1 // SPDX-License-Identifier: GPL-2.0
3 * nvmem framework core.
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
9 #include <linux/device.h>
10 #include <linux/export.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
20 #include <linux/slab.h>
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 nvmem_cell_post_process_t cell_post_process;
42 struct gpio_desc *wp_gpio;
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48 #define FLAG_COMPAT BIT(0)
49 struct nvmem_cell_entry {
55 struct device_node *np;
56 struct nvmem_device *nvmem;
57 struct list_head node;
61 struct nvmem_cell_entry *entry;
65 static DEFINE_MUTEX(nvmem_mutex);
66 static DEFINE_IDA(nvmem_ida);
68 static DEFINE_MUTEX(nvmem_cell_mutex);
69 static LIST_HEAD(nvmem_cell_tables);
71 static DEFINE_MUTEX(nvmem_lookup_mutex);
72 static LIST_HEAD(nvmem_lookup_list);
74 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
76 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 void *val, size_t bytes)
80 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
85 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 void *val, size_t bytes)
90 if (nvmem->reg_write) {
91 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
92 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
93 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
100 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
101 unsigned int offset, void *val,
102 size_t bytes, int write)
105 unsigned int end = offset + bytes;
106 unsigned int kend, ksize;
107 const struct nvmem_keepout *keepout = nvmem->keepout;
108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
112 * Skip all keepouts before the range being accessed.
113 * Keepouts are sorted.
115 while ((keepout < keepoutend) && (keepout->end <= offset))
118 while ((offset < end) && (keepout < keepoutend)) {
119 /* Access the valid portion before the keepout. */
120 if (offset < keepout->start) {
121 kend = min(end, keepout->start);
122 ksize = kend - offset;
124 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
126 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
136 * Now we're aligned to the start of this keepout zone. Go
139 kend = min(end, keepout->end);
140 ksize = kend - offset;
142 memset(val, keepout->value, ksize);
150 * If we ran out of keepouts but there's still stuff to do, send it
154 ksize = end - offset;
156 return __nvmem_reg_write(nvmem, offset, val, ksize);
158 return __nvmem_reg_read(nvmem, offset, val, ksize);
164 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
165 void *val, size_t bytes)
167 if (!nvmem->nkeepout)
168 return __nvmem_reg_read(nvmem, offset, val, bytes);
170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
173 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
174 void *val, size_t bytes)
176 if (!nvmem->nkeepout)
177 return __nvmem_reg_write(nvmem, offset, val, bytes);
179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
182 #ifdef CONFIG_NVMEM_SYSFS
183 static const char * const nvmem_type_str[] = {
184 [NVMEM_TYPE_UNKNOWN] = "Unknown",
185 [NVMEM_TYPE_EEPROM] = "EEPROM",
186 [NVMEM_TYPE_OTP] = "OTP",
187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
188 [NVMEM_TYPE_FRAM] = "FRAM",
191 #ifdef CONFIG_DEBUG_LOCK_ALLOC
192 static struct lock_class_key eeprom_lock_key;
195 static ssize_t type_show(struct device *dev,
196 struct device_attribute *attr, char *buf)
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
203 static DEVICE_ATTR_RO(type);
205 static struct attribute *nvmem_attrs[] = {
210 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
211 struct bin_attribute *attr, char *buf,
212 loff_t pos, size_t count)
215 struct nvmem_device *nvmem;
221 dev = kobj_to_dev(kobj);
222 nvmem = to_nvmem_device(dev);
224 /* Stop the user from reading */
225 if (pos >= nvmem->size)
228 if (!IS_ALIGNED(pos, nvmem->stride))
231 if (count < nvmem->word_size)
234 if (pos + count > nvmem->size)
235 count = nvmem->size - pos;
237 count = round_down(count, nvmem->word_size);
239 if (!nvmem->reg_read)
242 rc = nvmem_reg_read(nvmem, pos, buf, count);
250 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
251 struct bin_attribute *attr, char *buf,
252 loff_t pos, size_t count)
255 struct nvmem_device *nvmem;
261 dev = kobj_to_dev(kobj);
262 nvmem = to_nvmem_device(dev);
264 /* Stop the user from writing */
265 if (pos >= nvmem->size)
268 if (!IS_ALIGNED(pos, nvmem->stride))
271 if (count < nvmem->word_size)
274 if (pos + count > nvmem->size)
275 count = nvmem->size - pos;
277 count = round_down(count, nvmem->word_size);
279 if (!nvmem->reg_write)
282 rc = nvmem_reg_write(nvmem, pos, buf, count);
290 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
294 if (!nvmem->root_only)
297 if (!nvmem->read_only)
300 if (!nvmem->reg_write)
303 if (!nvmem->reg_read)
309 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
310 struct bin_attribute *attr, int i)
312 struct device *dev = kobj_to_dev(kobj);
313 struct nvmem_device *nvmem = to_nvmem_device(dev);
315 attr->size = nvmem->size;
317 return nvmem_bin_attr_get_umode(nvmem);
320 /* default read/write permissions */
321 static struct bin_attribute bin_attr_rw_nvmem = {
326 .read = bin_attr_nvmem_read,
327 .write = bin_attr_nvmem_write,
330 static struct bin_attribute *nvmem_bin_attributes[] = {
335 static const struct attribute_group nvmem_bin_group = {
336 .bin_attrs = nvmem_bin_attributes,
337 .attrs = nvmem_attrs,
338 .is_bin_visible = nvmem_bin_attr_is_visible,
341 static const struct attribute_group *nvmem_dev_groups[] = {
346 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
350 .read = bin_attr_nvmem_read,
351 .write = bin_attr_nvmem_write,
355 * nvmem_setup_compat() - Create an additional binary entry in
356 * drivers sys directory, to be backwards compatible with the older
357 * drivers/misc/eeprom drivers.
359 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
360 const struct nvmem_config *config)
367 if (!config->base_dev)
370 if (config->type == NVMEM_TYPE_FRAM)
371 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
375 nvmem->eeprom.size = nvmem->size;
376 #ifdef CONFIG_DEBUG_LOCK_ALLOC
377 nvmem->eeprom.attr.key = &eeprom_lock_key;
379 nvmem->eeprom.private = &nvmem->dev;
380 nvmem->base_dev = config->base_dev;
382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
385 "Failed to create eeprom binary file %d\n", rval);
389 nvmem->flags |= FLAG_COMPAT;
394 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
395 const struct nvmem_config *config)
398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
401 #else /* CONFIG_NVMEM_SYSFS */
403 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
404 const struct nvmem_config *config)
408 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
409 const struct nvmem_config *config)
413 #endif /* CONFIG_NVMEM_SYSFS */
415 static void nvmem_release(struct device *dev)
417 struct nvmem_device *nvmem = to_nvmem_device(dev);
419 ida_free(&nvmem_ida, nvmem->id);
420 gpiod_put(nvmem->wp_gpio);
424 static const struct device_type nvmem_provider_type = {
425 .release = nvmem_release,
428 static struct bus_type nvmem_bus_type = {
432 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
435 mutex_lock(&nvmem_mutex);
436 list_del(&cell->node);
437 mutex_unlock(&nvmem_mutex);
438 of_node_put(cell->np);
439 kfree_const(cell->name);
443 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
445 struct nvmem_cell_entry *cell, *p;
447 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
448 nvmem_cell_entry_drop(cell);
451 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
453 mutex_lock(&nvmem_mutex);
454 list_add_tail(&cell->node, &cell->nvmem->cells);
455 mutex_unlock(&nvmem_mutex);
456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
459 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
460 const struct nvmem_cell_info *info,
461 struct nvmem_cell_entry *cell)
464 cell->offset = info->offset;
465 cell->bytes = info->bytes;
466 cell->name = info->name;
468 cell->bit_offset = info->bit_offset;
469 cell->nbits = info->nbits;
473 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
476 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
478 "cell %s unaligned to nvmem stride %d\n",
479 cell->name ?: "<unknown>", nvmem->stride);
486 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
487 const struct nvmem_cell_info *info,
488 struct nvmem_cell_entry *cell)
492 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
496 cell->name = kstrdup_const(info->name, GFP_KERNEL);
504 * nvmem_add_cells() - Add cell information to an nvmem device
506 * @nvmem: nvmem device to add cells to.
507 * @info: nvmem cell info to add to the device
508 * @ncells: number of cells in info
510 * Return: 0 or negative error code on failure.
512 static int nvmem_add_cells(struct nvmem_device *nvmem,
513 const struct nvmem_cell_info *info,
516 struct nvmem_cell_entry **cells;
519 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
523 for (i = 0; i < ncells; i++) {
524 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
536 nvmem_cell_entry_add(cells[i]);
539 /* remove tmp array */
545 nvmem_cell_entry_drop(cells[i]);
553 * nvmem_register_notifier() - Register a notifier block for nvmem events.
555 * @nb: notifier block to be called on nvmem events.
557 * Return: 0 on success, negative error number on failure.
559 int nvmem_register_notifier(struct notifier_block *nb)
561 return blocking_notifier_chain_register(&nvmem_notifier, nb);
563 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
568 * @nb: notifier block to be unregistered.
570 * Return: 0 on success, negative error number on failure.
572 int nvmem_unregister_notifier(struct notifier_block *nb)
574 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
576 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
578 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
580 const struct nvmem_cell_info *info;
581 struct nvmem_cell_table *table;
582 struct nvmem_cell_entry *cell;
585 mutex_lock(&nvmem_cell_mutex);
586 list_for_each_entry(table, &nvmem_cell_tables, node) {
587 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
588 for (i = 0; i < table->ncells; i++) {
589 info = &table->cells[i];
591 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
597 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
603 nvmem_cell_entry_add(cell);
609 mutex_unlock(&nvmem_cell_mutex);
613 static struct nvmem_cell_entry *
614 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
616 struct nvmem_cell_entry *iter, *cell = NULL;
618 mutex_lock(&nvmem_mutex);
619 list_for_each_entry(iter, &nvmem->cells, node) {
620 if (strcmp(cell_id, iter->name) == 0) {
625 mutex_unlock(&nvmem_mutex);
630 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
632 unsigned int cur = 0;
633 const struct nvmem_keepout *keepout = nvmem->keepout;
634 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
636 while (keepout < keepoutend) {
637 /* Ensure keepouts are sorted and don't overlap. */
638 if (keepout->start < cur) {
640 "Keepout regions aren't sorted or overlap.\n");
645 if (keepout->end < keepout->start) {
647 "Invalid keepout region.\n");
653 * Validate keepouts (and holes between) don't violate
654 * word_size constraints.
656 if ((keepout->end - keepout->start < nvmem->word_size) ||
657 ((keepout->start != cur) &&
658 (keepout->start - cur < nvmem->word_size))) {
661 "Keepout regions violate word_size constraints.\n");
666 /* Validate keepouts don't violate stride (alignment). */
667 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
668 !IS_ALIGNED(keepout->end, nvmem->stride)) {
671 "Keepout regions violate stride.\n");
683 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
685 struct device_node *parent, *child;
686 struct device *dev = &nvmem->dev;
687 struct nvmem_cell_entry *cell;
691 parent = dev->of_node;
693 for_each_child_of_node(parent, child) {
694 addr = of_get_property(child, "reg", &len);
697 if (len < 2 * sizeof(u32)) {
698 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
703 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
710 cell->offset = be32_to_cpup(addr++);
711 cell->bytes = be32_to_cpup(addr);
712 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
714 addr = of_get_property(child, "bits", &len);
715 if (addr && len == (2 * sizeof(u32))) {
716 cell->bit_offset = be32_to_cpup(addr++);
717 cell->nbits = be32_to_cpup(addr);
721 cell->bytes = DIV_ROUND_UP(
722 cell->nbits + cell->bit_offset,
725 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
726 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
727 cell->name, nvmem->stride);
728 /* Cells already added will be freed later. */
729 kfree_const(cell->name);
735 cell->np = of_node_get(child);
736 nvmem_cell_entry_add(cell);
743 * nvmem_register() - Register a nvmem device for given nvmem_config.
744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
746 * @config: nvmem device configuration with which nvmem device is created.
748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
752 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
754 struct nvmem_device *nvmem;
758 return ERR_PTR(-EINVAL);
760 if (!config->reg_read && !config->reg_write)
761 return ERR_PTR(-EINVAL);
763 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
765 return ERR_PTR(-ENOMEM);
767 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
770 return ERR_PTR(rval);
774 nvmem->wp_gpio = config->wp_gpio;
775 else if (!config->ignore_wp)
776 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
778 if (IS_ERR(nvmem->wp_gpio)) {
779 ida_free(&nvmem_ida, nvmem->id);
780 rval = PTR_ERR(nvmem->wp_gpio);
782 return ERR_PTR(rval);
785 kref_init(&nvmem->refcnt);
786 INIT_LIST_HEAD(&nvmem->cells);
789 nvmem->owner = config->owner;
790 if (!nvmem->owner && config->dev->driver)
791 nvmem->owner = config->dev->driver->owner;
792 nvmem->stride = config->stride ?: 1;
793 nvmem->word_size = config->word_size ?: 1;
794 nvmem->size = config->size;
795 nvmem->dev.type = &nvmem_provider_type;
796 nvmem->dev.bus = &nvmem_bus_type;
797 nvmem->dev.parent = config->dev;
798 nvmem->root_only = config->root_only;
799 nvmem->priv = config->priv;
800 nvmem->type = config->type;
801 nvmem->reg_read = config->reg_read;
802 nvmem->reg_write = config->reg_write;
803 nvmem->cell_post_process = config->cell_post_process;
804 nvmem->keepout = config->keepout;
805 nvmem->nkeepout = config->nkeepout;
807 nvmem->dev.of_node = config->of_node;
808 else if (!config->no_of_node)
809 nvmem->dev.of_node = config->dev->of_node;
811 switch (config->id) {
812 case NVMEM_DEVID_NONE:
813 dev_set_name(&nvmem->dev, "%s", config->name);
815 case NVMEM_DEVID_AUTO:
816 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
819 dev_set_name(&nvmem->dev, "%s%d",
820 config->name ? : "nvmem",
821 config->name ? config->id : nvmem->id);
825 nvmem->read_only = device_property_present(config->dev, "read-only") ||
826 config->read_only || !nvmem->reg_write;
828 #ifdef CONFIG_NVMEM_SYSFS
829 nvmem->dev.groups = nvmem_dev_groups;
832 if (nvmem->nkeepout) {
833 rval = nvmem_validate_keepouts(nvmem);
835 ida_free(&nvmem_ida, nvmem->id);
837 return ERR_PTR(rval);
841 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
843 rval = device_register(&nvmem->dev);
847 if (config->compat) {
848 rval = nvmem_sysfs_setup_compat(nvmem, config);
854 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
856 goto err_teardown_compat;
859 rval = nvmem_add_cells_from_table(nvmem);
861 goto err_remove_cells;
863 rval = nvmem_add_cells_from_of(nvmem);
865 goto err_remove_cells;
867 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
872 nvmem_device_remove_all_cells(nvmem);
875 nvmem_sysfs_remove_compat(nvmem, config);
877 device_del(&nvmem->dev);
879 put_device(&nvmem->dev);
881 return ERR_PTR(rval);
883 EXPORT_SYMBOL_GPL(nvmem_register);
885 static void nvmem_device_release(struct kref *kref)
887 struct nvmem_device *nvmem;
889 nvmem = container_of(kref, struct nvmem_device, refcnt);
891 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
893 if (nvmem->flags & FLAG_COMPAT)
894 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
896 nvmem_device_remove_all_cells(nvmem);
897 device_unregister(&nvmem->dev);
901 * nvmem_unregister() - Unregister previously registered nvmem device
903 * @nvmem: Pointer to previously registered nvmem device.
905 void nvmem_unregister(struct nvmem_device *nvmem)
908 kref_put(&nvmem->refcnt, nvmem_device_release);
910 EXPORT_SYMBOL_GPL(nvmem_unregister);
912 static void devm_nvmem_unregister(void *nvmem)
914 nvmem_unregister(nvmem);
918 * devm_nvmem_register() - Register a managed nvmem device for given
920 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
922 * @dev: Device that uses the nvmem device.
923 * @config: nvmem device configuration with which nvmem device is created.
925 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
928 struct nvmem_device *devm_nvmem_register(struct device *dev,
929 const struct nvmem_config *config)
931 struct nvmem_device *nvmem;
934 nvmem = nvmem_register(config);
938 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
944 EXPORT_SYMBOL_GPL(devm_nvmem_register);
946 static struct nvmem_device *__nvmem_device_get(void *data,
947 int (*match)(struct device *dev, const void *data))
949 struct nvmem_device *nvmem = NULL;
952 mutex_lock(&nvmem_mutex);
953 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
955 nvmem = to_nvmem_device(dev);
956 mutex_unlock(&nvmem_mutex);
958 return ERR_PTR(-EPROBE_DEFER);
960 if (!try_module_get(nvmem->owner)) {
962 "could not increase module refcount for cell %s\n",
963 nvmem_dev_name(nvmem));
965 put_device(&nvmem->dev);
966 return ERR_PTR(-EINVAL);
969 kref_get(&nvmem->refcnt);
974 static void __nvmem_device_put(struct nvmem_device *nvmem)
976 put_device(&nvmem->dev);
977 module_put(nvmem->owner);
978 kref_put(&nvmem->refcnt, nvmem_device_release);
981 #if IS_ENABLED(CONFIG_OF)
983 * of_nvmem_device_get() - Get nvmem device from a given id
985 * @np: Device tree node that uses the nvmem device.
986 * @id: nvmem name from nvmem-names property.
988 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
991 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
994 struct device_node *nvmem_np;
995 struct nvmem_device *nvmem;
999 index = of_property_match_string(np, "nvmem-names", id);
1001 nvmem_np = of_parse_phandle(np, "nvmem", index);
1003 return ERR_PTR(-ENOENT);
1005 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1006 of_node_put(nvmem_np);
1009 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1013 * nvmem_device_get() - Get nvmem device from a given id
1015 * @dev: Device that uses the nvmem device.
1016 * @dev_name: name of the requested nvmem device.
1018 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1021 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1023 if (dev->of_node) { /* try dt first */
1024 struct nvmem_device *nvmem;
1026 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1028 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1033 return __nvmem_device_get((void *)dev_name, device_match_name);
1035 EXPORT_SYMBOL_GPL(nvmem_device_get);
1038 * nvmem_device_find() - Find nvmem device with matching function
1040 * @data: Data to pass to match function
1041 * @match: Callback function to check device
1043 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1046 struct nvmem_device *nvmem_device_find(void *data,
1047 int (*match)(struct device *dev, const void *data))
1049 return __nvmem_device_get(data, match);
1051 EXPORT_SYMBOL_GPL(nvmem_device_find);
1053 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1055 struct nvmem_device **nvmem = res;
1057 if (WARN_ON(!nvmem || !*nvmem))
1060 return *nvmem == data;
1063 static void devm_nvmem_device_release(struct device *dev, void *res)
1065 nvmem_device_put(*(struct nvmem_device **)res);
1069 * devm_nvmem_device_put() - put alredy got nvmem device
1071 * @dev: Device that uses the nvmem device.
1072 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1073 * that needs to be released.
1075 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1079 ret = devres_release(dev, devm_nvmem_device_release,
1080 devm_nvmem_device_match, nvmem);
1084 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1087 * nvmem_device_put() - put alredy got nvmem device
1089 * @nvmem: pointer to nvmem device that needs to be released.
1091 void nvmem_device_put(struct nvmem_device *nvmem)
1093 __nvmem_device_put(nvmem);
1095 EXPORT_SYMBOL_GPL(nvmem_device_put);
1098 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1100 * @dev: Device that requests the nvmem device.
1101 * @id: name id for the requested nvmem device.
1103 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1104 * on success. The nvmem_cell will be freed by the automatically once the
1107 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1109 struct nvmem_device **ptr, *nvmem;
1111 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1113 return ERR_PTR(-ENOMEM);
1115 nvmem = nvmem_device_get(dev, id);
1116 if (!IS_ERR(nvmem)) {
1118 devres_add(dev, ptr);
1125 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1127 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1129 struct nvmem_cell *cell;
1130 const char *name = NULL;
1132 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1134 return ERR_PTR(-ENOMEM);
1137 name = kstrdup_const(id, GFP_KERNEL);
1140 return ERR_PTR(-ENOMEM);
1145 cell->entry = entry;
1150 static struct nvmem_cell *
1151 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1153 struct nvmem_cell_entry *cell_entry;
1154 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1155 struct nvmem_cell_lookup *lookup;
1156 struct nvmem_device *nvmem;
1160 return ERR_PTR(-EINVAL);
1162 dev_id = dev_name(dev);
1164 mutex_lock(&nvmem_lookup_mutex);
1166 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1167 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1168 (strcmp(lookup->con_id, con_id) == 0)) {
1169 /* This is the right entry. */
1170 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1172 if (IS_ERR(nvmem)) {
1173 /* Provider may not be registered yet. */
1174 cell = ERR_CAST(nvmem);
1178 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1181 __nvmem_device_put(nvmem);
1182 cell = ERR_PTR(-ENOENT);
1184 cell = nvmem_create_cell(cell_entry, con_id);
1186 __nvmem_device_put(nvmem);
1192 mutex_unlock(&nvmem_lookup_mutex);
1196 #if IS_ENABLED(CONFIG_OF)
1197 static struct nvmem_cell_entry *
1198 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1200 struct nvmem_cell_entry *iter, *cell = NULL;
1202 mutex_lock(&nvmem_mutex);
1203 list_for_each_entry(iter, &nvmem->cells, node) {
1204 if (np == iter->np) {
1209 mutex_unlock(&nvmem_mutex);
1215 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1217 * @np: Device tree node that uses the nvmem cell.
1218 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1219 * for the cell at index 0 (the lone cell with no accompanying
1220 * nvmem-cell-names property).
1222 * Return: Will be an ERR_PTR() on error or a valid pointer
1223 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1226 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1228 struct device_node *cell_np, *nvmem_np;
1229 struct nvmem_device *nvmem;
1230 struct nvmem_cell_entry *cell_entry;
1231 struct nvmem_cell *cell;
1234 /* if cell name exists, find index to the name */
1236 index = of_property_match_string(np, "nvmem-cell-names", id);
1238 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1240 return ERR_PTR(-ENOENT);
1242 nvmem_np = of_get_next_parent(cell_np);
1244 return ERR_PTR(-EINVAL);
1246 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247 of_node_put(nvmem_np);
1249 return ERR_CAST(nvmem);
1251 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1253 __nvmem_device_put(nvmem);
1254 return ERR_PTR(-ENOENT);
1257 cell = nvmem_create_cell(cell_entry, id);
1259 __nvmem_device_put(nvmem);
1263 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1267 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1269 * @dev: Device that requests the nvmem cell.
1270 * @id: nvmem cell name to get (this corresponds with the name from the
1271 * nvmem-cell-names property for DT systems and with the con_id from
1272 * the lookup entry for non-DT systems).
1274 * Return: Will be an ERR_PTR() on error or a valid pointer
1275 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1278 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1280 struct nvmem_cell *cell;
1282 if (dev->of_node) { /* try dt first */
1283 cell = of_nvmem_cell_get(dev->of_node, id);
1284 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1288 /* NULL cell id only allowed for device tree; invalid otherwise */
1290 return ERR_PTR(-EINVAL);
1292 return nvmem_cell_get_from_lookup(dev, id);
1294 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1296 static void devm_nvmem_cell_release(struct device *dev, void *res)
1298 nvmem_cell_put(*(struct nvmem_cell **)res);
1302 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1304 * @dev: Device that requests the nvmem cell.
1305 * @id: nvmem cell name id to get.
1307 * Return: Will be an ERR_PTR() on error or a valid pointer
1308 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1309 * automatically once the device is freed.
1311 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1313 struct nvmem_cell **ptr, *cell;
1315 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1317 return ERR_PTR(-ENOMEM);
1319 cell = nvmem_cell_get(dev, id);
1320 if (!IS_ERR(cell)) {
1322 devres_add(dev, ptr);
1329 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1331 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1333 struct nvmem_cell **c = res;
1335 if (WARN_ON(!c || !*c))
1342 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1343 * from devm_nvmem_cell_get.
1345 * @dev: Device that requests the nvmem cell.
1346 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1348 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1352 ret = devres_release(dev, devm_nvmem_cell_release,
1353 devm_nvmem_cell_match, cell);
1357 EXPORT_SYMBOL(devm_nvmem_cell_put);
1360 * nvmem_cell_put() - Release previously allocated nvmem cell.
1362 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1364 void nvmem_cell_put(struct nvmem_cell *cell)
1366 struct nvmem_device *nvmem = cell->entry->nvmem;
1369 kfree_const(cell->id);
1372 __nvmem_device_put(nvmem);
1374 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1376 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1379 int i, extra, bit_offset = cell->bit_offset;
1384 *b++ >>= bit_offset;
1386 /* setup rest of the bytes if any */
1387 for (i = 1; i < cell->bytes; i++) {
1388 /* Get bits from next byte and shift them towards msb */
1389 *p |= *b << (BITS_PER_BYTE - bit_offset);
1392 *b++ >>= bit_offset;
1395 /* point to the msb */
1396 p += cell->bytes - 1;
1399 /* result fits in less bytes */
1400 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1401 while (--extra >= 0)
1404 /* clear msb bits if any leftover in the last byte */
1405 if (cell->nbits % BITS_PER_BYTE)
1406 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1409 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1410 struct nvmem_cell_entry *cell,
1411 void *buf, size_t *len, const char *id)
1415 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1420 /* shift bits in-place */
1421 if (cell->bit_offset || cell->nbits)
1422 nvmem_shift_read_buffer_in_place(cell, buf);
1424 if (nvmem->cell_post_process) {
1425 rc = nvmem->cell_post_process(nvmem->priv, id,
1426 cell->offset, buf, cell->bytes);
1438 * nvmem_cell_read() - Read a given nvmem cell
1440 * @cell: nvmem cell to be read.
1441 * @len: pointer to length of cell which will be populated on successful read;
1444 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1445 * buffer should be freed by the consumer with a kfree().
1447 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1449 struct nvmem_device *nvmem = cell->entry->nvmem;
1454 return ERR_PTR(-EINVAL);
1456 buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1458 return ERR_PTR(-ENOMEM);
1460 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1470 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1473 struct nvmem_device *nvmem = cell->nvmem;
1474 int i, rc, nbits, bit_offset = cell->bit_offset;
1475 u8 v, *p, *buf, *b, pbyte, pbits;
1477 nbits = cell->nbits;
1478 buf = kzalloc(cell->bytes, GFP_KERNEL);
1480 return ERR_PTR(-ENOMEM);
1482 memcpy(buf, _buf, len);
1489 /* setup the first byte with lsb bits from nvmem */
1490 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1493 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1495 /* setup rest of the byte if any */
1496 for (i = 1; i < cell->bytes; i++) {
1497 /* Get last byte bits and shift them towards lsb */
1498 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1506 /* if it's not end on byte boundary */
1507 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1508 /* setup the last byte with msb bits from nvmem */
1509 rc = nvmem_reg_read(nvmem,
1510 cell->offset + cell->bytes - 1, &v, 1);
1513 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1523 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1525 struct nvmem_device *nvmem = cell->nvmem;
1528 if (!nvmem || nvmem->read_only ||
1529 (cell->bit_offset == 0 && len != cell->bytes))
1532 if (cell->bit_offset || cell->nbits) {
1533 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1535 return PTR_ERR(buf);
1538 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1540 /* free the tmp buffer */
1541 if (cell->bit_offset || cell->nbits)
1551 * nvmem_cell_write() - Write to a given nvmem cell
1553 * @cell: nvmem cell to be written.
1554 * @buf: Buffer to be written.
1555 * @len: length of buffer to be written to nvmem cell.
1557 * Return: length of bytes written or negative on failure.
1559 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1561 return __nvmem_cell_entry_write(cell->entry, buf, len);
1564 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1566 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1567 void *val, size_t count)
1569 struct nvmem_cell *cell;
1573 cell = nvmem_cell_get(dev, cell_id);
1575 return PTR_ERR(cell);
1577 buf = nvmem_cell_read(cell, &len);
1579 nvmem_cell_put(cell);
1580 return PTR_ERR(buf);
1584 nvmem_cell_put(cell);
1587 memcpy(val, buf, count);
1589 nvmem_cell_put(cell);
1595 * nvmem_cell_read_u8() - Read a cell value as a u8
1597 * @dev: Device that requests the nvmem cell.
1598 * @cell_id: Name of nvmem cell to read.
1599 * @val: pointer to output value.
1601 * Return: 0 on success or negative errno.
1603 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1605 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1607 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1610 * nvmem_cell_read_u16() - Read a cell value as a u16
1612 * @dev: Device that requests the nvmem cell.
1613 * @cell_id: Name of nvmem cell to read.
1614 * @val: pointer to output value.
1616 * Return: 0 on success or negative errno.
1618 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1620 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1622 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1625 * nvmem_cell_read_u32() - Read a cell value as a u32
1627 * @dev: Device that requests the nvmem cell.
1628 * @cell_id: Name of nvmem cell to read.
1629 * @val: pointer to output value.
1631 * Return: 0 on success or negative errno.
1633 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1635 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1637 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1640 * nvmem_cell_read_u64() - Read a cell value as a u64
1642 * @dev: Device that requests the nvmem cell.
1643 * @cell_id: Name of nvmem cell to read.
1644 * @val: pointer to output value.
1646 * Return: 0 on success or negative errno.
1648 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1650 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1652 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1654 static const void *nvmem_cell_read_variable_common(struct device *dev,
1655 const char *cell_id,
1656 size_t max_len, size_t *len)
1658 struct nvmem_cell *cell;
1662 cell = nvmem_cell_get(dev, cell_id);
1666 nbits = cell->entry->nbits;
1667 buf = nvmem_cell_read(cell, len);
1668 nvmem_cell_put(cell);
1673 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1674 * the length of the real data. Throw away the extra junk.
1677 *len = DIV_ROUND_UP(nbits, 8);
1679 if (*len > max_len) {
1681 return ERR_PTR(-ERANGE);
1688 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1690 * @dev: Device that requests the nvmem cell.
1691 * @cell_id: Name of nvmem cell to read.
1692 * @val: pointer to output value.
1694 * Return: 0 on success or negative errno.
1696 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1703 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1705 return PTR_ERR(buf);
1707 /* Copy w/ implicit endian conversion */
1709 for (i = 0; i < len; i++)
1710 *val |= buf[i] << (8 * i);
1716 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1719 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1721 * @dev: Device that requests the nvmem cell.
1722 * @cell_id: Name of nvmem cell to read.
1723 * @val: pointer to output value.
1725 * Return: 0 on success or negative errno.
1727 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1734 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1736 return PTR_ERR(buf);
1738 /* Copy w/ implicit endian conversion */
1740 for (i = 0; i < len; i++)
1741 *val |= (uint64_t)buf[i] << (8 * i);
1747 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1750 * nvmem_device_cell_read() - Read a given nvmem device and cell
1752 * @nvmem: nvmem device to read from.
1753 * @info: nvmem cell info to be read.
1754 * @buf: buffer pointer which will be populated on successful read.
1756 * Return: length of successful bytes read on success and negative
1757 * error code on error.
1759 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1760 struct nvmem_cell_info *info, void *buf)
1762 struct nvmem_cell_entry cell;
1769 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1773 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1779 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1782 * nvmem_device_cell_write() - Write cell to a given nvmem device
1784 * @nvmem: nvmem device to be written to.
1785 * @info: nvmem cell info to be written.
1786 * @buf: buffer to be written to cell.
1788 * Return: length of bytes written or negative error code on failure.
1790 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1791 struct nvmem_cell_info *info, void *buf)
1793 struct nvmem_cell_entry cell;
1799 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1803 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1805 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1808 * nvmem_device_read() - Read from a given nvmem device
1810 * @nvmem: nvmem device to read from.
1811 * @offset: offset in nvmem device.
1812 * @bytes: number of bytes to read.
1813 * @buf: buffer pointer which will be populated on successful read.
1815 * Return: length of successful bytes read on success and negative
1816 * error code on error.
1818 int nvmem_device_read(struct nvmem_device *nvmem,
1819 unsigned int offset,
1820 size_t bytes, void *buf)
1827 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1834 EXPORT_SYMBOL_GPL(nvmem_device_read);
1837 * nvmem_device_write() - Write cell to a given nvmem device
1839 * @nvmem: nvmem device to be written to.
1840 * @offset: offset in nvmem device.
1841 * @bytes: number of bytes to write.
1842 * @buf: buffer to be written.
1844 * Return: length of bytes written or negative error code on failure.
1846 int nvmem_device_write(struct nvmem_device *nvmem,
1847 unsigned int offset,
1848 size_t bytes, void *buf)
1855 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1863 EXPORT_SYMBOL_GPL(nvmem_device_write);
1866 * nvmem_add_cell_table() - register a table of cell info entries
1868 * @table: table of cell info entries
1870 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1872 mutex_lock(&nvmem_cell_mutex);
1873 list_add_tail(&table->node, &nvmem_cell_tables);
1874 mutex_unlock(&nvmem_cell_mutex);
1876 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1879 * nvmem_del_cell_table() - remove a previously registered cell info table
1881 * @table: table of cell info entries
1883 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1885 mutex_lock(&nvmem_cell_mutex);
1886 list_del(&table->node);
1887 mutex_unlock(&nvmem_cell_mutex);
1889 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1892 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1894 * @entries: array of cell lookup entries
1895 * @nentries: number of cell lookup entries in the array
1897 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1901 mutex_lock(&nvmem_lookup_mutex);
1902 for (i = 0; i < nentries; i++)
1903 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1904 mutex_unlock(&nvmem_lookup_mutex);
1906 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1909 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1912 * @entries: array of cell lookup entries
1913 * @nentries: number of cell lookup entries in the array
1915 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1919 mutex_lock(&nvmem_lookup_mutex);
1920 for (i = 0; i < nentries; i++)
1921 list_del(&entries[i].node);
1922 mutex_unlock(&nvmem_lookup_mutex);
1924 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1927 * nvmem_dev_name() - Get the name of a given nvmem device.
1929 * @nvmem: nvmem device.
1931 * Return: name of the nvmem device.
1933 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1935 return dev_name(&nvmem->dev);
1937 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1939 static int __init nvmem_init(void)
1941 return bus_register(&nvmem_bus_type);
1944 static void __exit nvmem_exit(void)
1946 bus_unregister(&nvmem_bus_type);
1949 subsys_initcall(nvmem_init);
1950 module_exit(nvmem_exit);
1952 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1953 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1954 MODULE_DESCRIPTION("nvmem Driver Core");
1955 MODULE_LICENSE("GPL v2");