GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         nvmem_cell_post_process_t cell_post_process;
42         struct gpio_desc        *wp_gpio;
43         void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT             BIT(0)
49 struct nvmem_cell_entry {
50         const char              *name;
51         int                     offset;
52         int                     bytes;
53         int                     bit_offset;
54         int                     nbits;
55         struct device_node      *np;
56         struct nvmem_device     *nvmem;
57         struct list_head        node;
58 };
59
60 struct nvmem_cell {
61         struct nvmem_cell_entry *entry;
62         const char              *id;
63 };
64
65 static DEFINE_MUTEX(nvmem_mutex);
66 static DEFINE_IDA(nvmem_ida);
67
68 static DEFINE_MUTEX(nvmem_cell_mutex);
69 static LIST_HEAD(nvmem_cell_tables);
70
71 static DEFINE_MUTEX(nvmem_lookup_mutex);
72 static LIST_HEAD(nvmem_lookup_list);
73
74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
75
76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77                             void *val, size_t bytes)
78 {
79         if (nvmem->reg_read)
80                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81
82         return -EINVAL;
83 }
84
85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86                              void *val, size_t bytes)
87 {
88         int ret;
89
90         if (nvmem->reg_write) {
91                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
92                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
93                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
94                 return ret;
95         }
96
97         return -EINVAL;
98 }
99
100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
101                                       unsigned int offset, void *val,
102                                       size_t bytes, int write)
103 {
104
105         unsigned int end = offset + bytes;
106         unsigned int kend, ksize;
107         const struct nvmem_keepout *keepout = nvmem->keepout;
108         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
109         int rc;
110
111         /*
112          * Skip all keepouts before the range being accessed.
113          * Keepouts are sorted.
114          */
115         while ((keepout < keepoutend) && (keepout->end <= offset))
116                 keepout++;
117
118         while ((offset < end) && (keepout < keepoutend)) {
119                 /* Access the valid portion before the keepout. */
120                 if (offset < keepout->start) {
121                         kend = min(end, keepout->start);
122                         ksize = kend - offset;
123                         if (write)
124                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
125                         else
126                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
127
128                         if (rc)
129                                 return rc;
130
131                         offset += ksize;
132                         val += ksize;
133                 }
134
135                 /*
136                  * Now we're aligned to the start of this keepout zone. Go
137                  * through it.
138                  */
139                 kend = min(end, keepout->end);
140                 ksize = kend - offset;
141                 if (!write)
142                         memset(val, keepout->value, ksize);
143
144                 val += ksize;
145                 offset += ksize;
146                 keepout++;
147         }
148
149         /*
150          * If we ran out of keepouts but there's still stuff to do, send it
151          * down directly
152          */
153         if (offset < end) {
154                 ksize = end - offset;
155                 if (write)
156                         return __nvmem_reg_write(nvmem, offset, val, ksize);
157                 else
158                         return __nvmem_reg_read(nvmem, offset, val, ksize);
159         }
160
161         return 0;
162 }
163
164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
165                           void *val, size_t bytes)
166 {
167         if (!nvmem->nkeepout)
168                 return __nvmem_reg_read(nvmem, offset, val, bytes);
169
170         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
171 }
172
173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
174                            void *val, size_t bytes)
175 {
176         if (!nvmem->nkeepout)
177                 return __nvmem_reg_write(nvmem, offset, val, bytes);
178
179         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
180 }
181
182 #ifdef CONFIG_NVMEM_SYSFS
183 static const char * const nvmem_type_str[] = {
184         [NVMEM_TYPE_UNKNOWN] = "Unknown",
185         [NVMEM_TYPE_EEPROM] = "EEPROM",
186         [NVMEM_TYPE_OTP] = "OTP",
187         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
188         [NVMEM_TYPE_FRAM] = "FRAM",
189 };
190
191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
192 static struct lock_class_key eeprom_lock_key;
193 #endif
194
195 static ssize_t type_show(struct device *dev,
196                          struct device_attribute *attr, char *buf)
197 {
198         struct nvmem_device *nvmem = to_nvmem_device(dev);
199
200         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
201 }
202
203 static DEVICE_ATTR_RO(type);
204
205 static struct attribute *nvmem_attrs[] = {
206         &dev_attr_type.attr,
207         NULL,
208 };
209
210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
211                                    struct bin_attribute *attr, char *buf,
212                                    loff_t pos, size_t count)
213 {
214         struct device *dev;
215         struct nvmem_device *nvmem;
216         int rc;
217
218         if (attr->private)
219                 dev = attr->private;
220         else
221                 dev = kobj_to_dev(kobj);
222         nvmem = to_nvmem_device(dev);
223
224         /* Stop the user from reading */
225         if (pos >= nvmem->size)
226                 return 0;
227
228         if (!IS_ALIGNED(pos, nvmem->stride))
229                 return -EINVAL;
230
231         if (count < nvmem->word_size)
232                 return -EINVAL;
233
234         if (pos + count > nvmem->size)
235                 count = nvmem->size - pos;
236
237         count = round_down(count, nvmem->word_size);
238
239         if (!nvmem->reg_read)
240                 return -EPERM;
241
242         rc = nvmem_reg_read(nvmem, pos, buf, count);
243
244         if (rc)
245                 return rc;
246
247         return count;
248 }
249
250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
251                                     struct bin_attribute *attr, char *buf,
252                                     loff_t pos, size_t count)
253 {
254         struct device *dev;
255         struct nvmem_device *nvmem;
256         int rc;
257
258         if (attr->private)
259                 dev = attr->private;
260         else
261                 dev = kobj_to_dev(kobj);
262         nvmem = to_nvmem_device(dev);
263
264         /* Stop the user from writing */
265         if (pos >= nvmem->size)
266                 return -EFBIG;
267
268         if (!IS_ALIGNED(pos, nvmem->stride))
269                 return -EINVAL;
270
271         if (count < nvmem->word_size)
272                 return -EINVAL;
273
274         if (pos + count > nvmem->size)
275                 count = nvmem->size - pos;
276
277         count = round_down(count, nvmem->word_size);
278
279         if (!nvmem->reg_write)
280                 return -EPERM;
281
282         rc = nvmem_reg_write(nvmem, pos, buf, count);
283
284         if (rc)
285                 return rc;
286
287         return count;
288 }
289
290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
291 {
292         umode_t mode = 0400;
293
294         if (!nvmem->root_only)
295                 mode |= 0044;
296
297         if (!nvmem->read_only)
298                 mode |= 0200;
299
300         if (!nvmem->reg_write)
301                 mode &= ~0200;
302
303         if (!nvmem->reg_read)
304                 mode &= ~0444;
305
306         return mode;
307 }
308
309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
310                                          struct bin_attribute *attr, int i)
311 {
312         struct device *dev = kobj_to_dev(kobj);
313         struct nvmem_device *nvmem = to_nvmem_device(dev);
314
315         attr->size = nvmem->size;
316
317         return nvmem_bin_attr_get_umode(nvmem);
318 }
319
320 /* default read/write permissions */
321 static struct bin_attribute bin_attr_rw_nvmem = {
322         .attr   = {
323                 .name   = "nvmem",
324                 .mode   = 0644,
325         },
326         .read   = bin_attr_nvmem_read,
327         .write  = bin_attr_nvmem_write,
328 };
329
330 static struct bin_attribute *nvmem_bin_attributes[] = {
331         &bin_attr_rw_nvmem,
332         NULL,
333 };
334
335 static const struct attribute_group nvmem_bin_group = {
336         .bin_attrs      = nvmem_bin_attributes,
337         .attrs          = nvmem_attrs,
338         .is_bin_visible = nvmem_bin_attr_is_visible,
339 };
340
341 static const struct attribute_group *nvmem_dev_groups[] = {
342         &nvmem_bin_group,
343         NULL,
344 };
345
346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
347         .attr   = {
348                 .name   = "eeprom",
349         },
350         .read   = bin_attr_nvmem_read,
351         .write  = bin_attr_nvmem_write,
352 };
353
354 /*
355  * nvmem_setup_compat() - Create an additional binary entry in
356  * drivers sys directory, to be backwards compatible with the older
357  * drivers/misc/eeprom drivers.
358  */
359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
360                                     const struct nvmem_config *config)
361 {
362         int rval;
363
364         if (!config->compat)
365                 return 0;
366
367         if (!config->base_dev)
368                 return -EINVAL;
369
370         if (config->type == NVMEM_TYPE_FRAM)
371                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
372
373         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
374         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
375         nvmem->eeprom.size = nvmem->size;
376 #ifdef CONFIG_DEBUG_LOCK_ALLOC
377         nvmem->eeprom.attr.key = &eeprom_lock_key;
378 #endif
379         nvmem->eeprom.private = &nvmem->dev;
380         nvmem->base_dev = config->base_dev;
381
382         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
383         if (rval) {
384                 dev_err(&nvmem->dev,
385                         "Failed to create eeprom binary file %d\n", rval);
386                 return rval;
387         }
388
389         nvmem->flags |= FLAG_COMPAT;
390
391         return 0;
392 }
393
394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
395                               const struct nvmem_config *config)
396 {
397         if (config->compat)
398                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
399 }
400
401 #else /* CONFIG_NVMEM_SYSFS */
402
403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
404                                     const struct nvmem_config *config)
405 {
406         return -ENOSYS;
407 }
408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
409                                       const struct nvmem_config *config)
410 {
411 }
412
413 #endif /* CONFIG_NVMEM_SYSFS */
414
415 static void nvmem_release(struct device *dev)
416 {
417         struct nvmem_device *nvmem = to_nvmem_device(dev);
418
419         ida_free(&nvmem_ida, nvmem->id);
420         gpiod_put(nvmem->wp_gpio);
421         kfree(nvmem);
422 }
423
424 static const struct device_type nvmem_provider_type = {
425         .release        = nvmem_release,
426 };
427
428 static struct bus_type nvmem_bus_type = {
429         .name           = "nvmem",
430 };
431
432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
433 {
434         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
435         mutex_lock(&nvmem_mutex);
436         list_del(&cell->node);
437         mutex_unlock(&nvmem_mutex);
438         of_node_put(cell->np);
439         kfree_const(cell->name);
440         kfree(cell);
441 }
442
443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
444 {
445         struct nvmem_cell_entry *cell, *p;
446
447         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
448                 nvmem_cell_entry_drop(cell);
449 }
450
451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
452 {
453         mutex_lock(&nvmem_mutex);
454         list_add_tail(&cell->node, &cell->nvmem->cells);
455         mutex_unlock(&nvmem_mutex);
456         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
457 }
458
459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
460                                                      const struct nvmem_cell_info *info,
461                                                      struct nvmem_cell_entry *cell)
462 {
463         cell->nvmem = nvmem;
464         cell->offset = info->offset;
465         cell->bytes = info->bytes;
466         cell->name = info->name;
467
468         cell->bit_offset = info->bit_offset;
469         cell->nbits = info->nbits;
470         cell->np = info->np;
471
472         if (cell->nbits)
473                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
474                                            BITS_PER_BYTE);
475
476         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
477                 dev_err(&nvmem->dev,
478                         "cell %s unaligned to nvmem stride %d\n",
479                         cell->name ?: "<unknown>", nvmem->stride);
480                 return -EINVAL;
481         }
482
483         return 0;
484 }
485
486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
487                                                const struct nvmem_cell_info *info,
488                                                struct nvmem_cell_entry *cell)
489 {
490         int err;
491
492         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
493         if (err)
494                 return err;
495
496         cell->name = kstrdup_const(info->name, GFP_KERNEL);
497         if (!cell->name)
498                 return -ENOMEM;
499
500         return 0;
501 }
502
503 /**
504  * nvmem_add_cells() - Add cell information to an nvmem device
505  *
506  * @nvmem: nvmem device to add cells to.
507  * @info: nvmem cell info to add to the device
508  * @ncells: number of cells in info
509  *
510  * Return: 0 or negative error code on failure.
511  */
512 static int nvmem_add_cells(struct nvmem_device *nvmem,
513                     const struct nvmem_cell_info *info,
514                     int ncells)
515 {
516         struct nvmem_cell_entry **cells;
517         int i, rval;
518
519         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
520         if (!cells)
521                 return -ENOMEM;
522
523         for (i = 0; i < ncells; i++) {
524                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
525                 if (!cells[i]) {
526                         rval = -ENOMEM;
527                         goto err;
528                 }
529
530                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
531                 if (rval) {
532                         kfree(cells[i]);
533                         goto err;
534                 }
535
536                 nvmem_cell_entry_add(cells[i]);
537         }
538
539         /* remove tmp array */
540         kfree(cells);
541
542         return 0;
543 err:
544         while (i--)
545                 nvmem_cell_entry_drop(cells[i]);
546
547         kfree(cells);
548
549         return rval;
550 }
551
552 /**
553  * nvmem_register_notifier() - Register a notifier block for nvmem events.
554  *
555  * @nb: notifier block to be called on nvmem events.
556  *
557  * Return: 0 on success, negative error number on failure.
558  */
559 int nvmem_register_notifier(struct notifier_block *nb)
560 {
561         return blocking_notifier_chain_register(&nvmem_notifier, nb);
562 }
563 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
564
565 /**
566  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
567  *
568  * @nb: notifier block to be unregistered.
569  *
570  * Return: 0 on success, negative error number on failure.
571  */
572 int nvmem_unregister_notifier(struct notifier_block *nb)
573 {
574         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
575 }
576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
577
578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
579 {
580         const struct nvmem_cell_info *info;
581         struct nvmem_cell_table *table;
582         struct nvmem_cell_entry *cell;
583         int rval = 0, i;
584
585         mutex_lock(&nvmem_cell_mutex);
586         list_for_each_entry(table, &nvmem_cell_tables, node) {
587                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
588                         for (i = 0; i < table->ncells; i++) {
589                                 info = &table->cells[i];
590
591                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
592                                 if (!cell) {
593                                         rval = -ENOMEM;
594                                         goto out;
595                                 }
596
597                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
598                                 if (rval) {
599                                         kfree(cell);
600                                         goto out;
601                                 }
602
603                                 nvmem_cell_entry_add(cell);
604                         }
605                 }
606         }
607
608 out:
609         mutex_unlock(&nvmem_cell_mutex);
610         return rval;
611 }
612
613 static struct nvmem_cell_entry *
614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
615 {
616         struct nvmem_cell_entry *iter, *cell = NULL;
617
618         mutex_lock(&nvmem_mutex);
619         list_for_each_entry(iter, &nvmem->cells, node) {
620                 if (strcmp(cell_id, iter->name) == 0) {
621                         cell = iter;
622                         break;
623                 }
624         }
625         mutex_unlock(&nvmem_mutex);
626
627         return cell;
628 }
629
630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
631 {
632         unsigned int cur = 0;
633         const struct nvmem_keepout *keepout = nvmem->keepout;
634         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
635
636         while (keepout < keepoutend) {
637                 /* Ensure keepouts are sorted and don't overlap. */
638                 if (keepout->start < cur) {
639                         dev_err(&nvmem->dev,
640                                 "Keepout regions aren't sorted or overlap.\n");
641
642                         return -ERANGE;
643                 }
644
645                 if (keepout->end < keepout->start) {
646                         dev_err(&nvmem->dev,
647                                 "Invalid keepout region.\n");
648
649                         return -EINVAL;
650                 }
651
652                 /*
653                  * Validate keepouts (and holes between) don't violate
654                  * word_size constraints.
655                  */
656                 if ((keepout->end - keepout->start < nvmem->word_size) ||
657                     ((keepout->start != cur) &&
658                      (keepout->start - cur < nvmem->word_size))) {
659
660                         dev_err(&nvmem->dev,
661                                 "Keepout regions violate word_size constraints.\n");
662
663                         return -ERANGE;
664                 }
665
666                 /* Validate keepouts don't violate stride (alignment). */
667                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
668                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
669
670                         dev_err(&nvmem->dev,
671                                 "Keepout regions violate stride.\n");
672
673                         return -EINVAL;
674                 }
675
676                 cur = keepout->end;
677                 keepout++;
678         }
679
680         return 0;
681 }
682
683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
684 {
685         struct device_node *parent, *child;
686         struct device *dev = &nvmem->dev;
687         struct nvmem_cell_entry *cell;
688         const __be32 *addr;
689         int len;
690
691         parent = dev->of_node;
692
693         for_each_child_of_node(parent, child) {
694                 addr = of_get_property(child, "reg", &len);
695                 if (!addr)
696                         continue;
697                 if (len < 2 * sizeof(u32)) {
698                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
699                         of_node_put(child);
700                         return -EINVAL;
701                 }
702
703                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
704                 if (!cell) {
705                         of_node_put(child);
706                         return -ENOMEM;
707                 }
708
709                 cell->nvmem = nvmem;
710                 cell->offset = be32_to_cpup(addr++);
711                 cell->bytes = be32_to_cpup(addr);
712                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
713
714                 addr = of_get_property(child, "bits", &len);
715                 if (addr && len == (2 * sizeof(u32))) {
716                         cell->bit_offset = be32_to_cpup(addr++);
717                         cell->nbits = be32_to_cpup(addr);
718                 }
719
720                 if (cell->nbits)
721                         cell->bytes = DIV_ROUND_UP(
722                                         cell->nbits + cell->bit_offset,
723                                         BITS_PER_BYTE);
724
725                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
726                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
727                                 cell->name, nvmem->stride);
728                         /* Cells already added will be freed later. */
729                         kfree_const(cell->name);
730                         kfree(cell);
731                         of_node_put(child);
732                         return -EINVAL;
733                 }
734
735                 cell->np = of_node_get(child);
736                 nvmem_cell_entry_add(cell);
737         }
738
739         return 0;
740 }
741
742 /**
743  * nvmem_register() - Register a nvmem device for given nvmem_config.
744  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745  *
746  * @config: nvmem device configuration with which nvmem device is created.
747  *
748  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
749  * on success.
750  */
751
752 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
753 {
754         struct nvmem_device *nvmem;
755         int rval;
756
757         if (!config->dev)
758                 return ERR_PTR(-EINVAL);
759
760         if (!config->reg_read && !config->reg_write)
761                 return ERR_PTR(-EINVAL);
762
763         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
764         if (!nvmem)
765                 return ERR_PTR(-ENOMEM);
766
767         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
768         if (rval < 0) {
769                 kfree(nvmem);
770                 return ERR_PTR(rval);
771         }
772
773         if (config->wp_gpio)
774                 nvmem->wp_gpio = config->wp_gpio;
775         else if (!config->ignore_wp)
776                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
777                                                     GPIOD_OUT_HIGH);
778         if (IS_ERR(nvmem->wp_gpio)) {
779                 ida_free(&nvmem_ida, nvmem->id);
780                 rval = PTR_ERR(nvmem->wp_gpio);
781                 kfree(nvmem);
782                 return ERR_PTR(rval);
783         }
784
785         kref_init(&nvmem->refcnt);
786         INIT_LIST_HEAD(&nvmem->cells);
787
788         nvmem->id = rval;
789         nvmem->owner = config->owner;
790         if (!nvmem->owner && config->dev->driver)
791                 nvmem->owner = config->dev->driver->owner;
792         nvmem->stride = config->stride ?: 1;
793         nvmem->word_size = config->word_size ?: 1;
794         nvmem->size = config->size;
795         nvmem->dev.type = &nvmem_provider_type;
796         nvmem->dev.bus = &nvmem_bus_type;
797         nvmem->dev.parent = config->dev;
798         nvmem->root_only = config->root_only;
799         nvmem->priv = config->priv;
800         nvmem->type = config->type;
801         nvmem->reg_read = config->reg_read;
802         nvmem->reg_write = config->reg_write;
803         nvmem->cell_post_process = config->cell_post_process;
804         nvmem->keepout = config->keepout;
805         nvmem->nkeepout = config->nkeepout;
806         if (config->of_node)
807                 nvmem->dev.of_node = config->of_node;
808         else if (!config->no_of_node)
809                 nvmem->dev.of_node = config->dev->of_node;
810
811         switch (config->id) {
812         case NVMEM_DEVID_NONE:
813                 dev_set_name(&nvmem->dev, "%s", config->name);
814                 break;
815         case NVMEM_DEVID_AUTO:
816                 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
817                 break;
818         default:
819                 dev_set_name(&nvmem->dev, "%s%d",
820                              config->name ? : "nvmem",
821                              config->name ? config->id : nvmem->id);
822                 break;
823         }
824
825         nvmem->read_only = device_property_present(config->dev, "read-only") ||
826                            config->read_only || !nvmem->reg_write;
827
828 #ifdef CONFIG_NVMEM_SYSFS
829         nvmem->dev.groups = nvmem_dev_groups;
830 #endif
831
832         if (nvmem->nkeepout) {
833                 rval = nvmem_validate_keepouts(nvmem);
834                 if (rval) {
835                         ida_free(&nvmem_ida, nvmem->id);
836                         kfree(nvmem);
837                         return ERR_PTR(rval);
838                 }
839         }
840
841         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
842
843         rval = device_register(&nvmem->dev);
844         if (rval)
845                 goto err_put_device;
846
847         if (config->compat) {
848                 rval = nvmem_sysfs_setup_compat(nvmem, config);
849                 if (rval)
850                         goto err_device_del;
851         }
852
853         if (config->cells) {
854                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
855                 if (rval)
856                         goto err_teardown_compat;
857         }
858
859         rval = nvmem_add_cells_from_table(nvmem);
860         if (rval)
861                 goto err_remove_cells;
862
863         rval = nvmem_add_cells_from_of(nvmem);
864         if (rval)
865                 goto err_remove_cells;
866
867         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
868
869         return nvmem;
870
871 err_remove_cells:
872         nvmem_device_remove_all_cells(nvmem);
873 err_teardown_compat:
874         if (config->compat)
875                 nvmem_sysfs_remove_compat(nvmem, config);
876 err_device_del:
877         device_del(&nvmem->dev);
878 err_put_device:
879         put_device(&nvmem->dev);
880
881         return ERR_PTR(rval);
882 }
883 EXPORT_SYMBOL_GPL(nvmem_register);
884
885 static void nvmem_device_release(struct kref *kref)
886 {
887         struct nvmem_device *nvmem;
888
889         nvmem = container_of(kref, struct nvmem_device, refcnt);
890
891         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
892
893         if (nvmem->flags & FLAG_COMPAT)
894                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
895
896         nvmem_device_remove_all_cells(nvmem);
897         device_unregister(&nvmem->dev);
898 }
899
900 /**
901  * nvmem_unregister() - Unregister previously registered nvmem device
902  *
903  * @nvmem: Pointer to previously registered nvmem device.
904  */
905 void nvmem_unregister(struct nvmem_device *nvmem)
906 {
907         if (nvmem)
908                 kref_put(&nvmem->refcnt, nvmem_device_release);
909 }
910 EXPORT_SYMBOL_GPL(nvmem_unregister);
911
912 static void devm_nvmem_unregister(void *nvmem)
913 {
914         nvmem_unregister(nvmem);
915 }
916
917 /**
918  * devm_nvmem_register() - Register a managed nvmem device for given
919  * nvmem_config.
920  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
921  *
922  * @dev: Device that uses the nvmem device.
923  * @config: nvmem device configuration with which nvmem device is created.
924  *
925  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
926  * on success.
927  */
928 struct nvmem_device *devm_nvmem_register(struct device *dev,
929                                          const struct nvmem_config *config)
930 {
931         struct nvmem_device *nvmem;
932         int ret;
933
934         nvmem = nvmem_register(config);
935         if (IS_ERR(nvmem))
936                 return nvmem;
937
938         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
939         if (ret)
940                 return ERR_PTR(ret);
941
942         return nvmem;
943 }
944 EXPORT_SYMBOL_GPL(devm_nvmem_register);
945
946 static struct nvmem_device *__nvmem_device_get(void *data,
947                         int (*match)(struct device *dev, const void *data))
948 {
949         struct nvmem_device *nvmem = NULL;
950         struct device *dev;
951
952         mutex_lock(&nvmem_mutex);
953         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
954         if (dev)
955                 nvmem = to_nvmem_device(dev);
956         mutex_unlock(&nvmem_mutex);
957         if (!nvmem)
958                 return ERR_PTR(-EPROBE_DEFER);
959
960         if (!try_module_get(nvmem->owner)) {
961                 dev_err(&nvmem->dev,
962                         "could not increase module refcount for cell %s\n",
963                         nvmem_dev_name(nvmem));
964
965                 put_device(&nvmem->dev);
966                 return ERR_PTR(-EINVAL);
967         }
968
969         kref_get(&nvmem->refcnt);
970
971         return nvmem;
972 }
973
974 static void __nvmem_device_put(struct nvmem_device *nvmem)
975 {
976         put_device(&nvmem->dev);
977         module_put(nvmem->owner);
978         kref_put(&nvmem->refcnt, nvmem_device_release);
979 }
980
981 #if IS_ENABLED(CONFIG_OF)
982 /**
983  * of_nvmem_device_get() - Get nvmem device from a given id
984  *
985  * @np: Device tree node that uses the nvmem device.
986  * @id: nvmem name from nvmem-names property.
987  *
988  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
989  * on success.
990  */
991 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
992 {
993
994         struct device_node *nvmem_np;
995         struct nvmem_device *nvmem;
996         int index = 0;
997
998         if (id)
999                 index = of_property_match_string(np, "nvmem-names", id);
1000
1001         nvmem_np = of_parse_phandle(np, "nvmem", index);
1002         if (!nvmem_np)
1003                 return ERR_PTR(-ENOENT);
1004
1005         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1006         of_node_put(nvmem_np);
1007         return nvmem;
1008 }
1009 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1010 #endif
1011
1012 /**
1013  * nvmem_device_get() - Get nvmem device from a given id
1014  *
1015  * @dev: Device that uses the nvmem device.
1016  * @dev_name: name of the requested nvmem device.
1017  *
1018  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1019  * on success.
1020  */
1021 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1022 {
1023         if (dev->of_node) { /* try dt first */
1024                 struct nvmem_device *nvmem;
1025
1026                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1027
1028                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1029                         return nvmem;
1030
1031         }
1032
1033         return __nvmem_device_get((void *)dev_name, device_match_name);
1034 }
1035 EXPORT_SYMBOL_GPL(nvmem_device_get);
1036
1037 /**
1038  * nvmem_device_find() - Find nvmem device with matching function
1039  *
1040  * @data: Data to pass to match function
1041  * @match: Callback function to check device
1042  *
1043  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1044  * on success.
1045  */
1046 struct nvmem_device *nvmem_device_find(void *data,
1047                         int (*match)(struct device *dev, const void *data))
1048 {
1049         return __nvmem_device_get(data, match);
1050 }
1051 EXPORT_SYMBOL_GPL(nvmem_device_find);
1052
1053 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1054 {
1055         struct nvmem_device **nvmem = res;
1056
1057         if (WARN_ON(!nvmem || !*nvmem))
1058                 return 0;
1059
1060         return *nvmem == data;
1061 }
1062
1063 static void devm_nvmem_device_release(struct device *dev, void *res)
1064 {
1065         nvmem_device_put(*(struct nvmem_device **)res);
1066 }
1067
1068 /**
1069  * devm_nvmem_device_put() - put alredy got nvmem device
1070  *
1071  * @dev: Device that uses the nvmem device.
1072  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1073  * that needs to be released.
1074  */
1075 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1076 {
1077         int ret;
1078
1079         ret = devres_release(dev, devm_nvmem_device_release,
1080                              devm_nvmem_device_match, nvmem);
1081
1082         WARN_ON(ret);
1083 }
1084 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1085
1086 /**
1087  * nvmem_device_put() - put alredy got nvmem device
1088  *
1089  * @nvmem: pointer to nvmem device that needs to be released.
1090  */
1091 void nvmem_device_put(struct nvmem_device *nvmem)
1092 {
1093         __nvmem_device_put(nvmem);
1094 }
1095 EXPORT_SYMBOL_GPL(nvmem_device_put);
1096
1097 /**
1098  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1099  *
1100  * @dev: Device that requests the nvmem device.
1101  * @id: name id for the requested nvmem device.
1102  *
1103  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1104  * on success.  The nvmem_cell will be freed by the automatically once the
1105  * device is freed.
1106  */
1107 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1108 {
1109         struct nvmem_device **ptr, *nvmem;
1110
1111         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1112         if (!ptr)
1113                 return ERR_PTR(-ENOMEM);
1114
1115         nvmem = nvmem_device_get(dev, id);
1116         if (!IS_ERR(nvmem)) {
1117                 *ptr = nvmem;
1118                 devres_add(dev, ptr);
1119         } else {
1120                 devres_free(ptr);
1121         }
1122
1123         return nvmem;
1124 }
1125 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1126
1127 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1128 {
1129         struct nvmem_cell *cell;
1130         const char *name = NULL;
1131
1132         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1133         if (!cell)
1134                 return ERR_PTR(-ENOMEM);
1135
1136         if (id) {
1137                 name = kstrdup_const(id, GFP_KERNEL);
1138                 if (!name) {
1139                         kfree(cell);
1140                         return ERR_PTR(-ENOMEM);
1141                 }
1142         }
1143
1144         cell->id = name;
1145         cell->entry = entry;
1146
1147         return cell;
1148 }
1149
1150 static struct nvmem_cell *
1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1152 {
1153         struct nvmem_cell_entry *cell_entry;
1154         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1155         struct nvmem_cell_lookup *lookup;
1156         struct nvmem_device *nvmem;
1157         const char *dev_id;
1158
1159         if (!dev)
1160                 return ERR_PTR(-EINVAL);
1161
1162         dev_id = dev_name(dev);
1163
1164         mutex_lock(&nvmem_lookup_mutex);
1165
1166         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1167                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1168                     (strcmp(lookup->con_id, con_id) == 0)) {
1169                         /* This is the right entry. */
1170                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1171                                                    device_match_name);
1172                         if (IS_ERR(nvmem)) {
1173                                 /* Provider may not be registered yet. */
1174                                 cell = ERR_CAST(nvmem);
1175                                 break;
1176                         }
1177
1178                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1179                                                                    lookup->cell_name);
1180                         if (!cell_entry) {
1181                                 __nvmem_device_put(nvmem);
1182                                 cell = ERR_PTR(-ENOENT);
1183                         } else {
1184                                 cell = nvmem_create_cell(cell_entry, con_id);
1185                                 if (IS_ERR(cell))
1186                                         __nvmem_device_put(nvmem);
1187                         }
1188                         break;
1189                 }
1190         }
1191
1192         mutex_unlock(&nvmem_lookup_mutex);
1193         return cell;
1194 }
1195
1196 #if IS_ENABLED(CONFIG_OF)
1197 static struct nvmem_cell_entry *
1198 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1199 {
1200         struct nvmem_cell_entry *iter, *cell = NULL;
1201
1202         mutex_lock(&nvmem_mutex);
1203         list_for_each_entry(iter, &nvmem->cells, node) {
1204                 if (np == iter->np) {
1205                         cell = iter;
1206                         break;
1207                 }
1208         }
1209         mutex_unlock(&nvmem_mutex);
1210
1211         return cell;
1212 }
1213
1214 /**
1215  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1216  *
1217  * @np: Device tree node that uses the nvmem cell.
1218  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1219  *      for the cell at index 0 (the lone cell with no accompanying
1220  *      nvmem-cell-names property).
1221  *
1222  * Return: Will be an ERR_PTR() on error or a valid pointer
1223  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1224  * nvmem_cell_put().
1225  */
1226 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1227 {
1228         struct device_node *cell_np, *nvmem_np;
1229         struct nvmem_device *nvmem;
1230         struct nvmem_cell_entry *cell_entry;
1231         struct nvmem_cell *cell;
1232         int index = 0;
1233
1234         /* if cell name exists, find index to the name */
1235         if (id)
1236                 index = of_property_match_string(np, "nvmem-cell-names", id);
1237
1238         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1239         if (!cell_np)
1240                 return ERR_PTR(-ENOENT);
1241
1242         nvmem_np = of_get_next_parent(cell_np);
1243         if (!nvmem_np)
1244                 return ERR_PTR(-EINVAL);
1245
1246         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247         of_node_put(nvmem_np);
1248         if (IS_ERR(nvmem))
1249                 return ERR_CAST(nvmem);
1250
1251         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1252         if (!cell_entry) {
1253                 __nvmem_device_put(nvmem);
1254                 return ERR_PTR(-ENOENT);
1255         }
1256
1257         cell = nvmem_create_cell(cell_entry, id);
1258         if (IS_ERR(cell))
1259                 __nvmem_device_put(nvmem);
1260
1261         return cell;
1262 }
1263 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1264 #endif
1265
1266 /**
1267  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1268  *
1269  * @dev: Device that requests the nvmem cell.
1270  * @id: nvmem cell name to get (this corresponds with the name from the
1271  *      nvmem-cell-names property for DT systems and with the con_id from
1272  *      the lookup entry for non-DT systems).
1273  *
1274  * Return: Will be an ERR_PTR() on error or a valid pointer
1275  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1276  * nvmem_cell_put().
1277  */
1278 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1279 {
1280         struct nvmem_cell *cell;
1281
1282         if (dev->of_node) { /* try dt first */
1283                 cell = of_nvmem_cell_get(dev->of_node, id);
1284                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1285                         return cell;
1286         }
1287
1288         /* NULL cell id only allowed for device tree; invalid otherwise */
1289         if (!id)
1290                 return ERR_PTR(-EINVAL);
1291
1292         return nvmem_cell_get_from_lookup(dev, id);
1293 }
1294 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1295
1296 static void devm_nvmem_cell_release(struct device *dev, void *res)
1297 {
1298         nvmem_cell_put(*(struct nvmem_cell **)res);
1299 }
1300
1301 /**
1302  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1303  *
1304  * @dev: Device that requests the nvmem cell.
1305  * @id: nvmem cell name id to get.
1306  *
1307  * Return: Will be an ERR_PTR() on error or a valid pointer
1308  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1309  * automatically once the device is freed.
1310  */
1311 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1312 {
1313         struct nvmem_cell **ptr, *cell;
1314
1315         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1316         if (!ptr)
1317                 return ERR_PTR(-ENOMEM);
1318
1319         cell = nvmem_cell_get(dev, id);
1320         if (!IS_ERR(cell)) {
1321                 *ptr = cell;
1322                 devres_add(dev, ptr);
1323         } else {
1324                 devres_free(ptr);
1325         }
1326
1327         return cell;
1328 }
1329 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1330
1331 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1332 {
1333         struct nvmem_cell **c = res;
1334
1335         if (WARN_ON(!c || !*c))
1336                 return 0;
1337
1338         return *c == data;
1339 }
1340
1341 /**
1342  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1343  * from devm_nvmem_cell_get.
1344  *
1345  * @dev: Device that requests the nvmem cell.
1346  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1347  */
1348 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1349 {
1350         int ret;
1351
1352         ret = devres_release(dev, devm_nvmem_cell_release,
1353                                 devm_nvmem_cell_match, cell);
1354
1355         WARN_ON(ret);
1356 }
1357 EXPORT_SYMBOL(devm_nvmem_cell_put);
1358
1359 /**
1360  * nvmem_cell_put() - Release previously allocated nvmem cell.
1361  *
1362  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1363  */
1364 void nvmem_cell_put(struct nvmem_cell *cell)
1365 {
1366         struct nvmem_device *nvmem = cell->entry->nvmem;
1367
1368         if (cell->id)
1369                 kfree_const(cell->id);
1370
1371         kfree(cell);
1372         __nvmem_device_put(nvmem);
1373 }
1374 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1375
1376 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1377 {
1378         u8 *p, *b;
1379         int i, extra, bit_offset = cell->bit_offset;
1380
1381         p = b = buf;
1382         if (bit_offset) {
1383                 /* First shift */
1384                 *b++ >>= bit_offset;
1385
1386                 /* setup rest of the bytes if any */
1387                 for (i = 1; i < cell->bytes; i++) {
1388                         /* Get bits from next byte and shift them towards msb */
1389                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1390
1391                         p = b;
1392                         *b++ >>= bit_offset;
1393                 }
1394         } else {
1395                 /* point to the msb */
1396                 p += cell->bytes - 1;
1397         }
1398
1399         /* result fits in less bytes */
1400         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1401         while (--extra >= 0)
1402                 *p-- = 0;
1403
1404         /* clear msb bits if any leftover in the last byte */
1405         if (cell->nbits % BITS_PER_BYTE)
1406                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1407 }
1408
1409 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1410                       struct nvmem_cell_entry *cell,
1411                       void *buf, size_t *len, const char *id)
1412 {
1413         int rc;
1414
1415         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1416
1417         if (rc)
1418                 return rc;
1419
1420         /* shift bits in-place */
1421         if (cell->bit_offset || cell->nbits)
1422                 nvmem_shift_read_buffer_in_place(cell, buf);
1423
1424         if (nvmem->cell_post_process) {
1425                 rc = nvmem->cell_post_process(nvmem->priv, id,
1426                                               cell->offset, buf, cell->bytes);
1427                 if (rc)
1428                         return rc;
1429         }
1430
1431         if (len)
1432                 *len = cell->bytes;
1433
1434         return 0;
1435 }
1436
1437 /**
1438  * nvmem_cell_read() - Read a given nvmem cell
1439  *
1440  * @cell: nvmem cell to be read.
1441  * @len: pointer to length of cell which will be populated on successful read;
1442  *       can be NULL.
1443  *
1444  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1445  * buffer should be freed by the consumer with a kfree().
1446  */
1447 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1448 {
1449         struct nvmem_device *nvmem = cell->entry->nvmem;
1450         u8 *buf;
1451         int rc;
1452
1453         if (!nvmem)
1454                 return ERR_PTR(-EINVAL);
1455
1456         buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1457         if (!buf)
1458                 return ERR_PTR(-ENOMEM);
1459
1460         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1461         if (rc) {
1462                 kfree(buf);
1463                 return ERR_PTR(rc);
1464         }
1465
1466         return buf;
1467 }
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1469
1470 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1471                                              u8 *_buf, int len)
1472 {
1473         struct nvmem_device *nvmem = cell->nvmem;
1474         int i, rc, nbits, bit_offset = cell->bit_offset;
1475         u8 v, *p, *buf, *b, pbyte, pbits;
1476
1477         nbits = cell->nbits;
1478         buf = kzalloc(cell->bytes, GFP_KERNEL);
1479         if (!buf)
1480                 return ERR_PTR(-ENOMEM);
1481
1482         memcpy(buf, _buf, len);
1483         p = b = buf;
1484
1485         if (bit_offset) {
1486                 pbyte = *b;
1487                 *b <<= bit_offset;
1488
1489                 /* setup the first byte with lsb bits from nvmem */
1490                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1491                 if (rc)
1492                         goto err;
1493                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1494
1495                 /* setup rest of the byte if any */
1496                 for (i = 1; i < cell->bytes; i++) {
1497                         /* Get last byte bits and shift them towards lsb */
1498                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1499                         pbyte = *b;
1500                         p = b;
1501                         *b <<= bit_offset;
1502                         *b++ |= pbits;
1503                 }
1504         }
1505
1506         /* if it's not end on byte boundary */
1507         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1508                 /* setup the last byte with msb bits from nvmem */
1509                 rc = nvmem_reg_read(nvmem,
1510                                     cell->offset + cell->bytes - 1, &v, 1);
1511                 if (rc)
1512                         goto err;
1513                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1514
1515         }
1516
1517         return buf;
1518 err:
1519         kfree(buf);
1520         return ERR_PTR(rc);
1521 }
1522
1523 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1524 {
1525         struct nvmem_device *nvmem = cell->nvmem;
1526         int rc;
1527
1528         if (!nvmem || nvmem->read_only ||
1529             (cell->bit_offset == 0 && len != cell->bytes))
1530                 return -EINVAL;
1531
1532         if (cell->bit_offset || cell->nbits) {
1533                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1534                 if (IS_ERR(buf))
1535                         return PTR_ERR(buf);
1536         }
1537
1538         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1539
1540         /* free the tmp buffer */
1541         if (cell->bit_offset || cell->nbits)
1542                 kfree(buf);
1543
1544         if (rc)
1545                 return rc;
1546
1547         return len;
1548 }
1549
1550 /**
1551  * nvmem_cell_write() - Write to a given nvmem cell
1552  *
1553  * @cell: nvmem cell to be written.
1554  * @buf: Buffer to be written.
1555  * @len: length of buffer to be written to nvmem cell.
1556  *
1557  * Return: length of bytes written or negative on failure.
1558  */
1559 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1560 {
1561         return __nvmem_cell_entry_write(cell->entry, buf, len);
1562 }
1563
1564 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1565
1566 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1567                                   void *val, size_t count)
1568 {
1569         struct nvmem_cell *cell;
1570         void *buf;
1571         size_t len;
1572
1573         cell = nvmem_cell_get(dev, cell_id);
1574         if (IS_ERR(cell))
1575                 return PTR_ERR(cell);
1576
1577         buf = nvmem_cell_read(cell, &len);
1578         if (IS_ERR(buf)) {
1579                 nvmem_cell_put(cell);
1580                 return PTR_ERR(buf);
1581         }
1582         if (len != count) {
1583                 kfree(buf);
1584                 nvmem_cell_put(cell);
1585                 return -EINVAL;
1586         }
1587         memcpy(val, buf, count);
1588         kfree(buf);
1589         nvmem_cell_put(cell);
1590
1591         return 0;
1592 }
1593
1594 /**
1595  * nvmem_cell_read_u8() - Read a cell value as a u8
1596  *
1597  * @dev: Device that requests the nvmem cell.
1598  * @cell_id: Name of nvmem cell to read.
1599  * @val: pointer to output value.
1600  *
1601  * Return: 0 on success or negative errno.
1602  */
1603 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1604 {
1605         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1606 }
1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1608
1609 /**
1610  * nvmem_cell_read_u16() - Read a cell value as a u16
1611  *
1612  * @dev: Device that requests the nvmem cell.
1613  * @cell_id: Name of nvmem cell to read.
1614  * @val: pointer to output value.
1615  *
1616  * Return: 0 on success or negative errno.
1617  */
1618 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1619 {
1620         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1621 }
1622 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1623
1624 /**
1625  * nvmem_cell_read_u32() - Read a cell value as a u32
1626  *
1627  * @dev: Device that requests the nvmem cell.
1628  * @cell_id: Name of nvmem cell to read.
1629  * @val: pointer to output value.
1630  *
1631  * Return: 0 on success or negative errno.
1632  */
1633 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1634 {
1635         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1636 }
1637 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1638
1639 /**
1640  * nvmem_cell_read_u64() - Read a cell value as a u64
1641  *
1642  * @dev: Device that requests the nvmem cell.
1643  * @cell_id: Name of nvmem cell to read.
1644  * @val: pointer to output value.
1645  *
1646  * Return: 0 on success or negative errno.
1647  */
1648 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1649 {
1650         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1651 }
1652 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1653
1654 static const void *nvmem_cell_read_variable_common(struct device *dev,
1655                                                    const char *cell_id,
1656                                                    size_t max_len, size_t *len)
1657 {
1658         struct nvmem_cell *cell;
1659         int nbits;
1660         void *buf;
1661
1662         cell = nvmem_cell_get(dev, cell_id);
1663         if (IS_ERR(cell))
1664                 return cell;
1665
1666         nbits = cell->entry->nbits;
1667         buf = nvmem_cell_read(cell, len);
1668         nvmem_cell_put(cell);
1669         if (IS_ERR(buf))
1670                 return buf;
1671
1672         /*
1673          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1674          * the length of the real data. Throw away the extra junk.
1675          */
1676         if (nbits)
1677                 *len = DIV_ROUND_UP(nbits, 8);
1678
1679         if (*len > max_len) {
1680                 kfree(buf);
1681                 return ERR_PTR(-ERANGE);
1682         }
1683
1684         return buf;
1685 }
1686
1687 /**
1688  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1689  *
1690  * @dev: Device that requests the nvmem cell.
1691  * @cell_id: Name of nvmem cell to read.
1692  * @val: pointer to output value.
1693  *
1694  * Return: 0 on success or negative errno.
1695  */
1696 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1697                                     u32 *val)
1698 {
1699         size_t len;
1700         const u8 *buf;
1701         int i;
1702
1703         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1704         if (IS_ERR(buf))
1705                 return PTR_ERR(buf);
1706
1707         /* Copy w/ implicit endian conversion */
1708         *val = 0;
1709         for (i = 0; i < len; i++)
1710                 *val |= buf[i] << (8 * i);
1711
1712         kfree(buf);
1713
1714         return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1717
1718 /**
1719  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1720  *
1721  * @dev: Device that requests the nvmem cell.
1722  * @cell_id: Name of nvmem cell to read.
1723  * @val: pointer to output value.
1724  *
1725  * Return: 0 on success or negative errno.
1726  */
1727 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1728                                     u64 *val)
1729 {
1730         size_t len;
1731         const u8 *buf;
1732         int i;
1733
1734         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1735         if (IS_ERR(buf))
1736                 return PTR_ERR(buf);
1737
1738         /* Copy w/ implicit endian conversion */
1739         *val = 0;
1740         for (i = 0; i < len; i++)
1741                 *val |= (uint64_t)buf[i] << (8 * i);
1742
1743         kfree(buf);
1744
1745         return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1748
1749 /**
1750  * nvmem_device_cell_read() - Read a given nvmem device and cell
1751  *
1752  * @nvmem: nvmem device to read from.
1753  * @info: nvmem cell info to be read.
1754  * @buf: buffer pointer which will be populated on successful read.
1755  *
1756  * Return: length of successful bytes read on success and negative
1757  * error code on error.
1758  */
1759 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1760                            struct nvmem_cell_info *info, void *buf)
1761 {
1762         struct nvmem_cell_entry cell;
1763         int rc;
1764         ssize_t len;
1765
1766         if (!nvmem)
1767                 return -EINVAL;
1768
1769         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1770         if (rc)
1771                 return rc;
1772
1773         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1774         if (rc)
1775                 return rc;
1776
1777         return len;
1778 }
1779 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1780
1781 /**
1782  * nvmem_device_cell_write() - Write cell to a given nvmem device
1783  *
1784  * @nvmem: nvmem device to be written to.
1785  * @info: nvmem cell info to be written.
1786  * @buf: buffer to be written to cell.
1787  *
1788  * Return: length of bytes written or negative error code on failure.
1789  */
1790 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1791                             struct nvmem_cell_info *info, void *buf)
1792 {
1793         struct nvmem_cell_entry cell;
1794         int rc;
1795
1796         if (!nvmem)
1797                 return -EINVAL;
1798
1799         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1800         if (rc)
1801                 return rc;
1802
1803         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1804 }
1805 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1806
1807 /**
1808  * nvmem_device_read() - Read from a given nvmem device
1809  *
1810  * @nvmem: nvmem device to read from.
1811  * @offset: offset in nvmem device.
1812  * @bytes: number of bytes to read.
1813  * @buf: buffer pointer which will be populated on successful read.
1814  *
1815  * Return: length of successful bytes read on success and negative
1816  * error code on error.
1817  */
1818 int nvmem_device_read(struct nvmem_device *nvmem,
1819                       unsigned int offset,
1820                       size_t bytes, void *buf)
1821 {
1822         int rc;
1823
1824         if (!nvmem)
1825                 return -EINVAL;
1826
1827         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1828
1829         if (rc)
1830                 return rc;
1831
1832         return bytes;
1833 }
1834 EXPORT_SYMBOL_GPL(nvmem_device_read);
1835
1836 /**
1837  * nvmem_device_write() - Write cell to a given nvmem device
1838  *
1839  * @nvmem: nvmem device to be written to.
1840  * @offset: offset in nvmem device.
1841  * @bytes: number of bytes to write.
1842  * @buf: buffer to be written.
1843  *
1844  * Return: length of bytes written or negative error code on failure.
1845  */
1846 int nvmem_device_write(struct nvmem_device *nvmem,
1847                        unsigned int offset,
1848                        size_t bytes, void *buf)
1849 {
1850         int rc;
1851
1852         if (!nvmem)
1853                 return -EINVAL;
1854
1855         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1856
1857         if (rc)
1858                 return rc;
1859
1860
1861         return bytes;
1862 }
1863 EXPORT_SYMBOL_GPL(nvmem_device_write);
1864
1865 /**
1866  * nvmem_add_cell_table() - register a table of cell info entries
1867  *
1868  * @table: table of cell info entries
1869  */
1870 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1871 {
1872         mutex_lock(&nvmem_cell_mutex);
1873         list_add_tail(&table->node, &nvmem_cell_tables);
1874         mutex_unlock(&nvmem_cell_mutex);
1875 }
1876 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1877
1878 /**
1879  * nvmem_del_cell_table() - remove a previously registered cell info table
1880  *
1881  * @table: table of cell info entries
1882  */
1883 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1884 {
1885         mutex_lock(&nvmem_cell_mutex);
1886         list_del(&table->node);
1887         mutex_unlock(&nvmem_cell_mutex);
1888 }
1889 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1890
1891 /**
1892  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1893  *
1894  * @entries: array of cell lookup entries
1895  * @nentries: number of cell lookup entries in the array
1896  */
1897 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1898 {
1899         int i;
1900
1901         mutex_lock(&nvmem_lookup_mutex);
1902         for (i = 0; i < nentries; i++)
1903                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1904         mutex_unlock(&nvmem_lookup_mutex);
1905 }
1906 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1907
1908 /**
1909  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1910  *                            entries
1911  *
1912  * @entries: array of cell lookup entries
1913  * @nentries: number of cell lookup entries in the array
1914  */
1915 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1916 {
1917         int i;
1918
1919         mutex_lock(&nvmem_lookup_mutex);
1920         for (i = 0; i < nentries; i++)
1921                 list_del(&entries[i].node);
1922         mutex_unlock(&nvmem_lookup_mutex);
1923 }
1924 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1925
1926 /**
1927  * nvmem_dev_name() - Get the name of a given nvmem device.
1928  *
1929  * @nvmem: nvmem device.
1930  *
1931  * Return: name of the nvmem device.
1932  */
1933 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1934 {
1935         return dev_name(&nvmem->dev);
1936 }
1937 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1938
1939 static int __init nvmem_init(void)
1940 {
1941         return bus_register(&nvmem_bus_type);
1942 }
1943
1944 static void __exit nvmem_exit(void)
1945 {
1946         bus_unregister(&nvmem_bus_type);
1947 }
1948
1949 subsys_initcall(nvmem_init);
1950 module_exit(nvmem_exit);
1951
1952 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1953 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1954 MODULE_DESCRIPTION("nvmem Driver Core");
1955 MODULE_LICENSE("GPL v2");