GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / nvme / target / rdma.c
1 /*
2  * NVMe over Fabrics RDMA target.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
27
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
30 #include <rdma/rw.h>
31
32 #include <linux/nvme-rdma.h>
33 #include "nvmet.h"
34
35 /*
36  * We allow up to a page of inline data to go with the SQE
37  */
38 #define NVMET_RDMA_INLINE_DATA_SIZE     PAGE_SIZE
39
40 struct nvmet_rdma_cmd {
41         struct ib_sge           sge[2];
42         struct ib_cqe           cqe;
43         struct ib_recv_wr       wr;
44         struct scatterlist      inline_sg;
45         struct page             *inline_page;
46         struct nvme_command     *nvme_cmd;
47         struct nvmet_rdma_queue *queue;
48 };
49
50 enum {
51         NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
52         NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
53 };
54
55 struct nvmet_rdma_rsp {
56         struct ib_sge           send_sge;
57         struct ib_cqe           send_cqe;
58         struct ib_send_wr       send_wr;
59
60         struct nvmet_rdma_cmd   *cmd;
61         struct nvmet_rdma_queue *queue;
62
63         struct ib_cqe           read_cqe;
64         struct rdma_rw_ctx      rw;
65
66         struct nvmet_req        req;
67
68         u8                      n_rdma;
69         u32                     flags;
70         u32                     invalidate_rkey;
71
72         struct list_head        wait_list;
73         struct list_head        free_list;
74 };
75
76 enum nvmet_rdma_queue_state {
77         NVMET_RDMA_Q_CONNECTING,
78         NVMET_RDMA_Q_LIVE,
79         NVMET_RDMA_Q_DISCONNECTING,
80         NVMET_RDMA_IN_DEVICE_REMOVAL,
81 };
82
83 struct nvmet_rdma_queue {
84         struct rdma_cm_id       *cm_id;
85         struct nvmet_port       *port;
86         struct ib_cq            *cq;
87         atomic_t                sq_wr_avail;
88         struct nvmet_rdma_device *dev;
89         spinlock_t              state_lock;
90         enum nvmet_rdma_queue_state state;
91         struct nvmet_cq         nvme_cq;
92         struct nvmet_sq         nvme_sq;
93
94         struct nvmet_rdma_rsp   *rsps;
95         struct list_head        free_rsps;
96         spinlock_t              rsps_lock;
97         struct nvmet_rdma_cmd   *cmds;
98
99         struct work_struct      release_work;
100         struct list_head        rsp_wait_list;
101         struct list_head        rsp_wr_wait_list;
102         spinlock_t              rsp_wr_wait_lock;
103
104         int                     idx;
105         int                     host_qid;
106         int                     recv_queue_size;
107         int                     send_queue_size;
108
109         struct list_head        queue_list;
110 };
111
112 struct nvmet_rdma_device {
113         struct ib_device        *device;
114         struct ib_pd            *pd;
115         struct ib_srq           *srq;
116         struct nvmet_rdma_cmd   *srq_cmds;
117         size_t                  srq_size;
118         struct kref             ref;
119         struct list_head        entry;
120 };
121
122 static bool nvmet_rdma_use_srq;
123 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
124 MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
125
126 static DEFINE_IDA(nvmet_rdma_queue_ida);
127 static LIST_HEAD(nvmet_rdma_queue_list);
128 static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
134 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
135 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
137 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
138 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
139
140 static struct nvmet_fabrics_ops nvmet_rdma_ops;
141
142 /* XXX: really should move to a generic header sooner or later.. */
143 static inline u32 get_unaligned_le24(const u8 *p)
144 {
145         return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
146 }
147
148 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
149 {
150         return nvme_is_write(rsp->req.cmd) &&
151                 rsp->req.data_len &&
152                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
153 }
154
155 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
156 {
157         return !nvme_is_write(rsp->req.cmd) &&
158                 rsp->req.data_len &&
159                 !rsp->req.rsp->status &&
160                 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
161 }
162
163 static inline struct nvmet_rdma_rsp *
164 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
165 {
166         struct nvmet_rdma_rsp *rsp;
167         unsigned long flags;
168
169         spin_lock_irqsave(&queue->rsps_lock, flags);
170         rsp = list_first_entry(&queue->free_rsps,
171                                 struct nvmet_rdma_rsp, free_list);
172         list_del(&rsp->free_list);
173         spin_unlock_irqrestore(&queue->rsps_lock, flags);
174
175         return rsp;
176 }
177
178 static inline void
179 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
180 {
181         unsigned long flags;
182
183         spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
184         list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
185         spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
186 }
187
188 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents)
189 {
190         struct scatterlist *sg;
191         int count;
192
193         if (!sgl || !nents)
194                 return;
195
196         for_each_sg(sgl, sg, nents, count)
197                 __free_page(sg_page(sg));
198         kfree(sgl);
199 }
200
201 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents,
202                 u32 length)
203 {
204         struct scatterlist *sg;
205         struct page *page;
206         unsigned int nent;
207         int i = 0;
208
209         nent = DIV_ROUND_UP(length, PAGE_SIZE);
210         sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
211         if (!sg)
212                 goto out;
213
214         sg_init_table(sg, nent);
215
216         while (length) {
217                 u32 page_len = min_t(u32, length, PAGE_SIZE);
218
219                 page = alloc_page(GFP_KERNEL);
220                 if (!page)
221                         goto out_free_pages;
222
223                 sg_set_page(&sg[i], page, page_len, 0);
224                 length -= page_len;
225                 i++;
226         }
227         *sgl = sg;
228         *nents = nent;
229         return 0;
230
231 out_free_pages:
232         while (i > 0) {
233                 i--;
234                 __free_page(sg_page(&sg[i]));
235         }
236         kfree(sg);
237 out:
238         return NVME_SC_INTERNAL;
239 }
240
241 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
242                         struct nvmet_rdma_cmd *c, bool admin)
243 {
244         /* NVMe command / RDMA RECV */
245         c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
246         if (!c->nvme_cmd)
247                 goto out;
248
249         c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
250                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
251         if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
252                 goto out_free_cmd;
253
254         c->sge[0].length = sizeof(*c->nvme_cmd);
255         c->sge[0].lkey = ndev->pd->local_dma_lkey;
256
257         if (!admin) {
258                 c->inline_page = alloc_pages(GFP_KERNEL,
259                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
260                 if (!c->inline_page)
261                         goto out_unmap_cmd;
262                 c->sge[1].addr = ib_dma_map_page(ndev->device,
263                                 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE,
264                                 DMA_FROM_DEVICE);
265                 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr))
266                         goto out_free_inline_page;
267                 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE;
268                 c->sge[1].lkey = ndev->pd->local_dma_lkey;
269         }
270
271         c->cqe.done = nvmet_rdma_recv_done;
272
273         c->wr.wr_cqe = &c->cqe;
274         c->wr.sg_list = c->sge;
275         c->wr.num_sge = admin ? 1 : 2;
276
277         return 0;
278
279 out_free_inline_page:
280         if (!admin) {
281                 __free_pages(c->inline_page,
282                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
283         }
284 out_unmap_cmd:
285         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
286                         sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
287 out_free_cmd:
288         kfree(c->nvme_cmd);
289
290 out:
291         return -ENOMEM;
292 }
293
294 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
295                 struct nvmet_rdma_cmd *c, bool admin)
296 {
297         if (!admin) {
298                 ib_dma_unmap_page(ndev->device, c->sge[1].addr,
299                                 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE);
300                 __free_pages(c->inline_page,
301                                 get_order(NVMET_RDMA_INLINE_DATA_SIZE));
302         }
303         ib_dma_unmap_single(ndev->device, c->sge[0].addr,
304                                 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
305         kfree(c->nvme_cmd);
306 }
307
308 static struct nvmet_rdma_cmd *
309 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
310                 int nr_cmds, bool admin)
311 {
312         struct nvmet_rdma_cmd *cmds;
313         int ret = -EINVAL, i;
314
315         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
316         if (!cmds)
317                 goto out;
318
319         for (i = 0; i < nr_cmds; i++) {
320                 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
321                 if (ret)
322                         goto out_free;
323         }
324
325         return cmds;
326
327 out_free:
328         while (--i >= 0)
329                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
330         kfree(cmds);
331 out:
332         return ERR_PTR(ret);
333 }
334
335 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
336                 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
337 {
338         int i;
339
340         for (i = 0; i < nr_cmds; i++)
341                 nvmet_rdma_free_cmd(ndev, cmds + i, admin);
342         kfree(cmds);
343 }
344
345 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
346                 struct nvmet_rdma_rsp *r)
347 {
348         /* NVMe CQE / RDMA SEND */
349         r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
350         if (!r->req.rsp)
351                 goto out;
352
353         r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
354                         sizeof(*r->req.rsp), DMA_TO_DEVICE);
355         if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
356                 goto out_free_rsp;
357
358         r->send_sge.length = sizeof(*r->req.rsp);
359         r->send_sge.lkey = ndev->pd->local_dma_lkey;
360
361         r->send_cqe.done = nvmet_rdma_send_done;
362
363         r->send_wr.wr_cqe = &r->send_cqe;
364         r->send_wr.sg_list = &r->send_sge;
365         r->send_wr.num_sge = 1;
366         r->send_wr.send_flags = IB_SEND_SIGNALED;
367
368         /* Data In / RDMA READ */
369         r->read_cqe.done = nvmet_rdma_read_data_done;
370         return 0;
371
372 out_free_rsp:
373         kfree(r->req.rsp);
374 out:
375         return -ENOMEM;
376 }
377
378 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
379                 struct nvmet_rdma_rsp *r)
380 {
381         ib_dma_unmap_single(ndev->device, r->send_sge.addr,
382                                 sizeof(*r->req.rsp), DMA_TO_DEVICE);
383         kfree(r->req.rsp);
384 }
385
386 static int
387 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
388 {
389         struct nvmet_rdma_device *ndev = queue->dev;
390         int nr_rsps = queue->recv_queue_size * 2;
391         int ret = -EINVAL, i;
392
393         queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
394                         GFP_KERNEL);
395         if (!queue->rsps)
396                 goto out;
397
398         for (i = 0; i < nr_rsps; i++) {
399                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
400
401                 ret = nvmet_rdma_alloc_rsp(ndev, rsp);
402                 if (ret)
403                         goto out_free;
404
405                 list_add_tail(&rsp->free_list, &queue->free_rsps);
406         }
407
408         return 0;
409
410 out_free:
411         while (--i >= 0) {
412                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
413
414                 list_del(&rsp->free_list);
415                 nvmet_rdma_free_rsp(ndev, rsp);
416         }
417         kfree(queue->rsps);
418 out:
419         return ret;
420 }
421
422 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
423 {
424         struct nvmet_rdma_device *ndev = queue->dev;
425         int i, nr_rsps = queue->recv_queue_size * 2;
426
427         for (i = 0; i < nr_rsps; i++) {
428                 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
429
430                 list_del(&rsp->free_list);
431                 nvmet_rdma_free_rsp(ndev, rsp);
432         }
433         kfree(queue->rsps);
434 }
435
436 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
437                 struct nvmet_rdma_cmd *cmd)
438 {
439         struct ib_recv_wr *bad_wr;
440
441         if (ndev->srq)
442                 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
443         return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
444 }
445
446 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
447 {
448         spin_lock(&queue->rsp_wr_wait_lock);
449         while (!list_empty(&queue->rsp_wr_wait_list)) {
450                 struct nvmet_rdma_rsp *rsp;
451                 bool ret;
452
453                 rsp = list_entry(queue->rsp_wr_wait_list.next,
454                                 struct nvmet_rdma_rsp, wait_list);
455                 list_del(&rsp->wait_list);
456
457                 spin_unlock(&queue->rsp_wr_wait_lock);
458                 ret = nvmet_rdma_execute_command(rsp);
459                 spin_lock(&queue->rsp_wr_wait_lock);
460
461                 if (!ret) {
462                         list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
463                         break;
464                 }
465         }
466         spin_unlock(&queue->rsp_wr_wait_lock);
467 }
468
469
470 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
471 {
472         struct nvmet_rdma_queue *queue = rsp->queue;
473
474         atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
475
476         if (rsp->n_rdma) {
477                 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
478                                 queue->cm_id->port_num, rsp->req.sg,
479                                 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
480         }
481
482         if (rsp->req.sg != &rsp->cmd->inline_sg)
483                 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt);
484
485         if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
486                 nvmet_rdma_process_wr_wait_list(queue);
487
488         nvmet_rdma_put_rsp(rsp);
489 }
490
491 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
492 {
493         if (queue->nvme_sq.ctrl) {
494                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
495         } else {
496                 /*
497                  * we didn't setup the controller yet in case
498                  * of admin connect error, just disconnect and
499                  * cleanup the queue
500                  */
501                 nvmet_rdma_queue_disconnect(queue);
502         }
503 }
504
505 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
506 {
507         struct nvmet_rdma_rsp *rsp =
508                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
509
510         nvmet_rdma_release_rsp(rsp);
511
512         if (unlikely(wc->status != IB_WC_SUCCESS &&
513                      wc->status != IB_WC_WR_FLUSH_ERR)) {
514                 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
515                         wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
516                 nvmet_rdma_error_comp(rsp->queue);
517         }
518 }
519
520 static void nvmet_rdma_queue_response(struct nvmet_req *req)
521 {
522         struct nvmet_rdma_rsp *rsp =
523                 container_of(req, struct nvmet_rdma_rsp, req);
524         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
525         struct ib_send_wr *first_wr, *bad_wr;
526
527         if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
528                 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
529                 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
530         } else {
531                 rsp->send_wr.opcode = IB_WR_SEND;
532         }
533
534         if (nvmet_rdma_need_data_out(rsp))
535                 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
536                                 cm_id->port_num, NULL, &rsp->send_wr);
537         else
538                 first_wr = &rsp->send_wr;
539
540         nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
541         if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) {
542                 pr_err("sending cmd response failed\n");
543                 nvmet_rdma_release_rsp(rsp);
544         }
545 }
546
547 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
548 {
549         struct nvmet_rdma_rsp *rsp =
550                 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
551         struct nvmet_rdma_queue *queue = cq->cq_context;
552
553         WARN_ON(rsp->n_rdma <= 0);
554         atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
555         rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
556                         queue->cm_id->port_num, rsp->req.sg,
557                         rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
558         rsp->n_rdma = 0;
559
560         if (unlikely(wc->status != IB_WC_SUCCESS)) {
561                 nvmet_rdma_release_rsp(rsp);
562                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
563                         pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
564                                 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
565                         nvmet_rdma_error_comp(queue);
566                 }
567                 return;
568         }
569
570         rsp->req.execute(&rsp->req);
571 }
572
573 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
574                 u64 off)
575 {
576         sg_init_table(&rsp->cmd->inline_sg, 1);
577         sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off);
578         rsp->req.sg = &rsp->cmd->inline_sg;
579         rsp->req.sg_cnt = 1;
580 }
581
582 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
583 {
584         struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
585         u64 off = le64_to_cpu(sgl->addr);
586         u32 len = le32_to_cpu(sgl->length);
587
588         if (!nvme_is_write(rsp->req.cmd))
589                 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
590
591         if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) {
592                 pr_err("invalid inline data offset!\n");
593                 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
594         }
595
596         /* no data command? */
597         if (!len)
598                 return 0;
599
600         nvmet_rdma_use_inline_sg(rsp, len, off);
601         rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
602         return 0;
603 }
604
605 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
606                 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
607 {
608         struct rdma_cm_id *cm_id = rsp->queue->cm_id;
609         u64 addr = le64_to_cpu(sgl->addr);
610         u32 len = get_unaligned_le24(sgl->length);
611         u32 key = get_unaligned_le32(sgl->key);
612         int ret;
613         u16 status;
614
615         /* no data command? */
616         if (!len)
617                 return 0;
618
619         status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt,
620                         len);
621         if (status)
622                 return status;
623
624         ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
625                         rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
626                         nvmet_data_dir(&rsp->req));
627         if (ret < 0)
628                 return NVME_SC_INTERNAL;
629         rsp->n_rdma += ret;
630
631         if (invalidate) {
632                 rsp->invalidate_rkey = key;
633                 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
634         }
635
636         return 0;
637 }
638
639 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
640 {
641         struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
642
643         switch (sgl->type >> 4) {
644         case NVME_SGL_FMT_DATA_DESC:
645                 switch (sgl->type & 0xf) {
646                 case NVME_SGL_FMT_OFFSET:
647                         return nvmet_rdma_map_sgl_inline(rsp);
648                 default:
649                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
650                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
651                 }
652         case NVME_KEY_SGL_FMT_DATA_DESC:
653                 switch (sgl->type & 0xf) {
654                 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
655                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
656                 case NVME_SGL_FMT_ADDRESS:
657                         return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
658                 default:
659                         pr_err("invalid SGL subtype: %#x\n", sgl->type);
660                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
661                 }
662         default:
663                 pr_err("invalid SGL type: %#x\n", sgl->type);
664                 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
665         }
666 }
667
668 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
669 {
670         struct nvmet_rdma_queue *queue = rsp->queue;
671
672         if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
673                         &queue->sq_wr_avail) < 0)) {
674                 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
675                                 1 + rsp->n_rdma, queue->idx,
676                                 queue->nvme_sq.ctrl->cntlid);
677                 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
678                 return false;
679         }
680
681         if (nvmet_rdma_need_data_in(rsp)) {
682                 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
683                                 queue->cm_id->port_num, &rsp->read_cqe, NULL))
684                         nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
685         } else {
686                 rsp->req.execute(&rsp->req);
687         }
688
689         return true;
690 }
691
692 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
693                 struct nvmet_rdma_rsp *cmd)
694 {
695         u16 status;
696
697         cmd->queue = queue;
698         cmd->n_rdma = 0;
699         cmd->req.port = queue->port;
700
701         if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
702                         &queue->nvme_sq, &nvmet_rdma_ops))
703                 return;
704
705         status = nvmet_rdma_map_sgl(cmd);
706         if (status)
707                 goto out_err;
708
709         if (unlikely(!nvmet_rdma_execute_command(cmd))) {
710                 spin_lock(&queue->rsp_wr_wait_lock);
711                 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
712                 spin_unlock(&queue->rsp_wr_wait_lock);
713         }
714
715         return;
716
717 out_err:
718         nvmet_req_complete(&cmd->req, status);
719 }
720
721 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
722 {
723         struct nvmet_rdma_cmd *cmd =
724                 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
725         struct nvmet_rdma_queue *queue = cq->cq_context;
726         struct nvmet_rdma_rsp *rsp;
727
728         if (unlikely(wc->status != IB_WC_SUCCESS)) {
729                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
730                         pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
731                                 wc->wr_cqe, ib_wc_status_msg(wc->status),
732                                 wc->status);
733                         nvmet_rdma_error_comp(queue);
734                 }
735                 return;
736         }
737
738         if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
739                 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
740                 nvmet_rdma_error_comp(queue);
741                 return;
742         }
743
744         cmd->queue = queue;
745         rsp = nvmet_rdma_get_rsp(queue);
746         rsp->cmd = cmd;
747         rsp->flags = 0;
748         rsp->req.cmd = cmd->nvme_cmd;
749
750         if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
751                 unsigned long flags;
752
753                 spin_lock_irqsave(&queue->state_lock, flags);
754                 if (queue->state == NVMET_RDMA_Q_CONNECTING)
755                         list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
756                 else
757                         nvmet_rdma_put_rsp(rsp);
758                 spin_unlock_irqrestore(&queue->state_lock, flags);
759                 return;
760         }
761
762         nvmet_rdma_handle_command(queue, rsp);
763 }
764
765 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
766 {
767         if (!ndev->srq)
768                 return;
769
770         nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
771         ib_destroy_srq(ndev->srq);
772 }
773
774 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
775 {
776         struct ib_srq_init_attr srq_attr = { NULL, };
777         struct ib_srq *srq;
778         size_t srq_size;
779         int ret, i;
780
781         srq_size = 4095;        /* XXX: tune */
782
783         srq_attr.attr.max_wr = srq_size;
784         srq_attr.attr.max_sge = 2;
785         srq_attr.attr.srq_limit = 0;
786         srq_attr.srq_type = IB_SRQT_BASIC;
787         srq = ib_create_srq(ndev->pd, &srq_attr);
788         if (IS_ERR(srq)) {
789                 /*
790                  * If SRQs aren't supported we just go ahead and use normal
791                  * non-shared receive queues.
792                  */
793                 pr_info("SRQ requested but not supported.\n");
794                 return 0;
795         }
796
797         ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
798         if (IS_ERR(ndev->srq_cmds)) {
799                 ret = PTR_ERR(ndev->srq_cmds);
800                 goto out_destroy_srq;
801         }
802
803         ndev->srq = srq;
804         ndev->srq_size = srq_size;
805
806         for (i = 0; i < srq_size; i++)
807                 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
808
809         return 0;
810
811 out_destroy_srq:
812         ib_destroy_srq(srq);
813         return ret;
814 }
815
816 static void nvmet_rdma_free_dev(struct kref *ref)
817 {
818         struct nvmet_rdma_device *ndev =
819                 container_of(ref, struct nvmet_rdma_device, ref);
820
821         mutex_lock(&device_list_mutex);
822         list_del(&ndev->entry);
823         mutex_unlock(&device_list_mutex);
824
825         nvmet_rdma_destroy_srq(ndev);
826         ib_dealloc_pd(ndev->pd);
827
828         kfree(ndev);
829 }
830
831 static struct nvmet_rdma_device *
832 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
833 {
834         struct nvmet_rdma_device *ndev;
835         int ret;
836
837         mutex_lock(&device_list_mutex);
838         list_for_each_entry(ndev, &device_list, entry) {
839                 if (ndev->device->node_guid == cm_id->device->node_guid &&
840                     kref_get_unless_zero(&ndev->ref))
841                         goto out_unlock;
842         }
843
844         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
845         if (!ndev)
846                 goto out_err;
847
848         ndev->device = cm_id->device;
849         kref_init(&ndev->ref);
850
851         ndev->pd = ib_alloc_pd(ndev->device, 0);
852         if (IS_ERR(ndev->pd))
853                 goto out_free_dev;
854
855         if (nvmet_rdma_use_srq) {
856                 ret = nvmet_rdma_init_srq(ndev);
857                 if (ret)
858                         goto out_free_pd;
859         }
860
861         list_add(&ndev->entry, &device_list);
862 out_unlock:
863         mutex_unlock(&device_list_mutex);
864         pr_debug("added %s.\n", ndev->device->name);
865         return ndev;
866
867 out_free_pd:
868         ib_dealloc_pd(ndev->pd);
869 out_free_dev:
870         kfree(ndev);
871 out_err:
872         mutex_unlock(&device_list_mutex);
873         return NULL;
874 }
875
876 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
877 {
878         struct ib_qp_init_attr qp_attr;
879         struct nvmet_rdma_device *ndev = queue->dev;
880         int comp_vector, nr_cqe, ret, i;
881
882         /*
883          * Spread the io queues across completion vectors,
884          * but still keep all admin queues on vector 0.
885          */
886         comp_vector = !queue->host_qid ? 0 :
887                 queue->idx % ndev->device->num_comp_vectors;
888
889         /*
890          * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
891          */
892         nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
893
894         queue->cq = ib_alloc_cq(ndev->device, queue,
895                         nr_cqe + 1, comp_vector,
896                         IB_POLL_WORKQUEUE);
897         if (IS_ERR(queue->cq)) {
898                 ret = PTR_ERR(queue->cq);
899                 pr_err("failed to create CQ cqe= %d ret= %d\n",
900                        nr_cqe + 1, ret);
901                 goto out;
902         }
903
904         memset(&qp_attr, 0, sizeof(qp_attr));
905         qp_attr.qp_context = queue;
906         qp_attr.event_handler = nvmet_rdma_qp_event;
907         qp_attr.send_cq = queue->cq;
908         qp_attr.recv_cq = queue->cq;
909         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
910         qp_attr.qp_type = IB_QPT_RC;
911         /* +1 for drain */
912         qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
913         qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
914         qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
915                                         ndev->device->attrs.max_sge);
916
917         if (ndev->srq) {
918                 qp_attr.srq = ndev->srq;
919         } else {
920                 /* +1 for drain */
921                 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
922                 qp_attr.cap.max_recv_sge = 2;
923         }
924
925         ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
926         if (ret) {
927                 pr_err("failed to create_qp ret= %d\n", ret);
928                 goto err_destroy_cq;
929         }
930
931         atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
932
933         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
934                  __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
935                  qp_attr.cap.max_send_wr, queue->cm_id);
936
937         if (!ndev->srq) {
938                 for (i = 0; i < queue->recv_queue_size; i++) {
939                         queue->cmds[i].queue = queue;
940                         nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
941                 }
942         }
943
944 out:
945         return ret;
946
947 err_destroy_cq:
948         ib_free_cq(queue->cq);
949         goto out;
950 }
951
952 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
953 {
954         ib_drain_qp(queue->cm_id->qp);
955         rdma_destroy_qp(queue->cm_id);
956         ib_free_cq(queue->cq);
957 }
958
959 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
960 {
961         pr_info("freeing queue %d\n", queue->idx);
962
963         nvmet_sq_destroy(&queue->nvme_sq);
964
965         nvmet_rdma_destroy_queue_ib(queue);
966         if (!queue->dev->srq) {
967                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
968                                 queue->recv_queue_size,
969                                 !queue->host_qid);
970         }
971         nvmet_rdma_free_rsps(queue);
972         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
973         kfree(queue);
974 }
975
976 static void nvmet_rdma_release_queue_work(struct work_struct *w)
977 {
978         struct nvmet_rdma_queue *queue =
979                 container_of(w, struct nvmet_rdma_queue, release_work);
980         struct rdma_cm_id *cm_id = queue->cm_id;
981         struct nvmet_rdma_device *dev = queue->dev;
982         enum nvmet_rdma_queue_state state = queue->state;
983
984         nvmet_rdma_free_queue(queue);
985
986         if (state != NVMET_RDMA_IN_DEVICE_REMOVAL)
987                 rdma_destroy_id(cm_id);
988
989         kref_put(&dev->ref, nvmet_rdma_free_dev);
990 }
991
992 static int
993 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
994                                 struct nvmet_rdma_queue *queue)
995 {
996         struct nvme_rdma_cm_req *req;
997
998         req = (struct nvme_rdma_cm_req *)conn->private_data;
999         if (!req || conn->private_data_len == 0)
1000                 return NVME_RDMA_CM_INVALID_LEN;
1001
1002         if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1003                 return NVME_RDMA_CM_INVALID_RECFMT;
1004
1005         queue->host_qid = le16_to_cpu(req->qid);
1006
1007         /*
1008          * req->hsqsize corresponds to our recv queue size plus 1
1009          * req->hrqsize corresponds to our send queue size
1010          */
1011         queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1012         queue->send_queue_size = le16_to_cpu(req->hrqsize);
1013
1014         if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH)
1015                 return NVME_RDMA_CM_INVALID_HSQSIZE;
1016
1017         /* XXX: Should we enforce some kind of max for IO queues? */
1018
1019         return 0;
1020 }
1021
1022 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1023                                 enum nvme_rdma_cm_status status)
1024 {
1025         struct nvme_rdma_cm_rej rej;
1026
1027         rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1028         rej.sts = cpu_to_le16(status);
1029
1030         return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
1031 }
1032
1033 static struct nvmet_rdma_queue *
1034 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1035                 struct rdma_cm_id *cm_id,
1036                 struct rdma_cm_event *event)
1037 {
1038         struct nvmet_rdma_queue *queue;
1039         int ret;
1040
1041         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1042         if (!queue) {
1043                 ret = NVME_RDMA_CM_NO_RSC;
1044                 goto out_reject;
1045         }
1046
1047         ret = nvmet_sq_init(&queue->nvme_sq);
1048         if (ret)
1049                 goto out_free_queue;
1050
1051         ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1052         if (ret)
1053                 goto out_destroy_sq;
1054
1055         /*
1056          * Schedules the actual release because calling rdma_destroy_id from
1057          * inside a CM callback would trigger a deadlock. (great API design..)
1058          */
1059         INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1060         queue->dev = ndev;
1061         queue->cm_id = cm_id;
1062
1063         spin_lock_init(&queue->state_lock);
1064         queue->state = NVMET_RDMA_Q_CONNECTING;
1065         INIT_LIST_HEAD(&queue->rsp_wait_list);
1066         INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1067         spin_lock_init(&queue->rsp_wr_wait_lock);
1068         INIT_LIST_HEAD(&queue->free_rsps);
1069         spin_lock_init(&queue->rsps_lock);
1070         INIT_LIST_HEAD(&queue->queue_list);
1071
1072         queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1073         if (queue->idx < 0) {
1074                 ret = NVME_RDMA_CM_NO_RSC;
1075                 goto out_free_queue;
1076         }
1077
1078         ret = nvmet_rdma_alloc_rsps(queue);
1079         if (ret) {
1080                 ret = NVME_RDMA_CM_NO_RSC;
1081                 goto out_ida_remove;
1082         }
1083
1084         if (!ndev->srq) {
1085                 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1086                                 queue->recv_queue_size,
1087                                 !queue->host_qid);
1088                 if (IS_ERR(queue->cmds)) {
1089                         ret = NVME_RDMA_CM_NO_RSC;
1090                         goto out_free_responses;
1091                 }
1092         }
1093
1094         ret = nvmet_rdma_create_queue_ib(queue);
1095         if (ret) {
1096                 pr_err("%s: creating RDMA queue failed (%d).\n",
1097                         __func__, ret);
1098                 ret = NVME_RDMA_CM_NO_RSC;
1099                 goto out_free_cmds;
1100         }
1101
1102         return queue;
1103
1104 out_free_cmds:
1105         if (!ndev->srq) {
1106                 nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1107                                 queue->recv_queue_size,
1108                                 !queue->host_qid);
1109         }
1110 out_free_responses:
1111         nvmet_rdma_free_rsps(queue);
1112 out_ida_remove:
1113         ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1114 out_destroy_sq:
1115         nvmet_sq_destroy(&queue->nvme_sq);
1116 out_free_queue:
1117         kfree(queue);
1118 out_reject:
1119         nvmet_rdma_cm_reject(cm_id, ret);
1120         return NULL;
1121 }
1122
1123 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1124 {
1125         struct nvmet_rdma_queue *queue = priv;
1126
1127         switch (event->event) {
1128         case IB_EVENT_COMM_EST:
1129                 rdma_notify(queue->cm_id, event->event);
1130                 break;
1131         default:
1132                 pr_err("received unrecognized IB QP event %d\n", event->event);
1133                 break;
1134         }
1135 }
1136
1137 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1138                 struct nvmet_rdma_queue *queue,
1139                 struct rdma_conn_param *p)
1140 {
1141         struct rdma_conn_param  param = { };
1142         struct nvme_rdma_cm_rep priv = { };
1143         int ret = -ENOMEM;
1144
1145         param.rnr_retry_count = 7;
1146         param.flow_control = 1;
1147         param.initiator_depth = min_t(u8, p->initiator_depth,
1148                 queue->dev->device->attrs.max_qp_init_rd_atom);
1149         param.private_data = &priv;
1150         param.private_data_len = sizeof(priv);
1151         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1152         priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1153
1154         ret = rdma_accept(cm_id, &param);
1155         if (ret)
1156                 pr_err("rdma_accept failed (error code = %d)\n", ret);
1157
1158         return ret;
1159 }
1160
1161 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1162                 struct rdma_cm_event *event)
1163 {
1164         struct nvmet_rdma_device *ndev;
1165         struct nvmet_rdma_queue *queue;
1166         int ret = -EINVAL;
1167
1168         ndev = nvmet_rdma_find_get_device(cm_id);
1169         if (!ndev) {
1170                 pr_err("no client data!\n");
1171                 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1172                 return -ECONNREFUSED;
1173         }
1174
1175         queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1176         if (!queue) {
1177                 ret = -ENOMEM;
1178                 goto put_device;
1179         }
1180         queue->port = cm_id->context;
1181
1182         ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1183         if (ret)
1184                 goto release_queue;
1185
1186         mutex_lock(&nvmet_rdma_queue_mutex);
1187         list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1188         mutex_unlock(&nvmet_rdma_queue_mutex);
1189
1190         return 0;
1191
1192 release_queue:
1193         nvmet_rdma_free_queue(queue);
1194 put_device:
1195         kref_put(&ndev->ref, nvmet_rdma_free_dev);
1196
1197         return ret;
1198 }
1199
1200 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1201 {
1202         unsigned long flags;
1203
1204         spin_lock_irqsave(&queue->state_lock, flags);
1205         if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1206                 pr_warn("trying to establish a connected queue\n");
1207                 goto out_unlock;
1208         }
1209         queue->state = NVMET_RDMA_Q_LIVE;
1210
1211         while (!list_empty(&queue->rsp_wait_list)) {
1212                 struct nvmet_rdma_rsp *cmd;
1213
1214                 cmd = list_first_entry(&queue->rsp_wait_list,
1215                                         struct nvmet_rdma_rsp, wait_list);
1216                 list_del(&cmd->wait_list);
1217
1218                 spin_unlock_irqrestore(&queue->state_lock, flags);
1219                 nvmet_rdma_handle_command(queue, cmd);
1220                 spin_lock_irqsave(&queue->state_lock, flags);
1221         }
1222
1223 out_unlock:
1224         spin_unlock_irqrestore(&queue->state_lock, flags);
1225 }
1226
1227 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1228 {
1229         bool disconnect = false;
1230         unsigned long flags;
1231
1232         pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1233
1234         spin_lock_irqsave(&queue->state_lock, flags);
1235         switch (queue->state) {
1236         case NVMET_RDMA_Q_CONNECTING:
1237         case NVMET_RDMA_Q_LIVE:
1238                 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1239         case NVMET_RDMA_IN_DEVICE_REMOVAL:
1240                 disconnect = true;
1241                 break;
1242         case NVMET_RDMA_Q_DISCONNECTING:
1243                 break;
1244         }
1245         spin_unlock_irqrestore(&queue->state_lock, flags);
1246
1247         if (disconnect) {
1248                 rdma_disconnect(queue->cm_id);
1249                 schedule_work(&queue->release_work);
1250         }
1251 }
1252
1253 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1254 {
1255         bool disconnect = false;
1256
1257         mutex_lock(&nvmet_rdma_queue_mutex);
1258         if (!list_empty(&queue->queue_list)) {
1259                 list_del_init(&queue->queue_list);
1260                 disconnect = true;
1261         }
1262         mutex_unlock(&nvmet_rdma_queue_mutex);
1263
1264         if (disconnect)
1265                 __nvmet_rdma_queue_disconnect(queue);
1266 }
1267
1268 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1269                 struct nvmet_rdma_queue *queue)
1270 {
1271         WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1272
1273         mutex_lock(&nvmet_rdma_queue_mutex);
1274         if (!list_empty(&queue->queue_list))
1275                 list_del_init(&queue->queue_list);
1276         mutex_unlock(&nvmet_rdma_queue_mutex);
1277
1278         pr_err("failed to connect queue %d\n", queue->idx);
1279         schedule_work(&queue->release_work);
1280 }
1281
1282 /**
1283  * nvme_rdma_device_removal() - Handle RDMA device removal
1284  * @queue:      nvmet rdma queue (cm id qp_context)
1285  * @addr:       nvmet address (cm_id context)
1286  *
1287  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1288  * to unplug so we should take care of destroying our RDMA resources.
1289  * This event will be generated for each allocated cm_id.
1290  *
1291  * Note that this event can be generated on a normal queue cm_id
1292  * and/or a device bound listener cm_id (where in this case
1293  * queue will be null).
1294  *
1295  * we claim ownership on destroying the cm_id. For queues we move
1296  * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port
1297  * we nullify the priv to prevent double cm_id destruction and destroying
1298  * the cm_id implicitely by returning a non-zero rc to the callout.
1299  */
1300 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1301                 struct nvmet_rdma_queue *queue)
1302 {
1303         unsigned long flags;
1304
1305         if (!queue) {
1306                 struct nvmet_port *port = cm_id->context;
1307
1308                 /*
1309                  * This is a listener cm_id. Make sure that
1310                  * future remove_port won't invoke a double
1311                  * cm_id destroy. use atomic xchg to make sure
1312                  * we don't compete with remove_port.
1313                  */
1314                 if (xchg(&port->priv, NULL) != cm_id)
1315                         return 0;
1316         } else {
1317                 /*
1318                  * This is a queue cm_id. Make sure that
1319                  * release queue will not destroy the cm_id
1320                  * and schedule all ctrl queues removal (only
1321                  * if the queue is not disconnecting already).
1322                  */
1323                 spin_lock_irqsave(&queue->state_lock, flags);
1324                 if (queue->state != NVMET_RDMA_Q_DISCONNECTING)
1325                         queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL;
1326                 spin_unlock_irqrestore(&queue->state_lock, flags);
1327                 nvmet_rdma_queue_disconnect(queue);
1328                 flush_scheduled_work();
1329         }
1330
1331         /*
1332          * We need to return 1 so that the core will destroy
1333          * it's own ID.  What a great API design..
1334          */
1335         return 1;
1336 }
1337
1338 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1339                 struct rdma_cm_event *event)
1340 {
1341         struct nvmet_rdma_queue *queue = NULL;
1342         int ret = 0;
1343
1344         if (cm_id->qp)
1345                 queue = cm_id->qp->qp_context;
1346
1347         pr_debug("%s (%d): status %d id %p\n",
1348                 rdma_event_msg(event->event), event->event,
1349                 event->status, cm_id);
1350
1351         switch (event->event) {
1352         case RDMA_CM_EVENT_CONNECT_REQUEST:
1353                 ret = nvmet_rdma_queue_connect(cm_id, event);
1354                 break;
1355         case RDMA_CM_EVENT_ESTABLISHED:
1356                 nvmet_rdma_queue_established(queue);
1357                 break;
1358         case RDMA_CM_EVENT_ADDR_CHANGE:
1359         case RDMA_CM_EVENT_DISCONNECTED:
1360         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1361                 /*
1362                  * We might end up here when we already freed the qp
1363                  * which means queue release sequence is in progress,
1364                  * so don't get in the way...
1365                  */
1366                 if (queue)
1367                         nvmet_rdma_queue_disconnect(queue);
1368                 break;
1369         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1370                 ret = nvmet_rdma_device_removal(cm_id, queue);
1371                 break;
1372         case RDMA_CM_EVENT_REJECTED:
1373         case RDMA_CM_EVENT_UNREACHABLE:
1374         case RDMA_CM_EVENT_CONNECT_ERROR:
1375                 nvmet_rdma_queue_connect_fail(cm_id, queue);
1376                 break;
1377         default:
1378                 pr_err("received unrecognized RDMA CM event %d\n",
1379                         event->event);
1380                 break;
1381         }
1382
1383         return ret;
1384 }
1385
1386 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1387 {
1388         struct nvmet_rdma_queue *queue;
1389
1390 restart:
1391         mutex_lock(&nvmet_rdma_queue_mutex);
1392         list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1393                 if (queue->nvme_sq.ctrl == ctrl) {
1394                         list_del_init(&queue->queue_list);
1395                         mutex_unlock(&nvmet_rdma_queue_mutex);
1396
1397                         __nvmet_rdma_queue_disconnect(queue);
1398                         goto restart;
1399                 }
1400         }
1401         mutex_unlock(&nvmet_rdma_queue_mutex);
1402 }
1403
1404 static int nvmet_rdma_add_port(struct nvmet_port *port)
1405 {
1406         struct rdma_cm_id *cm_id;
1407         struct sockaddr_in addr_in;
1408         u16 port_in;
1409         int ret;
1410
1411         switch (port->disc_addr.adrfam) {
1412         case NVMF_ADDR_FAMILY_IP4:
1413                 break;
1414         default:
1415                 pr_err("address family %d not supported\n",
1416                                 port->disc_addr.adrfam);
1417                 return -EINVAL;
1418         }
1419
1420         ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in);
1421         if (ret)
1422                 return ret;
1423
1424         addr_in.sin_family = AF_INET;
1425         addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr);
1426         addr_in.sin_port = htons(port_in);
1427
1428         cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1429                         RDMA_PS_TCP, IB_QPT_RC);
1430         if (IS_ERR(cm_id)) {
1431                 pr_err("CM ID creation failed\n");
1432                 return PTR_ERR(cm_id);
1433         }
1434
1435         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in);
1436         if (ret) {
1437                 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret);
1438                 goto out_destroy_id;
1439         }
1440
1441         ret = rdma_listen(cm_id, 128);
1442         if (ret) {
1443                 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret);
1444                 goto out_destroy_id;
1445         }
1446
1447         pr_info("enabling port %d (%pISpc)\n",
1448                 le16_to_cpu(port->disc_addr.portid), &addr_in);
1449         port->priv = cm_id;
1450         return 0;
1451
1452 out_destroy_id:
1453         rdma_destroy_id(cm_id);
1454         return ret;
1455 }
1456
1457 static void nvmet_rdma_remove_port(struct nvmet_port *port)
1458 {
1459         struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1460
1461         if (cm_id)
1462                 rdma_destroy_id(cm_id);
1463 }
1464
1465 static struct nvmet_fabrics_ops nvmet_rdma_ops = {
1466         .owner                  = THIS_MODULE,
1467         .type                   = NVMF_TRTYPE_RDMA,
1468         .sqe_inline_size        = NVMET_RDMA_INLINE_DATA_SIZE,
1469         .msdbd                  = 1,
1470         .has_keyed_sgls         = 1,
1471         .add_port               = nvmet_rdma_add_port,
1472         .remove_port            = nvmet_rdma_remove_port,
1473         .queue_response         = nvmet_rdma_queue_response,
1474         .delete_ctrl            = nvmet_rdma_delete_ctrl,
1475 };
1476
1477 static int __init nvmet_rdma_init(void)
1478 {
1479         return nvmet_register_transport(&nvmet_rdma_ops);
1480 }
1481
1482 static void __exit nvmet_rdma_exit(void)
1483 {
1484         struct nvmet_rdma_queue *queue;
1485
1486         nvmet_unregister_transport(&nvmet_rdma_ops);
1487
1488         flush_scheduled_work();
1489
1490         mutex_lock(&nvmet_rdma_queue_mutex);
1491         while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list,
1492                         struct nvmet_rdma_queue, queue_list))) {
1493                 list_del_init(&queue->queue_list);
1494
1495                 mutex_unlock(&nvmet_rdma_queue_mutex);
1496                 __nvmet_rdma_queue_disconnect(queue);
1497                 mutex_lock(&nvmet_rdma_queue_mutex);
1498         }
1499         mutex_unlock(&nvmet_rdma_queue_mutex);
1500
1501         flush_scheduled_work();
1502         ida_destroy(&nvmet_rdma_queue_ida);
1503 }
1504
1505 module_init(nvmet_rdma_init);
1506 module_exit(nvmet_rdma_exit);
1507
1508 MODULE_LICENSE("GPL v2");
1509 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */