GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / opp / of.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *      Nishanth Menon
7  *      Romit Dasgupta
8  *      Kevin Hilman
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29                                                      int index)
30 {
31         /* "operating-points-v2" can be an array for power domain providers */
32         return of_parse_phandle(np, "operating-points-v2", index);
33 }
34
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38         return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44         struct opp_table *opp_table, *managed_table = NULL;
45         struct device_node *np;
46
47         np = _opp_of_get_opp_desc_node(dev->of_node, index);
48         if (!np)
49                 return NULL;
50
51         list_for_each_entry(opp_table, &opp_tables, node) {
52                 if (opp_table->np == np) {
53                         /*
54                          * Multiple devices can point to the same OPP table and
55                          * so will have same node-pointer, np.
56                          *
57                          * But the OPPs will be considered as shared only if the
58                          * OPP table contains a "opp-shared" property.
59                          */
60                         if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61                                 _get_opp_table_kref(opp_table);
62                                 managed_table = opp_table;
63                         }
64
65                         break;
66                 }
67         }
68
69         of_node_put(np);
70
71         return managed_table;
72 }
73
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76                                           struct device_node *opp_np)
77 {
78         struct dev_pm_opp *opp;
79
80         mutex_lock(&opp_table->lock);
81
82         list_for_each_entry(opp, &opp_table->opp_list, node) {
83                 if (opp->np == opp_np) {
84                         dev_pm_opp_get(opp);
85                         mutex_unlock(&opp_table->lock);
86                         return opp;
87                 }
88         }
89
90         mutex_unlock(&opp_table->lock);
91
92         return NULL;
93 }
94
95 static struct device_node *of_parse_required_opp(struct device_node *np,
96                                                  int index)
97 {
98         return of_parse_phandle(np, "required-opps", index);
99 }
100
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104         struct opp_table *opp_table;
105         struct device_node *opp_table_np;
106
107         opp_table_np = of_get_parent(opp_np);
108         if (!opp_table_np)
109                 goto err;
110
111         /* It is safe to put the node now as all we need now is its address */
112         of_node_put(opp_table_np);
113
114         mutex_lock(&opp_table_lock);
115         list_for_each_entry(opp_table, &opp_tables, node) {
116                 if (opp_table_np == opp_table->np) {
117                         _get_opp_table_kref(opp_table);
118                         mutex_unlock(&opp_table_lock);
119                         return opp_table;
120                 }
121         }
122         mutex_unlock(&opp_table_lock);
123
124 err:
125         return ERR_PTR(-ENODEV);
126 }
127
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131         struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132         int i;
133
134         if (!required_opp_tables)
135                 return;
136
137         for (i = 0; i < opp_table->required_opp_count; i++) {
138                 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139                         continue;
140
141                 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142         }
143
144         kfree(required_opp_tables);
145
146         opp_table->required_opp_count = 0;
147         opp_table->required_opp_tables = NULL;
148         list_del(&opp_table->lazy);
149 }
150
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156                                              struct device *dev,
157                                              struct device_node *opp_np)
158 {
159         struct opp_table **required_opp_tables;
160         struct device_node *required_np, *np;
161         bool lazy = false;
162         int count, i;
163
164         /* Traversing the first OPP node is all we need */
165         np = of_get_next_available_child(opp_np, NULL);
166         if (!np) {
167                 dev_warn(dev, "Empty OPP table\n");
168
169                 return;
170         }
171
172         count = of_count_phandle_with_args(np, "required-opps", NULL);
173         if (count <= 0)
174                 goto put_np;
175
176         required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177                                       GFP_KERNEL);
178         if (!required_opp_tables)
179                 goto put_np;
180
181         opp_table->required_opp_tables = required_opp_tables;
182         opp_table->required_opp_count = count;
183
184         for (i = 0; i < count; i++) {
185                 required_np = of_parse_required_opp(np, i);
186                 if (!required_np)
187                         goto free_required_tables;
188
189                 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190                 of_node_put(required_np);
191
192                 if (IS_ERR(required_opp_tables[i]))
193                         lazy = true;
194         }
195
196         /* Let's do the linking later on */
197         if (lazy)
198                 list_add(&opp_table->lazy, &lazy_opp_tables);
199
200         goto put_np;
201
202 free_required_tables:
203         _opp_table_free_required_tables(opp_table);
204 put_np:
205         of_node_put(np);
206 }
207
208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209                         int index)
210 {
211         struct device_node *np, *opp_np;
212         u32 val;
213
214         /*
215          * Only required for backward compatibility with v1 bindings, but isn't
216          * harmful for other cases. And so we do it unconditionally.
217          */
218         np = of_node_get(dev->of_node);
219         if (!np)
220                 return;
221
222         if (!of_property_read_u32(np, "clock-latency", &val))
223                 opp_table->clock_latency_ns_max = val;
224         of_property_read_u32(np, "voltage-tolerance",
225                              &opp_table->voltage_tolerance_v1);
226
227         if (of_find_property(np, "#power-domain-cells", NULL))
228                 opp_table->is_genpd = true;
229
230         /* Get OPP table node */
231         opp_np = _opp_of_get_opp_desc_node(np, index);
232         of_node_put(np);
233
234         if (!opp_np)
235                 return;
236
237         if (of_property_read_bool(opp_np, "opp-shared"))
238                 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239         else
240                 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241
242         opp_table->np = opp_np;
243
244         _opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 }
246
247 void _of_clear_opp_table(struct opp_table *opp_table)
248 {
249         _opp_table_free_required_tables(opp_table);
250         of_node_put(opp_table->np);
251 }
252
253 /*
254  * Release all resources previously acquired with a call to
255  * _of_opp_alloc_required_opps().
256  */
257 static void _of_opp_free_required_opps(struct opp_table *opp_table,
258                                        struct dev_pm_opp *opp)
259 {
260         struct dev_pm_opp **required_opps = opp->required_opps;
261         int i;
262
263         if (!required_opps)
264                 return;
265
266         for (i = 0; i < opp_table->required_opp_count; i++) {
267                 if (!required_opps[i])
268                         continue;
269
270                 /* Put the reference back */
271                 dev_pm_opp_put(required_opps[i]);
272         }
273
274         opp->required_opps = NULL;
275         kfree(required_opps);
276 }
277
278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
279 {
280         _of_opp_free_required_opps(opp_table, opp);
281         of_node_put(opp->np);
282 }
283
284 /* Populate all required OPPs which are part of "required-opps" list */
285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
286                                        struct dev_pm_opp *opp)
287 {
288         struct dev_pm_opp **required_opps;
289         struct opp_table *required_table;
290         struct device_node *np;
291         int i, ret, count = opp_table->required_opp_count;
292
293         if (!count)
294                 return 0;
295
296         required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
297         if (!required_opps)
298                 return -ENOMEM;
299
300         opp->required_opps = required_opps;
301
302         for (i = 0; i < count; i++) {
303                 required_table = opp_table->required_opp_tables[i];
304
305                 /* Required table not added yet, we will link later */
306                 if (IS_ERR_OR_NULL(required_table))
307                         continue;
308
309                 np = of_parse_required_opp(opp->np, i);
310                 if (unlikely(!np)) {
311                         ret = -ENODEV;
312                         goto free_required_opps;
313                 }
314
315                 required_opps[i] = _find_opp_of_np(required_table, np);
316                 of_node_put(np);
317
318                 if (!required_opps[i]) {
319                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
320                                __func__, opp->np, i);
321                         ret = -ENODEV;
322                         goto free_required_opps;
323                 }
324         }
325
326         return 0;
327
328 free_required_opps:
329         _of_opp_free_required_opps(opp_table, opp);
330
331         return ret;
332 }
333
334 /* Link required OPPs for an individual OPP */
335 static int lazy_link_required_opps(struct opp_table *opp_table,
336                                    struct opp_table *new_table, int index)
337 {
338         struct device_node *required_np;
339         struct dev_pm_opp *opp;
340
341         list_for_each_entry(opp, &opp_table->opp_list, node) {
342                 required_np = of_parse_required_opp(opp->np, index);
343                 if (unlikely(!required_np))
344                         return -ENODEV;
345
346                 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
347                 of_node_put(required_np);
348
349                 if (!opp->required_opps[index]) {
350                         pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
351                                __func__, opp->np, index);
352                         return -ENODEV;
353                 }
354         }
355
356         return 0;
357 }
358
359 /* Link required OPPs for all OPPs of the newly added OPP table */
360 static void lazy_link_required_opp_table(struct opp_table *new_table)
361 {
362         struct opp_table *opp_table, *temp, **required_opp_tables;
363         struct device_node *required_np, *opp_np, *required_table_np;
364         struct dev_pm_opp *opp;
365         int i, ret;
366
367         mutex_lock(&opp_table_lock);
368
369         list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
370                 bool lazy = false;
371
372                 /* opp_np can't be invalid here */
373                 opp_np = of_get_next_available_child(opp_table->np, NULL);
374
375                 for (i = 0; i < opp_table->required_opp_count; i++) {
376                         required_opp_tables = opp_table->required_opp_tables;
377
378                         /* Required opp-table is already parsed */
379                         if (!IS_ERR(required_opp_tables[i]))
380                                 continue;
381
382                         /* required_np can't be invalid here */
383                         required_np = of_parse_required_opp(opp_np, i);
384                         required_table_np = of_get_parent(required_np);
385
386                         of_node_put(required_table_np);
387                         of_node_put(required_np);
388
389                         /*
390                          * Newly added table isn't the required opp-table for
391                          * opp_table.
392                          */
393                         if (required_table_np != new_table->np) {
394                                 lazy = true;
395                                 continue;
396                         }
397
398                         required_opp_tables[i] = new_table;
399                         _get_opp_table_kref(new_table);
400
401                         /* Link OPPs now */
402                         ret = lazy_link_required_opps(opp_table, new_table, i);
403                         if (ret) {
404                                 /* The OPPs will be marked unusable */
405                                 lazy = false;
406                                 break;
407                         }
408                 }
409
410                 of_node_put(opp_np);
411
412                 /* All required opp-tables found, remove from lazy list */
413                 if (!lazy) {
414                         list_del_init(&opp_table->lazy);
415
416                         list_for_each_entry(opp, &opp_table->opp_list, node)
417                                 _required_opps_available(opp, opp_table->required_opp_count);
418                 }
419         }
420
421         mutex_unlock(&opp_table_lock);
422 }
423
424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
425 {
426         struct device_node *np, *opp_np;
427         struct property *prop;
428
429         if (!opp_table) {
430                 np = of_node_get(dev->of_node);
431                 if (!np)
432                         return -ENODEV;
433
434                 opp_np = _opp_of_get_opp_desc_node(np, 0);
435                 of_node_put(np);
436         } else {
437                 opp_np = of_node_get(opp_table->np);
438         }
439
440         /* Lets not fail in case we are parsing opp-v1 bindings */
441         if (!opp_np)
442                 return 0;
443
444         /* Checking only first OPP is sufficient */
445         np = of_get_next_available_child(opp_np, NULL);
446         of_node_put(opp_np);
447         if (!np) {
448                 dev_err(dev, "OPP table empty\n");
449                 return -EINVAL;
450         }
451
452         prop = of_find_property(np, "opp-peak-kBps", NULL);
453         of_node_put(np);
454
455         if (!prop || !prop->length)
456                 return 0;
457
458         return 1;
459 }
460
461 int dev_pm_opp_of_find_icc_paths(struct device *dev,
462                                  struct opp_table *opp_table)
463 {
464         struct device_node *np;
465         int ret, i, count, num_paths;
466         struct icc_path **paths;
467
468         ret = _bandwidth_supported(dev, opp_table);
469         if (ret == -EINVAL)
470                 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
471         else if (ret <= 0)
472                 return ret;
473
474         ret = 0;
475
476         np = of_node_get(dev->of_node);
477         if (!np)
478                 return 0;
479
480         count = of_count_phandle_with_args(np, "interconnects",
481                                            "#interconnect-cells");
482         of_node_put(np);
483         if (count < 0)
484                 return 0;
485
486         /* two phandles when #interconnect-cells = <1> */
487         if (count % 2) {
488                 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
489                 return -EINVAL;
490         }
491
492         num_paths = count / 2;
493         paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
494         if (!paths)
495                 return -ENOMEM;
496
497         for (i = 0; i < num_paths; i++) {
498                 paths[i] = of_icc_get_by_index(dev, i);
499                 if (IS_ERR(paths[i])) {
500                         ret = PTR_ERR(paths[i]);
501                         if (ret != -EPROBE_DEFER) {
502                                 dev_err(dev, "%s: Unable to get path%d: %d\n",
503                                         __func__, i, ret);
504                         }
505                         goto err;
506                 }
507         }
508
509         if (opp_table) {
510                 opp_table->paths = paths;
511                 opp_table->path_count = num_paths;
512                 return 0;
513         }
514
515 err:
516         while (i--)
517                 icc_put(paths[i]);
518
519         kfree(paths);
520
521         return ret;
522 }
523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
524
525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
526                               struct device_node *np)
527 {
528         unsigned int levels = opp_table->supported_hw_count;
529         int count, versions, ret, i, j;
530         u32 val;
531
532         if (!opp_table->supported_hw) {
533                 /*
534                  * In the case that no supported_hw has been set by the
535                  * platform but there is an opp-supported-hw value set for
536                  * an OPP then the OPP should not be enabled as there is
537                  * no way to see if the hardware supports it.
538                  */
539                 if (of_find_property(np, "opp-supported-hw", NULL))
540                         return false;
541                 else
542                         return true;
543         }
544
545         count = of_property_count_u32_elems(np, "opp-supported-hw");
546         if (count <= 0 || count % levels) {
547                 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
548                         __func__, count);
549                 return false;
550         }
551
552         versions = count / levels;
553
554         /* All levels in at least one of the versions should match */
555         for (i = 0; i < versions; i++) {
556                 bool supported = true;
557
558                 for (j = 0; j < levels; j++) {
559                         ret = of_property_read_u32_index(np, "opp-supported-hw",
560                                                          i * levels + j, &val);
561                         if (ret) {
562                                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
563                                          __func__, i * levels + j, ret);
564                                 return false;
565                         }
566
567                         /* Check if the level is supported */
568                         if (!(val & opp_table->supported_hw[j])) {
569                                 supported = false;
570                                 break;
571                         }
572                 }
573
574                 if (supported)
575                         return true;
576         }
577
578         return false;
579 }
580
581 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
582                               struct opp_table *opp_table)
583 {
584         u32 *microvolt, *microamp = NULL, *microwatt = NULL;
585         int supplies = opp_table->regulator_count;
586         int vcount, icount, pcount, ret, i, j;
587         struct property *prop = NULL;
588         char name[NAME_MAX];
589
590         /* Search for "opp-microvolt-<name>" */
591         if (opp_table->prop_name) {
592                 snprintf(name, sizeof(name), "opp-microvolt-%s",
593                          opp_table->prop_name);
594                 prop = of_find_property(opp->np, name, NULL);
595         }
596
597         if (!prop) {
598                 /* Search for "opp-microvolt" */
599                 sprintf(name, "opp-microvolt");
600                 prop = of_find_property(opp->np, name, NULL);
601
602                 /* Missing property isn't a problem, but an invalid entry is */
603                 if (!prop) {
604                         if (unlikely(supplies == -1)) {
605                                 /* Initialize regulator_count */
606                                 opp_table->regulator_count = 0;
607                                 return 0;
608                         }
609
610                         if (!supplies)
611                                 return 0;
612
613                         dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
614                                 __func__);
615                         return -EINVAL;
616                 }
617         }
618
619         if (unlikely(supplies == -1)) {
620                 /* Initialize regulator_count */
621                 supplies = opp_table->regulator_count = 1;
622         } else if (unlikely(!supplies)) {
623                 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
624                 return -EINVAL;
625         }
626
627         vcount = of_property_count_u32_elems(opp->np, name);
628         if (vcount < 0) {
629                 dev_err(dev, "%s: Invalid %s property (%d)\n",
630                         __func__, name, vcount);
631                 return vcount;
632         }
633
634         /* There can be one or three elements per supply */
635         if (vcount != supplies && vcount != supplies * 3) {
636                 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
637                         __func__, name, vcount, supplies);
638                 return -EINVAL;
639         }
640
641         microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
642         if (!microvolt)
643                 return -ENOMEM;
644
645         ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
646         if (ret) {
647                 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
648                 ret = -EINVAL;
649                 goto free_microvolt;
650         }
651
652         /* Search for "opp-microamp-<name>" */
653         prop = NULL;
654         if (opp_table->prop_name) {
655                 snprintf(name, sizeof(name), "opp-microamp-%s",
656                          opp_table->prop_name);
657                 prop = of_find_property(opp->np, name, NULL);
658         }
659
660         if (!prop) {
661                 /* Search for "opp-microamp" */
662                 sprintf(name, "opp-microamp");
663                 prop = of_find_property(opp->np, name, NULL);
664         }
665
666         if (prop) {
667                 icount = of_property_count_u32_elems(opp->np, name);
668                 if (icount < 0) {
669                         dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
670                                 name, icount);
671                         ret = icount;
672                         goto free_microvolt;
673                 }
674
675                 if (icount != supplies) {
676                         dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
677                                 __func__, name, icount, supplies);
678                         ret = -EINVAL;
679                         goto free_microvolt;
680                 }
681
682                 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
683                 if (!microamp) {
684                         ret = -EINVAL;
685                         goto free_microvolt;
686                 }
687
688                 ret = of_property_read_u32_array(opp->np, name, microamp,
689                                                  icount);
690                 if (ret) {
691                         dev_err(dev, "%s: error parsing %s: %d\n", __func__,
692                                 name, ret);
693                         ret = -EINVAL;
694                         goto free_microamp;
695                 }
696         }
697
698         /* Search for "opp-microwatt" */
699         sprintf(name, "opp-microwatt");
700         prop = of_find_property(opp->np, name, NULL);
701
702         if (prop) {
703                 pcount = of_property_count_u32_elems(opp->np, name);
704                 if (pcount < 0) {
705                         dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
706                                 name, pcount);
707                         ret = pcount;
708                         goto free_microamp;
709                 }
710
711                 if (pcount != supplies) {
712                         dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
713                                 __func__, name, pcount, supplies);
714                         ret = -EINVAL;
715                         goto free_microamp;
716                 }
717
718                 microwatt = kmalloc_array(pcount, sizeof(*microwatt),
719                                           GFP_KERNEL);
720                 if (!microwatt) {
721                         ret = -EINVAL;
722                         goto free_microamp;
723                 }
724
725                 ret = of_property_read_u32_array(opp->np, name, microwatt,
726                                                  pcount);
727                 if (ret) {
728                         dev_err(dev, "%s: error parsing %s: %d\n", __func__,
729                                 name, ret);
730                         ret = -EINVAL;
731                         goto free_microwatt;
732                 }
733         }
734
735         for (i = 0, j = 0; i < supplies; i++) {
736                 opp->supplies[i].u_volt = microvolt[j++];
737
738                 if (vcount == supplies) {
739                         opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
740                         opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
741                 } else {
742                         opp->supplies[i].u_volt_min = microvolt[j++];
743                         opp->supplies[i].u_volt_max = microvolt[j++];
744                 }
745
746                 if (microamp)
747                         opp->supplies[i].u_amp = microamp[i];
748
749                 if (microwatt)
750                         opp->supplies[i].u_watt = microwatt[i];
751         }
752
753 free_microwatt:
754         kfree(microwatt);
755 free_microamp:
756         kfree(microamp);
757 free_microvolt:
758         kfree(microvolt);
759
760         return ret;
761 }
762
763 /**
764  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
765  *                                entries
766  * @dev:        device pointer used to lookup OPP table.
767  *
768  * Free OPPs created using static entries present in DT.
769  */
770 void dev_pm_opp_of_remove_table(struct device *dev)
771 {
772         dev_pm_opp_remove_table(dev);
773 }
774 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
775
776 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
777                       struct device_node *np)
778 {
779         struct property *prop;
780         int i, count, ret;
781         u64 *rates;
782
783         prop = of_find_property(np, "opp-hz", NULL);
784         if (!prop)
785                 return -ENODEV;
786
787         count = prop->length / sizeof(u64);
788         if (opp_table->clk_count != count) {
789                 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
790                        __func__, count, opp_table->clk_count);
791                 return -EINVAL;
792         }
793
794         rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
795         if (!rates)
796                 return -ENOMEM;
797
798         ret = of_property_read_u64_array(np, "opp-hz", rates, count);
799         if (ret) {
800                 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
801         } else {
802                 /*
803                  * Rate is defined as an unsigned long in clk API, and so
804                  * casting explicitly to its type. Must be fixed once rate is 64
805                  * bit guaranteed in clk API.
806                  */
807                 for (i = 0; i < count; i++) {
808                         new_opp->rates[i] = (unsigned long)rates[i];
809
810                         /* This will happen for frequencies > 4.29 GHz */
811                         WARN_ON(new_opp->rates[i] != rates[i]);
812                 }
813         }
814
815         kfree(rates);
816
817         return ret;
818 }
819
820 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
821                     struct device_node *np, bool peak)
822 {
823         const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
824         struct property *prop;
825         int i, count, ret;
826         u32 *bw;
827
828         prop = of_find_property(np, name, NULL);
829         if (!prop)
830                 return -ENODEV;
831
832         count = prop->length / sizeof(u32);
833         if (opp_table->path_count != count) {
834                 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
835                                 __func__, name, count, opp_table->path_count);
836                 return -EINVAL;
837         }
838
839         bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
840         if (!bw)
841                 return -ENOMEM;
842
843         ret = of_property_read_u32_array(np, name, bw, count);
844         if (ret) {
845                 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
846                 goto out;
847         }
848
849         for (i = 0; i < count; i++) {
850                 if (peak)
851                         new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
852                 else
853                         new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
854         }
855
856 out:
857         kfree(bw);
858         return ret;
859 }
860
861 static int _read_opp_key(struct dev_pm_opp *new_opp,
862                          struct opp_table *opp_table, struct device_node *np)
863 {
864         bool found = false;
865         int ret;
866
867         ret = _read_rate(new_opp, opp_table, np);
868         if (!ret)
869                 found = true;
870         else if (ret != -ENODEV)
871                 return ret;
872
873         /*
874          * Bandwidth consists of peak and average (optional) values:
875          * opp-peak-kBps = <path1_value path2_value>;
876          * opp-avg-kBps = <path1_value path2_value>;
877          */
878         ret = _read_bw(new_opp, opp_table, np, true);
879         if (!ret) {
880                 found = true;
881                 ret = _read_bw(new_opp, opp_table, np, false);
882         }
883
884         /* The properties were found but we failed to parse them */
885         if (ret && ret != -ENODEV)
886                 return ret;
887
888         if (!of_property_read_u32(np, "opp-level", &new_opp->level))
889                 found = true;
890
891         if (found)
892                 return 0;
893
894         return ret;
895 }
896
897 /**
898  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
899  * @opp_table:  OPP table
900  * @dev:        device for which we do this operation
901  * @np:         device node
902  *
903  * This function adds an opp definition to the opp table and returns status. The
904  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
905  * removed by dev_pm_opp_remove.
906  *
907  * Return:
908  * Valid OPP pointer:
909  *              On success
910  * NULL:
911  *              Duplicate OPPs (both freq and volt are same) and opp->available
912  *              OR if the OPP is not supported by hardware.
913  * ERR_PTR(-EEXIST):
914  *              Freq are same and volt are different OR
915  *              Duplicate OPPs (both freq and volt are same) and !opp->available
916  * ERR_PTR(-ENOMEM):
917  *              Memory allocation failure
918  * ERR_PTR(-EINVAL):
919  *              Failed parsing the OPP node
920  */
921 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
922                 struct device *dev, struct device_node *np)
923 {
924         struct dev_pm_opp *new_opp;
925         u32 val;
926         int ret;
927
928         new_opp = _opp_allocate(opp_table);
929         if (!new_opp)
930                 return ERR_PTR(-ENOMEM);
931
932         ret = _read_opp_key(new_opp, opp_table, np);
933         if (ret < 0) {
934                 dev_err(dev, "%s: opp key field not found\n", __func__);
935                 goto free_opp;
936         }
937
938         /* Check if the OPP supports hardware's hierarchy of versions or not */
939         if (!_opp_is_supported(dev, opp_table, np)) {
940                 dev_dbg(dev, "OPP not supported by hardware: %s\n",
941                         of_node_full_name(np));
942                 goto free_opp;
943         }
944
945         new_opp->turbo = of_property_read_bool(np, "turbo-mode");
946
947         new_opp->np = of_node_get(np);
948         new_opp->dynamic = false;
949         new_opp->available = true;
950
951         ret = _of_opp_alloc_required_opps(opp_table, new_opp);
952         if (ret)
953                 goto free_opp;
954
955         if (!of_property_read_u32(np, "clock-latency-ns", &val))
956                 new_opp->clock_latency_ns = val;
957
958         ret = opp_parse_supplies(new_opp, dev, opp_table);
959         if (ret)
960                 goto free_required_opps;
961
962         if (opp_table->is_genpd)
963                 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
964
965         ret = _opp_add(dev, new_opp, opp_table);
966         if (ret) {
967                 /* Don't return error for duplicate OPPs */
968                 if (ret == -EBUSY)
969                         ret = 0;
970                 goto free_required_opps;
971         }
972
973         /* OPP to select on device suspend */
974         if (of_property_read_bool(np, "opp-suspend")) {
975                 if (opp_table->suspend_opp) {
976                         /* Pick the OPP with higher rate/bw/level as suspend OPP */
977                         if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
978                                 opp_table->suspend_opp->suspend = false;
979                                 new_opp->suspend = true;
980                                 opp_table->suspend_opp = new_opp;
981                         }
982                 } else {
983                         new_opp->suspend = true;
984                         opp_table->suspend_opp = new_opp;
985                 }
986         }
987
988         if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
989                 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
990
991         pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
992                  __func__, new_opp->turbo, new_opp->rates[0],
993                  new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
994                  new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
995                  new_opp->level);
996
997         /*
998          * Notify the changes in the availability of the operable
999          * frequency/voltage list.
1000          */
1001         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1002         return new_opp;
1003
1004 free_required_opps:
1005         _of_opp_free_required_opps(opp_table, new_opp);
1006 free_opp:
1007         _opp_free(new_opp);
1008
1009         return ret ? ERR_PTR(ret) : NULL;
1010 }
1011
1012 /* Initializes OPP tables based on new bindings */
1013 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1014 {
1015         struct device_node *np;
1016         int ret, count = 0;
1017         struct dev_pm_opp *opp;
1018
1019         /* OPP table is already initialized for the device */
1020         mutex_lock(&opp_table->lock);
1021         if (opp_table->parsed_static_opps) {
1022                 opp_table->parsed_static_opps++;
1023                 mutex_unlock(&opp_table->lock);
1024                 return 0;
1025         }
1026
1027         opp_table->parsed_static_opps = 1;
1028         mutex_unlock(&opp_table->lock);
1029
1030         /* We have opp-table node now, iterate over it and add OPPs */
1031         for_each_available_child_of_node(opp_table->np, np) {
1032                 opp = _opp_add_static_v2(opp_table, dev, np);
1033                 if (IS_ERR(opp)) {
1034                         ret = PTR_ERR(opp);
1035                         dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1036                                 ret);
1037                         of_node_put(np);
1038                         goto remove_static_opp;
1039                 } else if (opp) {
1040                         count++;
1041                 }
1042         }
1043
1044         /* There should be one or more OPPs defined */
1045         if (!count) {
1046                 dev_err(dev, "%s: no supported OPPs", __func__);
1047                 ret = -ENOENT;
1048                 goto remove_static_opp;
1049         }
1050
1051         list_for_each_entry(opp, &opp_table->opp_list, node) {
1052                 /* Any non-zero performance state would enable the feature */
1053                 if (opp->pstate) {
1054                         opp_table->genpd_performance_state = true;
1055                         break;
1056                 }
1057         }
1058
1059         lazy_link_required_opp_table(opp_table);
1060
1061         return 0;
1062
1063 remove_static_opp:
1064         _opp_remove_all_static(opp_table);
1065
1066         return ret;
1067 }
1068
1069 /* Initializes OPP tables based on old-deprecated bindings */
1070 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1071 {
1072         const struct property *prop;
1073         const __be32 *val;
1074         int nr, ret = 0;
1075
1076         mutex_lock(&opp_table->lock);
1077         if (opp_table->parsed_static_opps) {
1078                 opp_table->parsed_static_opps++;
1079                 mutex_unlock(&opp_table->lock);
1080                 return 0;
1081         }
1082
1083         opp_table->parsed_static_opps = 1;
1084         mutex_unlock(&opp_table->lock);
1085
1086         prop = of_find_property(dev->of_node, "operating-points", NULL);
1087         if (!prop) {
1088                 ret = -ENODEV;
1089                 goto remove_static_opp;
1090         }
1091         if (!prop->value) {
1092                 ret = -ENODATA;
1093                 goto remove_static_opp;
1094         }
1095
1096         /*
1097          * Each OPP is a set of tuples consisting of frequency and
1098          * voltage like <freq-kHz vol-uV>.
1099          */
1100         nr = prop->length / sizeof(u32);
1101         if (nr % 2) {
1102                 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1103                 ret = -EINVAL;
1104                 goto remove_static_opp;
1105         }
1106
1107         val = prop->value;
1108         while (nr) {
1109                 unsigned long freq = be32_to_cpup(val++) * 1000;
1110                 unsigned long volt = be32_to_cpup(val++);
1111
1112                 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1113                 if (ret) {
1114                         dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1115                                 __func__, freq, ret);
1116                         goto remove_static_opp;
1117                 }
1118                 nr -= 2;
1119         }
1120
1121         return 0;
1122
1123 remove_static_opp:
1124         _opp_remove_all_static(opp_table);
1125
1126         return ret;
1127 }
1128
1129 static int _of_add_table_indexed(struct device *dev, int index)
1130 {
1131         struct opp_table *opp_table;
1132         int ret, count;
1133
1134         if (index) {
1135                 /*
1136                  * If only one phandle is present, then the same OPP table
1137                  * applies for all index requests.
1138                  */
1139                 count = of_count_phandle_with_args(dev->of_node,
1140                                                    "operating-points-v2", NULL);
1141                 if (count == 1)
1142                         index = 0;
1143         }
1144
1145         opp_table = _add_opp_table_indexed(dev, index, true);
1146         if (IS_ERR(opp_table))
1147                 return PTR_ERR(opp_table);
1148
1149         /*
1150          * OPPs have two version of bindings now. Also try the old (v1)
1151          * bindings for backward compatibility with older dtbs.
1152          */
1153         if (opp_table->np)
1154                 ret = _of_add_opp_table_v2(dev, opp_table);
1155         else
1156                 ret = _of_add_opp_table_v1(dev, opp_table);
1157
1158         if (ret)
1159                 dev_pm_opp_put_opp_table(opp_table);
1160
1161         return ret;
1162 }
1163
1164 static void devm_pm_opp_of_table_release(void *data)
1165 {
1166         dev_pm_opp_of_remove_table(data);
1167 }
1168
1169 static int _devm_of_add_table_indexed(struct device *dev, int index)
1170 {
1171         int ret;
1172
1173         ret = _of_add_table_indexed(dev, index);
1174         if (ret)
1175                 return ret;
1176
1177         return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1178 }
1179
1180 /**
1181  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1182  * @dev:        device pointer used to lookup OPP table.
1183  *
1184  * Register the initial OPP table with the OPP library for given device.
1185  *
1186  * The opp_table structure will be freed after the device is destroyed.
1187  *
1188  * Return:
1189  * 0            On success OR
1190  *              Duplicate OPPs (both freq and volt are same) and opp->available
1191  * -EEXIST      Freq are same and volt are different OR
1192  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1193  * -ENOMEM      Memory allocation failure
1194  * -ENODEV      when 'operating-points' property is not found or is invalid data
1195  *              in device node.
1196  * -ENODATA     when empty 'operating-points' property is found
1197  * -EINVAL      when invalid entries are found in opp-v2 table
1198  */
1199 int devm_pm_opp_of_add_table(struct device *dev)
1200 {
1201         return _devm_of_add_table_indexed(dev, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1204
1205 /**
1206  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1207  * @dev:        device pointer used to lookup OPP table.
1208  *
1209  * Register the initial OPP table with the OPP library for given device.
1210  *
1211  * Return:
1212  * 0            On success OR
1213  *              Duplicate OPPs (both freq and volt are same) and opp->available
1214  * -EEXIST      Freq are same and volt are different OR
1215  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1216  * -ENOMEM      Memory allocation failure
1217  * -ENODEV      when 'operating-points' property is not found or is invalid data
1218  *              in device node.
1219  * -ENODATA     when empty 'operating-points' property is found
1220  * -EINVAL      when invalid entries are found in opp-v2 table
1221  */
1222 int dev_pm_opp_of_add_table(struct device *dev)
1223 {
1224         return _of_add_table_indexed(dev, 0);
1225 }
1226 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1227
1228 /**
1229  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1230  * @dev:        device pointer used to lookup OPP table.
1231  * @index:      Index number.
1232  *
1233  * Register the initial OPP table with the OPP library for given device only
1234  * using the "operating-points-v2" property.
1235  *
1236  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1237  */
1238 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1239 {
1240         return _of_add_table_indexed(dev, index);
1241 }
1242 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1243
1244 /**
1245  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1246  * @dev:        device pointer used to lookup OPP table.
1247  * @index:      Index number.
1248  *
1249  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1250  */
1251 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1252 {
1253         return _devm_of_add_table_indexed(dev, index);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1256
1257 /* CPU device specific helpers */
1258
1259 /**
1260  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1261  * @cpumask:    cpumask for which OPP table needs to be removed
1262  *
1263  * This removes the OPP tables for CPUs present in the @cpumask.
1264  * This should be used only to remove static entries created from DT.
1265  */
1266 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1267 {
1268         _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1269 }
1270 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1271
1272 /**
1273  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1274  * @cpumask:    cpumask for which OPP table needs to be added.
1275  *
1276  * This adds the OPP tables for CPUs present in the @cpumask.
1277  */
1278 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1279 {
1280         struct device *cpu_dev;
1281         int cpu, ret;
1282
1283         if (WARN_ON(cpumask_empty(cpumask)))
1284                 return -ENODEV;
1285
1286         for_each_cpu(cpu, cpumask) {
1287                 cpu_dev = get_cpu_device(cpu);
1288                 if (!cpu_dev) {
1289                         pr_err("%s: failed to get cpu%d device\n", __func__,
1290                                cpu);
1291                         ret = -ENODEV;
1292                         goto remove_table;
1293                 }
1294
1295                 ret = dev_pm_opp_of_add_table(cpu_dev);
1296                 if (ret) {
1297                         /*
1298                          * OPP may get registered dynamically, don't print error
1299                          * message here.
1300                          */
1301                         pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1302                                  __func__, cpu, ret);
1303
1304                         goto remove_table;
1305                 }
1306         }
1307
1308         return 0;
1309
1310 remove_table:
1311         /* Free all other OPPs */
1312         _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1313
1314         return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1317
1318 /*
1319  * Works only for OPP v2 bindings.
1320  *
1321  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1322  */
1323 /**
1324  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1325  *                                    @cpu_dev using operating-points-v2
1326  *                                    bindings.
1327  *
1328  * @cpu_dev:    CPU device for which we do this operation
1329  * @cpumask:    cpumask to update with information of sharing CPUs
1330  *
1331  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1332  *
1333  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1334  */
1335 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1336                                    struct cpumask *cpumask)
1337 {
1338         struct device_node *np, *tmp_np, *cpu_np;
1339         int cpu, ret = 0;
1340
1341         /* Get OPP descriptor node */
1342         np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1343         if (!np) {
1344                 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1345                 return -ENOENT;
1346         }
1347
1348         cpumask_set_cpu(cpu_dev->id, cpumask);
1349
1350         /* OPPs are shared ? */
1351         if (!of_property_read_bool(np, "opp-shared"))
1352                 goto put_cpu_node;
1353
1354         for_each_possible_cpu(cpu) {
1355                 if (cpu == cpu_dev->id)
1356                         continue;
1357
1358                 cpu_np = of_cpu_device_node_get(cpu);
1359                 if (!cpu_np) {
1360                         dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1361                                 __func__, cpu);
1362                         ret = -ENOENT;
1363                         goto put_cpu_node;
1364                 }
1365
1366                 /* Get OPP descriptor node */
1367                 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1368                 of_node_put(cpu_np);
1369                 if (!tmp_np) {
1370                         pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1371                         ret = -ENOENT;
1372                         goto put_cpu_node;
1373                 }
1374
1375                 /* CPUs are sharing opp node */
1376                 if (np == tmp_np)
1377                         cpumask_set_cpu(cpu, cpumask);
1378
1379                 of_node_put(tmp_np);
1380         }
1381
1382 put_cpu_node:
1383         of_node_put(np);
1384         return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1387
1388 /**
1389  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1390  * @np: Node that contains the "required-opps" property.
1391  * @index: Index of the phandle to parse.
1392  *
1393  * Returns the performance state of the OPP pointed out by the "required-opps"
1394  * property at @index in @np.
1395  *
1396  * Return: Zero or positive performance state on success, otherwise negative
1397  * value on errors.
1398  */
1399 int of_get_required_opp_performance_state(struct device_node *np, int index)
1400 {
1401         struct dev_pm_opp *opp;
1402         struct device_node *required_np;
1403         struct opp_table *opp_table;
1404         int pstate = -EINVAL;
1405
1406         required_np = of_parse_required_opp(np, index);
1407         if (!required_np)
1408                 return -ENODEV;
1409
1410         opp_table = _find_table_of_opp_np(required_np);
1411         if (IS_ERR(opp_table)) {
1412                 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1413                        __func__, np, PTR_ERR(opp_table));
1414                 goto put_required_np;
1415         }
1416
1417         opp = _find_opp_of_np(opp_table, required_np);
1418         if (opp) {
1419                 pstate = opp->pstate;
1420                 dev_pm_opp_put(opp);
1421         }
1422
1423         dev_pm_opp_put_opp_table(opp_table);
1424
1425 put_required_np:
1426         of_node_put(required_np);
1427
1428         return pstate;
1429 }
1430 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1431
1432 /**
1433  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1434  * @opp:        opp for which DT node has to be returned for
1435  *
1436  * Return: DT node corresponding to the opp, else 0 on success.
1437  *
1438  * The caller needs to put the node with of_node_put() after using it.
1439  */
1440 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1441 {
1442         if (IS_ERR_OR_NULL(opp)) {
1443                 pr_err("%s: Invalid parameters\n", __func__);
1444                 return NULL;
1445         }
1446
1447         return of_node_get(opp->np);
1448 }
1449 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1450
1451 /*
1452  * Callback function provided to the Energy Model framework upon registration.
1453  * It provides the power used by @dev at @kHz if it is the frequency of an
1454  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1455  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1456  * frequency and @uW to the associated power.
1457  *
1458  * Returns 0 on success or a proper -EINVAL value in case of error.
1459  */
1460 static int __maybe_unused
1461 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1462 {
1463         struct dev_pm_opp *opp;
1464         unsigned long opp_freq, opp_power;
1465
1466         /* Find the right frequency and related OPP */
1467         opp_freq = *kHz * 1000;
1468         opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1469         if (IS_ERR(opp))
1470                 return -EINVAL;
1471
1472         opp_power = dev_pm_opp_get_power(opp);
1473         dev_pm_opp_put(opp);
1474         if (!opp_power)
1475                 return -EINVAL;
1476
1477         *kHz = opp_freq / 1000;
1478         *uW = opp_power;
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * Callback function provided to the Energy Model framework upon registration.
1485  * This computes the power estimated by @dev at @kHz if it is the frequency
1486  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1487  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1488  * frequency and @uW to the associated power. The power is estimated as
1489  * P = C * V^2 * f with C being the device's capacitance and V and f
1490  * respectively the voltage and frequency of the OPP.
1491  *
1492  * Returns -EINVAL if the power calculation failed because of missing
1493  * parameters, 0 otherwise.
1494  */
1495 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1496                                      unsigned long *kHz)
1497 {
1498         struct dev_pm_opp *opp;
1499         struct device_node *np;
1500         unsigned long mV, Hz;
1501         u32 cap;
1502         u64 tmp;
1503         int ret;
1504
1505         np = of_node_get(dev->of_node);
1506         if (!np)
1507                 return -EINVAL;
1508
1509         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1510         of_node_put(np);
1511         if (ret)
1512                 return -EINVAL;
1513
1514         Hz = *kHz * 1000;
1515         opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1516         if (IS_ERR(opp))
1517                 return -EINVAL;
1518
1519         mV = dev_pm_opp_get_voltage(opp) / 1000;
1520         dev_pm_opp_put(opp);
1521         if (!mV)
1522                 return -EINVAL;
1523
1524         tmp = (u64)cap * mV * mV * (Hz / 1000000);
1525         /* Provide power in micro-Watts */
1526         do_div(tmp, 1000000);
1527
1528         *uW = (unsigned long)tmp;
1529         *kHz = Hz / 1000;
1530
1531         return 0;
1532 }
1533
1534 static bool _of_has_opp_microwatt_property(struct device *dev)
1535 {
1536         unsigned long power, freq = 0;
1537         struct dev_pm_opp *opp;
1538
1539         /* Check if at least one OPP has needed property */
1540         opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1541         if (IS_ERR(opp))
1542                 return false;
1543
1544         power = dev_pm_opp_get_power(opp);
1545         dev_pm_opp_put(opp);
1546         if (!power)
1547                 return false;
1548
1549         return true;
1550 }
1551
1552 /**
1553  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1554  * @dev         : Device for which an Energy Model has to be registered
1555  * @cpus        : CPUs for which an Energy Model has to be registered. For
1556  *              other type of devices it should be set to NULL.
1557  *
1558  * This checks whether the "dynamic-power-coefficient" devicetree property has
1559  * been specified, and tries to register an Energy Model with it if it has.
1560  * Having this property means the voltages are known for OPPs and the EM
1561  * might be calculated.
1562  */
1563 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1564 {
1565         struct em_data_callback em_cb;
1566         struct device_node *np;
1567         int ret, nr_opp;
1568         u32 cap;
1569
1570         if (IS_ERR_OR_NULL(dev)) {
1571                 ret = -EINVAL;
1572                 goto failed;
1573         }
1574
1575         nr_opp = dev_pm_opp_get_opp_count(dev);
1576         if (nr_opp <= 0) {
1577                 ret = -EINVAL;
1578                 goto failed;
1579         }
1580
1581         /* First, try to find more precised Energy Model in DT */
1582         if (_of_has_opp_microwatt_property(dev)) {
1583                 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1584                 goto register_em;
1585         }
1586
1587         np = of_node_get(dev->of_node);
1588         if (!np) {
1589                 ret = -EINVAL;
1590                 goto failed;
1591         }
1592
1593         /*
1594          * Register an EM only if the 'dynamic-power-coefficient' property is
1595          * set in devicetree. It is assumed the voltage values are known if that
1596          * property is set since it is useless otherwise. If voltages are not
1597          * known, just let the EM registration fail with an error to alert the
1598          * user about the inconsistent configuration.
1599          */
1600         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1601         of_node_put(np);
1602         if (ret || !cap) {
1603                 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1604                 ret = -EINVAL;
1605                 goto failed;
1606         }
1607
1608         EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1609
1610 register_em:
1611         ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1612         if (ret)
1613                 goto failed;
1614
1615         return 0;
1616
1617 failed:
1618         dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1619         return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);