322  *
1323  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324  */
1325 /**
1326  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327  *                                    @cpu_dev using operating-points-v2
1328  *                                    bindings.
1329  *
1330  * @cpu_dev:    CPU device for which we do this operation
1331  * @cpumask:    cpumask to update with information of sharing CPUs
1332  *
1333  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334  *
1335  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336  */
1337 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338                                    struct cpumask *cpumask)
1339 {
1340         struct device_node *np, *tmp_np, *cpu_np;
1341         int cpu, ret = 0;
1342
1343         /* Get OPP descriptor node */
1344         np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345         if (!np) {
1346                 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347                 return -ENOENT;
1348         }
1349
1350         cpumask_set_cpu(cpu_dev->id, cpumask);
1351
1352         /* OPPs are shared ? */
1353         if (!of_property_read_bool(np, "opp-shared"))
1354                 goto put_cpu_node;
1355
1356         for_each_possible_cpu(cpu) {
1357                 if (cpu == cpu_dev->id)
1358                         continue;
1359
1360                 cpu_np = of_cpu_device_node_get(cpu);
1361                 if (!cpu_np) {
1362                         dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363                                 __func__, cpu);
1364                         ret = -ENOENT;
1365                         goto put_cpu_node;
1366                 }
1367
1368                 /* Get OPP descriptor node */
1369                 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370                 of_node_put(cpu_np);
1371                 if (!tmp_np) {
1372                         pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373                         ret = -ENOENT;
1374                         goto put_cpu_node;
1375                 }
1376
1377                 /* CPUs are sharing opp node */
1378                 if (np == tmp_np)
1379                         cpumask_set_cpu(cpu, cpumask);
1380
1381                 of_node_put(tmp_np);
1382         }
1383
1384 put_cpu_node:
1385         of_node_put(np);
1386         return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389
1390 /**
1391  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392  * @np: Node that contains the "required-opps" property.
1393  * @index: Index of the phandle to parse.
1394  *
1395  * Returns the performance state of the OPP pointed out by the "required-opps"
1396  * property at @index in @np.
1397  *
1398  * Return: Zero or positive performance state on success, otherwise negative
1399  * value on errors.
1400  */
1401 int of_get_required_opp_performance_state(struct device_node *np, int index)
1402 {
1403         struct dev_pm_opp *opp;
1404         struct device_node *required_np;
1405         struct opp_table *opp_table;
1406         int pstate = -EINVAL;
1407
1408         required_np = of_parse_required_opp(np, index);
1409         if (!required_np)
1410                 return -ENODEV;
1411
1412         opp_table = _find_table_of_opp_np(required_np);
1413         if (IS_ERR(opp_table)) {
1414                 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415                        __func__, np, PTR_ERR(opp_table));
1416                 goto put_required_np;
1417         }
1418
1419         /* The OPP tables must belong to a genpd */
1420         if (unlikely(!opp_table->is_genpd)) {
1421                 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422                 goto put_required_np;
1423         }
1424
1425         opp = _find_opp_of_np(opp_table, required_np);
1426         if (opp) {
1427                 if (opp->level == OPP_LEVEL_UNSET) {
1428                         pr_err("%s: OPP levels aren't available for %pOF\n",
1429                                __func__, np);
1430                 } else {
1431                         pstate = opp->level;
1432                 }
1433                 dev_pm_opp_put(opp);
1434
1435         }
1436
1437         dev_pm_opp_put_opp_table(opp_table);
1438
1439 put_required_np:
1440         of_node_put(required_np);
1441
1442         return pstate;
1443 }
1444 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445
1446 /**
1447  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1448  * @opp:        opp for which DT node has to be returned for
1449  *
1450  * Return: DT node corresponding to the opp, else 0 on success.
1451  *
1452  * The caller needs to put the node with of_node_put() after using it.
1453  */
1454 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1455 {
1456         if (IS_ERR_OR_NULL(opp)) {
1457                 pr_err("%s: Invalid parameters\n", __func__);
1458                 return NULL;
1459         }
1460
1461         return of_node_get(opp->np);
1462 }
1463 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1464
1465 /*
1466  * Callback function provided to the Energy Model framework upon registration.
1467  * It provides the power used by @dev at @kHz if it is the frequency of an
1468  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1469  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1470  * frequency and @uW to the associated power.
1471  *
1472  * Returns 0 on success or a proper -EINVAL value in case of error.
1473  */
1474 static int __maybe_unused
1475 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1476 {
1477         struct dev_pm_opp *opp;
1478         unsigned long opp_freq, opp_power;
1479
1480         /* Find the right frequency and related OPP */
1481         opp_freq = *kHz * 1000;
1482         opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1483         if (IS_ERR(opp))
1484                 return -EINVAL;
1485
1486         opp_power = dev_pm_opp_get_power(opp);
1487         dev_pm_opp_put(opp);
1488         if (!opp_power)
1489                 return -EINVAL;
1490
1491         *kHz = opp_freq / 1000;
1492         *uW = opp_power;
1493
1494         return 0;
1495 }
1496
1497 /*
1498  * Callback function provided to the Energy Model framework upon registration.
1499  * This computes the power estimated by @dev at @kHz if it is the frequency
1500  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502  * frequency and @uW to the associated power. The power is estimated as
1503  * P = C * V^2 * f with C being the device's capacitance and V and f
1504  * respectively the voltage and frequency of the OPP.
1505  *
1506  * Returns -EINVAL if the power calculation failed because of missing
1507  * parameters, 0 otherwise.
1508  */
1509 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1510                                      unsigned long *kHz)
1511 {
1512         struct dev_pm_opp *opp;
1513         struct device_node *np;
1514         unsigned long mV, Hz;
1515         u32 cap;
1516         u64 tmp;
1517         int ret;
1518
1519         np = of_node_get(dev->of_node);
1520         if (!np)
1521                 return -EINVAL;
1522
1523         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1524         of_node_put(np);
1525         if (ret)
1526                 return -EINVAL;
1527
1528         Hz = *kHz * 1000;
1529         opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1530         if (IS_ERR(opp))
1531                 return -EINVAL;
1532
1533         mV = dev_pm_opp_get_voltage(opp) / 1000;
1534         dev_pm_opp_put(opp);
1535         if (!mV)
1536                 return -EINVAL;
1537
1538         tmp = (u64)cap * mV * mV * (Hz / 1000000);
1539         /* Provide power in micro-Watts */
1540         do_div(tmp, 1000000);
1541
1542         *uW = (unsigned long)tmp;
1543         *kHz = Hz / 1000;
1544
1545         return 0;
1546 }
1547
1548 static bool _of_has_opp_microwatt_property(struct device *dev)
1549 {
1550         unsigned long power, freq = 0;
1551         struct dev_pm_opp *opp;
1552
1553         /* Check if at least one OPP has needed property */
1554         opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1555         if (IS_ERR(opp))
1556                 return false;
1557
1558         power = dev_pm_opp_get_power(opp);
1559         dev_pm_opp_put(opp);
1560         if (!power)
1561                 return false;
1562
1563         return true;
1564 }
1565
1566 /**
1567  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1568  * @dev         : Device for which an Energy Model has to be registered
1569  * @cpus        : CPUs for which an Energy Model has to be registered. For
1570  *              other type of devices it should be set to NULL.
1571  *
1572  * This checks whether the "dynamic-power-coefficient" devicetree property has
1573  * been specified, and tries to register an Energy Model with it if it has.
1574  * Having this property means the voltages are known for OPPs and the EM
1575  * might be calculated.
1576  */
1577 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1578 {
1579         struct em_data_callback em_cb;
1580         struct device_node *np;
1581         int ret, nr_opp;
1582         u32 cap;
1583
1584         if (IS_ERR_OR_NULL(dev)) {
1585                 ret = -EINVAL;
1586                 goto failed;
1587         }
1588
1589         nr_opp = dev_pm_opp_get_opp_count(dev);
1590         if (nr_opp <= 0) {
1591                 ret = -EINVAL;
1592                 goto failed;
1593         }
1594
1595         /* First, try to find more precised Energy Model in DT */
1596         if (_of_has_opp_microwatt_property(dev)) {
1597                 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1598                 goto register_em;
1599         }
1600
1601         np = of_node_get(dev->of_node);
1602         if (!np) {
1603                 ret = -EINVAL;
1604                 goto failed;
1605         }
1606
1607         /*
1608          * Register an EM only if the 'dynamic-power-coefficient' property is
1609          * set in devicetree. It is assumed the voltage values are known if that
1610          * property is set since it is useless otherwise. If voltages are not
1611          * known, just let the EM registration fail with an error to alert the
1612          * user about the inconsistent configuration.
1613          */
1614         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1615         of_node_put(np);
1616         if (ret || !cap) {
1617                 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1618                 ret = -EINVAL;
1619                 goto failed;
1620         }
1621
1622         EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1623
1624 register_em:
1625         ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1626         if (ret)
1627                 goto failed;
1628
1629         return 0;
1630
1631 failed:
1632         dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1633         return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);