GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21 #define NVMET_TCP_MAXH2CDATA            0x400000 /* 16M arbitrary limit */
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
32
33 #define NVMET_TCP_RECV_BUDGET           8
34 #define NVMET_TCP_SEND_BUDGET           8
35 #define NVMET_TCP_IO_WORK_BUDGET        64
36
37 enum nvmet_tcp_send_state {
38         NVMET_TCP_SEND_DATA_PDU,
39         NVMET_TCP_SEND_DATA,
40         NVMET_TCP_SEND_R2T,
41         NVMET_TCP_SEND_DDGST,
42         NVMET_TCP_SEND_RESPONSE
43 };
44
45 enum nvmet_tcp_recv_state {
46         NVMET_TCP_RECV_PDU,
47         NVMET_TCP_RECV_DATA,
48         NVMET_TCP_RECV_DDGST,
49         NVMET_TCP_RECV_ERR,
50 };
51
52 enum {
53         NVMET_TCP_F_INIT_FAILED = (1 << 0),
54 };
55
56 struct nvmet_tcp_cmd {
57         struct nvmet_tcp_queue          *queue;
58         struct nvmet_req                req;
59
60         struct nvme_tcp_cmd_pdu         *cmd_pdu;
61         struct nvme_tcp_rsp_pdu         *rsp_pdu;
62         struct nvme_tcp_data_pdu        *data_pdu;
63         struct nvme_tcp_r2t_pdu         *r2t_pdu;
64
65         u32                             rbytes_done;
66         u32                             wbytes_done;
67
68         u32                             pdu_len;
69         u32                             pdu_recv;
70         int                             sg_idx;
71         int                             nr_mapped;
72         struct msghdr                   recv_msg;
73         struct kvec                     *iov;
74         u32                             flags;
75
76         struct list_head                entry;
77         struct llist_node               lentry;
78
79         /* send state */
80         u32                             offset;
81         struct scatterlist              *cur_sg;
82         enum nvmet_tcp_send_state       state;
83
84         __le32                          exp_ddgst;
85         __le32                          recv_ddgst;
86 };
87
88 enum nvmet_tcp_queue_state {
89         NVMET_TCP_Q_CONNECTING,
90         NVMET_TCP_Q_LIVE,
91         NVMET_TCP_Q_DISCONNECTING,
92 };
93
94 struct nvmet_tcp_queue {
95         struct socket           *sock;
96         struct nvmet_tcp_port   *port;
97         struct work_struct      io_work;
98         struct nvmet_cq         nvme_cq;
99         struct nvmet_sq         nvme_sq;
100
101         /* send state */
102         struct nvmet_tcp_cmd    *cmds;
103         unsigned int            nr_cmds;
104         struct list_head        free_list;
105         struct llist_head       resp_list;
106         struct list_head        resp_send_list;
107         int                     send_list_len;
108         struct nvmet_tcp_cmd    *snd_cmd;
109
110         /* recv state */
111         int                     offset;
112         int                     left;
113         enum nvmet_tcp_recv_state rcv_state;
114         struct nvmet_tcp_cmd    *cmd;
115         union nvme_tcp_pdu      pdu;
116
117         /* digest state */
118         bool                    hdr_digest;
119         bool                    data_digest;
120         struct ahash_request    *snd_hash;
121         struct ahash_request    *rcv_hash;
122
123         spinlock_t              state_lock;
124         enum nvmet_tcp_queue_state state;
125
126         struct sockaddr_storage sockaddr;
127         struct sockaddr_storage sockaddr_peer;
128         struct work_struct      release_work;
129
130         int                     idx;
131         struct list_head        queue_list;
132
133         struct nvmet_tcp_cmd    connect;
134
135         struct page_frag_cache  pf_cache;
136
137         void (*data_ready)(struct sock *);
138         void (*state_change)(struct sock *);
139         void (*write_space)(struct sock *);
140 };
141
142 struct nvmet_tcp_port {
143         struct socket           *sock;
144         struct work_struct      accept_work;
145         struct nvmet_port       *nport;
146         struct sockaddr_storage addr;
147         void (*data_ready)(struct sock *);
148 };
149
150 static DEFINE_IDA(nvmet_tcp_queue_ida);
151 static LIST_HEAD(nvmet_tcp_queue_list);
152 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
153
154 static struct workqueue_struct *nvmet_tcp_wq;
155 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
156 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
157 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
158
159 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
160                 struct nvmet_tcp_cmd *cmd)
161 {
162         if (unlikely(!queue->nr_cmds)) {
163                 /* We didn't allocate cmds yet, send 0xffff */
164                 return USHRT_MAX;
165         }
166
167         return cmd - queue->cmds;
168 }
169
170 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
171 {
172         return nvme_is_write(cmd->req.cmd) &&
173                 cmd->rbytes_done < cmd->req.transfer_len;
174 }
175
176 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
177 {
178         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
179 }
180
181 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
182 {
183         return !nvme_is_write(cmd->req.cmd) &&
184                 cmd->req.transfer_len > 0 &&
185                 !cmd->req.cqe->status;
186 }
187
188 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
189 {
190         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
191                 !cmd->rbytes_done;
192 }
193
194 static inline struct nvmet_tcp_cmd *
195 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
196 {
197         struct nvmet_tcp_cmd *cmd;
198
199         cmd = list_first_entry_or_null(&queue->free_list,
200                                 struct nvmet_tcp_cmd, entry);
201         if (!cmd)
202                 return NULL;
203         list_del_init(&cmd->entry);
204
205         cmd->rbytes_done = cmd->wbytes_done = 0;
206         cmd->pdu_len = 0;
207         cmd->pdu_recv = 0;
208         cmd->iov = NULL;
209         cmd->flags = 0;
210         return cmd;
211 }
212
213 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
214 {
215         if (unlikely(cmd == &cmd->queue->connect))
216                 return;
217
218         list_add_tail(&cmd->entry, &cmd->queue->free_list);
219 }
220
221 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
222 {
223         return queue->sock->sk->sk_incoming_cpu;
224 }
225
226 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
227 {
228         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
229 }
230
231 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
232 {
233         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
234 }
235
236 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
237                 void *pdu, size_t len)
238 {
239         struct scatterlist sg;
240
241         sg_init_one(&sg, pdu, len);
242         ahash_request_set_crypt(hash, &sg, pdu + len, len);
243         crypto_ahash_digest(hash);
244 }
245
246 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
247         void *pdu, size_t len)
248 {
249         struct nvme_tcp_hdr *hdr = pdu;
250         __le32 recv_digest;
251         __le32 exp_digest;
252
253         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
254                 pr_err("queue %d: header digest enabled but no header digest\n",
255                         queue->idx);
256                 return -EPROTO;
257         }
258
259         recv_digest = *(__le32 *)(pdu + hdr->hlen);
260         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
261         exp_digest = *(__le32 *)(pdu + hdr->hlen);
262         if (recv_digest != exp_digest) {
263                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
264                         queue->idx, le32_to_cpu(recv_digest),
265                         le32_to_cpu(exp_digest));
266                 return -EPROTO;
267         }
268
269         return 0;
270 }
271
272 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
273 {
274         struct nvme_tcp_hdr *hdr = pdu;
275         u8 digest_len = nvmet_tcp_hdgst_len(queue);
276         u32 len;
277
278         len = le32_to_cpu(hdr->plen) - hdr->hlen -
279                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
280
281         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
282                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
283                 return -EPROTO;
284         }
285
286         return 0;
287 }
288
289 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
290 {
291         struct scatterlist *sg;
292         int i;
293
294         sg = &cmd->req.sg[cmd->sg_idx];
295
296         for (i = 0; i < cmd->nr_mapped; i++)
297                 kunmap(sg_page(&sg[i]));
298 }
299
300 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
301 {
302         struct kvec *iov = cmd->iov;
303         struct scatterlist *sg;
304         u32 length, offset, sg_offset;
305
306         length = cmd->pdu_len;
307         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
308         offset = cmd->rbytes_done;
309         cmd->sg_idx = offset / PAGE_SIZE;
310         sg_offset = offset % PAGE_SIZE;
311         sg = &cmd->req.sg[cmd->sg_idx];
312
313         while (length) {
314                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
315
316                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
317                 iov->iov_len = iov_len;
318
319                 length -= iov_len;
320                 sg = sg_next(sg);
321                 iov++;
322                 sg_offset = 0;
323         }
324
325         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
326                 cmd->nr_mapped, cmd->pdu_len);
327 }
328
329 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
330 {
331         queue->rcv_state = NVMET_TCP_RECV_ERR;
332         if (queue->nvme_sq.ctrl)
333                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
334         else
335                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
336 }
337
338 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
339 {
340         queue->rcv_state = NVMET_TCP_RECV_ERR;
341         if (status == -EPIPE || status == -ECONNRESET)
342                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
343         else
344                 nvmet_tcp_fatal_error(queue);
345 }
346
347 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
348 {
349         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
350         u32 len = le32_to_cpu(sgl->length);
351
352         if (!len)
353                 return 0;
354
355         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
356                           NVME_SGL_FMT_OFFSET)) {
357                 if (!nvme_is_write(cmd->req.cmd))
358                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
359
360                 if (len > cmd->req.port->inline_data_size)
361                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
362                 cmd->pdu_len = len;
363         }
364         cmd->req.transfer_len += len;
365
366         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
367         if (!cmd->req.sg)
368                 return NVME_SC_INTERNAL;
369         cmd->cur_sg = cmd->req.sg;
370
371         if (nvmet_tcp_has_data_in(cmd)) {
372                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
373                                 sizeof(*cmd->iov), GFP_KERNEL);
374                 if (!cmd->iov)
375                         goto err;
376         }
377
378         return 0;
379 err:
380         sgl_free(cmd->req.sg);
381         return NVME_SC_INTERNAL;
382 }
383
384 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
385                 struct nvmet_tcp_cmd *cmd)
386 {
387         ahash_request_set_crypt(hash, cmd->req.sg,
388                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
389         crypto_ahash_digest(hash);
390 }
391
392 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
393                 struct nvmet_tcp_cmd *cmd)
394 {
395         struct scatterlist sg;
396         struct kvec *iov;
397         int i;
398
399         crypto_ahash_init(hash);
400         for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
401                 sg_init_one(&sg, iov->iov_base, iov->iov_len);
402                 ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
403                 crypto_ahash_update(hash);
404         }
405         ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
406         crypto_ahash_final(hash);
407 }
408
409 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
410 {
411         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
412         struct nvmet_tcp_queue *queue = cmd->queue;
413         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
414         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
415
416         cmd->offset = 0;
417         cmd->state = NVMET_TCP_SEND_DATA_PDU;
418
419         pdu->hdr.type = nvme_tcp_c2h_data;
420         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
421                                                 NVME_TCP_F_DATA_SUCCESS : 0);
422         pdu->hdr.hlen = sizeof(*pdu);
423         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
424         pdu->hdr.plen =
425                 cpu_to_le32(pdu->hdr.hlen + hdgst +
426                                 cmd->req.transfer_len + ddgst);
427         pdu->command_id = cmd->req.cqe->command_id;
428         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
429         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
430
431         if (queue->data_digest) {
432                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
433                 nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
434         }
435
436         if (cmd->queue->hdr_digest) {
437                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
438                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
439         }
440 }
441
442 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
443 {
444         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
445         struct nvmet_tcp_queue *queue = cmd->queue;
446         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
447
448         cmd->offset = 0;
449         cmd->state = NVMET_TCP_SEND_R2T;
450
451         pdu->hdr.type = nvme_tcp_r2t;
452         pdu->hdr.flags = 0;
453         pdu->hdr.hlen = sizeof(*pdu);
454         pdu->hdr.pdo = 0;
455         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
456
457         pdu->command_id = cmd->req.cmd->common.command_id;
458         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
459         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
460         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
461         if (cmd->queue->hdr_digest) {
462                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
463                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
464         }
465 }
466
467 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
468 {
469         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
470         struct nvmet_tcp_queue *queue = cmd->queue;
471         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
472
473         cmd->offset = 0;
474         cmd->state = NVMET_TCP_SEND_RESPONSE;
475
476         pdu->hdr.type = nvme_tcp_rsp;
477         pdu->hdr.flags = 0;
478         pdu->hdr.hlen = sizeof(*pdu);
479         pdu->hdr.pdo = 0;
480         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
481         if (cmd->queue->hdr_digest) {
482                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
483                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
484         }
485 }
486
487 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
488 {
489         struct llist_node *node;
490         struct nvmet_tcp_cmd *cmd;
491
492         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
493                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
494                 list_add(&cmd->entry, &queue->resp_send_list);
495                 queue->send_list_len++;
496         }
497 }
498
499 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
500 {
501         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
502                                 struct nvmet_tcp_cmd, entry);
503         if (!queue->snd_cmd) {
504                 nvmet_tcp_process_resp_list(queue);
505                 queue->snd_cmd =
506                         list_first_entry_or_null(&queue->resp_send_list,
507                                         struct nvmet_tcp_cmd, entry);
508                 if (unlikely(!queue->snd_cmd))
509                         return NULL;
510         }
511
512         list_del_init(&queue->snd_cmd->entry);
513         queue->send_list_len--;
514
515         if (nvmet_tcp_need_data_out(queue->snd_cmd))
516                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
517         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
518                 nvmet_setup_r2t_pdu(queue->snd_cmd);
519         else
520                 nvmet_setup_response_pdu(queue->snd_cmd);
521
522         return queue->snd_cmd;
523 }
524
525 static void nvmet_tcp_queue_response(struct nvmet_req *req)
526 {
527         struct nvmet_tcp_cmd *cmd =
528                 container_of(req, struct nvmet_tcp_cmd, req);
529         struct nvmet_tcp_queue  *queue = cmd->queue;
530         struct nvme_sgl_desc *sgl;
531         u32 len;
532
533         if (unlikely(cmd == queue->cmd)) {
534                 sgl = &cmd->req.cmd->common.dptr.sgl;
535                 len = le32_to_cpu(sgl->length);
536
537                 /*
538                  * Wait for inline data before processing the response.
539                  * Avoid using helpers, this might happen before
540                  * nvmet_req_init is completed.
541                  */
542                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
543                     len && len <= cmd->req.port->inline_data_size &&
544                     nvme_is_write(cmd->req.cmd))
545                         return;
546         }
547
548         llist_add(&cmd->lentry, &queue->resp_list);
549         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
550 }
551
552 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
553 {
554         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
555                 nvmet_tcp_queue_response(&cmd->req);
556         else
557                 cmd->req.execute(&cmd->req);
558 }
559
560 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
561 {
562         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
563         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
564         int ret;
565
566         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
567                         offset_in_page(cmd->data_pdu) + cmd->offset,
568                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
569         if (ret <= 0)
570                 return ret;
571
572         cmd->offset += ret;
573         left -= ret;
574
575         if (left)
576                 return -EAGAIN;
577
578         cmd->state = NVMET_TCP_SEND_DATA;
579         cmd->offset  = 0;
580         return 1;
581 }
582
583 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
584 {
585         struct nvmet_tcp_queue *queue = cmd->queue;
586         int ret;
587
588         while (cmd->cur_sg) {
589                 struct page *page = sg_page(cmd->cur_sg);
590                 u32 left = cmd->cur_sg->length - cmd->offset;
591                 int flags = MSG_DONTWAIT;
592
593                 if ((!last_in_batch && cmd->queue->send_list_len) ||
594                     cmd->wbytes_done + left < cmd->req.transfer_len ||
595                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
596                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
597
598                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
599                                         left, flags);
600                 if (ret <= 0)
601                         return ret;
602
603                 cmd->offset += ret;
604                 cmd->wbytes_done += ret;
605
606                 /* Done with sg?*/
607                 if (cmd->offset == cmd->cur_sg->length) {
608                         cmd->cur_sg = sg_next(cmd->cur_sg);
609                         cmd->offset = 0;
610                 }
611         }
612
613         if (queue->data_digest) {
614                 cmd->state = NVMET_TCP_SEND_DDGST;
615                 cmd->offset = 0;
616         } else {
617                 if (queue->nvme_sq.sqhd_disabled) {
618                         cmd->queue->snd_cmd = NULL;
619                         nvmet_tcp_put_cmd(cmd);
620                 } else {
621                         nvmet_setup_response_pdu(cmd);
622                 }
623         }
624
625         if (queue->nvme_sq.sqhd_disabled) {
626                 kfree(cmd->iov);
627                 sgl_free(cmd->req.sg);
628         }
629
630         return 1;
631
632 }
633
634 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
635                 bool last_in_batch)
636 {
637         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
638         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
639         int flags = MSG_DONTWAIT;
640         int ret;
641
642         if (!last_in_batch && cmd->queue->send_list_len)
643                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
644         else
645                 flags |= MSG_EOR;
646
647         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
648                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
649         if (ret <= 0)
650                 return ret;
651         cmd->offset += ret;
652         left -= ret;
653
654         if (left)
655                 return -EAGAIN;
656
657         kfree(cmd->iov);
658         sgl_free(cmd->req.sg);
659         cmd->queue->snd_cmd = NULL;
660         nvmet_tcp_put_cmd(cmd);
661         return 1;
662 }
663
664 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
665 {
666         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
667         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
668         int flags = MSG_DONTWAIT;
669         int ret;
670
671         if (!last_in_batch && cmd->queue->send_list_len)
672                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
673         else
674                 flags |= MSG_EOR;
675
676         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
677                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
678         if (ret <= 0)
679                 return ret;
680         cmd->offset += ret;
681         left -= ret;
682
683         if (left)
684                 return -EAGAIN;
685
686         cmd->queue->snd_cmd = NULL;
687         return 1;
688 }
689
690 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
691 {
692         struct nvmet_tcp_queue *queue = cmd->queue;
693         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
694         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
695         struct kvec iov = {
696                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
697                 .iov_len = left
698         };
699         int ret;
700
701         if (!last_in_batch && cmd->queue->send_list_len)
702                 msg.msg_flags |= MSG_MORE;
703         else
704                 msg.msg_flags |= MSG_EOR;
705
706         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
707         if (unlikely(ret <= 0))
708                 return ret;
709
710         cmd->offset += ret;
711         left -= ret;
712
713         if (left)
714                 return -EAGAIN;
715
716         if (queue->nvme_sq.sqhd_disabled) {
717                 cmd->queue->snd_cmd = NULL;
718                 nvmet_tcp_put_cmd(cmd);
719         } else {
720                 nvmet_setup_response_pdu(cmd);
721         }
722         return 1;
723 }
724
725 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
726                 bool last_in_batch)
727 {
728         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
729         int ret = 0;
730
731         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
732                 cmd = nvmet_tcp_fetch_cmd(queue);
733                 if (unlikely(!cmd))
734                         return 0;
735         }
736
737         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
738                 ret = nvmet_try_send_data_pdu(cmd);
739                 if (ret <= 0)
740                         goto done_send;
741         }
742
743         if (cmd->state == NVMET_TCP_SEND_DATA) {
744                 ret = nvmet_try_send_data(cmd, last_in_batch);
745                 if (ret <= 0)
746                         goto done_send;
747         }
748
749         if (cmd->state == NVMET_TCP_SEND_DDGST) {
750                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
751                 if (ret <= 0)
752                         goto done_send;
753         }
754
755         if (cmd->state == NVMET_TCP_SEND_R2T) {
756                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
757                 if (ret <= 0)
758                         goto done_send;
759         }
760
761         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
762                 ret = nvmet_try_send_response(cmd, last_in_batch);
763
764 done_send:
765         if (ret < 0) {
766                 if (ret == -EAGAIN)
767                         return 0;
768                 return ret;
769         }
770
771         return 1;
772 }
773
774 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
775                 int budget, int *sends)
776 {
777         int i, ret = 0;
778
779         for (i = 0; i < budget; i++) {
780                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
781                 if (unlikely(ret < 0)) {
782                         nvmet_tcp_socket_error(queue, ret);
783                         goto done;
784                 } else if (ret == 0) {
785                         break;
786                 }
787                 (*sends)++;
788         }
789 done:
790         return ret;
791 }
792
793 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
794 {
795         queue->offset = 0;
796         queue->left = sizeof(struct nvme_tcp_hdr);
797         queue->cmd = NULL;
798         queue->rcv_state = NVMET_TCP_RECV_PDU;
799 }
800
801 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
802 {
803         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
804
805         ahash_request_free(queue->rcv_hash);
806         ahash_request_free(queue->snd_hash);
807         crypto_free_ahash(tfm);
808 }
809
810 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
811 {
812         struct crypto_ahash *tfm;
813
814         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
815         if (IS_ERR(tfm))
816                 return PTR_ERR(tfm);
817
818         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
819         if (!queue->snd_hash)
820                 goto free_tfm;
821         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
822
823         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
824         if (!queue->rcv_hash)
825                 goto free_snd_hash;
826         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
827
828         return 0;
829 free_snd_hash:
830         ahash_request_free(queue->snd_hash);
831 free_tfm:
832         crypto_free_ahash(tfm);
833         return -ENOMEM;
834 }
835
836
837 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
838 {
839         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
840         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
841         struct msghdr msg = {};
842         struct kvec iov;
843         int ret;
844
845         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
846                 pr_err("bad nvme-tcp pdu length (%d)\n",
847                         le32_to_cpu(icreq->hdr.plen));
848                 nvmet_tcp_fatal_error(queue);
849         }
850
851         if (icreq->pfv != NVME_TCP_PFV_1_0) {
852                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
853                 return -EPROTO;
854         }
855
856         if (icreq->hpda != 0) {
857                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
858                         icreq->hpda);
859                 return -EPROTO;
860         }
861
862         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
863         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
864         if (queue->hdr_digest || queue->data_digest) {
865                 ret = nvmet_tcp_alloc_crypto(queue);
866                 if (ret)
867                         return ret;
868         }
869
870         memset(icresp, 0, sizeof(*icresp));
871         icresp->hdr.type = nvme_tcp_icresp;
872         icresp->hdr.hlen = sizeof(*icresp);
873         icresp->hdr.pdo = 0;
874         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
875         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
876         icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
877         icresp->cpda = 0;
878         if (queue->hdr_digest)
879                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
880         if (queue->data_digest)
881                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
882
883         iov.iov_base = icresp;
884         iov.iov_len = sizeof(*icresp);
885         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
886         if (ret < 0)
887                 return ret; /* queue removal will cleanup */
888
889         queue->state = NVMET_TCP_Q_LIVE;
890         nvmet_prepare_receive_pdu(queue);
891         return 0;
892 }
893
894 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
895                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
896 {
897         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
898         int ret;
899
900         if (!nvme_is_write(cmd->req.cmd) ||
901             data_len > cmd->req.port->inline_data_size) {
902                 nvmet_prepare_receive_pdu(queue);
903                 return;
904         }
905
906         ret = nvmet_tcp_map_data(cmd);
907         if (unlikely(ret)) {
908                 pr_err("queue %d: failed to map data\n", queue->idx);
909                 nvmet_tcp_fatal_error(queue);
910                 return;
911         }
912
913         queue->rcv_state = NVMET_TCP_RECV_DATA;
914         nvmet_tcp_map_pdu_iovec(cmd);
915         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
916 }
917
918 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
919 {
920         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
921         struct nvmet_tcp_cmd *cmd;
922         unsigned int exp_data_len;
923
924         if (likely(queue->nr_cmds)) {
925                 if (unlikely(data->ttag >= queue->nr_cmds)) {
926                         pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
927                                 queue->idx, data->ttag, queue->nr_cmds);
928                         nvmet_tcp_fatal_error(queue);
929                         return -EPROTO;
930                 }
931                 cmd = &queue->cmds[data->ttag];
932         } else {
933                 cmd = &queue->connect;
934         }
935
936         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
937                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
938                         data->ttag, le32_to_cpu(data->data_offset),
939                         cmd->rbytes_done);
940                 /* FIXME: use path and transport errors */
941                 nvmet_tcp_fatal_error(queue);
942                 return -EPROTO;
943         }
944
945         exp_data_len = le32_to_cpu(data->hdr.plen) -
946                         nvmet_tcp_hdgst_len(queue) -
947                         nvmet_tcp_ddgst_len(queue) -
948                         sizeof(*data);
949
950         cmd->pdu_len = le32_to_cpu(data->data_length);
951         if (unlikely(cmd->pdu_len != exp_data_len ||
952                      cmd->pdu_len == 0 ||
953                      cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
954                 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
955                 /* FIXME: use proper transport errors */
956                 nvmet_tcp_fatal_error(queue);
957                 return -EPROTO;
958         }
959         cmd->pdu_recv = 0;
960         nvmet_tcp_map_pdu_iovec(cmd);
961         queue->cmd = cmd;
962         queue->rcv_state = NVMET_TCP_RECV_DATA;
963
964         return 0;
965 }
966
967 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
968 {
969         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
970         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
971         struct nvmet_req *req;
972         int ret;
973
974         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
975                 if (hdr->type != nvme_tcp_icreq) {
976                         pr_err("unexpected pdu type (%d) before icreq\n",
977                                 hdr->type);
978                         nvmet_tcp_fatal_error(queue);
979                         return -EPROTO;
980                 }
981                 return nvmet_tcp_handle_icreq(queue);
982         }
983
984         if (hdr->type == nvme_tcp_h2c_data) {
985                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
986                 if (unlikely(ret))
987                         return ret;
988                 return 0;
989         }
990
991         queue->cmd = nvmet_tcp_get_cmd(queue);
992         if (unlikely(!queue->cmd)) {
993                 /* This should never happen */
994                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
995                         queue->idx, queue->nr_cmds, queue->send_list_len,
996                         nvme_cmd->common.opcode);
997                 nvmet_tcp_fatal_error(queue);
998                 return -ENOMEM;
999         }
1000
1001         req = &queue->cmd->req;
1002         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1003
1004         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1005                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1006                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1007                         req->cmd, req->cmd->common.command_id,
1008                         req->cmd->common.opcode,
1009                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1010
1011                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1012                 return 0;
1013         }
1014
1015         ret = nvmet_tcp_map_data(queue->cmd);
1016         if (unlikely(ret)) {
1017                 pr_err("queue %d: failed to map data\n", queue->idx);
1018                 if (nvmet_tcp_has_inline_data(queue->cmd))
1019                         nvmet_tcp_fatal_error(queue);
1020                 else
1021                         nvmet_req_complete(req, ret);
1022                 ret = -EAGAIN;
1023                 goto out;
1024         }
1025
1026         if (nvmet_tcp_need_data_in(queue->cmd)) {
1027                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1028                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1029                         nvmet_tcp_map_pdu_iovec(queue->cmd);
1030                         return 0;
1031                 }
1032                 /* send back R2T */
1033                 nvmet_tcp_queue_response(&queue->cmd->req);
1034                 goto out;
1035         }
1036
1037         queue->cmd->req.execute(&queue->cmd->req);
1038 out:
1039         nvmet_prepare_receive_pdu(queue);
1040         return ret;
1041 }
1042
1043 static const u8 nvme_tcp_pdu_sizes[] = {
1044         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1045         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1046         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1047 };
1048
1049 static inline u8 nvmet_tcp_pdu_size(u8 type)
1050 {
1051         size_t idx = type;
1052
1053         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1054                 nvme_tcp_pdu_sizes[idx]) ?
1055                         nvme_tcp_pdu_sizes[idx] : 0;
1056 }
1057
1058 static inline bool nvmet_tcp_pdu_valid(u8 type)
1059 {
1060         switch (type) {
1061         case nvme_tcp_icreq:
1062         case nvme_tcp_cmd:
1063         case nvme_tcp_h2c_data:
1064                 /* fallthru */
1065                 return true;
1066         }
1067
1068         return false;
1069 }
1070
1071 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1072 {
1073         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1074         int len;
1075         struct kvec iov;
1076         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1077
1078 recv:
1079         iov.iov_base = (void *)&queue->pdu + queue->offset;
1080         iov.iov_len = queue->left;
1081         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1082                         iov.iov_len, msg.msg_flags);
1083         if (unlikely(len < 0))
1084                 return len;
1085
1086         queue->offset += len;
1087         queue->left -= len;
1088         if (queue->left)
1089                 return -EAGAIN;
1090
1091         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1092                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1093
1094                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1095                         pr_err("unexpected pdu type %d\n", hdr->type);
1096                         nvmet_tcp_fatal_error(queue);
1097                         return -EIO;
1098                 }
1099
1100                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1101                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1102                         return -EIO;
1103                 }
1104
1105                 queue->left = hdr->hlen - queue->offset + hdgst;
1106                 goto recv;
1107         }
1108
1109         if (queue->hdr_digest &&
1110             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1111                 nvmet_tcp_fatal_error(queue); /* fatal */
1112                 return -EPROTO;
1113         }
1114
1115         if (queue->data_digest &&
1116             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1117                 nvmet_tcp_fatal_error(queue); /* fatal */
1118                 return -EPROTO;
1119         }
1120
1121         return nvmet_tcp_done_recv_pdu(queue);
1122 }
1123
1124 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1125 {
1126         struct nvmet_tcp_queue *queue = cmd->queue;
1127
1128         nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1129         queue->offset = 0;
1130         queue->left = NVME_TCP_DIGEST_LENGTH;
1131         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1132 }
1133
1134 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1135 {
1136         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1137         int ret;
1138
1139         while (msg_data_left(&cmd->recv_msg)) {
1140                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1141                         cmd->recv_msg.msg_flags);
1142                 if (ret <= 0)
1143                         return ret;
1144
1145                 cmd->pdu_recv += ret;
1146                 cmd->rbytes_done += ret;
1147         }
1148
1149         nvmet_tcp_unmap_pdu_iovec(cmd);
1150         if (queue->data_digest) {
1151                 nvmet_tcp_prep_recv_ddgst(cmd);
1152                 return 0;
1153         }
1154
1155         if (cmd->rbytes_done == cmd->req.transfer_len)
1156                 nvmet_tcp_execute_request(cmd);
1157
1158         nvmet_prepare_receive_pdu(queue);
1159         return 0;
1160 }
1161
1162 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1163 {
1164         struct nvmet_tcp_cmd *cmd = queue->cmd;
1165         int ret;
1166         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1167         struct kvec iov = {
1168                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1169                 .iov_len = queue->left
1170         };
1171
1172         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1173                         iov.iov_len, msg.msg_flags);
1174         if (unlikely(ret < 0))
1175                 return ret;
1176
1177         queue->offset += ret;
1178         queue->left -= ret;
1179         if (queue->left)
1180                 return -EAGAIN;
1181
1182         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1183                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1184                         queue->idx, cmd->req.cmd->common.command_id,
1185                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1186                         le32_to_cpu(cmd->exp_ddgst));
1187                 nvmet_tcp_finish_cmd(cmd);
1188                 nvmet_tcp_fatal_error(queue);
1189                 ret = -EPROTO;
1190                 goto out;
1191         }
1192
1193         if (cmd->rbytes_done == cmd->req.transfer_len)
1194                 nvmet_tcp_execute_request(cmd);
1195
1196         ret = 0;
1197 out:
1198         nvmet_prepare_receive_pdu(queue);
1199         return ret;
1200 }
1201
1202 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1203 {
1204         int result = 0;
1205
1206         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1207                 return 0;
1208
1209         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1210                 result = nvmet_tcp_try_recv_pdu(queue);
1211                 if (result != 0)
1212                         goto done_recv;
1213         }
1214
1215         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1216                 result = nvmet_tcp_try_recv_data(queue);
1217                 if (result != 0)
1218                         goto done_recv;
1219         }
1220
1221         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1222                 result = nvmet_tcp_try_recv_ddgst(queue);
1223                 if (result != 0)
1224                         goto done_recv;
1225         }
1226
1227 done_recv:
1228         if (result < 0) {
1229                 if (result == -EAGAIN)
1230                         return 0;
1231                 return result;
1232         }
1233         return 1;
1234 }
1235
1236 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1237                 int budget, int *recvs)
1238 {
1239         int i, ret = 0;
1240
1241         for (i = 0; i < budget; i++) {
1242                 ret = nvmet_tcp_try_recv_one(queue);
1243                 if (unlikely(ret < 0)) {
1244                         nvmet_tcp_socket_error(queue, ret);
1245                         goto done;
1246                 } else if (ret == 0) {
1247                         break;
1248                 }
1249                 (*recvs)++;
1250         }
1251 done:
1252         return ret;
1253 }
1254
1255 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1256 {
1257         spin_lock(&queue->state_lock);
1258         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1259                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1260                 schedule_work(&queue->release_work);
1261         }
1262         spin_unlock(&queue->state_lock);
1263 }
1264
1265 static void nvmet_tcp_io_work(struct work_struct *w)
1266 {
1267         struct nvmet_tcp_queue *queue =
1268                 container_of(w, struct nvmet_tcp_queue, io_work);
1269         bool pending;
1270         int ret, ops = 0;
1271
1272         do {
1273                 pending = false;
1274
1275                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1276                 if (ret > 0)
1277                         pending = true;
1278                 else if (ret < 0)
1279                         return;
1280
1281                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1282                 if (ret > 0)
1283                         pending = true;
1284                 else if (ret < 0)
1285                         return;
1286
1287         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1288
1289         /*
1290          * We exahusted our budget, requeue our selves
1291          */
1292         if (pending)
1293                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1294 }
1295
1296 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1297                 struct nvmet_tcp_cmd *c)
1298 {
1299         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1300
1301         c->queue = queue;
1302         c->req.port = queue->port->nport;
1303
1304         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1305                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1306         if (!c->cmd_pdu)
1307                 return -ENOMEM;
1308         c->req.cmd = &c->cmd_pdu->cmd;
1309
1310         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1311                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1312         if (!c->rsp_pdu)
1313                 goto out_free_cmd;
1314         c->req.cqe = &c->rsp_pdu->cqe;
1315
1316         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1317                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1318         if (!c->data_pdu)
1319                 goto out_free_rsp;
1320
1321         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1322                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1323         if (!c->r2t_pdu)
1324                 goto out_free_data;
1325
1326         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1327
1328         list_add_tail(&c->entry, &queue->free_list);
1329
1330         return 0;
1331 out_free_data:
1332         page_frag_free(c->data_pdu);
1333 out_free_rsp:
1334         page_frag_free(c->rsp_pdu);
1335 out_free_cmd:
1336         page_frag_free(c->cmd_pdu);
1337         return -ENOMEM;
1338 }
1339
1340 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1341 {
1342         page_frag_free(c->r2t_pdu);
1343         page_frag_free(c->data_pdu);
1344         page_frag_free(c->rsp_pdu);
1345         page_frag_free(c->cmd_pdu);
1346 }
1347
1348 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1349 {
1350         struct nvmet_tcp_cmd *cmds;
1351         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1352
1353         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1354         if (!cmds)
1355                 goto out;
1356
1357         for (i = 0; i < nr_cmds; i++) {
1358                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1359                 if (ret)
1360                         goto out_free;
1361         }
1362
1363         queue->cmds = cmds;
1364
1365         return 0;
1366 out_free:
1367         while (--i >= 0)
1368                 nvmet_tcp_free_cmd(cmds + i);
1369         kfree(cmds);
1370 out:
1371         return ret;
1372 }
1373
1374 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1375 {
1376         struct nvmet_tcp_cmd *cmds = queue->cmds;
1377         int i;
1378
1379         for (i = 0; i < queue->nr_cmds; i++)
1380                 nvmet_tcp_free_cmd(cmds + i);
1381
1382         nvmet_tcp_free_cmd(&queue->connect);
1383         kfree(cmds);
1384 }
1385
1386 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1387 {
1388         struct socket *sock = queue->sock;
1389
1390         write_lock_bh(&sock->sk->sk_callback_lock);
1391         sock->sk->sk_data_ready =  queue->data_ready;
1392         sock->sk->sk_state_change = queue->state_change;
1393         sock->sk->sk_write_space = queue->write_space;
1394         sock->sk->sk_user_data = NULL;
1395         write_unlock_bh(&sock->sk->sk_callback_lock);
1396 }
1397
1398 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1399 {
1400         nvmet_req_uninit(&cmd->req);
1401         nvmet_tcp_unmap_pdu_iovec(cmd);
1402         kfree(cmd->iov);
1403         sgl_free(cmd->req.sg);
1404 }
1405
1406 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1407 {
1408         struct nvmet_tcp_cmd *cmd = queue->cmds;
1409         int i;
1410
1411         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1412                 if (nvmet_tcp_need_data_in(cmd))
1413                         nvmet_tcp_finish_cmd(cmd);
1414         }
1415
1416         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1417                 /* failed in connect */
1418                 nvmet_tcp_finish_cmd(&queue->connect);
1419         }
1420 }
1421
1422 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1423 {
1424         struct page *page;
1425         struct nvmet_tcp_queue *queue =
1426                 container_of(w, struct nvmet_tcp_queue, release_work);
1427
1428         mutex_lock(&nvmet_tcp_queue_mutex);
1429         list_del_init(&queue->queue_list);
1430         mutex_unlock(&nvmet_tcp_queue_mutex);
1431
1432         nvmet_tcp_restore_socket_callbacks(queue);
1433         flush_work(&queue->io_work);
1434
1435         nvmet_tcp_uninit_data_in_cmds(queue);
1436         nvmet_sq_destroy(&queue->nvme_sq);
1437         cancel_work_sync(&queue->io_work);
1438         sock_release(queue->sock);
1439         nvmet_tcp_free_cmds(queue);
1440         if (queue->hdr_digest || queue->data_digest)
1441                 nvmet_tcp_free_crypto(queue);
1442         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1443
1444         page = virt_to_head_page(queue->pf_cache.va);
1445         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1446         kfree(queue);
1447 }
1448
1449 static void nvmet_tcp_data_ready(struct sock *sk)
1450 {
1451         struct nvmet_tcp_queue *queue;
1452
1453         read_lock_bh(&sk->sk_callback_lock);
1454         queue = sk->sk_user_data;
1455         if (likely(queue))
1456                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1457         read_unlock_bh(&sk->sk_callback_lock);
1458 }
1459
1460 static void nvmet_tcp_write_space(struct sock *sk)
1461 {
1462         struct nvmet_tcp_queue *queue;
1463
1464         read_lock_bh(&sk->sk_callback_lock);
1465         queue = sk->sk_user_data;
1466         if (unlikely(!queue))
1467                 goto out;
1468
1469         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1470                 queue->write_space(sk);
1471                 goto out;
1472         }
1473
1474         if (sk_stream_is_writeable(sk)) {
1475                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1476                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1477         }
1478 out:
1479         read_unlock_bh(&sk->sk_callback_lock);
1480 }
1481
1482 static void nvmet_tcp_state_change(struct sock *sk)
1483 {
1484         struct nvmet_tcp_queue *queue;
1485
1486         read_lock_bh(&sk->sk_callback_lock);
1487         queue = sk->sk_user_data;
1488         if (!queue)
1489                 goto done;
1490
1491         switch (sk->sk_state) {
1492         case TCP_FIN_WAIT2:
1493         case TCP_LAST_ACK:
1494                 break;
1495         case TCP_FIN_WAIT1:
1496         case TCP_CLOSE_WAIT:
1497         case TCP_CLOSE:
1498                 /* FALLTHRU */
1499                 nvmet_tcp_schedule_release_queue(queue);
1500                 break;
1501         default:
1502                 pr_warn("queue %d unhandled state %d\n",
1503                         queue->idx, sk->sk_state);
1504         }
1505 done:
1506         read_unlock_bh(&sk->sk_callback_lock);
1507 }
1508
1509 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1510 {
1511         struct socket *sock = queue->sock;
1512         struct inet_sock *inet = inet_sk(sock->sk);
1513         int ret;
1514
1515         ret = kernel_getsockname(sock,
1516                 (struct sockaddr *)&queue->sockaddr);
1517         if (ret < 0)
1518                 return ret;
1519
1520         ret = kernel_getpeername(sock,
1521                 (struct sockaddr *)&queue->sockaddr_peer);
1522         if (ret < 0)
1523                 return ret;
1524
1525         /*
1526          * Cleanup whatever is sitting in the TCP transmit queue on socket
1527          * close. This is done to prevent stale data from being sent should
1528          * the network connection be restored before TCP times out.
1529          */
1530         sock_no_linger(sock->sk);
1531
1532         if (so_priority > 0)
1533                 sock_set_priority(sock->sk, so_priority);
1534
1535         /* Set socket type of service */
1536         if (inet->rcv_tos > 0)
1537                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1538
1539         ret = 0;
1540         write_lock_bh(&sock->sk->sk_callback_lock);
1541         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1542                 /*
1543                  * If the socket is already closing, don't even start
1544                  * consuming it
1545                  */
1546                 ret = -ENOTCONN;
1547         } else {
1548                 sock->sk->sk_user_data = queue;
1549                 queue->data_ready = sock->sk->sk_data_ready;
1550                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1551                 queue->state_change = sock->sk->sk_state_change;
1552                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1553                 queue->write_space = sock->sk->sk_write_space;
1554                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1555                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1556         }
1557         write_unlock_bh(&sock->sk->sk_callback_lock);
1558
1559         return ret;
1560 }
1561
1562 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1563                 struct socket *newsock)
1564 {
1565         struct nvmet_tcp_queue *queue;
1566         int ret;
1567
1568         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1569         if (!queue)
1570                 return -ENOMEM;
1571
1572         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1573         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1574         queue->sock = newsock;
1575         queue->port = port;
1576         queue->nr_cmds = 0;
1577         spin_lock_init(&queue->state_lock);
1578         queue->state = NVMET_TCP_Q_CONNECTING;
1579         INIT_LIST_HEAD(&queue->free_list);
1580         init_llist_head(&queue->resp_list);
1581         INIT_LIST_HEAD(&queue->resp_send_list);
1582
1583         queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1584         if (queue->idx < 0) {
1585                 ret = queue->idx;
1586                 goto out_free_queue;
1587         }
1588
1589         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1590         if (ret)
1591                 goto out_ida_remove;
1592
1593         ret = nvmet_sq_init(&queue->nvme_sq);
1594         if (ret)
1595                 goto out_free_connect;
1596
1597         nvmet_prepare_receive_pdu(queue);
1598
1599         mutex_lock(&nvmet_tcp_queue_mutex);
1600         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1601         mutex_unlock(&nvmet_tcp_queue_mutex);
1602
1603         ret = nvmet_tcp_set_queue_sock(queue);
1604         if (ret)
1605                 goto out_destroy_sq;
1606
1607         return 0;
1608 out_destroy_sq:
1609         mutex_lock(&nvmet_tcp_queue_mutex);
1610         list_del_init(&queue->queue_list);
1611         mutex_unlock(&nvmet_tcp_queue_mutex);
1612         nvmet_sq_destroy(&queue->nvme_sq);
1613 out_free_connect:
1614         nvmet_tcp_free_cmd(&queue->connect);
1615 out_ida_remove:
1616         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1617 out_free_queue:
1618         kfree(queue);
1619         return ret;
1620 }
1621
1622 static void nvmet_tcp_accept_work(struct work_struct *w)
1623 {
1624         struct nvmet_tcp_port *port =
1625                 container_of(w, struct nvmet_tcp_port, accept_work);
1626         struct socket *newsock;
1627         int ret;
1628
1629         while (true) {
1630                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1631                 if (ret < 0) {
1632                         if (ret != -EAGAIN)
1633                                 pr_warn("failed to accept err=%d\n", ret);
1634                         return;
1635                 }
1636                 ret = nvmet_tcp_alloc_queue(port, newsock);
1637                 if (ret) {
1638                         pr_err("failed to allocate queue\n");
1639                         sock_release(newsock);
1640                 }
1641         }
1642 }
1643
1644 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1645 {
1646         struct nvmet_tcp_port *port;
1647
1648         read_lock_bh(&sk->sk_callback_lock);
1649         port = sk->sk_user_data;
1650         if (!port)
1651                 goto out;
1652
1653         if (sk->sk_state == TCP_LISTEN)
1654                 schedule_work(&port->accept_work);
1655 out:
1656         read_unlock_bh(&sk->sk_callback_lock);
1657 }
1658
1659 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1660 {
1661         struct nvmet_tcp_port *port;
1662         __kernel_sa_family_t af;
1663         int ret;
1664
1665         port = kzalloc(sizeof(*port), GFP_KERNEL);
1666         if (!port)
1667                 return -ENOMEM;
1668
1669         switch (nport->disc_addr.adrfam) {
1670         case NVMF_ADDR_FAMILY_IP4:
1671                 af = AF_INET;
1672                 break;
1673         case NVMF_ADDR_FAMILY_IP6:
1674                 af = AF_INET6;
1675                 break;
1676         default:
1677                 pr_err("address family %d not supported\n",
1678                                 nport->disc_addr.adrfam);
1679                 ret = -EINVAL;
1680                 goto err_port;
1681         }
1682
1683         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1684                         nport->disc_addr.trsvcid, &port->addr);
1685         if (ret) {
1686                 pr_err("malformed ip/port passed: %s:%s\n",
1687                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1688                 goto err_port;
1689         }
1690
1691         port->nport = nport;
1692         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1693         if (port->nport->inline_data_size < 0)
1694                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1695
1696         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1697                                 IPPROTO_TCP, &port->sock);
1698         if (ret) {
1699                 pr_err("failed to create a socket\n");
1700                 goto err_port;
1701         }
1702
1703         port->sock->sk->sk_user_data = port;
1704         port->data_ready = port->sock->sk->sk_data_ready;
1705         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1706         sock_set_reuseaddr(port->sock->sk);
1707         tcp_sock_set_nodelay(port->sock->sk);
1708         if (so_priority > 0)
1709                 sock_set_priority(port->sock->sk, so_priority);
1710
1711         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1712                         sizeof(port->addr));
1713         if (ret) {
1714                 pr_err("failed to bind port socket %d\n", ret);
1715                 goto err_sock;
1716         }
1717
1718         ret = kernel_listen(port->sock, 128);
1719         if (ret) {
1720                 pr_err("failed to listen %d on port sock\n", ret);
1721                 goto err_sock;
1722         }
1723
1724         nport->priv = port;
1725         pr_info("enabling port %d (%pISpc)\n",
1726                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1727
1728         return 0;
1729
1730 err_sock:
1731         sock_release(port->sock);
1732 err_port:
1733         kfree(port);
1734         return ret;
1735 }
1736
1737 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1738 {
1739         struct nvmet_tcp_queue *queue;
1740
1741         mutex_lock(&nvmet_tcp_queue_mutex);
1742         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1743                 if (queue->port == port)
1744                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1745         mutex_unlock(&nvmet_tcp_queue_mutex);
1746 }
1747
1748 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1749 {
1750         struct nvmet_tcp_port *port = nport->priv;
1751
1752         write_lock_bh(&port->sock->sk->sk_callback_lock);
1753         port->sock->sk->sk_data_ready = port->data_ready;
1754         port->sock->sk->sk_user_data = NULL;
1755         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1756         cancel_work_sync(&port->accept_work);
1757         /*
1758          * Destroy the remaining queues, which are not belong to any
1759          * controller yet.
1760          */
1761         nvmet_tcp_destroy_port_queues(port);
1762
1763         sock_release(port->sock);
1764         kfree(port);
1765 }
1766
1767 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1768 {
1769         struct nvmet_tcp_queue *queue;
1770
1771         mutex_lock(&nvmet_tcp_queue_mutex);
1772         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1773                 if (queue->nvme_sq.ctrl == ctrl)
1774                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1775         mutex_unlock(&nvmet_tcp_queue_mutex);
1776 }
1777
1778 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1779 {
1780         struct nvmet_tcp_queue *queue =
1781                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1782
1783         if (sq->qid == 0) {
1784                 /* Let inflight controller teardown complete */
1785                 flush_scheduled_work();
1786         }
1787
1788         queue->nr_cmds = sq->size * 2;
1789         if (nvmet_tcp_alloc_cmds(queue))
1790                 return NVME_SC_INTERNAL;
1791         return 0;
1792 }
1793
1794 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1795                 struct nvmet_port *nport, char *traddr)
1796 {
1797         struct nvmet_tcp_port *port = nport->priv;
1798
1799         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1800                 struct nvmet_tcp_cmd *cmd =
1801                         container_of(req, struct nvmet_tcp_cmd, req);
1802                 struct nvmet_tcp_queue *queue = cmd->queue;
1803
1804                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1805         } else {
1806                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1807         }
1808 }
1809
1810 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1811         .owner                  = THIS_MODULE,
1812         .type                   = NVMF_TRTYPE_TCP,
1813         .msdbd                  = 1,
1814         .add_port               = nvmet_tcp_add_port,
1815         .remove_port            = nvmet_tcp_remove_port,
1816         .queue_response         = nvmet_tcp_queue_response,
1817         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1818         .install_queue          = nvmet_tcp_install_queue,
1819         .disc_traddr            = nvmet_tcp_disc_port_addr,
1820 };
1821
1822 static int __init nvmet_tcp_init(void)
1823 {
1824         int ret;
1825
1826         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1827                                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1828         if (!nvmet_tcp_wq)
1829                 return -ENOMEM;
1830
1831         ret = nvmet_register_transport(&nvmet_tcp_ops);
1832         if (ret)
1833                 goto err;
1834
1835         return 0;
1836 err:
1837         destroy_workqueue(nvmet_tcp_wq);
1838         return ret;
1839 }
1840
1841 static void __exit nvmet_tcp_exit(void)
1842 {
1843         struct nvmet_tcp_queue *queue;
1844
1845         nvmet_unregister_transport(&nvmet_tcp_ops);
1846
1847         flush_scheduled_work();
1848         mutex_lock(&nvmet_tcp_queue_mutex);
1849         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1850                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1851         mutex_unlock(&nvmet_tcp_queue_mutex);
1852         flush_scheduled_work();
1853
1854         destroy_workqueue(nvmet_tcp_wq);
1855         ida_destroy(&nvmet_tcp_queue_ida);
1856 }
1857
1858 module_init(nvmet_tcp_init);
1859 module_exit(nvmet_tcp_exit);
1860
1861 MODULE_LICENSE("GPL v2");
1862 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */