GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         nvmem_reg_read_t        reg_read;
38         nvmem_reg_write_t       reg_write;
39         struct gpio_desc        *wp_gpio;
40         void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT             BIT(0)
46
47 struct nvmem_cell {
48         const char              *name;
49         int                     offset;
50         int                     bytes;
51         int                     bit_offset;
52         int                     nbits;
53         struct device_node      *np;
54         struct nvmem_device     *nvmem;
55         struct list_head        node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70                           void *val, size_t bytes)
71 {
72         if (nvmem->reg_read)
73                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75         return -EINVAL;
76 }
77
78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79                            void *val, size_t bytes)
80 {
81         int ret;
82
83         if (nvmem->reg_write) {
84                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87                 return ret;
88         }
89
90         return -EINVAL;
91 }
92
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95         [NVMEM_TYPE_UNKNOWN] = "Unknown",
96         [NVMEM_TYPE_EEPROM] = "EEPROM",
97         [NVMEM_TYPE_OTP] = "OTP",
98         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104
105 static ssize_t type_show(struct device *dev,
106                          struct device_attribute *attr, char *buf)
107 {
108         struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112
113 static DEVICE_ATTR_RO(type);
114
115 static struct attribute *nvmem_attrs[] = {
116         &dev_attr_type.attr,
117         NULL,
118 };
119
120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121                                    struct bin_attribute *attr, char *buf,
122                                    loff_t pos, size_t count)
123 {
124         struct device *dev;
125         struct nvmem_device *nvmem;
126         int rc;
127
128         if (attr->private)
129                 dev = attr->private;
130         else
131                 dev = kobj_to_dev(kobj);
132         nvmem = to_nvmem_device(dev);
133
134         /* Stop the user from reading */
135         if (pos >= nvmem->size)
136                 return 0;
137
138         if (!IS_ALIGNED(pos, nvmem->stride))
139                 return -EINVAL;
140
141         if (count < nvmem->word_size)
142                 return -EINVAL;
143
144         if (pos + count > nvmem->size)
145                 count = nvmem->size - pos;
146
147         count = round_down(count, nvmem->word_size);
148
149         if (!nvmem->reg_read)
150                 return -EPERM;
151
152         rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154         if (rc)
155                 return rc;
156
157         return count;
158 }
159
160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161                                     struct bin_attribute *attr, char *buf,
162                                     loff_t pos, size_t count)
163 {
164         struct device *dev;
165         struct nvmem_device *nvmem;
166         int rc;
167
168         if (attr->private)
169                 dev = attr->private;
170         else
171                 dev = kobj_to_dev(kobj);
172         nvmem = to_nvmem_device(dev);
173
174         /* Stop the user from writing */
175         if (pos >= nvmem->size)
176                 return -EFBIG;
177
178         if (!IS_ALIGNED(pos, nvmem->stride))
179                 return -EINVAL;
180
181         if (count < nvmem->word_size)
182                 return -EINVAL;
183
184         if (pos + count > nvmem->size)
185                 count = nvmem->size - pos;
186
187         count = round_down(count, nvmem->word_size);
188
189         if (!nvmem->reg_write)
190                 return -EPERM;
191
192         rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194         if (rc)
195                 return rc;
196
197         return count;
198 }
199
200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202         umode_t mode = 0400;
203
204         if (!nvmem->root_only)
205                 mode |= 0044;
206
207         if (!nvmem->read_only)
208                 mode |= 0200;
209
210         if (!nvmem->reg_write)
211                 mode &= ~0200;
212
213         if (!nvmem->reg_read)
214                 mode &= ~0444;
215
216         return mode;
217 }
218
219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220                                          struct bin_attribute *attr, int i)
221 {
222         struct device *dev = kobj_to_dev(kobj);
223         struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225         attr->size = nvmem->size;
226
227         return nvmem_bin_attr_get_umode(nvmem);
228 }
229
230 /* default read/write permissions */
231 static struct bin_attribute bin_attr_rw_nvmem = {
232         .attr   = {
233                 .name   = "nvmem",
234                 .mode   = 0644,
235         },
236         .read   = bin_attr_nvmem_read,
237         .write  = bin_attr_nvmem_write,
238 };
239
240 static struct bin_attribute *nvmem_bin_attributes[] = {
241         &bin_attr_rw_nvmem,
242         NULL,
243 };
244
245 static const struct attribute_group nvmem_bin_group = {
246         .bin_attrs      = nvmem_bin_attributes,
247         .attrs          = nvmem_attrs,
248         .is_bin_visible = nvmem_bin_attr_is_visible,
249 };
250
251 static const struct attribute_group *nvmem_dev_groups[] = {
252         &nvmem_bin_group,
253         NULL,
254 };
255
256 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257         .attr   = {
258                 .name   = "eeprom",
259         },
260         .read   = bin_attr_nvmem_read,
261         .write  = bin_attr_nvmem_write,
262 };
263
264 /*
265  * nvmem_setup_compat() - Create an additional binary entry in
266  * drivers sys directory, to be backwards compatible with the older
267  * drivers/misc/eeprom drivers.
268  */
269 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270                                     const struct nvmem_config *config)
271 {
272         int rval;
273
274         if (!config->compat)
275                 return 0;
276
277         if (!config->base_dev)
278                 return -EINVAL;
279
280         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282         nvmem->eeprom.size = nvmem->size;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284         nvmem->eeprom.attr.key = &eeprom_lock_key;
285 #endif
286         nvmem->eeprom.private = &nvmem->dev;
287         nvmem->base_dev = config->base_dev;
288
289         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290         if (rval) {
291                 dev_err(&nvmem->dev,
292                         "Failed to create eeprom binary file %d\n", rval);
293                 return rval;
294         }
295
296         nvmem->flags |= FLAG_COMPAT;
297
298         return 0;
299 }
300
301 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302                               const struct nvmem_config *config)
303 {
304         if (config->compat)
305                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306 }
307
308 #else /* CONFIG_NVMEM_SYSFS */
309
310 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311                                     const struct nvmem_config *config)
312 {
313         return -ENOSYS;
314 }
315 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316                                       const struct nvmem_config *config)
317 {
318 }
319
320 #endif /* CONFIG_NVMEM_SYSFS */
321
322 static void nvmem_release(struct device *dev)
323 {
324         struct nvmem_device *nvmem = to_nvmem_device(dev);
325
326         ida_free(&nvmem_ida, nvmem->id);
327         gpiod_put(nvmem->wp_gpio);
328         kfree(nvmem);
329 }
330
331 static const struct device_type nvmem_provider_type = {
332         .release        = nvmem_release,
333 };
334
335 static struct bus_type nvmem_bus_type = {
336         .name           = "nvmem",
337 };
338
339 static void nvmem_cell_drop(struct nvmem_cell *cell)
340 {
341         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342         mutex_lock(&nvmem_mutex);
343         list_del(&cell->node);
344         mutex_unlock(&nvmem_mutex);
345         of_node_put(cell->np);
346         kfree_const(cell->name);
347         kfree(cell);
348 }
349
350 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351 {
352         struct nvmem_cell *cell, *p;
353
354         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355                 nvmem_cell_drop(cell);
356 }
357
358 static void nvmem_cell_add(struct nvmem_cell *cell)
359 {
360         mutex_lock(&nvmem_mutex);
361         list_add_tail(&cell->node, &cell->nvmem->cells);
362         mutex_unlock(&nvmem_mutex);
363         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364 }
365
366 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367                                         const struct nvmem_cell_info *info,
368                                         struct nvmem_cell *cell)
369 {
370         cell->nvmem = nvmem;
371         cell->offset = info->offset;
372         cell->bytes = info->bytes;
373         cell->name = info->name;
374
375         cell->bit_offset = info->bit_offset;
376         cell->nbits = info->nbits;
377
378         if (cell->nbits)
379                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380                                            BITS_PER_BYTE);
381
382         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383                 dev_err(&nvmem->dev,
384                         "cell %s unaligned to nvmem stride %d\n",
385                         cell->name ?: "<unknown>", nvmem->stride);
386                 return -EINVAL;
387         }
388
389         return 0;
390 }
391
392 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393                                 const struct nvmem_cell_info *info,
394                                 struct nvmem_cell *cell)
395 {
396         int err;
397
398         err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399         if (err)
400                 return err;
401
402         cell->name = kstrdup_const(info->name, GFP_KERNEL);
403         if (!cell->name)
404                 return -ENOMEM;
405
406         return 0;
407 }
408
409 /**
410  * nvmem_add_cells() - Add cell information to an nvmem device
411  *
412  * @nvmem: nvmem device to add cells to.
413  * @info: nvmem cell info to add to the device
414  * @ncells: number of cells in info
415  *
416  * Return: 0 or negative error code on failure.
417  */
418 static int nvmem_add_cells(struct nvmem_device *nvmem,
419                     const struct nvmem_cell_info *info,
420                     int ncells)
421 {
422         struct nvmem_cell **cells;
423         int i, rval;
424
425         cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426         if (!cells)
427                 return -ENOMEM;
428
429         for (i = 0; i < ncells; i++) {
430                 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431                 if (!cells[i]) {
432                         rval = -ENOMEM;
433                         goto err;
434                 }
435
436                 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437                 if (rval) {
438                         kfree(cells[i]);
439                         goto err;
440                 }
441
442                 nvmem_cell_add(cells[i]);
443         }
444
445         /* remove tmp array */
446         kfree(cells);
447
448         return 0;
449 err:
450         while (i--)
451                 nvmem_cell_drop(cells[i]);
452
453         kfree(cells);
454
455         return rval;
456 }
457
458 /**
459  * nvmem_register_notifier() - Register a notifier block for nvmem events.
460  *
461  * @nb: notifier block to be called on nvmem events.
462  *
463  * Return: 0 on success, negative error number on failure.
464  */
465 int nvmem_register_notifier(struct notifier_block *nb)
466 {
467         return blocking_notifier_chain_register(&nvmem_notifier, nb);
468 }
469 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470
471 /**
472  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473  *
474  * @nb: notifier block to be unregistered.
475  *
476  * Return: 0 on success, negative error number on failure.
477  */
478 int nvmem_unregister_notifier(struct notifier_block *nb)
479 {
480         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481 }
482 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483
484 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485 {
486         const struct nvmem_cell_info *info;
487         struct nvmem_cell_table *table;
488         struct nvmem_cell *cell;
489         int rval = 0, i;
490
491         mutex_lock(&nvmem_cell_mutex);
492         list_for_each_entry(table, &nvmem_cell_tables, node) {
493                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494                         for (i = 0; i < table->ncells; i++) {
495                                 info = &table->cells[i];
496
497                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498                                 if (!cell) {
499                                         rval = -ENOMEM;
500                                         goto out;
501                                 }
502
503                                 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504                                                                      info,
505                                                                      cell);
506                                 if (rval) {
507                                         kfree(cell);
508                                         goto out;
509                                 }
510
511                                 nvmem_cell_add(cell);
512                         }
513                 }
514         }
515
516 out:
517         mutex_unlock(&nvmem_cell_mutex);
518         return rval;
519 }
520
521 static struct nvmem_cell *
522 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523 {
524         struct nvmem_cell *iter, *cell = NULL;
525
526         mutex_lock(&nvmem_mutex);
527         list_for_each_entry(iter, &nvmem->cells, node) {
528                 if (strcmp(cell_id, iter->name) == 0) {
529                         cell = iter;
530                         break;
531                 }
532         }
533         mutex_unlock(&nvmem_mutex);
534
535         return cell;
536 }
537
538 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539 {
540         struct device_node *parent, *child;
541         struct device *dev = &nvmem->dev;
542         struct nvmem_cell *cell;
543         const __be32 *addr;
544         int len;
545
546         parent = dev->of_node;
547
548         for_each_child_of_node(parent, child) {
549                 addr = of_get_property(child, "reg", &len);
550                 if (!addr)
551                         continue;
552                 if (len < 2 * sizeof(u32)) {
553                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554                         of_node_put(child);
555                         return -EINVAL;
556                 }
557
558                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559                 if (!cell) {
560                         of_node_put(child);
561                         return -ENOMEM;
562                 }
563
564                 cell->nvmem = nvmem;
565                 cell->offset = be32_to_cpup(addr++);
566                 cell->bytes = be32_to_cpup(addr);
567                 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568
569                 addr = of_get_property(child, "bits", &len);
570                 if (addr && len == (2 * sizeof(u32))) {
571                         cell->bit_offset = be32_to_cpup(addr++);
572                         cell->nbits = be32_to_cpup(addr);
573                 }
574
575                 if (cell->nbits)
576                         cell->bytes = DIV_ROUND_UP(
577                                         cell->nbits + cell->bit_offset,
578                                         BITS_PER_BYTE);
579
580                 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581                         dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582                                 cell->name, nvmem->stride);
583                         /* Cells already added will be freed later. */
584                         kfree_const(cell->name);
585                         kfree(cell);
586                         of_node_put(child);
587                         return -EINVAL;
588                 }
589
590                 cell->np = of_node_get(child);
591                 nvmem_cell_add(cell);
592         }
593
594         return 0;
595 }
596
597 /**
598  * nvmem_register() - Register a nvmem device for given nvmem_config.
599  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600  *
601  * @config: nvmem device configuration with which nvmem device is created.
602  *
603  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604  * on success.
605  */
606
607 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608 {
609         struct nvmem_device *nvmem;
610         int rval;
611
612         if (!config->dev)
613                 return ERR_PTR(-EINVAL);
614
615         if (!config->reg_read && !config->reg_write)
616                 return ERR_PTR(-EINVAL);
617
618         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619         if (!nvmem)
620                 return ERR_PTR(-ENOMEM);
621
622         rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
623         if (rval < 0) {
624                 kfree(nvmem);
625                 return ERR_PTR(rval);
626         }
627
628         nvmem->id = rval;
629
630         nvmem->dev.type = &nvmem_provider_type;
631         nvmem->dev.bus = &nvmem_bus_type;
632         nvmem->dev.parent = config->dev;
633
634         device_initialize(&nvmem->dev);
635
636         if (!config->ignore_wp)
637                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
638                                                     GPIOD_OUT_HIGH);
639         if (IS_ERR(nvmem->wp_gpio)) {
640                 rval = PTR_ERR(nvmem->wp_gpio);
641                 nvmem->wp_gpio = NULL;
642                 goto err_put_device;
643         }
644
645         kref_init(&nvmem->refcnt);
646         INIT_LIST_HEAD(&nvmem->cells);
647
648         nvmem->owner = config->owner;
649         if (!nvmem->owner && config->dev->driver)
650                 nvmem->owner = config->dev->driver->owner;
651         nvmem->stride = config->stride ?: 1;
652         nvmem->word_size = config->word_size ?: 1;
653         nvmem->size = config->size;
654         nvmem->root_only = config->root_only;
655         nvmem->priv = config->priv;
656         nvmem->type = config->type;
657         nvmem->reg_read = config->reg_read;
658         nvmem->reg_write = config->reg_write;
659         if (!config->no_of_node)
660                 nvmem->dev.of_node = config->dev->of_node;
661
662         switch (config->id) {
663         case NVMEM_DEVID_NONE:
664                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
665                 break;
666         case NVMEM_DEVID_AUTO:
667                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
668                 break;
669         default:
670                 rval = dev_set_name(&nvmem->dev, "%s%d",
671                              config->name ? : "nvmem",
672                              config->name ? config->id : nvmem->id);
673                 break;
674         }
675
676         if (rval)
677                 goto err_put_device;
678
679         nvmem->read_only = device_property_present(config->dev, "read-only") ||
680                            config->read_only || !nvmem->reg_write;
681
682 #ifdef CONFIG_NVMEM_SYSFS
683         nvmem->dev.groups = nvmem_dev_groups;
684 #endif
685
686         if (config->compat) {
687                 rval = nvmem_sysfs_setup_compat(nvmem, config);
688                 if (rval)
689                         goto err_put_device;
690         }
691
692         if (config->cells) {
693                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
694                 if (rval)
695                         goto err_remove_cells;
696         }
697
698         rval = nvmem_add_cells_from_table(nvmem);
699         if (rval)
700                 goto err_remove_cells;
701
702         rval = nvmem_add_cells_from_of(nvmem);
703         if (rval)
704                 goto err_remove_cells;
705
706         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
707
708         rval = device_add(&nvmem->dev);
709         if (rval)
710                 goto err_remove_cells;
711
712         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
713
714         return nvmem;
715
716 err_remove_cells:
717         nvmem_device_remove_all_cells(nvmem);
718         if (config->compat)
719                 nvmem_sysfs_remove_compat(nvmem, config);
720 err_put_device:
721         put_device(&nvmem->dev);
722
723         return ERR_PTR(rval);
724 }
725 EXPORT_SYMBOL_GPL(nvmem_register);
726
727 static void nvmem_device_release(struct kref *kref)
728 {
729         struct nvmem_device *nvmem;
730
731         nvmem = container_of(kref, struct nvmem_device, refcnt);
732
733         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
734
735         if (nvmem->flags & FLAG_COMPAT)
736                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
737
738         nvmem_device_remove_all_cells(nvmem);
739         device_unregister(&nvmem->dev);
740 }
741
742 /**
743  * nvmem_unregister() - Unregister previously registered nvmem device
744  *
745  * @nvmem: Pointer to previously registered nvmem device.
746  */
747 void nvmem_unregister(struct nvmem_device *nvmem)
748 {
749         kref_put(&nvmem->refcnt, nvmem_device_release);
750 }
751 EXPORT_SYMBOL_GPL(nvmem_unregister);
752
753 static void devm_nvmem_release(struct device *dev, void *res)
754 {
755         nvmem_unregister(*(struct nvmem_device **)res);
756 }
757
758 /**
759  * devm_nvmem_register() - Register a managed nvmem device for given
760  * nvmem_config.
761  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
762  *
763  * @dev: Device that uses the nvmem device.
764  * @config: nvmem device configuration with which nvmem device is created.
765  *
766  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
767  * on success.
768  */
769 struct nvmem_device *devm_nvmem_register(struct device *dev,
770                                          const struct nvmem_config *config)
771 {
772         struct nvmem_device **ptr, *nvmem;
773
774         ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
775         if (!ptr)
776                 return ERR_PTR(-ENOMEM);
777
778         nvmem = nvmem_register(config);
779
780         if (!IS_ERR(nvmem)) {
781                 *ptr = nvmem;
782                 devres_add(dev, ptr);
783         } else {
784                 devres_free(ptr);
785         }
786
787         return nvmem;
788 }
789 EXPORT_SYMBOL_GPL(devm_nvmem_register);
790
791 static int devm_nvmem_match(struct device *dev, void *res, void *data)
792 {
793         struct nvmem_device **r = res;
794
795         return *r == data;
796 }
797
798 /**
799  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
800  * device.
801  *
802  * @dev: Device that uses the nvmem device.
803  * @nvmem: Pointer to previously registered nvmem device.
804  *
805  * Return: Will be negative on error or zero on success.
806  */
807 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
808 {
809         return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
810 }
811 EXPORT_SYMBOL(devm_nvmem_unregister);
812
813 static struct nvmem_device *__nvmem_device_get(void *data,
814                         int (*match)(struct device *dev, const void *data))
815 {
816         struct nvmem_device *nvmem = NULL;
817         struct device *dev;
818
819         mutex_lock(&nvmem_mutex);
820         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
821         if (dev)
822                 nvmem = to_nvmem_device(dev);
823         mutex_unlock(&nvmem_mutex);
824         if (!nvmem)
825                 return ERR_PTR(-EPROBE_DEFER);
826
827         if (!try_module_get(nvmem->owner)) {
828                 dev_err(&nvmem->dev,
829                         "could not increase module refcount for cell %s\n",
830                         nvmem_dev_name(nvmem));
831
832                 put_device(&nvmem->dev);
833                 return ERR_PTR(-EINVAL);
834         }
835
836         kref_get(&nvmem->refcnt);
837
838         return nvmem;
839 }
840
841 static void __nvmem_device_put(struct nvmem_device *nvmem)
842 {
843         put_device(&nvmem->dev);
844         module_put(nvmem->owner);
845         kref_put(&nvmem->refcnt, nvmem_device_release);
846 }
847
848 #if IS_ENABLED(CONFIG_OF)
849 /**
850  * of_nvmem_device_get() - Get nvmem device from a given id
851  *
852  * @np: Device tree node that uses the nvmem device.
853  * @id: nvmem name from nvmem-names property.
854  *
855  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
856  * on success.
857  */
858 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
859 {
860
861         struct device_node *nvmem_np;
862         struct nvmem_device *nvmem;
863         int index = 0;
864
865         if (id)
866                 index = of_property_match_string(np, "nvmem-names", id);
867
868         nvmem_np = of_parse_phandle(np, "nvmem", index);
869         if (!nvmem_np)
870                 return ERR_PTR(-ENOENT);
871
872         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
873         of_node_put(nvmem_np);
874         return nvmem;
875 }
876 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
877 #endif
878
879 /**
880  * nvmem_device_get() - Get nvmem device from a given id
881  *
882  * @dev: Device that uses the nvmem device.
883  * @dev_name: name of the requested nvmem device.
884  *
885  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
886  * on success.
887  */
888 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
889 {
890         if (dev->of_node) { /* try dt first */
891                 struct nvmem_device *nvmem;
892
893                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
894
895                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
896                         return nvmem;
897
898         }
899
900         return __nvmem_device_get((void *)dev_name, device_match_name);
901 }
902 EXPORT_SYMBOL_GPL(nvmem_device_get);
903
904 /**
905  * nvmem_device_find() - Find nvmem device with matching function
906  *
907  * @data: Data to pass to match function
908  * @match: Callback function to check device
909  *
910  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
911  * on success.
912  */
913 struct nvmem_device *nvmem_device_find(void *data,
914                         int (*match)(struct device *dev, const void *data))
915 {
916         return __nvmem_device_get(data, match);
917 }
918 EXPORT_SYMBOL_GPL(nvmem_device_find);
919
920 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
921 {
922         struct nvmem_device **nvmem = res;
923
924         if (WARN_ON(!nvmem || !*nvmem))
925                 return 0;
926
927         return *nvmem == data;
928 }
929
930 static void devm_nvmem_device_release(struct device *dev, void *res)
931 {
932         nvmem_device_put(*(struct nvmem_device **)res);
933 }
934
935 /**
936  * devm_nvmem_device_put() - put alredy got nvmem device
937  *
938  * @dev: Device that uses the nvmem device.
939  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
940  * that needs to be released.
941  */
942 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
943 {
944         int ret;
945
946         ret = devres_release(dev, devm_nvmem_device_release,
947                              devm_nvmem_device_match, nvmem);
948
949         WARN_ON(ret);
950 }
951 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
952
953 /**
954  * nvmem_device_put() - put alredy got nvmem device
955  *
956  * @nvmem: pointer to nvmem device that needs to be released.
957  */
958 void nvmem_device_put(struct nvmem_device *nvmem)
959 {
960         __nvmem_device_put(nvmem);
961 }
962 EXPORT_SYMBOL_GPL(nvmem_device_put);
963
964 /**
965  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
966  *
967  * @dev: Device that requests the nvmem device.
968  * @id: name id for the requested nvmem device.
969  *
970  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
971  * on success.  The nvmem_cell will be freed by the automatically once the
972  * device is freed.
973  */
974 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
975 {
976         struct nvmem_device **ptr, *nvmem;
977
978         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
979         if (!ptr)
980                 return ERR_PTR(-ENOMEM);
981
982         nvmem = nvmem_device_get(dev, id);
983         if (!IS_ERR(nvmem)) {
984                 *ptr = nvmem;
985                 devres_add(dev, ptr);
986         } else {
987                 devres_free(ptr);
988         }
989
990         return nvmem;
991 }
992 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
993
994 static struct nvmem_cell *
995 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
996 {
997         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
998         struct nvmem_cell_lookup *lookup;
999         struct nvmem_device *nvmem;
1000         const char *dev_id;
1001
1002         if (!dev)
1003                 return ERR_PTR(-EINVAL);
1004
1005         dev_id = dev_name(dev);
1006
1007         mutex_lock(&nvmem_lookup_mutex);
1008
1009         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1010                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1011                     (strcmp(lookup->con_id, con_id) == 0)) {
1012                         /* This is the right entry. */
1013                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1014                                                    device_match_name);
1015                         if (IS_ERR(nvmem)) {
1016                                 /* Provider may not be registered yet. */
1017                                 cell = ERR_CAST(nvmem);
1018                                 break;
1019                         }
1020
1021                         cell = nvmem_find_cell_by_name(nvmem,
1022                                                        lookup->cell_name);
1023                         if (!cell) {
1024                                 __nvmem_device_put(nvmem);
1025                                 cell = ERR_PTR(-ENOENT);
1026                         }
1027                         break;
1028                 }
1029         }
1030
1031         mutex_unlock(&nvmem_lookup_mutex);
1032         return cell;
1033 }
1034
1035 #if IS_ENABLED(CONFIG_OF)
1036 static struct nvmem_cell *
1037 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1038 {
1039         struct nvmem_cell *iter, *cell = NULL;
1040
1041         mutex_lock(&nvmem_mutex);
1042         list_for_each_entry(iter, &nvmem->cells, node) {
1043                 if (np == iter->np) {
1044                         cell = iter;
1045                         break;
1046                 }
1047         }
1048         mutex_unlock(&nvmem_mutex);
1049
1050         return cell;
1051 }
1052
1053 /**
1054  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1055  *
1056  * @np: Device tree node that uses the nvmem cell.
1057  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1058  *      for the cell at index 0 (the lone cell with no accompanying
1059  *      nvmem-cell-names property).
1060  *
1061  * Return: Will be an ERR_PTR() on error or a valid pointer
1062  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1063  * nvmem_cell_put().
1064  */
1065 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1066 {
1067         struct device_node *cell_np, *nvmem_np;
1068         struct nvmem_device *nvmem;
1069         struct nvmem_cell *cell;
1070         int index = 0;
1071
1072         /* if cell name exists, find index to the name */
1073         if (id)
1074                 index = of_property_match_string(np, "nvmem-cell-names", id);
1075
1076         cell_np = of_parse_phandle(np, "nvmem-cells", index);
1077         if (!cell_np)
1078                 return ERR_PTR(-ENOENT);
1079
1080         nvmem_np = of_get_next_parent(cell_np);
1081         if (!nvmem_np)
1082                 return ERR_PTR(-EINVAL);
1083
1084         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1085         of_node_put(nvmem_np);
1086         if (IS_ERR(nvmem))
1087                 return ERR_CAST(nvmem);
1088
1089         cell = nvmem_find_cell_by_node(nvmem, cell_np);
1090         if (!cell) {
1091                 __nvmem_device_put(nvmem);
1092                 return ERR_PTR(-ENOENT);
1093         }
1094
1095         return cell;
1096 }
1097 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1098 #endif
1099
1100 /**
1101  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1102  *
1103  * @dev: Device that requests the nvmem cell.
1104  * @id: nvmem cell name to get (this corresponds with the name from the
1105  *      nvmem-cell-names property for DT systems and with the con_id from
1106  *      the lookup entry for non-DT systems).
1107  *
1108  * Return: Will be an ERR_PTR() on error or a valid pointer
1109  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1110  * nvmem_cell_put().
1111  */
1112 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1113 {
1114         struct nvmem_cell *cell;
1115
1116         if (dev->of_node) { /* try dt first */
1117                 cell = of_nvmem_cell_get(dev->of_node, id);
1118                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1119                         return cell;
1120         }
1121
1122         /* NULL cell id only allowed for device tree; invalid otherwise */
1123         if (!id)
1124                 return ERR_PTR(-EINVAL);
1125
1126         return nvmem_cell_get_from_lookup(dev, id);
1127 }
1128 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1129
1130 static void devm_nvmem_cell_release(struct device *dev, void *res)
1131 {
1132         nvmem_cell_put(*(struct nvmem_cell **)res);
1133 }
1134
1135 /**
1136  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1137  *
1138  * @dev: Device that requests the nvmem cell.
1139  * @id: nvmem cell name id to get.
1140  *
1141  * Return: Will be an ERR_PTR() on error or a valid pointer
1142  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1143  * automatically once the device is freed.
1144  */
1145 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1146 {
1147         struct nvmem_cell **ptr, *cell;
1148
1149         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1150         if (!ptr)
1151                 return ERR_PTR(-ENOMEM);
1152
1153         cell = nvmem_cell_get(dev, id);
1154         if (!IS_ERR(cell)) {
1155                 *ptr = cell;
1156                 devres_add(dev, ptr);
1157         } else {
1158                 devres_free(ptr);
1159         }
1160
1161         return cell;
1162 }
1163 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1164
1165 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1166 {
1167         struct nvmem_cell **c = res;
1168
1169         if (WARN_ON(!c || !*c))
1170                 return 0;
1171
1172         return *c == data;
1173 }
1174
1175 /**
1176  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1177  * from devm_nvmem_cell_get.
1178  *
1179  * @dev: Device that requests the nvmem cell.
1180  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1181  */
1182 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1183 {
1184         int ret;
1185
1186         ret = devres_release(dev, devm_nvmem_cell_release,
1187                                 devm_nvmem_cell_match, cell);
1188
1189         WARN_ON(ret);
1190 }
1191 EXPORT_SYMBOL(devm_nvmem_cell_put);
1192
1193 /**
1194  * nvmem_cell_put() - Release previously allocated nvmem cell.
1195  *
1196  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1197  */
1198 void nvmem_cell_put(struct nvmem_cell *cell)
1199 {
1200         struct nvmem_device *nvmem = cell->nvmem;
1201
1202         __nvmem_device_put(nvmem);
1203 }
1204 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1205
1206 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1207 {
1208         u8 *p, *b;
1209         int i, extra, bit_offset = cell->bit_offset;
1210
1211         p = b = buf;
1212         if (bit_offset) {
1213                 /* First shift */
1214                 *b++ >>= bit_offset;
1215
1216                 /* setup rest of the bytes if any */
1217                 for (i = 1; i < cell->bytes; i++) {
1218                         /* Get bits from next byte and shift them towards msb */
1219                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1220
1221                         p = b;
1222                         *b++ >>= bit_offset;
1223                 }
1224         } else {
1225                 /* point to the msb */
1226                 p += cell->bytes - 1;
1227         }
1228
1229         /* result fits in less bytes */
1230         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1231         while (--extra >= 0)
1232                 *p-- = 0;
1233
1234         /* clear msb bits if any leftover in the last byte */
1235         if (cell->nbits % BITS_PER_BYTE)
1236                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1237 }
1238
1239 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1240                       struct nvmem_cell *cell,
1241                       void *buf, size_t *len)
1242 {
1243         int rc;
1244
1245         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1246
1247         if (rc)
1248                 return rc;
1249
1250         /* shift bits in-place */
1251         if (cell->bit_offset || cell->nbits)
1252                 nvmem_shift_read_buffer_in_place(cell, buf);
1253
1254         if (len)
1255                 *len = cell->bytes;
1256
1257         return 0;
1258 }
1259
1260 /**
1261  * nvmem_cell_read() - Read a given nvmem cell
1262  *
1263  * @cell: nvmem cell to be read.
1264  * @len: pointer to length of cell which will be populated on successful read;
1265  *       can be NULL.
1266  *
1267  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1268  * buffer should be freed by the consumer with a kfree().
1269  */
1270 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1271 {
1272         struct nvmem_device *nvmem = cell->nvmem;
1273         u8 *buf;
1274         int rc;
1275
1276         if (!nvmem)
1277                 return ERR_PTR(-EINVAL);
1278
1279         buf = kzalloc(cell->bytes, GFP_KERNEL);
1280         if (!buf)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         rc = __nvmem_cell_read(nvmem, cell, buf, len);
1284         if (rc) {
1285                 kfree(buf);
1286                 return ERR_PTR(rc);
1287         }
1288
1289         return buf;
1290 }
1291 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1292
1293 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1294                                              u8 *_buf, int len)
1295 {
1296         struct nvmem_device *nvmem = cell->nvmem;
1297         int i, rc, nbits, bit_offset = cell->bit_offset;
1298         u8 v, *p, *buf, *b, pbyte, pbits;
1299
1300         nbits = cell->nbits;
1301         buf = kzalloc(cell->bytes, GFP_KERNEL);
1302         if (!buf)
1303                 return ERR_PTR(-ENOMEM);
1304
1305         memcpy(buf, _buf, len);
1306         p = b = buf;
1307
1308         if (bit_offset) {
1309                 pbyte = *b;
1310                 *b <<= bit_offset;
1311
1312                 /* setup the first byte with lsb bits from nvmem */
1313                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1314                 if (rc)
1315                         goto err;
1316                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1317
1318                 /* setup rest of the byte if any */
1319                 for (i = 1; i < cell->bytes; i++) {
1320                         /* Get last byte bits and shift them towards lsb */
1321                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1322                         pbyte = *b;
1323                         p = b;
1324                         *b <<= bit_offset;
1325                         *b++ |= pbits;
1326                 }
1327         }
1328
1329         /* if it's not end on byte boundary */
1330         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1331                 /* setup the last byte with msb bits from nvmem */
1332                 rc = nvmem_reg_read(nvmem,
1333                                     cell->offset + cell->bytes - 1, &v, 1);
1334                 if (rc)
1335                         goto err;
1336                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1337
1338         }
1339
1340         return buf;
1341 err:
1342         kfree(buf);
1343         return ERR_PTR(rc);
1344 }
1345
1346 /**
1347  * nvmem_cell_write() - Write to a given nvmem cell
1348  *
1349  * @cell: nvmem cell to be written.
1350  * @buf: Buffer to be written.
1351  * @len: length of buffer to be written to nvmem cell.
1352  *
1353  * Return: length of bytes written or negative on failure.
1354  */
1355 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1356 {
1357         struct nvmem_device *nvmem = cell->nvmem;
1358         int rc;
1359
1360         if (!nvmem || nvmem->read_only ||
1361             (cell->bit_offset == 0 && len != cell->bytes))
1362                 return -EINVAL;
1363
1364         if (cell->bit_offset || cell->nbits) {
1365                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1366                 if (IS_ERR(buf))
1367                         return PTR_ERR(buf);
1368         }
1369
1370         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1371
1372         /* free the tmp buffer */
1373         if (cell->bit_offset || cell->nbits)
1374                 kfree(buf);
1375
1376         if (rc)
1377                 return rc;
1378
1379         return len;
1380 }
1381 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1382
1383 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1384                                   void *val, size_t count)
1385 {
1386         struct nvmem_cell *cell;
1387         void *buf;
1388         size_t len;
1389
1390         cell = nvmem_cell_get(dev, cell_id);
1391         if (IS_ERR(cell))
1392                 return PTR_ERR(cell);
1393
1394         buf = nvmem_cell_read(cell, &len);
1395         if (IS_ERR(buf)) {
1396                 nvmem_cell_put(cell);
1397                 return PTR_ERR(buf);
1398         }
1399         if (len != count) {
1400                 kfree(buf);
1401                 nvmem_cell_put(cell);
1402                 return -EINVAL;
1403         }
1404         memcpy(val, buf, count);
1405         kfree(buf);
1406         nvmem_cell_put(cell);
1407
1408         return 0;
1409 }
1410
1411 /**
1412  * nvmem_cell_read_u8() - Read a cell value as a u8
1413  *
1414  * @dev: Device that requests the nvmem cell.
1415  * @cell_id: Name of nvmem cell to read.
1416  * @val: pointer to output value.
1417  *
1418  * Return: 0 on success or negative errno.
1419  */
1420 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1421 {
1422         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1423 }
1424 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1425
1426 /**
1427  * nvmem_cell_read_u16() - Read a cell value as a u16
1428  *
1429  * @dev: Device that requests the nvmem cell.
1430  * @cell_id: Name of nvmem cell to read.
1431  * @val: pointer to output value.
1432  *
1433  * Return: 0 on success or negative errno.
1434  */
1435 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1436 {
1437         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1438 }
1439 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1440
1441 /**
1442  * nvmem_cell_read_u32() - Read a cell value as a u32
1443  *
1444  * @dev: Device that requests the nvmem cell.
1445  * @cell_id: Name of nvmem cell to read.
1446  * @val: pointer to output value.
1447  *
1448  * Return: 0 on success or negative errno.
1449  */
1450 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1451 {
1452         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1453 }
1454 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1455
1456 /**
1457  * nvmem_cell_read_u64() - Read a cell value as a u64
1458  *
1459  * @dev: Device that requests the nvmem cell.
1460  * @cell_id: Name of nvmem cell to read.
1461  * @val: pointer to output value.
1462  *
1463  * Return: 0 on success or negative errno.
1464  */
1465 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1466 {
1467         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1468 }
1469 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1470
1471 /**
1472  * nvmem_device_cell_read() - Read a given nvmem device and cell
1473  *
1474  * @nvmem: nvmem device to read from.
1475  * @info: nvmem cell info to be read.
1476  * @buf: buffer pointer which will be populated on successful read.
1477  *
1478  * Return: length of successful bytes read on success and negative
1479  * error code on error.
1480  */
1481 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1482                            struct nvmem_cell_info *info, void *buf)
1483 {
1484         struct nvmem_cell cell;
1485         int rc;
1486         ssize_t len;
1487
1488         if (!nvmem)
1489                 return -EINVAL;
1490
1491         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1492         if (rc)
1493                 return rc;
1494
1495         rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1496         if (rc)
1497                 return rc;
1498
1499         return len;
1500 }
1501 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1502
1503 /**
1504  * nvmem_device_cell_write() - Write cell to a given nvmem device
1505  *
1506  * @nvmem: nvmem device to be written to.
1507  * @info: nvmem cell info to be written.
1508  * @buf: buffer to be written to cell.
1509  *
1510  * Return: length of bytes written or negative error code on failure.
1511  */
1512 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1513                             struct nvmem_cell_info *info, void *buf)
1514 {
1515         struct nvmem_cell cell;
1516         int rc;
1517
1518         if (!nvmem)
1519                 return -EINVAL;
1520
1521         rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1522         if (rc)
1523                 return rc;
1524
1525         return nvmem_cell_write(&cell, buf, cell.bytes);
1526 }
1527 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1528
1529 /**
1530  * nvmem_device_read() - Read from a given nvmem device
1531  *
1532  * @nvmem: nvmem device to read from.
1533  * @offset: offset in nvmem device.
1534  * @bytes: number of bytes to read.
1535  * @buf: buffer pointer which will be populated on successful read.
1536  *
1537  * Return: length of successful bytes read on success and negative
1538  * error code on error.
1539  */
1540 int nvmem_device_read(struct nvmem_device *nvmem,
1541                       unsigned int offset,
1542                       size_t bytes, void *buf)
1543 {
1544         int rc;
1545
1546         if (!nvmem)
1547                 return -EINVAL;
1548
1549         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1550
1551         if (rc)
1552                 return rc;
1553
1554         return bytes;
1555 }
1556 EXPORT_SYMBOL_GPL(nvmem_device_read);
1557
1558 /**
1559  * nvmem_device_write() - Write cell to a given nvmem device
1560  *
1561  * @nvmem: nvmem device to be written to.
1562  * @offset: offset in nvmem device.
1563  * @bytes: number of bytes to write.
1564  * @buf: buffer to be written.
1565  *
1566  * Return: length of bytes written or negative error code on failure.
1567  */
1568 int nvmem_device_write(struct nvmem_device *nvmem,
1569                        unsigned int offset,
1570                        size_t bytes, void *buf)
1571 {
1572         int rc;
1573
1574         if (!nvmem)
1575                 return -EINVAL;
1576
1577         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1578
1579         if (rc)
1580                 return rc;
1581
1582
1583         return bytes;
1584 }
1585 EXPORT_SYMBOL_GPL(nvmem_device_write);
1586
1587 /**
1588  * nvmem_add_cell_table() - register a table of cell info entries
1589  *
1590  * @table: table of cell info entries
1591  */
1592 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1593 {
1594         mutex_lock(&nvmem_cell_mutex);
1595         list_add_tail(&table->node, &nvmem_cell_tables);
1596         mutex_unlock(&nvmem_cell_mutex);
1597 }
1598 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1599
1600 /**
1601  * nvmem_del_cell_table() - remove a previously registered cell info table
1602  *
1603  * @table: table of cell info entries
1604  */
1605 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1606 {
1607         mutex_lock(&nvmem_cell_mutex);
1608         list_del(&table->node);
1609         mutex_unlock(&nvmem_cell_mutex);
1610 }
1611 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1612
1613 /**
1614  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1615  *
1616  * @entries: array of cell lookup entries
1617  * @nentries: number of cell lookup entries in the array
1618  */
1619 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1620 {
1621         int i;
1622
1623         mutex_lock(&nvmem_lookup_mutex);
1624         for (i = 0; i < nentries; i++)
1625                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1626         mutex_unlock(&nvmem_lookup_mutex);
1627 }
1628 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1629
1630 /**
1631  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1632  *                            entries
1633  *
1634  * @entries: array of cell lookup entries
1635  * @nentries: number of cell lookup entries in the array
1636  */
1637 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1638 {
1639         int i;
1640
1641         mutex_lock(&nvmem_lookup_mutex);
1642         for (i = 0; i < nentries; i++)
1643                 list_del(&entries[i].node);
1644         mutex_unlock(&nvmem_lookup_mutex);
1645 }
1646 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1647
1648 /**
1649  * nvmem_dev_name() - Get the name of a given nvmem device.
1650  *
1651  * @nvmem: nvmem device.
1652  *
1653  * Return: name of the nvmem device.
1654  */
1655 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1656 {
1657         return dev_name(&nvmem->dev);
1658 }
1659 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1660
1661 static int __init nvmem_init(void)
1662 {
1663         return bus_register(&nvmem_bus_type);
1664 }
1665
1666 static void __exit nvmem_exit(void)
1667 {
1668         bus_unregister(&nvmem_bus_type);
1669 }
1670
1671 subsys_initcall(nvmem_init);
1672 module_exit(nvmem_exit);
1673
1674 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1675 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1676 MODULE_DESCRIPTION("nvmem Driver Core");
1677 MODULE_LICENSE("GPL v2");